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While ionic liquids have promising applications as industrial solvents, predicting their fluid phase properties
and coexistence remains a challenge. Grand canonical Monte Carlo simulation is an effective method for such
predictions, but equilibration is hampered by the apparent requirement to insert and delete neutral sets of
ions simultaneously in order to maintain charge neutrality. For relatively high densities and low temperatures,
previously developed methods have been shown to be essential in improving equilibration by gradual insertion
and deletion of these neutral sets of ions. We introduce an expanded ensemble approach which may be used
in conjunction with these existing methods to further improve efficiency. Individual ions are inserted or
deleted in one Monte Carlo trial rather than simultaneous insertion/deletion of neutral sets. We show how
charge neutrality is maintained and show rigorous quantitative agreement between the conventional and the
proposed expanded ensemble approaches, but with up to an order of magnitude increase in efficiency at high
densities. The expanded ensemble approach is also more straightforward to implement than simultaneous
insertion/deletion of neutral sets, and its implementation is demonstrated within open source software.

I. INTRODUCTION

Ionic liquids have a wide range of potential industrial
applications in synthesis, coatings, lubricants, batteries,
fuel cells, personal care and pharmaceuticals.1 By replac-
ing volatile organic compounds traditionally used as in-
dustrial solvents, nonvolatile ionic liquids can help reduce
environmental pollution and improve sustainability.2 Be-
cause they are costly to synthesize and their properties
are difficult to measure (e.g., low concentrations, hygro-
scopic, etc), it is desirable to screen novel ionic liquids
for desired solvent properties and phase behavior using
molecular simulations. However, conventional simulation
methods often encounter sampling difficulties at low tem-
peratures and high densities.3 Thus there is a need to im-
prove the efficiency of simulations of ionic liquids to ex-
pand their applicability to industrially relevant solvents.

While the calculation of vapor-liquid equilibrium prop-
erties or solvation free energies in the canonical ensem-
ble often requires an explicit interface, which can lead
to large simulations to avoid system size effects, grand
canonical4,5 and Gibbs ensemble6,7 Monte Carlo simula-
tions avoid this computationally costly requirement.8 In
both ensembles, molecules must be inserted and deleted
from the simulation box(es). While this is generally not
an issue with small molecules, the trial molecule inser-
tion/deletion becomes prohibitively expensive for com-
plex molecules and at higher densities and lower tem-
peratures. Ionic systems in particular suffer from poor
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configurational sampling when multiple ions are inserted
simultaneously to maintain charge neutrality in peri-
odic boundary conditions. Configurational-bias9,10 and
growth-expanded ensembles11–14 are ways of alleviating
this sampling issue. Continuous fractional component
Monte Carlo15 is also a very promising technique to im-
prove sampling in these cases. The proposed method
in this work utilizes flat histogram Monte Carlo and ex-
panded ensembles to greatly improve sampling by remov-
ing the requirement of inserting/deleting multiple ions
simultaneously to satisfy charge neutrality, and can be
used in conjunction with other methods.

While the insertion/deletion of an ion requires a bal-
ancing counter charge in order to maintain charge neu-
trality in periodic boundary conditions, this counter
charge does not have to be localized in space (e.g., a
point charge). For example, the Ewald summation,16

or other efficient Fourier-space computations,17 is often
used to compute the long range electrostatic interactions
in molecular simulations. When the Fourier-space sum-
mation is applied to a collection of localized charges that
do not sum to zero, it will neutralize the system with a de-
localized cloud of counter charge. Thus, charge neutral-
ity is always maintained with these Fourier-space sum-
mations. Several studies have utilized this aspect of the
Fourier-space summation. They cover a range of top-
ics, such as the calculation of chemical potentials and
ionization free energies,18–20 confined fluids,21 and the
one-component plasma.22 However, to correct for the de-
localized counter charge, special terms23 may be required
for the pressure, energy and chemical potential. Unfortu-
nately, the application of these corrections may become
problematic for grand canonical or Gibbs ensemble sim-
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ulations when the ensemble averages contain a variety of
different delocalized counter charges.

The use of flat histogram Monte Carlo with expanded
ensembles24 conveniently overcomes this issue of delocal-
ized counter charge corrections. Flat histogram Monte
Carlo methods, such as Wang-Landau25 and Transition-
Matrix,26,27 use a self-consistently generated biasing
function to enhance sampling. When the order parame-
ter is the number of ions in a grand canonical ensemble
simulation, the macrostate probability distribution ob-
tained from a flat histogram method can be used to de-
termine the free energy as a function of density.27,28 His-
togram reweighting29 may then be applied to compute
thermodynamic and structural properties over a range
of conditions. In addition, expanded ensembles may be
applied to provide intermediate states to increase the
acceptance probability of insertions/deletions. For ex-
ample, growth expanded ensemble3,11,30 simulations in-
troduce states with partially grown molecules because
they require smaller cavities to accommodate them. This
leads to increased acceptance probabilities in dense sys-
tems. Because physical systems do not contain partial
molecules, only the macrostates with complete molecules
are used to compute ensemble-averaged properties. In
an analogous way, the expanded grand canonical ensem-
bles approach proposed in this work utilizes intermedi-
ate states with a neutralizing cloud to provide a pathway
between neutral states and increase acceptance probabil-
ities in dense liquids.

In order to rigorously test the correctness and bench-
mark the efficiency of the proposed method, we simu-
late the restricted primitive model (RPM) due to its
simplicity and its wealth of previously published data
for comparison. The RPM has been very well char-
acterized since the original study of its vapor phase.31

The vapor-liquid phase diagram has been investigated
extensively with Monte Carlo,32–38 in addition to solid
phase equilibria.39 The RPM was also used as a test
case for hyper-parallel tempering.40 System size effects
and boundary conditions have also been well studied,3,41

and we expect system size effects reported in Ref. 3 to
be similar for the method presented in this manuscript.
The focus of this manuscript is upon the saturated liq-
uid and vapor properties and the focus is not to es-
timate the critical point, which has already been in-
vestigated extensively.32,36,37,42–44 While we focus on a
monatomic fluid in this work, the proposed approach can
also be applied to more complex and atomistic ionic liq-
uid models45–47 in the future.

We propose an expanded ensemble approach with indi-
vidual insertion/deletion of ions. The macrostates with
net local charge and delocalized counter charge provide
a thermodynamic bridge between the neutral states to
enhance sampling. After the simulation is complete, the
thermodynamics of the neutral states may then be recov-
ered by simply considering only those neutral states in
the subsequent analysis, in analogy to growth expanded
ensembles. We show that the expanded grand canon-
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FIG. 1: Schematic of macrostates of a binary mixture of
A and B ions shown by circles, and two different paths
between these macrostates shown by the two differently
colored and styled arrows. The black, solid arrows show
the conventional simultaneous insertion and deletion of
A-B pairs. The red, dashed arrows show alternating
insertion of A and B ions, starting with A, for the

expanded ensemble approach.

ical ensembles approach yields results that are in ex-
cellent agreement with conventional simulations of the
RPM fluid. We also show that the expanded ensemble
approach is up to an order of magnitude more efficient
than simultaneous insertion of multiple ions. Notably,
the implementation of this method does not require spe-
cial Ewald correction terms. In addition, the expanded
ensemble approach presented here can be used in con-
junction with previously developed configurational-bias
and growth expanded ensemble methods.
The expanded grand canonical ensembles method is

described in more detail in Section II. The restricted
primitive model electrolyte (RPM) is described in Sec-
tion III. Details for the flat histogram Monte Carlo sim-
ulations are reported in Section IV. In Section V, the
proposed method is shown to rigorously reproduce the
RPM saturation properties when compared to conven-
tional algorithms and previously published data. Then
a discussion of the efficiency and ease of implementation
of the proposed method follow in Section VIB, with up
to an order of magnitude improvement observed at high
density. Finally, we end with a discussion of future work
in Section VII.

II. THE EXPANDED ENSEMBLE METHOD FOR IONS.

A schematic of the expanded ensemble approach pro-
posed in this work is shown in Figure 1 for a binary sys-
tem of equal and oppositely charged ions, which are la-
beled A and B. For such a binary system, the states with
equal numbers of A and B are neutral. Thus, the conven-
tional approach of inserting/deleting simultaneously A-B
pairs is shown by the black solid line. For the alterna-
tive path proposed in this work (red arrows), the neutral
states are bridged by states with one more A than B. We
will show that sampling along this alternative path yields
identical results for the neutral or even-numbered states.
Thermodynamic or structural quantities may be com-

puted in the same manner as the conventional approach
and with the help of histogram reweighting. Also note
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that alternative paths may be considered, including
growth of the individual ions. A major point for con-
cern is whether or not the states with unequal number of
A and B ions, and non-neutral localized system charge,
are thermodynamically well-defined such that free energy
changes between these states and the neutral states may
be computed. We will demonstrate that this is not an
issue for long range electrostatic interactions when using
the Ewald summation for the restricted primitive model
electrolyte (RPM).

III. RESTRICTED PRIMITIVE MODEL ELECTROLYTE

The restricted primitive model electrolyte (RPM)31

serves as an excellent test case of the proposed expanded
ensemble method due to both its simplicity and also
its very strong electrostatic interactions at low tempera-
ture. The RPM contains a hard sphere and central point
charge via the following potential energy, uij between
ions i and j,

uij(rij) =

{

∞ rij < σij

zizje
2

4πǫǫ0rij
rij ≥ σij ,

(1)

where rij is the distance between centers of i and j, σij is
the hard sphere diameter, ze is the charge, e is the charge
of an electron, ǫ is the dielectric constant of the implicit
solvent and ǫ0 is the dielectric permeability of a vacuum.
In this work, we focus on z = ±1 but the method is
not restricted to this case. Energies are normalized by
Q∗ = e2/(4πǫǫ0σ). A cubic box of length L = 12σ is used
for all simulations. We chose to compare our resulting
equilibrium densities and saturation pressures with those
obtained by Rane and Errington,3 and thus use a real
space cutoff distance of rc = 4.8913043σ.
Due to the long range nature of this potential, the

Ewald summation16 is utilized with conducting boundary
conditions.3,8 The screening parameter, α = 6.870984/L,
where L is the cubic periodic box length. The reciprocal-
space integer cutoff k2max is 38. For systems with net
charge, the Ewald summation includes a delocalized
cloud of the opposite charge of the system.8,16 Note that
no special Ewald correction21 is necessary, which helps
make the proposed expanded ensemble approach simple
to implement in existing codes. Including these special
Ewald corrections is also acceptable, which may result in
a change in the free energy of the states with odd num-
bers of ions (for z = ±1) but not the free energy of states
with even numbers (i.e., equal number of A and B ions).

IV. FLAT HISTOGRAM MONTE CARLO

SIMULATIONS

Transition matrix Monte Carlo (TMMC)
simulations26,28 were employed in the grand canon-
ical ensemble4 along with histogram reweighting

techniques29 to calculate the vapor-liquid phase equilib-
ria of RPM. Simulations were conducted with the open
source software called the Free Energy and Advanced
Sampling Simulation Toolkit (FEASST)48 using an
experimental branch for pair insertions.

The TMMC simulations were parallelized by dividing
the macrostate range (e.g., number of ions) into 12 win-
dows. The size of the windows decreased for increasing
number of ions, N , by an exponent of approximately 2.
The macrostate distribution of the complete range was
then recovered by equating the macrostates which over-
lapped between consecutive windows and renormalizing.
The maximum number of ions, Nm, was chosen such that
lnΠ(Nl)−lnΠ(Nm) > 25, where Π(Nl) is the macrostate
distribution and Nl is the location of the saturated liq-
uid peak. Convergence was measured in sweeps. One
sweep is completed when each macrostate is visited by
another macrostate at least 100 times. In order to im-
prove the comparison with pair insertion/deletion simula-
tions, which only visit even-numbered macrostates, only
macrostates with even numbers of ions were considered
in the definition of the sweep even for simulations with
odd-numbered states. The macrostate distribution was
updated every 106 trials.

The following Monte Carlo trial moves were employed,
as summarized in Table I. The traditional single-particle
transitions were attempted. In addition, collective ion
moves were also important in the RPM simulations44,49

and were implemented via rigid cluster translations and
rotations. Clusters were defined as all ions within a cutoff
distance of 1.05σ from one or more other ions in the same
cluster. Note that the sensitivity of the convergence time
on this distance cut off parameter for clusters was not in-
vestigated in this work, but could be beneficial for further
improvements in sampling. However, any improvements
in efficiency by optimization of this parameter would be
roughly the same for both the old and new methods and
thus the relative efficiency would be similar. The clus-
ters were obtained numerically by a flood-fill algorithm.
To obey detailed balance, cluster moves which resulted
in an ion joining a different cluster were rejected. For
all trials moves mentioned above, the parameter associ-
ated with the maximum possible translation or rotation
was optimized, via 5 % change every 106 trials, to yield
approximately 25 % acceptance of the trial.

Grand canonical insertion/deletion (also referred to as
a transfer) was attempted in three different ways. For the
conventional simulations without expanded ensembles,
neutral pairs of ions were inserted and deleted from the
simulations. Because these conventional simulations were
slower to converge than single ion insertion/deletion sim-
ulations at low temperature and high density, dual-cut
configurational bias (DCCB)50 pair insertions/deletions
were required in order to make feasible comparisons with
and without expanded ensembles. DCCB utilized a cell
list to monitor ions within a distance σ relative to a cen-
tral ion of interest to efficiently attempt 8 insertions or
deletions for each hard sphere. The Rosenbluth weights
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TABLE I: Relative weights for probability of selection
of Monte Carlo trials for the three different simulations.

trial PAIR EE EE-AVB
translation 1 1 1
cluster translation 1/(4Nm) 1/(4Nm) 1/(4Nm)
cluster rotation 1/(4Nm) 1/(4Nm) 1/(4Nm)
DCCB pair transfer 1/4 0 0
DCCB single transfer 0 1/4 1/4
AVB single transfer 0 0 1

were then used to select a single configuration of the
hard sphere only attempts, and this configuration was ac-
cepted subject to the more expensive electrostatic inter-
action. To make precise comparisons, some simulations
of the single ion insertions/deletions in the expanded en-
semble also used DCCB. Additional simulations of the
single ion insertion/deletion simulations also utilized ag-
gregation volume bias (AVB) with 8 DCCB hard sphere
insertions.51–54 The aggregation volume was chosen for
center separations in the range σ to 1.5σ. To compare the
AVB used in this work with the previously used contin-
uous distance biased method,3,32,35,49 we note that over
99 % of the bias-selected distances would fall within this
aggregation volume region for the temperature range con-
sidered in this work.

The three different simulation types described in Ta-
ble I are as follows. PAIR refers to simulations with
insertions and deletions in pairs only. EE refers to the
expanded ensemble method proposed in this work with
single ion insertion/deletions. EE-AVB is the same as EE
but includes an additional AVB trial to further improve
sampling. We chose to compare our resulting equilibrium
densities and saturation pressures with those obtained by
Rane and Errington.3 Thus, we simulated the five tem-
peratures reported in Table II. These reported temper-
atures might be rounded to four significant figures else-
where in the manuscript. The activity, z = σ3e−βµ/Λ3,
where β = 1/T ∗, µ is the chemical potential and Λ is the
de Broglie wavelength. Each simulation window was run
for as many as several hundred sweeps, but for at least 20
sweeps, with the following exception. The PAIR simula-
tions were much slower to converge, and were terminated
after two weeks on a dedicated 12-core node. This time
limit afforded roughly 5 to 10 billion Monte Carlo trials
and at least 5 sweeps but up to 163, depending on the
density of the window. The pressure was calculated as
described by Equation 20 of Ref. 27.

For statistical analysis, four independent simulations
were performed at each condition. Reported error bars
represent the standard deviation for these. The standard
deviation from four samples is approximately equal to the
95 % confidence interval, because the standard deviation
is divided by the square root of four to obtain the stan-
dard deviation of the average, which is then multiplied
by 1.96 to obtain the 95 % confidence interval.

TABLE II: Summary of simulation conditions. These
are below the critical temperature of T ∗

c = 0.0489(3)
estimated previously.37

T ∗ ln z Nm

0.047899461 −13.94 650
0.045421902 −14.5 690
0.042944344 −16 690
0.038815080 −17 750
0.034685816 −19 820

V. SATURATION PROPERTIES

In this section, we show rigorous quantitative agree-
ment between the proposed expanded ensemble method,
the conventional method, and simulation results from
previous publications.3 The macrostate probability dis-
tribution for the RPM at T ∗ = 0.04294 is shown in Fig-
ure 2a using the three different types of simulations and
including the previous work. All four of these agree quan-
titatively within 95 % confidence.
Because the curves are visually indistinguishable, and

the error bars are smaller than the symbols, we take a
closer look at the differences by plotting the PAIR, EE
and EE-AVB macrostate distributions relative to the pre-
viously reported reference simulation, as shown in Figure
2b. The standard deviations were obtained via the prop-
agation of error formula

√

σ2
i + σ2

REF where i is either
PAIR, EE or EE-AVB. In Figure 2b, we see that the er-
ror bars are smaller near the vapor and liquid peaks, and
larger in the transition region and high density region.
This is good because the saturation properties depend
most sensitively on the vapor and liquid peaks of the
macrostate probability distribution. Overall, the simula-
tions are in agreement with the literature reference within
95 % confidence.
The expanded ensemble simulations also yield the

macrostate probability distribution, Π(N), for the states
with odd numbers of ions, which are shown in Figure 2c.
The odd-numbered macrostate probabilities exhibit the
largest deviations from their proceeding even-numbered
macrostates at the lowest densities. While the difference
decreases as N increases, there is a slight trend for the
deviation to increase again at very high densities. Also,
the differences were observed to be negative over the en-
tire range. Thus, the probability of the odd states is
lower than that of the even-numbered states. This trend
may be due to the lack of a localized counter charge,
which makes the occurrence of lone ions much less fa-
vorable than pairs of oppositely charged ions, especially
in the vapor phase. Note that this trend may change
depending on the model, conditions and the expanded
ensemble pathway. In the vapor phase, the differences in
the probabilities are large enough to present sampling is-
sues if a flat histogram or biasing method were not used.
While the odd numbered macrostates provide a bridge to
the even-numbered macrostates, they are not used in the
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FIG. 2: Comparison of the macrostate probability
distribution, lnΠ, as a function of the number of ions,
N , at T ∗ = 0.04294 for the following four different
simulation methods: (black x) REF: previously

published results using neutral pair transfers,3 (blue .)
PAIR: neutral pair transfers, (red +) EE: single ion
transfers with expanded ensemble and (green |)

EE-AVB: EE with the additional AVB trial. All data
points include error bars that are the standard

deviation of four independent simulations. (a) The
macrostate distribution for all four methods. (b) The
difference between the macrostate distribution and the
reference simulation of the previous3 work, lnΠREF .

The standard deviation is shown by the shaded regions.
(c) The odd number of ion states in the expanded
ensemble (EE) simulations are shown by the black

horizontal bar symbols.

calculation of saturation or other thermodynamic prop-
erties.
The liquid vapor saturation densities, pressures and

activities of the RPM are shown in Figure 3 for a vari-
ety of temperatures. Because the error bars are smaller
than the symbols, we also report them in Table III.
These saturation properties agree quantitatively within
95 % confidence in comparison to the various methods
in this work, and also in previous work.3 Note that pre-
vious work3 used grand canonical temperature-expanded
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FIG. 3: Liquid vapor saturation properties of the RPM
for four different simulation types with symbols as
described in Figure 2. Error bars are the standard
deviation of four independent simulations, and are

smaller than the size of the symbols.

TABLE III: Liquid vapor saturation properties of the
RPM using the various methods. Standard deviations

from four independent simulations are shown by
subscript with order of magnitude of the last digit.

T∗ simul. ln ρ∗

v ρ∗

l ln p∗ ln z

0
.0
4
7
9 REF −4.09221 0.1781 −9.3599 −27.88189

PAIR −4.11554 0.17687 −9.35815 −27.88241
EE −4.07531 0.177717 −9.351 −27.88204
EE-AVB −4.10132 0.17827 −9.3607 −27.881811

0
.0
4
5
4 REF −5.1407 0.23785 −9.9445 −29.33289

PAIR −5.15312 0.239111 −9.9479 −29.33277
EE −5.16827 0.238711 −9.94122 −29.333213
EE-AVB −5.1459 0.237114 −9.9444 −29.33326

0
.0
4
2
9 REF −5.9722 0.28623 −10.5512 −30.98654

PAIR −5.95816 0.286514 −10.5427 −30.98595
EE −5.98131 0.285817 −10.55723 −30.986710
EE-AVB −5.97410 0.287410 −10.5535 −30.987012

0
.0
3
8
8 REF −7.21823 0.35685 −11.70313 −34.29295

PAIR −7.2197 0.35634 −11.7045 −34.29339
EE −7.20424 0.35656 −11.68914 −34.29249
EE-AVB −7.2267 0.35579 −11.7083 −34.293611

0
.0
3
4
7 REF −8.67321 0.424116 −13.16411 −38.505724

PAIR −8.69221 0.423613 −13.17614 −38.506513
EE −8.72827 0.42314 −13.21332 −38.506315
EE-AVB −8.6904 0.42239 −13.1742 −38.50526

ensemble simulations to determine the low-temperature
saturation properties, which avoid the direct calculation
of the entire macrostate distribution. This obviates the
need to sample the intermediate N range where the sys-
tem undergoes structural transitions that are difficult to
sample.55 Because the expanded grand canonical ensem-
ble method described here also directly calculates the
entire macrostate distribution, it will also encounter dif-
ficulties sampling the structural transitions at low tem-
peratures and will also have trouble determining the cor-
responding saturation properties.
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VI. EFFICIENCY

Now that we have shown the expanded ensemble
method for ions yields results for the RPM that agree
with reference values, we turn our attention to efficiency.
We show up to an order of magnitude increase in ef-
ficiency at high density using the expanded ensemble
method. We also discuss room for improvement for the
expanded ensemble simulations at lower temperature and
low density. The efficiency measures presented in this
section depend sensitively upon the implementation, es-
pecially for more specialized techniques such as AVB
which require lists of neighbors. More efficient imple-
mentations or optimized parameter choices could lead to
large changes in these results.
Because the comparison simulations in the previous

section were run for different numbers of sweeps on differ-
ent types of processors, we perform additional benchmark
simulations to report on central processing unit (CPU)
timings for convergence and trial acceptance probabili-
ties. Benchmark simulations were run for the lowest and
highest temperatures and with vapor and liquid densities
using windows of size 20 ions. Note that the vapor den-
sity simulations were conducted without DCCB because
it is unnecessary at low density.
Benchmark simulations in this section were terminated

after 10 sweeps, and the time, t, to reach this level of
convergence is reported in Table IV. The benchmark
simulations were in agreement with the simulations re-
ported in Section V. Note that only macrostates with
even numbers of ions were considered in the sweep def-
inition in order to improve the comparison with pair
insertion/deletion simulations, which only visit even-
numbered macrostates. The acceptance probabilities for
ion insertions/deletions, Pacc, averaged over each trial
type, are also reported. Benchmark simulation averages
and standard deviations were obtained with three inde-
pendent simulations.
Additional details of the hardware are provided for the

purposes of reproducibility. Benchmark simulations were
run on a 6-core, 3.60 GHz Intel(R) Xeon(R) CPU E5-
1650 v4. See the disclaimer at the end of the manuscript
regarding company identification. Processor load balanc-
ing led to an underestimation of the efficiency gains, be-
cause the processor was at full capacity for the shorter
simulations, while longer simulations may have experi-
enced a boost in GHz after the short simulations finish.

A. Efficiency comparison of EE and PAIR

To begin, we compare the relative efficiency of the ex-
panded ensemble (EE) simulations and the conventional
pair insertion (PAIR) simulations without the complica-
tion of including aggregation volume bias. Intuitively,
decoupling the transfer of a pair of ions into a dense liq-
uid with two steps instead of one is more efficient because
the probability of finding cavities for both ions simulta-

TABLE IV: Convergence time and acceptance
probability. Standard deviations from three

independent simulations are shown by subscript with
order of magnitude of the last digit.

T ∗ N range simul. t (hours) Pacc

0
.0
4
7
9

0 to 20

PAIR 0.191 0.00459
EE 0.161 0.0329
PAIR-AVB 0.071 0.0921
EE-AVB 0.051 0.0271

724 to 744

PAIR 9.83 0.000424
EE 1.645 0.00551
PAIR-AVB 15.27 0.000736
EE-AVB 2.387 0.00411

0
.0
3
4
7

0 to 20

PAIR 0.81 0.00142
EE 0.91 0.0199
PAIR-AVB 0.081 0.0272
EE-AVB 0.162 0.0153

724 to 744

PAIR 715 0.0000486
EE 6.14 0.00131
PAIR-AVB 264 0.000311
EE-AVB 141 0.00101

neously is much lower than the probability of finding a
single cavity. This is why the largest efficiency gains can
be seen in dense liquids, with a factor of 12 improvement
in convergence time at T ∗ = 0.0347 at saturated liquid
density when comparing the EE method to the PAIR
method.
The overhead of the expanded ensemble approach is

negligible. This is because the majority of processor time
is spent on computing the interactions between ions, and
the cost of computing the interaction of a single ion with
the rest of the system is roughly half that of comput-
ing the interaction of a pair of ions. Thus, even in the
vapor phase, where finding a cavity is not an issue, the
method does not decrease the convergence rate due to
higher overhead, as might be observed in other special-
ized methods such as DCCB and AVB.
A potential concern is that single ion insertions in the

vapor phase would be less efficient because of the pref-
erence for dimers or cluster formation at lower tempera-
ture. For example, Figure 2c shows that the probability
of observing the macrostates with an odd number of ions
is significantly lower than for the even numbers. But the
flat histogram method overcomes this barrier via bias on
the insertion of the lone ion, which would normally not
be favored. A subsequent trial insertion may then find
the lone ion to form a new dimer. This allows the conver-
gence times of the PAIR and EE methods to be roughly
equivalent for the vapor densities.
Note that the macrostate range of the EE method is

twice that of the pair. Based on this observation, one
might expect the EE approach to be slower when ac-
ceptance probabilities are high. However, the data show
that, for low density, the two convergence times are com-
parable despite this disparity in the macrostate range.
An additional concern is that many of the sampled con-
figurations are discarded and not used for ensemble av-
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erages. For z = ±1, the expanded ensemble approach
does not utilize the configurations with odd numbers
of ions in subsequent calculation of thermodynamic and
structure properties. But neighboring configurations in
the Markov chain are highly correlated. Thus, removing
these correlated configurations with odd numbers of ions
(for z = ±1) does not greatly impact the precision or
accuracy of the ensemble averages, especially considering
the improvements in sampling.

B. Efficiency comparisons with AVB

The AVB method introduced in Section IV for EE-
AVB was also utilized with pair insertions and denoted
here as PAIR-AVB. To our knowledge, the following mod-
ified version of the AVB algorithm for attractive pairs has
not been published previously, but was developed in this
work to emulate the distance-biased approach of previ-
ous work, which was used to tackle the problem of dimer
or cluster formation in the vapor phase.32 The major dif-
ference between these two methods is that AVB has a
uniform distance bias within the cutoff distances, while
the continuous distance bias scales in various ways.32,44

The difference in efficiencies between these two meth-
ods, and the optimization of their parameters, is beyond
the scope of this work. The PAIR-AVB algorithm pro-
ceeds as follows. For insertions, the first ion is added
anywhere in the system volume, V . The aggregation vol-
ume, vin, is then defined as the spherical shell centered
on the first ion with an inner and outer radii of σ and
1.5σ, respectively. To compare with distance bias meth-
ods at the same temperature, we calculate that over 99%
of the bias-selected distances would fall within this ag-
gregation volume region. A second ion is then placed
in vin using a uniform random distribution. The trial
is accepted with a probability of min(1, χadd), where

χadd
1 = V

N1+1
vin

nin
2

+1
exp[−β(∆U − µ1 − µ2)], N1 is the

number of ions of the first type, and nin
2 is the number of

ions of the second type in vin. The ion numbers N1 and
nin
2 are for the old configuration and do not include the

proposed additions. For deletions, an ion is randomly se-
lected. If this ion contains the opposite type of ion within
vin, then both ions are selected for a deletion attempt.
Otherwise, the trial is rejected. For the deletion trial,

χdel =
N1

V

nin
2

vin exp[−β(∆U + µ1 + µ2)].

We first examine simulation efficiencies at high densi-
ties with and without AVB. The EE method converged
the fastest at high density among all four types of simu-
lations and both temperatures. The reason the EE-AVB
method is slower than EE at high density is likely due to
overhead. The overhead of the AVB method increases at
high density due to the requirement to keep track of all
neighbors, in addition to an increased role of excluded
volume in determining acceptance probabilities. How-
ever, for PAIR-AVB, there is a nontrivial temperature
dependence. At the higher temperature and high density,

PAIR-AVB is slower than PAIR due to the overhead as
mentioned above. But at the lower temperature and high
density, PAIR-AVB is faster than PAIR. Regardless, EE
and EE-AVB are faster than both PAIR and PAIR-AVB
at high density.
Now we consider the lower density simulations. At

high temperature and low density, both PAIR-AVB and
EE-AVB converge at about the same time and they both
see about the same increase in efficiency over their non-
AVB counterparts. But at the lower temperature, the
PAIR-AVB simulation was found to be twice as efficient
as EE-AVB. Note that the convergence times for the va-
por phase are much smaller than the higher densities,
and thus the increased efficiency at high density for the
EE simulations outweighs the increase in efficiency at
low density for the PAIR-AVB simulations. The PAIR-
AVB method implemented in this work is expected to be
highly efficient for the vapor phase, because the vapor
phase is composed primarily of neutral pairs or dimers.
In the PAIR-AVB simulations, these neutral pairs are ex-
plicitly biased for insertion and deletion in a single step.
In comparison, the EE-AVB simulations, as implemented
in this work, do not explicitly target lone ions for dele-
tion or AVB insertion. For example, the EE-AVB single
ion insertion/deletion step may attempt the AVB inser-
tion on any ion, instead of targeting lone ions to cre-
ate pairs. The EE-AVB single ion trial as implemented
also does not help with the deletion of lone ions. Thus,
the differences in how the AVB method is implemented
with EE-AVB and PAIR-AVB contribute significantly to
the measures of efficiency. Alternative EE-AVB methods
could be developed which are more analogous to PAIR-
AVB. Such a method could involve a trial where a lone
inserted ion is targeted for AVB insertion of the next
ion of the opposite type. Although such an alternative
method would be more analogous to PAIR-AVB, the fo-
cus of this manuscript is on efficiency at high density.
Thus, development of an EE-AVB method which is more
similar to PAIR-AVB is beyond the scope of this work.

VII. CONCLUSIONS

We show that the proposed expanded grand canonical
ensembles method for ions agrees quantitatively with pre-
vious methods and is up to an order of magnitude more
efficient at high density in the restricted primitive model
electrolyte. Further improvements in sampling are ex-
pected as the complexity of the model increases (e.g., all-
atom models of room temperature ionic liquids). While
some room for improvement of the expanded ensemble
method at the low density and low temperature condi-
tions remain, the efficiency gain at high density, which
is where most of the CPU time is spent, outweighs the
minor differences at low density.
Because the implementation of the flat histogram ex-

panded ensemble method in an existing single-particle
grand canonical Monte Carlo simulation code is likely
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to be more straightforward than the implementation of
pair insertions and deletions, we recommend that future
projects utilize this expanded ensemble method. Imple-
mentation of pair ion transfers requires careful modifica-
tion of how interaction energies are computed both be-
tween the pair of transferred ions with the rest of the
system, and also between themselves. In addition, the
Metropolis acceptance criteria must also be modified.32

However, for the expanded ensemble approach, neither
the ion transfer trial nor the Metropolis acceptance cri-
teria need be modified from a traditional single particle
trial. And no special Ewald corrections are required for
quantities such as energy, pressure and chemical poten-
tial. Instead, the acceptance criteria only need to include
a bias from a flat histogram approach,28 with appropri-
ate constraints on the numbers of the particles. The flat
histogram approach provides a significant increase in ef-
ficiency by itself and is relatively straightforward to im-
plement in an existing code.7,48

Future work that remains to be completed includes the
simulation of multivalent ions. This would require addi-
tional steps in the expanded ensemble, but its implemen-
tation is an extension of this work with the introduction
of a new path. For example, the bridge between neutral
states might involve the addition of a monovalent ion,
then an oppositely charged divalent ion, and finally the
addition of a second, identical monovalent ion. In addi-
tion, the path shown in Figure 1 is not the only possible
path even for a monovalent ion. For example, the path
between neutral states could branch to include either A
or B ions. Our preliminary results show that the free en-
ergy of the neutral states is independent of the choice of
the pathway, but different pathways may have an effect
on the efficiency of the method.
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