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Interacting and tunable quantum dots (QDs) have been extensively exploited in condensed matter physics and
quantum information science. Using a low-temperature scanning tunneling microscope (STM), we both create
and directly image a new type of coupled QD system in graphene, a highly interacting quantum relativistic system
with tunable density. Using detailed scanning tunneling spectroscopy (STS) measurements, we show that Landau
quantization inside a potential well enables novel electron confinement via the incompressible strips between
partially filled Landau levels (LLs), forming isolated and concentric LL QDs. By changing the charge density
and the magnetic field we can tune continuously between single- and double-concentric LL QD systems within
the same potential well. In the concentric QD regime, single-electron charging peaks of the two dots intersect,
displaying a characteristic avoidance pattern. At moderate fields, we observe an unconventional avoidance
pattern that differs significantly from that observed in capacitively coupled double-QD systems. We find that we
can reproduce in detail this anomalous avoidance pattern within the framework of the electrostatic double-QD
model by replacing the capacitive interdot coupling with a phenomenological charge-counting system in which
charges in the inner concentric dot are counted in the total charge of both islands. The emergence of such strange
forms of interdot coupling in a single potential well, together with the ease of producing such charge pockets
in graphene and other two-dimensional (2D) materials, reveals an intriguing testbed for the confinement of 2D
electrons in customizable potentials.
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I. INTRODUCTION

In a quantum dot (QD), electrons are confined in all spatial
dimensions using geometric constraints or a combination of
electric and magnetic fields. A tunable quantum workbench,
QDs have found a ubiquity of applications. Behaving as artifi-
cial atoms [1,2], they are extensively used as tools for emulat-
ing basic models of condensed-matter physics [3]. Interacting
QDs, and double QDs in particular, are specifically explored
as qubits in quantum information technologies [4,5]. First, a
double QD can be tuned into various charge configurations
controlled by potentials of gate electrodes. The states with
near-degeneracy of multiple charge configurations are used
for exquisite manipulations of the wave-function dynamics.
Second, the strength of interaction, or the coupling, between
individual QDs is also controllable by the gates.

Historically, QDs have been fabricated in semiconductor
systems, taking advantage of energy band gaps and the variety
of fabrication technologies which can control confinement
on nanometer length scales. By contrast, in two-dimensional
(2D) massless Dirac materials such as graphene, confinement
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is inhibited by Klein tunneling through electrostatic barriers
[6,7], and true confinement emerges only at high magnetic
fields [8–10]. Recently, a method was developed to generate
nanoscale electrostatic potentials in backgated graphene de-
vices using the tip of a scanning tunneling microscope (STM)
to charge impurities in the boron nitride insulator [11]. This
has since been used to create potential wells whose electronic
confinement properties were investigated using scanning tun-
neling spectroscopy (STS) at zero [12], weak [13], and inter-
mediate [14] magnetic fields. Large angle scattering circum-
vents Klein tunneling and gives rise to quasibound resonances
in zero magnetic field [12,15], which undergo a discontinuous
jump in energy in weak fields due to modulation of the Berry
phase with magnetic field [13]. Electron interactions become
important at intermediate magnetic field causing the screened
confining electrostatic potential to develop a flattened profile
that resembles a wedding cake [14]. This structure results in
a concentric series of compressible rings inside the confining
potential, separated by incompressible strips [14]. At stronger
magnetic fields, the tunnel barriers between these rings be-
come important and Coulomb-blockade phenomena are ob-
served in the scanning tunneling spectroscopy (STS) dI/dV
signal, indicating the formation of Landau level (LL) QDs.
These Coulomb peaks display a rich, tunable phenomenology,
interacting with the local density of states traditionally ob-
served by STS, and revealing novel aspects of the QD system
under study, which is the subject of this paper.
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In the present experiment, the STM tip combines multiple
experimental roles being simultaneously transport contact,
gate and charge sensor for QD charging events, and the
density-of-states probe of a typical STM/STS experiment.
First, it is a mobile “transport lead” which can be positioned
over any part of the graphene sheet, inside or outside the QD
system. This role appears most clearly at low sample bias,
where we observe Coulomb diamonds reminiscent of trans-
port through QDs (e.g., Ref. [1]). At higher bias, however, this
picture is modified by the fact that the STM current derives
from tunneling to all sample states within a window defined
by the sample bias [16], which includes states belonging to
LLs whose electrons do not form part of the QD. Second,
the tip forms a mobile top gate whose position influences the
charge state of the QD. Relatedly, it acts as a charge sensor
through a mechanism long known in STS measurements of
semiconducting systems [10,17–21]: as the tip locally gates a
defect (or QD) state to the Fermi level, charging of the defect
causes a sudden shift in the density of states under the tip, and
a consequent spike in dI/dV, even without any tunneling cur-
rent through the defect itself. Continuing the comparison with
transport studies of QDs, this role is analogous to a capacitive
charge sensor, e.g., a point contact fabricated in proximity to a
QD. In most of the data shown here the tip is positioned inside
the dot, and the same Coulomb peak can be followed from low
bias where it forms part of a Coulomb diamond, to high bias
where it can be ascribed to such charge sensing.

In graphene, the unequal energy spacing of the Landau
levels, and consequent unequal tunnel barriers between cor-
responding compressible rings, allows us to control the con-
finement geometry by changing the index of Landau levels
crossing the Fermi energy within the potential well. Thus,
for a certain range of gate voltages we can observe Coulomb
peaks corresponding to single-dot charging, whereas at other
gate voltages, where two widely spaced LLs are being filled,
we reliably observe double-dot charging patterns with a lattice
of avoided crossings characterizing the interaction between
the individual QDs. The particular pattern of these anticross-
ings shows striking and unprecedented features especially for
the first few electrons of the inner Landau level at slightly
weaker fields, which we can reproduce by a simple but
important modification of the standard two-dot electrostatic
model [22]. Analyzing why this ubiquitous and qualitatively
different anticrossing behavior has not been observed before,
we emphasize the novelty of the QD measurements by STM.
In previous works on concentric LL quantum dots [23], the
dot was contacted externally using transport leads whereas
in the present case we have a moveable lead which can
be positioned anywhere over the dot. These results show
that graphene QDs in high magnetic fields can be used as
a novel quantum-relativistic tool box for realizing complex
and intriguing aspects of single electron charging effects in
confined quantum Hall systems.

II. DESCRIPTION OF THE QD SYSTEMS

The experimental data was obtained from a high-quality
monolayer graphene on hexagonal boron nitride (hBN) on
a 285 nm SiO2/Si device (see methods). The devices used
for the graphene QDs are shown schematically in Figs. 1(a)

and 1(d), for p-type and n-type confining potentials, respec-
tively. The confining potentials, V0(r) [Fig. 1(c)], are pro-
duced from charged impurities in the hBN insulator created
by pulsing a strong electric field over the graphene/hBN
heterostructure [11]. The charge impurities in the hBN layer
act as a local fixed nanometer-scale gate potential giving rise
to a radially symmetric circular pn junction tunable by the
back gate [12,13]. We have created and measured both p-type
and n-type quantum wells [Figs. 1(a) and 1(d)] using this
technique, and we have observed Coulomb blockade features
that are fundamentally similar despite the difference in polar-
ity. Our data consists of the scanning tunneling spectroscopy
(STS) dI/dVB signal, where I is the tunneling current and VB

is the sample bias, measured using the lock-in technique. This
data is acquired in a multidimensional space consisting of the
tip position r, the backgate voltage Vg, and VB; the tip is held
at virtual ground.

In the present system, the QD potential is formed from
a combination of the fixed charges in the hBN and the
(screened) gating potential of the STM tip. The character of
the QD system observed within the potential well depends
on the gate voltage and on the energy gaps between those
LLs which cross the Fermi energy within it. In general, we
find that charging effects appear for those pairs of adjacent
LLs that are separated by the largest energy gap (for example,
N = 0 and N = ±1), regardless of dot polarity. Coulomb
blockade effects were generally not observed for other, higher
index pairs of LLs which are separated by much smaller
energy gaps. This element of tunability is unique to systems
with unevenly spaced LLs deriving from steep, nonparabolic
bands, such as graphene.

Figures 1(e)–1(h) show the STS dI/dV signal acquired in
line spectroscopy measurements through p- and n-type QDs
[Figs. 1(e) and 1(f), respectively] and in x-y raster scans at
fixed bias [Figs. 1(g) and 1(h), respectively]. In all panels
the gate was set within the double-QD regime, where LL(-1)
and LL(0) cross EF within the well [Figs. 1(a) and 1(d)]. In
the raster scans the charging features are due to the effect
of spatially dependent tip gating and take the form of con-
centric rings. The two LLs which are being charged each
have their own set of concentric rings; charging rings of
LL(-1) and LL(0) are indicated by dark and light-gray arrows,
respectively. In the n-type dot [Fig. 1(h)] the centers of the
two sets of charging rings have spatially separated centers
and can be readily distinguished. In the line spectroscopy
measurements [Figs. 1(e) and 1(f)], the two sets of charging
peaks appear as series of nested quasi-parabolic “U”-shaped
curves whose vertical spacing �VB can be used to estimate
the charging energy of its respective QD [see Fig. 2 et seq.].
Within each potential well the two sets of charging “U”s can
be distinguished by their curvature and spatial extent: those
belonging to the outer LL(-1) are broader, flatter, and more
closely spaced in �VB, while those belonging to the inner
LL(0) are steeper and more widely spaced.

Both types of charging curves resemble the features
observed in scanning gate microscopy of QD systems
[24,25], and can be explained as an induced charge in
the QD,

�q = Ctip(r)�Vtip , (1)
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FIG. 1. Real-space imaging of single electron charging of graphene QD compressible islands. Panels (a, d) show cartoons illustrating the
Landau level (LL) p-type (a) and n-type (d) QD systems, tuned to the double-dot regime. Both systems are characterized by two LLs crossing
the Fermi energy μgr in a nested pattern, each making a compressible ring or disk. Panel (b) shows the effective capacitances between each
LL island and the tip and gate electrodes in the double-dot configuration. Panel (c) shows the different effects of the tip potential on p- and
n-type dots: the tip potential tends to reinforce the p-type dot but disrupt the n-type. g(r,VB) measurements from p-type and n-type QDs at
B = 8 T are shown in panels (e, g) and (f, h), respectively. Panels (e) and (f) show energy vs distance tunneling measurements cut through
the centers of the QD systems along the dashed white lines in panels (g) and (h), respectively. LLs exhibit plateaus in panels (e) and (f)
characteristic of screening, and charging events are observed as series of convex-up parabolas with different curvatures; each panel contains
two overlapping sets of curves for the two nested LLs. The same charging features in g as appear as sets of concentric rings in panels (g) and
(h). Features associated with the charging of LL(-1) (LL(0)) are indicated by dark gray (light-gray) arrows. Tunneling parameters for (e, g) are
VB = 300 mV, Is = 100 pA, and (f, h) are VB = 250 mV, Is = 100 pA, respectively. The reduced intensity near the Fermi level in panel (d) is
due to a phonon gap (see Supplemental Material [28] for discussion).
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FIG. 2. Mapping of the single charging of compressible rings and disks in p-type graphene QDs. (a) g(Vg,VB ) map with the tip positioned
in the center of the QDs for the p-type dot of Figs. 1(a), 1(e), and 1(g) at B = 8 T. The rightmost slanted bright line indicates the addition of
the first hole to LL(0) at Vg ≈ 36 V (dashed vertical line). With decreasing gate voltage the LL(0) compressible disk charges and grows in size,
becoming a ring when LL(0) is lifted off the Fermi level in the interior of the QD (see schematic below map). At Vg ≈ 22 V the first hole is
added to LL(-1) as it comes to the Fermi level; with decreasing gate voltages both LLs are charged leading to avoided crossings, as shown in
(b) [square box in panel (a)] (c) g(Vg) spectrum cut from the dashed horizontal line in panel (a) at VB = 180 mV, showing the charging peaks.
(d) The QD radius vs line index, as calculated from the horizontal spacing of the charging lines in panel (a), under the parallel plate
approximation where the dot is a conducting disk. Note increasing index corresponds to decreasing gate voltage. (e) The bias voltage spacing
of the LL(-1) QD vs line index. The peaks at index four and eight arise from quantum-mechanical energies separating the groups of four
charging lines, as shown in panel (c). The statistical uncertainty in panels (d) and (e) is less than the symbol size as determined from of the
uncertainties in a linear least square fit of the charging lines in panel (a). Tunneling parameters are VB = 300 mV, Is = 100 pA.
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where �Vtip is the contact potential difference between the tip
and graphene minus the sample bias VB. The tip capacitance
Ctip should be regarded as an effective capacitance that derives
from the interaction of the spatially varying tip potential with
the QD potential well, as screened by the successive partially
filled LL rings. Importantly, since the electron density per
filled LL in the quantum Hall regime is fixed, the charging
(dis-charging) of the LL quantum dot by the scanning tip
is accompanied by growth (shrinkage) of the total occupied
area at the Fermi level, and corresponding deformations of
the compressible ring which is its boundary.

Since the sample bias VB represents a tunable offset to
�Vtip, the steepness of the “U”-curves in line STS can be
used to estimate the contact potential difference, provided we
have a suitable model for the variation of Ctip(r). A rough
approximation is found by regarding the double-QD elements
as fixed metallic conductors (concentric disk within a ring)
and in simulations based on such a model [Fig. S7], a con-
tact potential difference (CPD) of ≈−0.8V gives reasonable
agreement between model and experiment. This estimated
CPD agrees well with the work function difference between
graphene [26] and Au [27], which comprises the bias contacts
of our device, which we used for preparation of the STM tip.

III. EVOLUTION OF THE SYSTEM WITH GATING

A. p-type QD system

Figure 2(a) shows the spectral dI/dVB gate map as a
function of VB and Vg with the tip positioned in the center
of the confining potential. Here, the map is dramatically
dominated by slanted bright lines corresponding to adding a
single charge to a LL QD, whereas the usual graphene LL
LDOS is observed as a nearly horizontal intensity modulation
of these features. In Fig. 2(a), a single hole is added to LL(0)
starting at a large back gate voltage of ≈ 36 V, initiating a
LL(0) QD disk at the Fermi level. As we decrease the gate
voltage, additional holes are added and the dot expands: the
filled LL(0) rises above the Fermi energy in the dot center, and
the compressible part of this LL expands outward, forming
a ring. This increase in dot size is inferred from the closer
spacing of the charging lines and confirmed by direct STS
measurements [Fig. 1(e)]. At gate voltage ≈ 22 V, LL(-1)
crosses the Fermi level [see schematic below Fig. 2(a)] and a
concentric double-QD is formed. This is indicated by a second
series of slanted charging lines that are observed together
with the original set from the LL(0) QD; the latter are now
finely spaced, reflecting the larger size of the LL(0) QD. These
two sets of charging lines display an avoided crossing pattern
indicative of a double QD [Fig. 2(b)], which is discussed
further below.

B. n-type QD system

A similar evolution of the concentric QDs is observed in
the n-type confining potential, as observed in Figs. 3(a) and
3(b). The filling of the dot begins with the formation of the
LL(-1) disk at gate voltage ≈ −10 V, and then concentric
quantum dots are formed when LL(0) crosses the Fermi level
at ≈ 4 V. This gradual filling process is well-demonstrated in
raster scans [Figs. 3(c)–3(j)] and in corresponding line scan

STS data (Fig. S11) which document the growth of the dot
with increasing gate voltage. In these scans, the single-dot
area can be clearly distinguished as the space circumscribed
by a bright halo, inside which the charging lines appear as
thin bright rings [Figs. 3(c)–3(e)]. In the STS line-cuts, taken
with identical tunneling conditions along a vertical line, this
region can be clearly identified with the area in which LL(-1)
is below the Fermi energy EF [Fig. 1(f)]. As the gate voltage
is increased the dot area expands taking in more electrons
[Figs. 3(c)–3(f)], until LL(0) begins to be filled at the center
of the dot. After a brief transition range of gate voltages
in which this internal dot is not firmly established for all
tip positions [Figs. 3(f) and 3(g)], the raster scans show an
internal region in which two sets of charging lines exist
[Figs. 3(h)–3(j)]: those corresponding to LL(-1) whose area
has expanded significantly, and those of LL(0) which are only
visible within the corresponding smaller bright halo. Line
spectroscopy [Fig. 1(f) and Fig. S11] shows that this is indeed
the zone where LL(0) is below the Fermi level. As compared
to the p-type dot [Fig. 1(e)], the raster scans here show a very
pronounced asymmetry in the centers of the charging rings,
and therefore in Ctip(r) for both dots. We attribute this to a
combination of asymmetries of the (unscreened) dot and tip
potentials. That the former is somewhat asymmetric can be
seen in the line STS measurements, especially Figs. 4(d)–4(f),
where, with increasing gate voltage, the expanding LL(-1) is
pulled outwards more rapidly on the right side than on the left.
(See Supplemental Material [28] for details on the calculation
of the Ctip(r) function for an asymmetric tip [Fig. S8], and
reference [9] therein.)

When the gate voltage is increased further, a point is
reached at which the outer LL, being occupied within the
potential well, is pulled below EF throughout the graphene
device. When this happens the “dot” expands to infinity and
the LL is not confined anymore. This deconfinement pro-
cess, or explosion, was observed in the n-type dot [Fig. 4].
Before the explosion, double-dot charging behavior similar
to Fig. 3 is observed [Figs. 4(a) and 4(d)]; then as the
dot becomes unstable the changes of tip position inher-
ent in scanning are able to disturb the system creating a
chaotic picture [Figs. 4(b) and 4(e)]. After the outer dot
“explodes,” we recover the single-QD regime where, regard-
less of tip position, the charging lines vanish and the nearly
undisturbed charging pattern of LL(0) remains [Figs. 4(c)
and 4(f)].

IV. ELECTROSTATIC MODELLING AND
NOVEL AVOIDANCE PATTERN

To interpret and best reproduce the slopes, intercepts, and
spacings of the observed charging lines we developed a model
incorporating Eq. (1), based on the electrostatic double-dot
model formulated for semiconductor QDs [22,29]. In our
model the two Coulomb islands are each connected to the
back gate and the STM tip by capacitors, but we crucially
omit the capacitor between the islands: our experimental
data requires a new mode of accounting for the interdot
coupling, described further on, which is a key result of this
work.
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FIG. 3. Mapping of the single charging of compressible rings and disks in n-type graphene QDs. (a) g(Vg,VB) map with the tip positioned
at the center of the QDs for the n-type dot of Figs. 1(f) and 1(h) at B = 8 T. At Vg ≈ −9.5 V the first electron is added to LL(-1) as indicated by
the slanted charging line (dashed vertical line). The LL(-1) compressible disk charges and grows in size with increasing gate voltage, becoming
a ring when LL(-1) is shifted below the Fermi level (see schematic below map). The second series of charging lines begins at Vg ≈ 4 V where
the first electron is added to LL(0) as it comes to the Fermi level. With increasing gate voltage both LLs are charged and avoided crossings
between these charging events are seen in (b), indicated by the square region between Vg = 13 V − 16 V. (c–j) g(r,VB = 250 mV) showing
top views of the QD at the indicated gate voltages. The small circles in (a) show the corresponding positions in gate map. With increasing gate
voltage, the number of charging lines increases first corresponding to LL(-1) and then LL(0) is seen to start charging in panel (f). Tunneling
parameters are the same as Fig. 1(f) and 1(h).

035428-6



TUNING SINGLE-ELECTRON CHARGING AND INTERACTIONS … PHYSICAL REVIEW B 101, 035428 (2020)

FIG. 4. Graphene quantum dot explosion. g(r,VB) measurements of the n-type QD in Figs. 1(d), 1(f), 1(h), and Fig. 3, showing top views
in the xy plane (a–c), and corresponding line cuts (d–f) across the centers of the QDs in the sample bias vs. y plane in a narrow back gate
voltage range between 20.5 and 23.5 V. In the middle panels (b) and (e) LL(-1) hits the Fermi level at the outer edges of the QD and ceases
to be compressible in panels (c, f) when it completely drops below the Fermi level [see red circle in panel (f)]. During this process the g(r)
signal becomes highly chaotic until the corresponding charging rings are no longer observed in panel (c). Tunneling parameters are the same
as described in the caption of Fig. 3.

The total electrostatic energy of our double-QD system is

U (N1, N2) = 1

2
QT · C−1 · Q = 1

2

2∑

i=1

(Nie + Si )2

2Ci
(2)

where Q = (N1e N2e)T , C is the 2 × 2 capacitance matrix, Ci

is the total capacitance of the ith dot, e is the electron charge,
and Si = Cgi(Vg − VB) + Cti(Vt − VB) is the induced charge on
the ith dot from the back gate and tip electrodes, Cgi and Cti,
respectively, and Vt represents the effective tip potential due
to the contact potential difference between tip and graphene.
To obtain the last piece of Eq. (2) we assumed that C has no
off-diagonal terms [cf. Eq. (A8) of Ref. [22]].

In this model the charging lines of a single dot (for
concreteness, dot 1) have the slope Cg1/(Cg1 + Ct1), and
the spacing of parallel charging lines in the gate direction
is �Vg1 = e/Cg1, in the absence of a quantum-mechanical
energy term. Treating the dot as a conducting disk separated
from the back gate by SiO2/hBN dielectrics, we obtain simple
estimates for the dot radius shown in Fig. 2(d). These results
agree reasonably well with the experimentally observed dot

sizes [Fig. 1(e)] despite the crudeness of the fixed-conductor
approximation. In Fig. 2(e) we plot the bias-voltage spacing
�VB of the consecutive charging lines of the single quantum
dot. To convert this to the physical addition energy one may
either multiply �VB by the tip lever arm (the ratio of the
tip capacitance to the total capacitance of the dot), which
can be found by independent electrostatic calculations [10],
or directly examine the Coulomb diamond features near the
Fermi energy; the addition energy is the maximum height of
one of its triangles [30]. The lever arm varies systematically
with the dot size, and we have omitted the attempt to calculate
it precisely. Of special note are the larger gaps between the
fourth and fifth and the eighth and ninth charging lines in
Fig. 2(c). This reflects the fourfold spin and valley degeneracy
of the graphene Dirac states [31]: the discrete Landau level
orbital states can each be charged four times, after which
it is necessary to overcome an additional energy gap before
charging the next orbital. This often leads to a clustering of the
charging lines in groups of four. Unequal spacing of charging
peaks within the quartet is observed here and elsewhere, and
is attributed to lifting of the valley or spin degeneracy [10,32].
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FIG. 5. Tuning the charging and coupling of graphene compressible rings. g(Vg,VB) map with the tip positioned at the center of the QDs
for the n-type QDs of Fig. 2(d) at B = 6 T. (a) Large-scale map showing charging lines appearing predominantly in quartets due to the fact that
quantum-mechanical energy becoming larger than the charging energy at the lower field of 6 T as compared to Fig. 4(a) at B = 8 T. (b) A novel
type of avoided crossing is observed at gate voltages below ≈ 18 V with the charging line of LL(0) joining and exiting the quartet of charging
lines of LL(-1). (c) The avoided crossing pattern in panel (b) gradually evolves with increased density (gate voltage), into the more standard
crossing observed at higher field in Fig. 4. (d, e) Model calculations of avoided crossings observed in panels (b, c), respectively. Within the
electrostatic double-dot paradigm, a different charge-counting scheme is required to reproduce the anomalous crossing pattern in panel (b) as
discussed in the main text (see Supplemental Material [28] for calculation details and reference [8] therein). Tunneling parameters are the same
as described in the caption of Figs. 3.
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When two nested dots are being filled, there is a regular
grid of avoided crossings [Figs. 2(b), 3(b), and Figs. 5(b)
and 5(c)]. We first attempted to numerically simulate the
observed avoidance pattern by adjusting the dot-gate capac-
itances and their mutual capacitance Cm as prescribed in the
full double-dot model of Ref. [22]. However, our attempts
failed, particularly in describing spectral maps taken in both
dots in slightly weaker magnetic fields [Fig. 5]. In the n-type
dot measurements at 6 T, the charging lines corresponding
to adding the first several electrons to the inner dot show an
avoidance pattern highlighted in Fig. 5(b) and schematized in
Fig. 5(d), which could not be captured by the standard double
dot charging model.

In a typical double-QD system the charge stability diagram
is made up of hexagonal cells (Fig. S1), whose boundaries
are called charging lines if they represent the transitions
(N1, N2) → (N1 ± 1, N2) or (N1, N2 ± 1), and charge recon-
figuration lines if they represent an electron transfer between
the dots: (N1, N2) → (N1 ± 1, N2 ∓ 1) [22,33,34]. If we pick
a charging line and follow it through the stability diagram,
then we find that it executes zigzags as it forms the boundary
of successive hexagonal cells. The changes of slope occur at
triple points, where three charge states are degenerate. These
zigzags are apparent in our gate maps at 8T [white circled
regions in Figs. 2(b) and 3(b)].

In our weak-field data, however, the avoidance pattern is
fundamentally different: The incoming charging line of the
inner dot attaches to a quartet on the lower left and detaches
from it on the upper right [Fig. 5(b)]. The charge reconfigu-
ration line, which is shown in red in Fig. 5(d), passes through
the quartet without making any zigzags: the charge stability
diagram cell is a parallelogram rather than a hexagon. But,
increasing the gate voltage in Fig. 5(d) (and thereby enlarging
both dots), we find that the zigzags in the outer-dot charging
lines begin to reappear, and the hexagonal cell is gradually
restored [Figs. 5(a), 5(c), and 5(e)].

In the standard model of QD charging physics, both the
limit of large Cm and the increase of the interdot tunnel
conductance to ∼e2/h correspond to an effective merging of
the two dots [22,35–37]. This limit destroys all distinction
between the charging lines of the two dots and is fundamen-
tally different from the avoidance pattern observed here. We
discovered that the latter, with its parallelogram-shaped cells,
could be reproduced with Cm = 0 by replacing the charge
vector in Eq. (2) with the modified form Q1 = (N1 + N2)e,
Q2 = N2e; this physically amounts to regarding the outer dot
(dot 1) as including the charge of inner dot in its total electron
count. The need for such a substitution can be seen from the
charge stability diagram [Fig. 5(d)]. Since the condition for
charging dot 1 is not changed by crossing the reconfiguration
line, the suggestion that it depends on (N1 + N2) rather than
only N1 naturally follows. (For details of the modified model
and calculations, see Supplemental Material [28]).

To reproduce the transition between the parallelogram-
matic and hexagonal cells in the charge stability diagram,
the simplest method is to introduce a parameter α such that
Q1 = (N1 + αN2)e. Then as α decreases from one, the dot
2 charging line appears at the corners of the parallelogram
and gradually lengthens, producing the hexagonal shape of
Fig. 5(e) at α = 0.6. A more detailed exposition of our

modified model is given in the Supplemental Material [28]
(Figs. S1–S6). Here α is a phenomenological parameter, and
the physical interpretation of the case α < 1 is not obvious.
Further theoretical work on a microscopic model that captures
the interaction and quantum properties of the LL QDs is
required to fully understand these results.

V. CONCLUSION

We have constructed edge-free graphene LL QDs by in-
ducing local gating effects in the hBN substrate and applying
a magnetic field. These LL QDs are tunable using several
different knobs: physical size of the charge pocket, magnetic
field strength, back-gate voltage, and tip position. With these
knobs we can tune our charge pocket between a single QD
and a concentric double-QD system which reveals charging
patterns not encountered before, the theory of which requires
further development. These results will become increasingly
important as the use of scanned probes to make electronically
functional nanostructures grows and develops.
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APPENDIX: METHODS

The devices were fabricated employing a wet transfer tech-
nique described in Ref. [38]. Monolayer graphene and hBN
flakes were prepared by mechanical exfoliation onto different
substrates where the hBN flake was around 20 nm thick.
After transferring, metallic contacts (Cr/Pd/Au) including a
set of radial guides for STM navigation were deposited on
top of the heterostructure using standard e-beam lithography.
Finally, the device was annealed for 5 h in forming gas (5%
H2/95% Ar) at 350°C to remove processing residues. Further
annealing of the device at 350°C occurred after introduction
to the ultrahigh vacuum (UHV) system.

After loading the device into UHV and annealing, it is
transferred into the STM module along with an Ir probe tip,
which is part of the cryogenic STM system [39]. The Ir
probe tip was prepared by annealing and field-ion evaporation
in a field-ion microscope. The probe was optically aligned
onto the device guideway using an optical telescope at room
temperature. Subsequently, the STM module is lowered into
the cryostat and cooled to 4.3 K. All measurements were
made at 4.3 K. Differential tunneling conductance measure-
ments, g(r,VB,Vg, B) ≡ dI/dVB, were obtained modulating
the sample bias, VB, and using standard lock-in techniques to
obtain spectral maps as a function of position r, VB, back gate
potential, Vg, and magnetic field, B.
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The spectral maps in Fig. 1(e), and Figs. 2(a) and 2(b), are
shown normalized by the average conductance of each row
in the image to enhance the intensity within the graphene
phonon gap: g(r,VB )

〈g〉+δ
, where δ = 0.02 nS (see Supplemental

Material [28] for further discussion of the phonon gap, and
references [10–13] therein). The other spectral maps, g(r,VB)
and g(Vg,VB), have a smooth background subtracted to remove
the graphene dispersion as described in Ref. [14].
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