
Performance Evaluation of the NDN Data Plane
Using Statistical Model Checking

Siham Khoussi1,2, Ayoub Nouri1, Junxiao Shi2

James Filliben2, Lotfi Benmohamed2, Abdella Battou2, and Saddek Bensalem1

1 Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble
Alpes, VERIMAG, 38000 Grenoble, France

2 National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA

Abstract. Named Data Networking (NDN) is an emerging internet ar-
chitecture that addresses weaknesses of the Internet Protocol (IP). Since
Internet users and applications have demonstrated an ever-increasing
need for high speed packet forwarding, research groups have investi-
gated different designs and implementations for fast NDN data plane
forwarders and claimed they were capable of achieving high throughput
rates. However, the correctness of these statements is not supported by
any verification technique or formal proof. In this paper, we propose using
a formal model-based approach to overcome this issue. We consider the
NDN-DPDK prototype implementation of a forwarder developed at the
National Institute of Standards and Technology (NIST), which leverages
concurrency to enhance overall quality of service. We use our approach
to improve its design and to formally demonstrate that it can achieve
high throughput rates.

Keywords: NDN · SMC · Model-based design · Networking

1 Introduction

With the ever growing number of communicating devices, their intensive infor-
mation usage and the increasingly critical security issues, research groups have
recognized the limitations of the current Internet architecture based on the inter-
net protocol (IP) [12]. Information-Centric Networking (ICN) is a new paradigm
that transforms the Internet from a host-centric paradigm, as we know it today,
to an end-to-end paradigm focusing on the content, hence more appropriate to
our modern communication practices. It promises better security, mobility and
scalability.

Several research projects grew out of ICN. Examples include content-centric
architecture, Data Oriented Network Architecture and many others [17], but
one project stood out the most and was sponsored by the National Science

The identification of any commercial product or trade name does not imply endorse-
ment or recommendation by the National Institute of Standards and Technology,
nor is it intended to imply that the materials or equipment identified are necessarily
the best available for the purpose.

2 S. Khoussi et al.

Foundation (NSF) called Named Data Networking (NDN) [19]. NDN is gaining
rapidly in popularity and has even started being advertised by major networking
players [1].

IP was designed to answer a different challenge, that is of creating a com-
munication network, where packets named only communication endpoints. The
NDN project proposes to generalizes this setting, such that packets can name
other objects, i.e. “NDN changes the semantics of network services from deliver-
ing the packet to a given destination address to fetching data identified by a given
name. The name in an NDN packet can name anything - an endpoint, a data
chunk in a movie or a book, a command to turn on some lights, etc.“ [19]. This
simple change has deep implications in term of routers forwarding performance
since data needs to be fetched from an initially unknown location.

Being a new concept, NDN (Section 2) has not undergone any formal veri-
fication work yet. The initial phase of the project was meant to come up with
proof-of-concept prototypes for the proposed architecture. This has lead to a
plethora of less performing implementations in terms of packets’ forwarding rates
(throughput). A lot of effort was then directed to optimizing NDN forwarders’
performances by trying different data structures (Hash maps) and targeting dif-
ferent hardware (GP-GPU). Unfortunately, validation was mainly carried using
pure simulation and testing techniques.

In this work, we take a step back and try to tackle the performance problem
differently. We consider a model-based approach that allows for rigorous rea-
soning and formal verification (Section 3). In particular, we rely on the SBIP
framework [11, 16] offering a stochastic component-based modeling formalism
and Statistical Model Checking (SMC) engine. SBIP is used along an iterative
and systematic design process which consists of four phases (1) building a pa-
rameterized functional system model, which does not include performance (2)
run a corresponding implementation in order to collect context information and
performance measurements, characterized as probability distribution functions,
(3) use these distributions to create a stochastic timed performance model and
(4) use SMC to verify that the obtained model satisfies requirements of interest.

This approach is applied to verify that the NDN Data Plane Development
Kit (NDN-DPDK) (an effort to develop a high performance forwarder for NDN
networks at the National Institute of Standards and Technology (NIST)) can
perform at high packet forwarding rates (Section 4). We investigate different
design alternatives regarding concurrency (number of threads), system dimen-
sioning (queues sizes) and deployment (mapping threads to multi-core). Using
our approach, we were able to figure out what are the best design parameters to
achieve higher performances (Section 5). These were taken into account by the
NDN developers at NIST to enhance the ongoing design and implementation.
To the best of our knowledge, this is the first work using formal methods in the
context of the NDN project.

2 Named Data Networking

This section describes the NDN protocol and introduces the NDN-DPDK for-
warder being designed and implemented at NIST.

NDN Performance Evaluation using SMC 3

2.1 Overview

NDN is a new Internet architecture different from IP. Its core design is exclusively
based on naming contents rather than end points (IP addresses in the case of
IP) and its routing is based on name prefix lookups [9].

The protocol supports three types of packets, namely Interest, Data and
Nack. Interests are consumer requests sent to a network and Data packets are
content producers replies. The Nack lets the forwarder know of the network’s
inability to forward Interests further. One of NDN’s advantages is its ability to
cache content (Data) everywhere the Data packet propagates, making the NDN
router stateful. Thus, future Interests are no longer required to fetch the content
from the source, instead Data could be retrieved directly from a closer node that
has a cached copy.

Packets in NDN travel throughout a network as follow: first a client applica-
tion sends an Interest with a name prefix that represents the requested content.
Names in NDN are hierarchical (e.g., /YouTube/Alex/video1.mpg denotes a
YouTube video called Video1.mpg by a Youtuber Alex). Then, this packet is
forwarded by the network nodes based on its name prefix. Finally, this Interest
is satisfied with Data by the original source that produced this content or by
intermediate routers that cached it due to previous requests. It is also crucial to
note that consecutive transmissions of Interest packets with similar name pre-
fix might not lead to the same path each time, but could rather be forwarded
along different paths each time a request is made, depending on the forwarding
strategy in place. This means that the same Data could originate from different
sources (producers or caches).

The NDN forwarding daemon (NFD) [3], has three different data structures:
Pending Interest Table (PIT), Content Store (CS) and Forwarding Interest Base
(FIB). The packet processing, according to the NDN protocol, is as follows:

1 – For Interests, the forwarder, upon receiving an Interest, starts off by
querying the CS for possible copies of the Data, if a CS match is found during
this operation, the cached Data is returned downstream towards the client. Oth-
erwise, an entry is created in the PIT with its source and destination faces (com-
munication channels that the forwarder uses for packet forwarding) for record
keeping. Using the PIT, the forwarder determines whether the Interest is looped
in the network by checking a global unique number called Nonce in the Interest
against existing previous PIT entries. If a duplicate nonce is found the Interest
is dropped and a Nack of reason Duplicate is sent towards the requester. Other-
wise, the FIB is queried for a possible next hop to forward the Interest towards
an upstream node; if there is no FIB match, the Interest is immediately dropped
and replied with a Nack of reason No Route.

2 – For Data, the forwarder starts off by querying the PIT. If a PIT entry is
found, the Data is sent to downstream nodes listed in the PIT entry, then the
PIT arms a timer to signal the deletion of this entry and a copy of the Data
is immediately stored in the CS for future queries. If no record is found in the
PIT, the Data is considered malicious and discarded.

4 S. Khoussi et al.

2.2 The NDN-DPDK Forwarder

NDN-DPDK is a forwarder developed at NIST to follow the NDN protocol and
to leverage concurrency. In this paper, we evaluate its capacity to achieve high
throughput using Statistical Model Checking (SMC).

The NDN-DPDK forwarder’s data plane has three stages: input, forwarding,
and output (Fig. 1). Each stage is implemented as one or more threads pinned to
CPU cores, allocated during initialization. Input threads receive packets from a
Network Interface Card (NIC) through faces, decode them, and dispatch them to
forwarding threads. The forwarding thread processes Interest, Data, or Nack
packets according to the NDN protocol. Output threads send packets via faces
then queue them for transmission on their respective NIC.

Input
Thread 0

…

fifo

Input
Thread N

Fw Thread 0

fifo
Fw Thread N

fifo Output
Thread 0

fifo
output

Thread N

… …

PCCT FIB

PCCT FIB

N
D
T

Face
0

Rx/Tx

Face
N

Rx/Tx

…

NIC

NIC

…

…

Fig. 1: Diagram of the NDN-DPDK forwarder

During forwarder initialization, each hardware NIC is provided with a large
memory pool to place incoming packets. The input thread continuously polls
the NIC to obtain bursts of 64 received packets. Then decodes, reassembles frag-
mented packets, and drops malformed ones. Then, it dispatches each packet to
the responsible forwarding thread which is determined as follows: (a) For an In-
terest, the input thread computes SipHash of its first two name components and
queries the last 16 bits of the hash value in the Name Dispatch Table (NDT),
a 65,536 entry lookup table configured by the operator, to select the forward-
ing thread. (b) Data and Nack carry a 1-byte field in the packet header which
indicates the forwarding thread that handled the corresponding Interest. Once
identified, Data (or Nack) will be dispatched to the same one.

The forwarding thread receives packets dispatched by input threads through
a queue. It processes each packet according to the NDN protocol, using two
data structures both implemented as hash tables: (a) The FIB records where
the content might be available and which forwarding strategy is responsible
for the name prefix. (b) The PIT-CS Composite Table (PCCT) records which
downstream node requested a piece of content, and also serves as a content cache;
it combines the PIT and CS found in a traditional NDN forwarder.

The output thread retrieves outgoing packets from forwarding threads through
a queue. Packets are fragmented if necessary and queued for transmission on a
NIC. The NIC driver automatically frees the memory used by packets after their
transmission, making it available for newly arrived packets.

NDN Performance Evaluation using SMC 5

3 Formal Model-based Approach

In this section, we describe the methodology used in this study which includes
the underlying modeling formalism as well as the associated analysis technique.

3.1 Overview

Our methodology (Fig. 2) is based on a formal model. In order to evaluate a
system’s performance, its model must be faithful, i.e. it must reflect the real
characteristics and behavior of this system. Moreover, to allow for exhaustive
analyses, this model needs to be formally defined and the technique used for
analysis needs to be trustworthy and scalable. Our approach adheres to these
principles in two ways. First, by relying on the SBIP formal framework (intro-
duced below) that encompasses a stochastic component-based modeling formal-
ism and an SMC engine for analysis [11]. Second, by providing a method for
systematically building formal stochastic models for verification that combine
accurate performance information with the functional behavior of the system.

Modeling

Instrument/
execution

Data analysis

Model
calibration

Functional
model (BIP)

Code
generation

Specifications
Existing

implementation

Raw
performance

measures

Requirements

Stochastic perf.
Model (SBIP)

Probability
distributions

Performance
evaluation

Quantitative
Evaluation

results

guides

Fig. 2: Performance evaluation approach for NDN data plane.

This approach takes a functional system model and a set of requirements to
verify. The functional model could be obtained from a high-level specification
or an existing implementation (we use the latter in this paper). The system’s
implementation which could also be obtained by automatic code generation, is
instrumented and used to collect performance measurements regarding the re-
quirements of interest, e.g. throughput. These measurements are analyzed and
characterized in the form of probability density functions with the help of statis-
tical techniques such as sensitivity analysis and distribution fitting. The obtained
probability density functions are then introduced in the functional model using
a well defined calibration procedure [15]. The latter produces a stochastic timed
model (when measurements concern time), which will be analyzed using the
SMC engine.

Note that the considered models in this approach or workflow can be param-
eterized with respect to different aspects that we want to analyze and explore.

6 S. Khoussi et al.

Basically, the defined components types are designed to be instantiated in dif-
ferent context, e.g. with different probability density functions thus showing
different performance behaviors. While, the model considered for analysis using
SMC is a specific instance for which all the parameters are fixed, some degree of
parameterization is still allowed on the verified requirements.

3.2 Stochastic Component-based Modeling in BIP

BIP (Behavior, Interaction, Priority) is a highly expressive component based
framework for rigorous system design [6]. It allows the construction of complex,
hierarchically structured models from atomic components characterized by their
behavior and their interfaces. Such components are transition systems enriched
with variables. Transitions are used to move from a source to a destination lo-
cation. Each time a transition is taken, component variables may be assigned
new values, computed by user-defined C/C++ functions. Composition of BIP
components is expressed by layered application of interactions and priorities. In-
teractions express synchronization constraints between actions of the composed
components while priorities are used to filter among possible interactions e.g. to
express scheduling policies.

The stochastic semantics of BIP were initially introduced in [14] and re-
cently extended for real-time systems in [16]. They enable the definition of

s0 s1
t = 0

p B
recv

[t = p]
snd

[t < p]
tick
t+ +

recv

Fig. 3: A stochastic BIP component;
client behavior issuing requests each
time unit p.

stochastic components encompassing
probabilistic variables updated accord-
ing to user-defined probability distri-
butions. The underlying mathematical
model behind this is a Discrete Time
Markov Chain. These are modeled as
classical BIP components augmented
with probabilistic variables as shown in
Fig. 3 and depicts a client behavior in a
client-server setting where the client is-
sues a request (snd) each p time units.
The period p is set probabilistically by
sampling a distribution function (p B) given as a parameter of the model. Time
is introduced by explicit tick transitions and waiting is modeled by exclusive
guards on the tick and snd transitions with respect to time (captured in this
example by the variable t).

3.3 Statistical Model Checking in a Nutshell

Statistical model-checking (SMC) [8, 18] is a formal verification method that
combines simulation with statistical reasoning to provide quantitative answers
on whether a stochastic system satisfies some requirements. It was successfully
used in various domains such as biology [7], communication [4] and avionics [5].
It has the advantage to be applicable to models and implementations (provided
that they meet specific assumptions) in addition to capturing rare events. The

NDN Performance Evaluation using SMC 7

SBIP SMC engine [11] implements well-known statistical algorithms for stochas-
tic systems verification, namely, Hypothesis Testing [18], Probability Estimation
[8] and Rare Events. In addition, it provides an automated parameters explo-
ration procedure. The tools take as inputs a stochastic BIP model, a Linear-
time/Metric Temporal Logic (LTL/MTL) property to check and a set of confi-
dence parameters required by the statistical test.

4 NDN-DPDK Modeling

In this section we present the modeling process of the NDN-DPDK from a func-
tional to a stochastic timed model for throughput evaluation.

4.1 A Parameterized Functional BIP Model

Fig. 4 depicts the BIP model of the NDN-DPDK forwarder introduced in Sec-
tion 2 which shows its architecture in terms of interacting BIP components that
can easily be matched to the ones in Fig. 1. The presented model is parameter-
ized with respect to the number of components, their mapping into specific CPU
cores, FIFOs sizes, etc. Due to space limitation, we present in [10] the behav-
iors of all the components of the NDN-DPDK forwarder in Fig. 4. It is worth
mentioning that the model is initially purely functional and untimed. Time is
introduced later through the calibration procedure.

Input Thread N

dispatch

pkt, t

fetch

Input Thread 0

pkt, t

fetch FiFo

FW thread 0 Output thread 0

FiFo

FW thread M Output thread N

…

fw_I

fw_D

fetch

fw_I

fw_D

…

…

fetch

…

push pop

push pop

FiFo

FiFo

push pop

push pop

…

fetch

fetch

snd

snd

pkt

pkt

tick

tick

dispatch

tick

tick

Fig. 4: A functional BIP model of the NDN-DPDK forwarder

4.2 Building the Performance Model

Client

Server

snd_I

recv_I

recv_D

tick

fetch

snd

push pop

push pop

snd

push pop

tick

fetch

push pop

snd_D

Forwarder

FiFo

FiFo

FiFo

FiFo

Fig. 5: Considered network topology

To build a performance model for our
analysis, we consider the network topol-
ogy in Fig. 5 which has a traffic genera-
tor client (consumer), a forwarder (NDN-
DPDK) and a traffic generator server
(producer), arranged linearly.

The green line shows the Interest
packet path from the client to the pro-
ducer through the forwarder and the red
line indicates the Data path towards the

8 S. Khoussi et al.

client. The structure of our model (Fig. 4) calls for four distribution functions
to characterize performance: a) Interest dispatching latency in input threads.
b) Data dispatching latency in input threads. c) Interest forwarding latency in
forwarding threads. d) Data forwarding latency in forwarding threads. Notice
that Nack packets are out of the scope of these experiments. We identified the
following factors that can potentially affect the system’s performance:

1. Number of forwarding threads. Having more forwarding threads dis-
tributes workload onto more CPU cores. The cores can compete for the shared
L3 cache, and potentially increase forwarding latency of individual packets.

2. Placement of forwarding threads onto Non Uniform Memory Access
nodes (NUMA). Input threads and their memory pools are always placed
on the same NUMA node as the Ethernet adapter whereas the output threads
and the forwarding threads can be moved across the two nodes. If a packet is
dispatched to a forwarding thread on a different node, the forwarding latency
is generally higher because memory access is crossing NUMA boundaries.

3. Packet name length measured by the number of its components.
A longer name requires more iterations during table lookups, potentially in-
creasing Interest forwarding latency.

4. Data payload length. Although the Data payloads are never copied, a
higher payload length increases demand for memory bandwidth, thus poten-
tially increasing latencies.

5. Interest sending rate from the client. Higher sending rate requires more
memory bandwidth, thus potentially increasing latencies. It may also lead to
packet loss if queues between input and forwarding threads overflow.

6. Number of PIT entries. Although the forwarder’s PIT is a hash table
that normally offers O(1) lookup complexity, a large number of PIT entries
inevitably leads to hash collisions, which could increase forwarding latency.

7. Forwarding thread’s queue capacity. the queues are suspected to impact
the overall throughput of the router through packet overflow and loss rates.
However, it does not influence packets individual latencies.

After identifying the factors with potential influence on packet latency, we
instrument the real forwarder to collect latency measurements. Then, perform
statistical analysis to identify which factors are more significant. This narrows
down the number of factors used and associated distribution functions.

Forwarder Instrumentation. Factors 1, 2, 3, 4, 5 and 7 can be controlled by
adjusting the forwarder and traffic generator configuration, while factor 6 is a
result of network traffic and is not in our control. To collect the measurement, we
modified the forwarder to log packets latencies as well as the PIT size after each
burst of packets. We minimized the extra work that input threads and forwarding
threads have to perform to enable instrumentation, leaving the measurement
collection to a separate logging thread or post-processing scripts. It is important
to mention that this task does in fact introduce timing overhead. Therefore, the
values obtained will have a bias (overestimate) that translates into additional
latency but the trends observed remain valid.

NDN Performance Evaluation using SMC 9

We conducted the experiment on a Supermicro server equipped with two
Intel E5-2680V2 processors, 512 GB DDR4 memory in two channels, and four
Mellanox ConnectX-5 100 Gbit/s Ethernet adapters. The hardware resources are
evenly divided into two NUMA nodes. To create the topology in Fig. 5, we con-
nected two QSFP28 passive copper cables to connect the four Ethernet adapters
and form two point-to-point links. All forwarders and traffic generator processes
were allocated with separate hardware resources and could only communicate
over Ethernet adapters.

In each experiment, the consumer transmitted either at sending intervals of
one Interest per 700 ns or per 500 ns under 255 different name prefixes. There
were 255 FIB entries registered in the NDN-DPDK forwarder at runtime (one for
each name prefix used by the consumer), all of which pointed to the producer
node. The producer would reply to every Interest with a Data packet of the
same name. The forwarder’s logging thread was configured to discard the first
67 108 864 samples (either latency trace or PIT size) during warm-up period, and
then collect the next 16 777 216 samples and ignore the cool down session. Each
experiment represents about 4 million Interest-Data exchanges. We repeated

Table 1: Factors used. NUMA mapping is described below.
Factors forwarding threads Name length Payload length Sending intervals

Values {1, 2, 3, 4, 5, 6, 7, 8} {3, 7, 13} {0, 300, 600, 900, 1200} {500 ns, 700 ns}

the experiment using different combinations of the factors in Table 1 and the
following NUMA arrangements:

(P1) Client and server faces and forwarding threads are all on the same NUMA,
(P2) Client face and forwarding threads on one NUMA, server face on the other,
(P3) Client face on one NUMA, forwarding threads and server face on the other,
(P4) Client face and server face on one NUMA, forwarding threads on the other.

In P1, packet latency is expected to be the smallest because all processes
are placed on the same NUMA therefore, no inter-socket communication and no
overhead are introduced. In P4, both Interests and Data packets are crossing
NUMA boundaries twice since the forwarding threads are pinned to one NUMA
whereas the client and the server faces, connected to the Ethernet adapters,
reside on another. This is suspected to increase packet latency tremendously as
opposed to P1, P2 and P3. These suspicions predict that placement P1 is the
best case scenario and placement P4 is obviously the worst. However, we aim at
getting more insight and confidence through quantitative formal analysis. This
will provide a recommendation as to which placement is better suited based on
the remaining parameters combinations.

Model Fitting. Before calibrating our functional BIP model with multiple
distinctive probability distributions representing each combination of the factors,
we choose to reduce the number of used distributions by performing a sensitivity
analysis. This analysis examines the impact of several factors on the response

10 S. Khoussi et al.

Fig. 6: Main Effects Plot for Interest and Data packets

(packet latency) and discovers the ones that are more important. In this paper,
we use DataPlot [2] to produce the Main Effect Plot (Fig. 6) for factors 1 to 5.

The plot shows steeper line slopes for the packet type (packet type is not a
factor. We intend to show how the NDN-DPDK forwarder processes both Interest
and Data differently) as well as factors (1), (2), (3), and (5) which indicates a
greater magnitude of the main effect on the latency. However, it shows almost
a horizontal line for factor 4 inducing an insignificant impact on the latency.
The latter is explained by the fact that the forwarder processes packet names
(headers) only and doesn’t read Data payloads. As for the PIT size (factor 6), it
is expected to heavily increase packet latency when it is full. However, because
this table’s implementation is optimized for high performance and entries are
continuously removed when Data packets arrive (PIT entries being satisfied),
we confirmed through a correlation analysis that we can ignore this factor’s
impact.

Based on the analysis above, we build distribution functions for each of the
factors that have greater impacts on packet latency in this study. These factors
are: 1. (1) the number of forwarding threads, 2. (2) NUMA placement, 3. (3)
packet name size (header), 4. (5) sending rate and, 5. (7) FIFO capacity (FIFO
impacts the loss rates and not individual packet latency). We refer the reader
to [10] to understand how we obtained the probability distributions for these
factors.

Model Calibration. Calibration is a well defined model transformation that
transforms functional components into stochastic timed ones [13]. In this section,
we use the probability distributions obtained above to calibrate the functional
BIP model of the NDN-DPDK forwarder shown in Fig. 4. Due to space limita-
tions, we refer the reader to [10] where we describe the calibrated models of all
the BIP components of the NDN-DPDK forwarder.

NDN Performance Evaluation using SMC 11

In the next section, we perform SMC on the calibrated model of the NDN-
DPDK forwarder and explain the results.

5 Performance Analysis using SMC

5.1 Experimental Settings

We run the SMC tests using the probability estimation algorithm (PE) with a
required confidence of α = 0.1 and a precision of δ = 0.1. Each test is configured
with a different combination of values for the factors previously presented. And
each execution of a test with a single set of parameters generates a single trace.
The property evaluated with the SMC engine is: Estimate the probability that
all the issued Interests are satisfied, i.e. a Data is obtained in return for each
Interest. The SMC result is a probability estimation p̂ which should be inter-
preted as being within the confidence interval [p̂ − δ, p̂ + δ] with probability at
least (1−α). In the experiments below, the shown results corresponds to p̂ = 1.

5.2 Analyses Results

Queues Dimensioning. First, we explore the impact of sizing forwarding
threads queues. Each forwarding thread has an input queue. Initially, we consider
a model with a single forwarding thread and vary its queue capacity with 128,
1024 or 4096 (in packets). Then set the client’s sending rate to: 105 packets per
second (pps), 106 pps or 107 pps. The results are shown in Fig. 7a. The Y-axis
represents the Interest satisfaction rate such that 100 % (resp. 0 %) indicates
no loss (resp. 100 % loss) and the x axis represents the queue capacity under
different sending rates.

Q=128 Q=1024 Q=4096

Queue capacity under different sending rates

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

 i
n
 %

10
5
 pps

10
6
 pps

10
7
 pps

(a) One Forwarding thread with different
sending rates.

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

 i
n
 %

Q = 128

Q = 4096

(b) Many Forwarding threads with a
sending rate set to 106 pps.

Fig. 7: Exploration results of the Forwarding threads queues sizes.

Fig. 7a indicates that at 105 pps (blue), the Interest satisfaction rate is 100%.
This means that the forwarder (with one forwarding thread) is capable of han-
dling all packets at this sending rate (105 pps of packet size 1500 bytes is equiv-
alent to 1.2 Gbps), under any queue size. However, under a faster sender rate

12 S. Khoussi et al.

(where a single forwarder shows signs of packet loss) we unexpectedly observed a
better Interest satisfaction rate with a smaller queue (Q=128). After a thorough
investigation of the real implementation, we found out that the queues don’t
have proper management in terms of insertion and eviction policies that would
give priority to Data over Interest packets. In the absence of such policy, more
Interests would be queued while Data packets would be dropped resulting in
Interests not being satisfied, thus lower performance (Interest satisfaction rate).
It is thus advised for the final implementation of the NDN-DPDK forwarder, to
use a queue capacity smaller than 128 packets when the forwarder has a single
forwarding thread and packets are sent at a fast rate.

Similarly, we explore whether this observation remains true with more for-
warding threads. In order to do that, we run SMC again on eight different models
each with a different number of forwarding threads (1 to 8) under a sending rate
of 106 pps (1 Interest per 1 us) where a loss rate was observed in Fig. 7a. Then,
we experimented with two queue capacities, namely 128 and 4096 packets. The
results are reported in Fig. 7b. The x Axis represents the number of forwarding
threads while the y axis depicts the Interest satisfaction rate.

We observe that the queue size matters mainly in the case of a model with
one and two forwarding threads. In fact, for a two threads model, a bigger queue
size is preferred to maximize the performance, unlike when a single thread is
used. As for the other six models, both sizes achieve almost 100 % Interest
satisfaction. This is due to the fact that three forwarding threads or more are
capable of splitting the workload at 106 pps and can pull enough packets from
each queue with a minimum loss rate of 0.02 % . This result stresses that, to
avoid being concerned about a proper queue size, more threads are needed for
handling a faster sending rate with minimum Interest loss.

NUMA placement, number of forwarding threads and packet name
length. Another aspect to explore, is the impact of mapping the forwarding
threads and/or NDN Faces to the two NUMA nodes (0, 1) under different sending
rates and for multiple name lengths where Face 0 exchanges packets with the
client and Face 1 with the server. To do that, we consider the four NUMA
arrangements (P1), (P2), (P3) and (P4) in section 4 as well as the factors in
Table 1 in the SMC analysis.

In Figs. 8 to 13, each row represents experiments with similar packet name
lengths {small=3, medium=7, large=13} and a queue capacity of 4096. The
right-hand column indicates results for a faster sending rate of 2 ∗ 106 pps (500
ns interval) while the left-hand one shows results for a slower sending rate of
1.42 ∗ 106 pps (700 ns interval). The six figures includes four curves where each
corresponds to the four NUMA arrangement options: P1 to P4.

The six Figs. 8 to 13 show that Interest satisfaction rates scale up with the
increase of forwarding threads then reach a saturation plateau where adding
more threads can no longer improve the performances. Furthermore, with fewer
forwarding threads, the loss rate is unavoidable and exceeds 80 %. This is because
the sending rate is faster than the forwarding threads processing capabilities

NDN Performance Evaluation using SMC 13

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

Fig. 8: small names, 700 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

Fig. 9: small names, 500 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

Fig. 10: medium names, 700 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

Fig. 11: medium names, 500 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

Fig. 12: large names, 700 ns

1 2 3 4 5 6 7 8

Number of forwarding threads

0

10

20

30

40

50

60

70

80

90

100

In
te

re
s
t
s
a
ti
s
fa

c
ti
o
n
 r

a
te

Fwd threads, face 0 on Numa 0, face 1 on Numa 1

Fwd threads, face 1 on Numa 1, face 0 on Numa 0

Fwd threads, face 0, face 1 on Numa 0

Fwd threads on Numa 0, face 0 face 1 on Numa 1

Fig. 13: large names, 500 ns

14 S. Khoussi et al.

causing their FIFO queues to saturate and start dropping packets frequently.
However, under a slower sending rate and packets with small, medium and large
name lengths (3, 7, 13), Figs. 8, 10 and 12 show that a maximum satisfaction
rate of over 90 % is achievable with only five forwarding threads. Whereas when
the client is generating packets faster at 2 Mpps, a saturation plateau of over 90
% is reached at six threads or more for small and medium names (Figs. 9 and 11)
and a plateau of slightly over 70 %, with five threads, for larger names (Fig. 13).
Also, Figs. 8 and 10 demonstrate that placing all processes (threads and faces)
on a single NUMA (placement P1) outperforms the other three options. This
observation is explained by the absence of inter-socket communication thus less
timing overhead added such as in the case of the purple plot where packets are
crossing NUMA boundaries twice from Face 0 to the forwarding threads then
through Face 1 and back (placement P4).

Figs. 9 and 11 show the impact of increasing the sending rate on packets with
smaller names. In this case, it is preferred to also position all the processes on
one NUMA such as the case of the yellow plot of the P1 series because NUMA
boundary crossing usually downgrades the performance. In fact, the difference
between no NUMA crossing and the double crossing (yellow and purple series
respectively) is approximately 30 % loss rate with more than five threads. The
second best option P2 which is placing the forwarding threads on the NUMA
receiving Interest packets with Face 0 (NUMA hosting the Ethernet adapter
that receives Interests from the Client). However, when the number of threads
is not in the saturation zone and the threads get overworked and start to loose
packets, it is recommended to opt for placement P3. Based on these results, we
recommend that for small to medium names, to use a maximum of eight threads
but no less than five arranged as in placement P1 for optimum performances
under a slower or a faster sending rate.

With a larger name however, Fig. 12 depicts an unexpected behaviour when
using three threads or less. In this case, placing the forwarding threads on the
same NUMA as Face 1 (which is the Ethernet adapter connected to the server
and receives Data packets), surpasses the other three options. Our explanation
is that since forwarding threads take longer times to process incoming packets
due to their longer name and timely lookup, particularly for Interests as they are
searched by names inside the two tables (PCCT and FIB) rather than a token
such as the case for Data packets. Placing the forwarding threads with the Data
receiving Ethernet adapter connected to Face 1, has the potential to yield better
results by quickly processing packets after a quick token search especially when
the workload is bigger than the threads’ processing capacity. When the sending
rate is increased, the same results are observed in Fig. 13 for a similar name
length but with a decrease in performance. Thus, we recommend for larger names
to use NUMA arrangement P3 only when the number of forwarding threads is
less than three regardless of the sending rate (not advised due to high loss rate).

NDN Performance Evaluation using SMC 15

6 Lessons learned and future work

This study shed light on a new networking technology called Named Data Net-
working (NDN) and its forwarding daemon. Ongoing NDN research includes the
development of high-speed data plane forwarders that can operate at a hun-
dred gigabits per second while using modern multi-processor server hardware
and kernel bypass libraries. In this paper, we discussed the results of a perfor-
mance evaluation effort we undertook to reach well-founded conclusions on how
the NDN forwarder prototype developed by NIST (NDN-DPDK) behaves in a
network in terms of achievable Interest satisfaction rate.

We conducted an extensive analysis under different factors such as the num-
ber of threads carrying tasks and function mapping to CPUs, using a model-
based approach and statistical model checking. Given the wide array of design
parameters involved, this effort contributes valuable insights into protocol op-
eration and guides the choice of such parameters. The use of statistical model
checking for performance analysis allowed us to discover potential sub-optimal
operation and propose appropriate enhancement to the queue management so-
lution. This has been taken into account in the ongoing NDN-DPDK forwarder
implementation. Moreover, our extensive analysis provides a characterization of
the achievable forwarding throughput for a given forwarder design and avail-
able hardware resources which would not have been possible to obtain, with
such controllable accuracy, using traditional measurements and statistic meth-
ods. Furthermore, these results were communicated and shared with members
of the NDN community in a conference throughout a poster interaction and
gained attention from researchers who were interested in the methodology and
its applications. In addition to that, the use of a BIP model refined at the right
level of abstraction allows the generation of executable code that could be used
instead of the real implementation.

It is important to note however, that our analysis depends largely on a
stochastic model obtained using samples of data collected from the actual im-
plementation of the forwarder which is suspected to have introduced timing
overhead. Nevertheless, the trends observed throughout this study remain accu-
rate and have provided valuable insight to the actual code. In the future, this
analysis will be extended to answer the reverse question, namely Given a de-
sired throughput, what is the best hardware setup and the forwarder
design to use? Rather than the question Given a hardware setup and a
forwarder design, what is the maximum achievable throughput? that
we have investigated in this paper.

References

1. Brown, b. (2019). cisco, ucla & more launch named data networking con-
sortium. [online] network world., https://www.networkworld.com/article/

2602109/ucla-cisco-more-join-forces-to-replace-tcpip.html

16 S. Khoussi et al.

2. Dataplot homepage, https://www.itl.nist.gov/div898/software/dataplot/

homepage.htm
3. NFD Developer’s Guide. Tech. rep., http://named-data.net/techreports.html
4. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical

Abstraction and Model-Checking of Large Heterogeneous Systems. In: Forum for
fundamental research on theory, FORTE’10. LNCS, vol. 6117, pp. 32–46. Springer

5. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., Siffakis, E.: Verifica-
tion of an AFDX infrastructure using simulations and probabilities. In: Runtime
Verification, RV’10. LNCS, vol. 6418. Springer (2010)

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in bip. In: Proceedings of the Fourth IEEE International Conference on Software
Engineering and Formal Methods. pp. 3–12. SEFM’06, IEEE Computer Society,
Washington, DC, USA (2006)

7. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Statistical model checking for biological systems. Int. J. Softw. Tools Technol.
Transf. 17(3), 351–367 (Jun 2015)

8. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate Probabilistic
Model Checking. In: International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI’04. pp. 73–84 (January 2004)

9. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking Named Content (2009), https://named-data.net/wp-content/
uploads/Jacob.pdf

10. Khoussi, S., Nouri, A., Shi, J., Filliben, J., Benmohamed, L., Battou, A., Bensalem,
S.: Performance evaluation of a NDN forwarder using statistical model checking.
CoRR abs/1905.01607 (2019), http://arxiv.org/abs/1905.01607

11. Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., Bensalem, S.:
SBIP 2.0: Statistical model checking stochastic real-time systems. In: Automated
Technology for Verification and Analysis - 16th International Symposium, ATVA
2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings. pp. 536–542 (2018)

12. Named data networking project. Tech. rep., USA (Oct 2010), http://named-data.
net/techreport/TR001ndn-proj.pdf

13. Nouri, A.: Rigorous System-level Modeling and Performance Evaluation for Em-
bedded System Design. Ph.D. thesis, Grenoble Alpes University, France (2015)

14. Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A.: Statis-
tical model checking QoS properties of systems with SBIP. Int. J. Softw. Tools
Technol. Transf. (STTT) 17(2), 171–185 (April 2015)

15. Nouri, A., Bozga, M., Molnos, A., Legay, A., Bensalem, S.: ASTROLABE : A rig-
orous approach for system-level performance modeling and analysis. ACM Trans.
Embedded Comput. Syst. 15(2), 31:1–31:26 (2016)

16. Nouri, A., Mediouni, B.L., Bozga, M., Combaz, J., Bensalem, S., Legay, A.: Per-
formance evaluation of stochastic real-time systems with the sbip framework. In-
ternational Journal of Critical Computer-Based Systems 8(3-4), 340–370 (2018)

17. Xylomenos, G., Ververidis, C.N., Siris, V.A., Fotiou, N., Tsilopoulos, C., Vasilakos,
X., Katsaros, K.V., Polyzos, G.C.: A survey of information-centric networking
research. IEEE Communications Surveys Tutorials 16(2), 1024–1049 (2014)

18. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. Ph.D. thesis, Carnegie Mellon (2005)

19. Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley, P., Pa-
padopoulos, C., Wang, L., Zhang, B.: Named data networking. SIGCOMM Com-
put. Commun. Rev. 44(3), 66–73 (Jul 2014)

