Jovian Auroral Ion Precipitation: X-Ray Production from Oxygen and Sulfur Precipitation

S. J. Houston^{1,2}, T. E. Cravens¹, D. R. Schultz^{3,4}, H. Gharibnejad^{3,5}, W. R. Dunn^{6,7,8}, D. K. Haggerty⁹, A. M. Rymer⁹, B. H. Mauk⁹, N. Ozak¹⁰

5	¹ Department of Physics and Astronomy, University of Kansas, Lawrence, KS, USA
6	² Now at The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
7	³ Department of Physics, University of North Texas, Denton, TX, USA
8	⁴ Now at Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, USA
9	⁵ Now at National Institute of Standards and Technology, Gaithersburg, MD, USA
10	⁶ Mullard Space Science Laboratory, University College London, London, UK
11	⁷ University College London Center for Planetary Science, London, UK
12	⁸ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
13	⁹ The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
14	¹⁰ CluePoint S.A., Axis Parc, Rue Emile Francqui 1, 1435 Mont-Saint-Guibert, Belgium, EU

Key Points:

1

2

3

15

21

16	•	Heavy ion precipitation into the Jovian atmosphere can produce the observed au-
17		roral X-ray emission.
18	•	Using Juno measurements of ion fluxes over Jupiter's pole we simulate X-ray spec-
19		tra.
20	•	We compare our approximated synthetic X-ray spectra produced by <i>in situ</i> data

to observed emission.

Corresponding author: T. E. Cravens, cravens@ku.edu

22 Abstract

Many attempts have been made to model X-ray emission from both bremsstrahlung and 23 ion precipitation into ^{c1}Jupiter's polar caps. Electron bremsstrahlung modeling has fallen 24 short of producing the total overall power output observed by earth-orbit-based X-ray 25 observatories. Heavy ion precipitation was able to reproduce strong X-ray fluxes, but 26 the proposed incident ion energies were very high (>1 MeV/nucleon). Now with the Juno 27 spacecraft at Jupiter, there have been many measurements of heavy ion populations above 28 the polar cap with energies up to 300-400 keV/nucleon (keV/u), well below the ion en-29 ergies required by earlier models. Recent work has provided a new outlook on how ion-30 neutral collisions in the Jovian atmosphere are occurring, providing us with an entirely 31 new set of impact cross-sections. The model presented here simulates oxygen and sul-32 fur precipitation, taking into account the new cross-sections, every collision process, the 33 measured ion fluxes above Jupiter's polar aurora, and synthetic X-ray spectra. We pre-34 dict X-ray fluxes, efficiencies, and spectra for various initial ion energies considering opac-35 ity effects from two different atmospheres. We demonstrate an *in situ* measured heavy 36 ion flux above Jupiter's polar cap is capable of producing over 1 GW of X-ray emission 37 when some assumptions are made. Comparison of our approximated synthetic X-ray spec-38 trum produced from *in situ* particle data with a simultaneous X-ray spectrum observed 39 by XMM-Newton show good agreement for the oxygen part of the spectrum, but not for 40 41 the sulfur part.

42 **1** Introduction

The National Aeronautics and Space Administration's (NASA) Juno mission has, 43 at the time of this writing, been orbiting Jupiter for nearly three years. Since arrival, 44 Juno has arguably uncovered more questions than it has answered, although its discov-45 eries have been numerous. In its time spent at Jupiter, Juno has put greater constraints 46 on the gravitational field (Folkner et al., 2017; Iess et al., 2018), measured a magnetic 47 field with substantial complexity (Connerney et al., 2017, 2018; Moore et al., 2018), and 48 returned images of Jupiter detailing the intricate features seen in the cloud tops (Orton 49 et al., 2017; Sánchez-Lavega et al., 2018). Most importantly to this paper, Juno has been 50 able to measure heavy ions above the polar caps that indicate they are precipitating into 51 the top of the atmosphere (Haggerty et al., 2017; Clark, Mauk, Haggerty, et al., 2017; 52 Clark, Mauk, Paranicas, et al., 2017), potentially producing Jupiter's dynamic X-ray au-53 rorae. 54

X-ray production at Jupiter has been of interest to the space physics community 55 from when it was first observed by the Einstein Observatory in April of 1979 (Metzger 56 et al., 1983). Although Metzger et al. (1983) were unable to distinguish a line spectrum 57 from a continuum due to the limitations of the detector, they proposed that the primary 58 source of X-rays must be coming from heavy ion precipitation, stating, "the shape of the 59 response and the observed X-ray power indicate that the source of this auroral emission 60 is not electron bremsstrahlung as on the earth, but is most probably line emission from 61 O and S ions with energies between 0.03 and 4.0 MeV/nucleon...". Now, with the Juno 62 spacecraft orbiting Jupiter, oxygen and sulfur ions have been measured above the po-63 lar caps with energies up to 400 keV per nucleon (keV/u) (Clark, Mauk, Haggerty, et 64 al., 2017; Clark, Mauk, Paranicas, et al., 2017; Haggerty et al., 2017). 65

In the past, attempts were made to reproduce the X-ray emission observed at Jupiter with ion precipitation models (Cravens et al., 1995, 2003; Ozak et al., 2010, 2013), but they required very high energy ions (>1.2 MeV/u) to sufficiently strip the ions of their

^{c1} SJH: Jupiters

electrons in order to produce the observed X-ray emissions. But, this could be overlooked 69 because no *in situ* measurements of the ion energies above the polar cap existed. How-70 ever, such ion measurements are now available thanks to Juno; and a more complete treat-71 ment of the underlying atomic collision processes now exists (Schultz et al., 2019). In-72 corporated into our ion-precipitation models, these new cross-sections demonstrate the 73 "threshold" ion energy necessary to produce X-ray yielding excited states is significantly 74 less (on the order of 200 keV/u) than the earlier cross-sections gave. This difference arises 75 largely from the improved treatment of ion energy loss in the new atomic data, evidenced 76 by an increased stopping power derived from ion-transport simulations for ion energies 77 between 50 and 2000 keV/u that is now in better agreement with recommended values. 78 The more complete treatment also results in a shift in the equilibrium distribution of charge 79 states toward lower energies, and motivated consideration of X-ray production from di-80 rect ion excitation in addition to that from charge transfer. 81

We expand on the ion precipitation models that have come before (Cravens et al., 1995; Houston et al., 2018; Ozak et al., 2010, 2013), modeling oxygen from 10 keV/u to 25 MeV/u and sulfur between 10 keV/u and 2 MeV/u, in an attempt to explain the Xray emission from the Jovian polar caps. We consider all charge states of oxygen, including the negative charge state (O^{q+} , q=-1, 0, ..., 8), and all sulfur ^{c1}positive charge states (S^{q+} , q=0, ..., 16). Ultimately, O^{6+} , O^{7+} , and S^{6+} - S^{15+} are the most important charge states to consider when producing X-rays, because their ionization potentials are great enough to emit X-ray photons.

We first discuss the differences between our model and the models by Houston et 90 al. (2018), Ozak et al. (2010), and Ozak et al. (2013). We then introduce new ion-neutral 91 collision processes that account for the vast contrast in our results and those presented 92 by our predecessors. Various techniques used within the model are explained and ion flux 93 measurements made by the Jupiter Energetic Particle Detector Instrument (JEDI) (Mauk 94 et al., 2017) are displayed. Results are given for a variety of monoenergetic ion beam en-95 ergies, including several ion production rates, X-ray efficiencies, and example X-ray spec-96 tra with opacity effects. The JEDI measurements are input into the model and results 97 indicating X-ray production are shown. We compare our modeled spectrum with a si-98 multaneous XMM-Newton spectrum observed during the same window within which the 99 ion precipitation was detected by Juno. Finally, we conclude with a discussion on the 100 implications of the model results. 101

The observed X-ray aurora has shown a strange complexity. For example, in $\sim 30\%$ 102 of observations the X-ray aurora pulses with a regular period on the order of 10s of min-103 utes as reported by Dunn et al. (2016, 2017); Gladstone et al. (2002), and Jackman et 104 al. (2018); however, during other observations, the emission is either continuous or the 105 pulses are erratic, with no clear periodic signature (Elsner et al., 2005; Branduardi-Raymont 106 et al., 2007). Therefore, when analyzing heavy ion measurements made by JEDI, it is 107 important to consider that this emission is highly temporally and spatially variable and 108 that the associated ion precipitation may also vary with time. One must remember that 109 every energy spectrum and flux intensity of oxygen and sulfur is unique. Sometimes oxy-110 gen fluxes are measured with a higher intensity while at other times sulfur fluxes are higher. 111 Each collection of data greatly depends on the time and location of where it is made. 112 Given that each flight of Juno over the polar regions follows a different flight path, it is 113 also difficult to differentiate spatial and temporal changes in the measurements. Thus, 114 when using the JEDI flux measurements, they need to be fine tuned for every case. 115

^{c1} SJH-2: Text added.

¹¹⁶ 2 Physical Processes and Model Description

The basic simulation methods used for this paper have been described in great de-117 tail by Ozak et al. (2010, 2013); Houston et al. (2018), and the references therein. When 118 Ozak et al. (2010) first published results, they showed X-ray production rates from pre-119 cipitating oxygen and sulfur, then Ozak et al. (2013) made predictions of field-aligned 120 currents (FAC) and airglow intensities that Juno would measure when it arrived to Jupiter, 121 and Houston et al. (2018) primarily focused on FAC and ultraviolet (UV) emission from 122 oxygen. We follow up on the promise made in Houston et al. (2018) to include energetic 123 sulfur precipitation and oxygen improvements, with proton precipitation being left to 124 a future and very necessary publication. 125

Aside from optimization improvements, the main contrast between the current model and earlier versions can be summarized as follows:

- The Jovian atmosphere has been extended deeper, down below the 1 bar level.
- Atomic data (principally inelastic collision cross-sections) for oxygen ions colliding with H₂ previously (Ozak et al., 2013; Schultz et al., 2017) only considered processes that occurred involving electronic transitions of projectile electrons or target electrons non-simultaneously (denoted "NSIM" processes). A more complete treatment for oxygen (Schultz et al., 2019) ion impact expands the model to include simultaneous (SIM) processes that occur involving both target and projectile electron transitions.
- Analogous atomic data for sulfur ion impact of H₂ have also been created (still
 preliminary and not yet published) that include treatment of SIM processes, up dating the purely NSIM processes considered in Ozak et al. (2013), and have been incorporated in the present work from the preliminary analysis of the data to be
 published.
- X-ray efficiencies and approximations to synthetic X-ray spectra that include opacity effects are presented with both the current atmosphere and an upper limit, fully mixed atmosphere.
- The direct excitation mechanism now also contributes to X-ray production, increasing the number of X-rays produced.
- Juno data (both oxygen and sulfur flux measurements) are adapted and input into
 the simulation.
- 148

128

2.1 Jovian Atmosphere

Houston et al. (2018) used a neutral atmosphere originally presented by Maurellis 149 and Cravens (2001) based on Galileo probe data (Seiff et al., 1996, 1997) and remote ob-150 servations (Sada et al., 1998). The same atmosphere is used here, only we have extended 151 the depth from 200 km to -88 km, where 0 km is set to where the pressure is equal to 152 1 bar (Fig. 1). The atmosphere below 200 km has been generated using temperature-153 pressure profiles retrieved from NASA's Infrared Telescope Facility and the Texas Ech-154 elon Cross Echelle Spectrograph Instrument (IRTF-TEXES) (Sinclair et al., 2018). Us-155 ing the temperature and pressure, the ideal gas law is then solved to obtain the total num-156 ber density. Because we are below the homopause, where a well-mixed atmosphere is present, 157 the mixing ratios from 200 km are extended down to -88 km to calculate the number den-158 sity of each species. 159

There has been much speculation about the composition of the upper atmosphere over the polar caps (see Section 5.2 of Clark et al. (2018), Gérard et al. (2014), and Parkinson, Stewart, Wong, Yung, and Ajello (2006)). To help account for this, we generate a second atmospheric profile (not displayed) by taking the mixing ratio of molecular hydrogen to helium and methane at the bottom of the density profile in Figure 1 and then redistribute the helium and methane from the top of the atmosphere with that same mix-

Figure 1. Atmospheric density profiles of H_2 , He, CH_4 , and H based on data shown in Maurellis and Cravens (2001) and Sinclair et al. (2018). Also shown is the neutral temperature profile as a function of altitude and pressure.

ing ratio. This allows for a completely well-mixed atmosphere that ignores a defined ho-166 mopause; rather, the entire atmosphere is homogeneous. The H₂ distribution of this at-167 mosphere remains the same as that in Fig 1, thus ion precipitation will not be affected 168 because only ion collisions in a hydrogen gas are considered. However, when photoemis-169 sion is discussed, the well-mixed atmosphere will have greater photoabsorption effects. 170 Atomic hydrogen is ignored in the well-mixed atmosphere because of how chemically ac-171 tive it tends to be (as can be seen in the original atmosphere, below the homopause) and 172 it is not unreasonable to think the column density of H will have negligible effects on the 173 opacity of X-ray emission, as it does in the original atmosphere. We will refer to the at-174 mosphere displayed in Figure 1 as atmosphere 1 and the well-mixed atmosphere as at-175 mosphere 2. 176

2.2 Ion-Neutral Impact Processes

177

Houston et al. (2018) modeled oxygen precipitation using the nine relevant NSIM processes as the ion traversed the upper atmosphere using the atomic data describing the rates of these processes and the energy loss for each process as a function of ion energy given by Schultz et al. (2017), summarized here:

$$O^{q+} + H_2 \rightarrow \begin{cases} O^{q+} + H_2^+ + e & \text{Single Ionization} \\ O^{q+} + 2H^+ + 2e & \text{Double Ionization} \end{cases}$$
(1a)

$$O^{q+} + H_2 \rightarrow \begin{cases} O^{(q-1)+} + \begin{cases} H_2^+ & \text{Single Capture} \\ H^+ + H^+ + e & \text{Transfer Ionization} \end{cases}$$

$$O^{(q-2)+} + \begin{cases} 2H^+ \rightarrow O^{(q-1)+} + e & \text{Double Capture} - \text{Autoionization} \\ H^+ + H^+ & \text{Double Capture} \end{cases}$$

$$O^{q+} + H_2 \rightarrow \begin{cases} O^{(q+1)} + H_2^+ + 2e; H + H^+ + 2e & \text{Single Stripping} \\ O^{(q+2)} + H_2^+ + 3e; H + H^+ + 3e & \text{Double Stripping} \end{cases}$$

$$(1c)$$

$$O^{q+} + H_2 \to O^{q+} + H_2^*; H^* + H^*$$
 Electronic Excitation - All States (1d)

However, as noted above, treatment of processes that involve electron transitions
on both target and projectile simultaneously has subsequently lead to fundamental improvements of the oxygen and sulfur data (Schultz et al., 2019). The NSIM and SIM processes represented by this expanded consideration, utilized in the present ion precipitation model, are the following:

$X^{q+} + H_2 \rightarrow X^{q+} + H_2^+ + e; X^{q+} + H + H^+ + e$ single ion	nization (SI)
$X^{q+} + H_2 \rightarrow X^{q+*} + H_2^+ + e: X^{q+*} + H + H^+ + e$ SI + si	ingle projectile excitation (SI+SPEX)
$X^{q+} + H_2 \rightarrow X^{q+**} + H_2^+ + e; X^{q+**} + H + H^+ + e$ SI +	double projectile excitation (SI+DPEX)
$X^{q+} + H_2 \rightarrow X^{(q+1)+} + H_2^+ + 2e; X^{(q+1)+} + H + H^+ + 2e$	SI + single stripping (SI+SS)
$X^{q+} + H_2 \rightarrow X^{(q+2)+} + H_2^+ + 3e$; $X^{(q+2)+} + H_2^+ + H_2^+ + 3e$	SI + double stripping (SI+DS)
	br + double surpping (br + bb)
$X^{q+} + H_2 \to X^{q+} + H^+ + H^+ + 2e$	double ionization (DI)
$X^{q+} + H_2 \rightarrow X^{q+*} + H^+ + H^+ + 2e$	DI+SPEX
$X^{q+} + H_2^{-} \to X^{q+**} + H^+ + H^+ + 2e$	DI+DPEX
$X^{q+} + H_2 \rightarrow X^{(q+1)+} + H^+ + H^+ + 3e$	DI+SS
$X^{q+} + H_2 \rightarrow X^{(q+2)+} + H^+ + H^+ + 4e$	DI+DS
$X^{q+} + H_2 \rightarrow X^{(q-1)+} + H^+ + H^+ + e$	transfer ionization (TI)
$X^{q+} + H_2 \to X^{(q-1)+*} + H^+ + H^+ + e$	TI+SPEX
$X^{q+} + H_2 \rightarrow X^{(q-1)+**} + H^+ + H^+ + e$	TI+DPEX
$X^{q+} + H_2 \rightarrow X^{q+} + H^+ + H^+ + 2e$	TI+SS
$X^{q+} + H_2 \rightarrow X^{(q+1)+} + H^+ + H^+ + 3e$	TI+DS
$X^{q+} + H_2 \rightarrow X^{(q-2)+**} + H^+ + H^+ \rightarrow X^{(q-1)+} + e$	double capture autionization (DCAI)
$X^{q+} + H_2 \rightarrow X^{(q-2)+***} + H^+ + H^+ \rightarrow X^{(q-1)+*} + e$	DCAI+SPEX
$X^{q+} + H_2 \rightarrow X^{(q-2)+****} + H^+ + H^+ \rightarrow X^{(q-1)+**} + \rho$	DCAI+DPEX
$X^{q+} + H_2 \rightarrow X^{(q-2)+**} + H^+ + H^+ \rightarrow X^{q+} + 2e$	DCAL
$\mathbf{X}^{q} + \mathbf{H}_{2} \times \mathbf{X}^{q-2} + \mathbf{H}_{1} + \mathbf{H}_{1} \times \mathbf{X}^{q-1} + \mathbf{Z}_{2}$ $\mathbf{Y}^{q+} + \mathbf{H}_{2} \times \mathbf{Y}^{(q-2)+**} + \mathbf{H}_{2} + \mathbf{H}_{2} + \mathbf{H}_{2} \times \mathbf{Y}^{(q+1)+} + \mathbf{Z}_{2}$	DCAL+DS
$X^{1+} + \Pi_2 \rightarrow X^{(1-)} + \Pi^{1+} + \Pi^{1+} \rightarrow X^{(1+)} + 3\theta$	DCAI+DS
$X^{q+} + H_0 \rightarrow X^{(q-1)+} + H_+^+ \cdot X^{(q-1)+} + H_+ H^+$	single electron capture (SC)
$X^{q+} + H_2 \rightarrow X^{(q-1)+*} + H^+ \cdot X^{(q-1)+*} + H^+ H^+$	SC+SPEX
\mathbf{X}^{q+1} \mathbf{Y}^{q+1} \mathbf{Y}^{q-1} Y	SC+DPFY
$\mathbf{X}^{q} + \mathbf{H}_{2} \rightarrow \mathbf{X}^{q} + \mathbf{H}_{2}^{+}, \mathbf{X}^{q} + \mathbf{H}_{2}^{+}, \mathbf{X}^{q} + \mathbf{H}_{2}^{+} + \mathbf{H}_{1}^{+} + \mathbf{H}_{1}^{+}$	
$X^{1+} + \Pi_2 \rightarrow X^{1+} + \Pi_2 + e, X^{1+} + \Pi + \Pi^+ + e$ $X^{q+} + \Pi \rightarrow X^{(q+1)+} + \Pi^+ + 2a, X^{(q+1)+} + \Pi + \Pi^+ + 2a$	
$\Lambda^{4+} + \Pi_2 \rightarrow \Lambda^{(4+2)+} + \Pi_2^{-} + 2e; \Lambda^{(4+2)+} + \Pi + \Pi^{+} + 2e$	SC+DS
\mathbf{Y}^{q+} + \mathbf{H}_{z} \rightarrow $\mathbf{Y}^{(q-2)+}$ + \mathbf{H}^{+} + \mathbf{H}^{+}	double electron capture (DC)
$\mathbf{X}^{q} + \mathbf{\Pi}_{2} \rightarrow \mathbf{X}^{q} \rightarrow \mathbf{\Pi}_{1} + \mathbf{\Pi}_{1}$ $\mathbf{Y}_{q}^{q} + \mathbf{\Pi}_{2} \rightarrow \mathbf{Y}_{1}^{(q-2)+*} + \mathbf{\Pi}_{2} + \mathbf{\Pi}_{2}$	DC + SDEX
$\mathbf{X}^{a} + \mathbf{\Pi}_{2} \rightarrow \mathbf{X}^{a} + \mathbf{\Pi}^{a} + \mathbf{\Pi}^{a}$	DC+SFEA DC+DDEX
$\Lambda^{\prime} + \Pi_2 \rightarrow \Lambda^{\prime} + \Pi^{\prime} + \Pi^{\prime}$	
$\lambda^{q_+} + \Pi_2 \rightarrow \lambda^{(q)} + \Pi^+ + \Pi^+ + \theta$	DC+22
$\Lambda^{q_+} + \mathrm{H}_2 \to \Lambda^{q_+} + \mathrm{H}^+ + \mathrm{H}^+ + 2\mathrm{e}$	DC+DS

$\mathbf{X}^{q+} + \mathbf{H}_2 \to \mathbf{X}^{q+} + \mathbf{H}_2^*$	target excitation (TEX)
$\mathbf{X}^{q+} + \mathbf{H}_2 \to \mathbf{X}^{q+*} + \mathbf{H}_2^*$	TEX+SPEX
$\mathbf{X}^{q+} + \mathbf{H}_2 \to \mathbf{X}^{q+**} + \mathbf{H}_2^*$	TEX+DPEX
$X^{q+} + H_2 \to X^{(q+1)+} + H_2^* + e$	TEX+SS
$X^{q+} + H_2 \to X^{(q+2)+} + H_2^* + 2e$	TEX+DS

where X stands for the projectile, either O or S. q is the charge state and depends on 184 the number of electrons bound to the ion; q runs from 0 to 8 for O and from 0 to 16 for 185 S. The abbreviations for each process shown here are used throughout the rest of the pa-186 per. Some processes are not possible for neutral or singly ionized atoms or, similarly, for 187 fully stripped or O^{7+} and S^{15+} ions (e.g., for neutral O and S capture of two electrons, 188 DC, cannot occur and for the fully stripped ions O^{8+} and S^{16+} , neither single or dou-189 ble stripping, SS or DS, is possible). We also include the negative ion channel, that is, 190 production and destruction of O^- , as described by Schultz et al. (2019), owing to the 191 importance to the charge state distribution at low energy, and implications for its pres-192 ence in atmospheric chemical models. We use a single, NSIM process that can bring O 193 to O^- , governed by the cross-sections in Table C of Schultz et al. (2019). Once in the 194 negative charge state, six processes are considered; SI, SI+SS, DI, DI+SS, TEX, and TEX+SS. 195 For more details, see Section 3.4 Auxiliary data model given by Schultz et al. (2019). ^{c1}Fur-196 thermore, S^- was not calculated because the importance of that channel to the ion 197 fraction populations of S, S^+ , and possibly S^{2+} were not realized at the time of the 198 calculations, but subsequently identified for O^- production (Schultz et al., 2019)^{c2} for 199 which explicit measurements exist for the ion fraction distributions of O⁻, O, O⁺, and 200 O^{2+} to test inclusion of the O^{-} production and destruction channels. For the present 201 work, inclusion of the corresponding channels for S^- would be relevant for only the 202 lowest energy portion of the ion energy range considered, not significantly affecting 203 the energy loss and ion fraction population except at the lowest portion of this en-204 ergy range and not significantly influencing the x-ray production (little comes from 205 excitation of S or S+ at these low impact energies). 206

Details of the atomic collision model and calculations have been given by Schultz et al. (2019) as well as explanation of the improvements to ion and electron transport models due to inclusion of SIM processes. As noted above, important for the present work is the fact that the more complete atomic collision model has shifted the peaks of the ion charge state distribution to lower ion energies and has motivated consideration of the additional X-ray production mechanism, direct projectile excitation, in addition to the previously considered X-ray emission subsequent to charge transfer.

214

2.3 Charge State Equilibrium Fractions

In a very broad sense, as an ion precipitates through the atmosphere each collision with an atmospheric gas molecule or atom can result in four different outcomes for the projectile. The ion can become excited through NSIM or SIM processes (e.g. SPEX or SPEX+SI), become further ionized (e.g. NSIM or SIM SS or DS), gain an electron or two (e.g. NSIM or SIM SC or TI), or can maintain its charge while ^{c3}affecting the target (e.g. NSIM SI or TEX). Each type of interaction is governed by the energy of the precipitating ion; that is, a more energetic ion will generally be stripped of more electrons than one precipitating with less energy. By knowledge of the stripping and charge state versus the ion energy. This is done using transition probabilities, P_{ij} :

$$\phi_q^i(E)P_{q,q+1}^i = \phi_{q+1}^i(E)P_{q+1,q}^i \tag{2}$$

^{c1} SJH-2: Text added.

^{c2} SJH-2: Text added.

^{c3} SJH-1: effecting

Figure 2. Oxygen charge state distribution as a function of ion energy. The high charge state peaks have dramatically shifted to lower energies than previous models produced. Houston et al. (2018) and Ozak et al. (2010) had the peak of O^{6+} at ~900 keV/u; however, due to the use of newly developed SIM cross-sections, the peak has now shifted down to an energy of ~350 keV/u.

where $\phi_q^i(E)$ is the fraction of ions in charge state q, at energy E, for species i, either oxygen or sulfur. $P_{q,q+1}^i$ denotes the sum of the stripping cross-sections and $P_{q+1,q}^i$, the sum of the charge transfer cross-sections, for species i. A normalization is given by the condition of each energy

$$\sum_{q=q_0}^{q=Z} \phi_q^i(E) = 1$$
 (3)

where q_0 denotes the lowest charge state for species i, $q_0=-1$ for O and $q_0=0$ for S, Z=8,16are the nuclear charges for O and S, and $\phi_q^i(E)$ is the charge state fraction. These are shown for oxygen and sulfur as a function of energy in Figures 2 and 3.

The charge state equilibrium fractions demonstrate at what energy the ion will reach 218 a given charge state regardless of the sequence of collision processes undergone or the 219 initial ion energy; the ion history is immediately forgotten. From these fractions one can 220 quickly see what energies are required for an ion to begin producing X-rays. For both 221 oxygen and sulfur the sixth charge state must be reached to begin producing X-rays (O⁶⁺ 222 and S^{6+} with projectile excitation, or O^{7+} and S^{7+} via charge exchange). These charge 223 states are sufficiently reached for both species at an energy between 200-300 keV/u, where 224 they become the most probable charge state for the given energy (a total energy of ~ 3.2 225 MeV and ~ 6.4 MeV for oxygen and sulfur, respectively). These newly developed equi-226 librium fractions supersede previous models presented by Ozak et al. (2010) and Houston 227 et al. (2018), which showed an O^{6+} peak at nearly 1 MeV/u and an S^{6+} peak at 600 keV/u. 228

Relative to the previous results it now requires less energy to produce charge states capable of emitting X-rays and the ions are not penetrating the atmosphere as deeply as was previously modeled because more energy is being lost in the middle energy range (between 50 and 2000 keV/u; see the stopping power discussion given by Schultz et al. (2019)), affecting the depth effects and predicted X-ray spectra.

Figure 3. Sulfur charge state distribution as a function of ion energy. The high charge state peaks have dramatically shifted to lower energies than previous models produced. Ozak et al. (2010) had the peaks of S^{6+} and S^{14+} at ~500 keV/u and ~2.2 MeV/u, respectively. Due to the use of newly developed SIM cross-sections, the peaks have now shifted down to energies of ~275 keV/u and ~900 keV/u, respectively.

2.4 Depth Effects

234

The opacity of the Jovian atmosphere is incorporated into the model using the optical depth of outgoing X-ray photons. We look at three different path angles, 0° , 80° , and 90° (where the angle is measured with respect to the axis of rotation), and with two atmospheric profiles; the density profile shown in Figure 1 and a well-mixed atmosphere as discussed in Section 2.1. The optical depth is given by

$$\tau(\lambda, z_0) = Ch(\theta, z_0) \sum_j \sigma_j^{abs}(\lambda) \int_{z_0}^{\infty} n_j(z) dz$$
(4)

where $\tau(\lambda, z_0)$ is the optical depth as a function of emitted photon wavelength, λ , and 235 the altitude at which the emission occurred, z_0 . $Ch(\theta, z_0)$ is the Chapman function, de-236 pendent upon the photon path angle, θ , and the altitude. $\sigma_i^{abs}(\lambda)$ is the absorption cross-237 section summed over each species, j (H₂, He, and CH₄), and is a function of wavelength. 238 For example, the absorption cross-section at a photon energy of 100 eV is 3.7×10^{-20} , 2.8×10^{-19} , 239 and 4.4×10^{-19} , for H₂, He, and CH₄, respectively, and continues to decrease in value through 240 10 keV (with the exception of a sharp spike in CH_4 at 283 eV^{c1}, due to the K-shell edge) 241 (Cravens et al., 2006)^{c2}. $n_i(z)$ is the neutral density of each atmospheric constituent as 242 a function of altitude, integrated from the point of emission out through the top of the 243 atmosphere. 244

^{c1} SJH-2: Text added.

 $^{^{\}rm c2}$ SJH-2: Changed from Cravens et al., 1995

 $^{\rm c3}{\rm At}$ angles between 0° and 80°, the Chapman function has been approximated to $^{\rm c4c5}:$ $^{\rm c6}$

$$Ch(0^{\circ} \le \theta \le 80^{\circ}, z_0) \approx \sec(\theta)$$
 (5)

and ^{c1}since this approximation tends toward infinity for $\theta = 90^{\circ}$, for this case we then use:

$$Ch(\frac{\pi}{2}, z_0) = \sqrt{\frac{R_J}{H(z_0)}} \frac{\pi}{2}$$
 (6)

^{c2}where R_J is the Jovian radii of 71,492 km and $H(z_0)$ is the scale height at altitude z_0 . The spectrum intensity, $4\pi I(\lambda)$ can then be calculated as

$$4\pi I(\lambda) = \int_{z_0}^{\infty} P(\lambda, z) e^{-\tau(\lambda, z_0)} dz$$
(7)

where $P(\lambda, z)$ is the production rate of X-ray emission as a function of wavelength, λ and altitude, z. z_0 is the deepest altitude that is reached by the ion beam before all of its energy is deposited into the atmosphere and $\tau(\lambda, z_0)$ is the aforementioned optical depth.

²⁴⁸ $P(\lambda, z)$ integrated over every value of λ is equal to the ion production rate, P(z), ²⁴⁹ and can be calculated for a given ion charge state. Therefore, to determine the produc-²⁵⁰ tion rate as a function of wavelength there are a couple of things to note before build-²⁵¹ ing an approximate synthetic spectra.

2.5 Approximated Synthetic X-ray Spectra

An X-ray can be emitted through either the ion gaining an electron (what we re-253 fer to as a charge transfer or charge exchange collision) or the excitation of the ion (called 254 direct excitation). Both of these scenarios result in one or more electrons in an excited 255 state followed by emission of a photon as the electron(s) cascade down to a lower energy 256 state. Although there are many charge transfer and projectile excitation processes we 257 only allow three of each type to ultimately result in the emission of a photon: TI, SC, 258 and SC+SS for charge exchange and SI+SPEX, DI+SPEX, and TEX+SPEX for direct 259 excitation. Any collisions that result in more than one electron being in an excited state 260 at a given time, whether it be through charge exchange, projectile excitation, or a com-261 bination of the two (e.g. DC or SC+SPEX collisions), we consider it much more likely 262 for the Auger effect (the energy being given to an ejected electron) to take place than 263 the emission of a photon. 264

²⁶⁵ Due to the lack of published^{c3} <u>X-ray emission cascade models, and</u>, given the dis-²⁶⁶ tribution of electronic excitation given by our ion-precipitation model, we have adopted ²⁶⁷ synthetic spectra resulting from charge transfer for O and S ions by Hui et al. $(2010)^{c4}$. ²⁶⁸ These spectra are available only at ion energies somewhat above those needed here, ²⁶⁹ owing to the shift of the charge state distributions to lower energies from use of the SIM ²⁷⁰ processes model. ^{c5}Using the data available from Hui et al. (2010), we have produced ²⁷¹ an approximated spectra vs. number of photons/ion which we have re-normalized for

252

 $^{^{}c3}$ SJH-2: The

^{c4} SJH-2: $Ch(0^{\circ} \leq \theta \leq 80^{\circ}, z_0) \approx \sec(\theta)$ for the first two exit angles

 $^{^{\}rm c5}$ SJH-2: Text added.

 $^{^{\}rm c6}$ SJH-2: Changed to make into an equation.

^{c1} SJH-2: Text added.

^{c2} SJH-2: for $\theta = 90^{\circ}$,

 $^{^{\}rm c3}$ SJH-1: , available X-ray emission cascade models

^{c4} SJH-1: -available only at ion energies somewhat above those needed here (owing to the shift of the charge state distributions to lower energies from use of the SIM processes model)

^{c5} SJH-1: From

each charge state to the total number of photons/charge state. We then multiplied the ion production from charge exchange produced by our model, P(z), by the normalized emission lines to generate $P(\lambda, z)$.

^{c1}We do not have any state-selective excitation emission spectra of oxygen and sul-275 fur for direct excitation; instead we apply an approximation to the charge exchange emis-276 sion lines we do have available. In general, energy levels reached by excitation of the pro-277 jectile ion will be predominantly to lower levels than those from charge transfer. Charge 278 transfer proceeds to states with principal quantum number n peaked at $\approx q^{3/4}$ (Grozdanov 279 & Janey, 1978; Olson, 1981), with a distribution below and above this, falling off at high 280 quantum number as $1/n^3$ (Oppenheimer, 1928; Schultz et al., 2010). In contrast, exci-281 tation proceeds dominantly to the next highest n-level and rapidly falls off for higher n. 282 (Note: ^{c2}Another consideration is forbidden excitation transitions for each charge state; 283 however, that requires a much more in-depth study of the situation beyond the scope 284 of the research presented here.) Thus, we have approximated the excitation to the next 285 highest n-level as 80-85%, the possibility of excitation of two n-levels as 15%, and to a 286 third higher excitation level as 0-5%. 287

To do this, we take the two or three most common emission lines, at lower photon energies, from the charge exchange synthetic spectra provided by Hui et al. (2010) and distribute the direct excitation emission in the following way

$$\sum_{i=1}^{2,3} \frac{hc}{\lambda_i} f_i = E \tag{8}$$

where h is Planck's constant, c is the speed of light, and λ_i is the wavelength of the most 288 likely emission line, or group of emission lines. If there is a group of emission lines with 289 similar wavelengths ($\Delta \lambda \approx 10 \text{ eV}$), the emission is distributed evenly among each wave-290 length because in this simple approximation we do not know the exact state-selective ex-291 citation transitions, and forbidden excitation states have not been considered. f_i is the 292 distribution of X-ray production given to each wavelength. If only two lines^{c3} (or groups 293 of lines) are considered then $f_1=0.85$ and $f_2=0.15$; for three, $f_1=0.80$, $f_2=0.15$, and $f_3=0.05$. 294 E is the total photon energy from emission. 295

To ensure this approximation is not violating conservation of energy, if the emitted photon energy is greater than the energy loss for single projectile excitation (SPEX), $E > \Delta E$, where ΔE is the energy loss for SPEX at a given ion energy and charge state shown in Schultz et al. (2019), then the emission given in Equation 8 is re-normalized to conserve energy,

$$\sum_{n=1}^{2,3} \frac{hc}{\lambda_n} f_n \epsilon = E \tag{9}$$

where $\epsilon = \Delta E/E$. If $E < \Delta E$ then we keep the distribution as is and assume the energy difference is due to emission from lower energy photons not considered in the Xray spectrum and X-ray inefficiencies in emission from the way the electrons cascade through the electron orbitals.

To produce a more realistic approximate synthetic spectrum comparable with observation ^{c4}that an X-ray observatory would detect, we apply a normalized Gaussian distribution to each data point to simulate instrumental response functions, recovering a

^{c1} SJH-1: Unfortunately, we

^{c2} SJH-1: A second thing to consider would be

^{c3} SJH-1: , or groups of lines,

^{c4} SJH-1: as opposed to infinitely narrow line emission

new intensity:

$$4\pi I'(\lambda) = \sum_{\lambda_{\mu}} \frac{1}{\sqrt{2\pi\sigma^2}} I(\lambda) e^{-\frac{(\lambda-\lambda_{\mu})^2}{2\sigma^2}}$$
(10)

where λ is now the full spectrum (in eV) which we allow to range from 100 eV to 3500 eV. λ_{μ} is the wavelength of each emission line and σ^2 is the variance, where $\sigma=20$ eV. A careful data-model comparison requires instrument response functions (e.g. for CXO or XMM-Newton).

304 2.6 Juno Data

With recent measurements from JEDI (Mauk et al., 2017) on the Juno spacecraft, 305 we have obtained heavy ion flux measurements above Jupiter's polar caps indicating both 306 oxygen and sulfur precipitation (Haggerty et al., 2017; Clark, Mauk, Haggerty, et al., 2017; 307 Clark, Mauk, Paranicas, et al., 2017). We input these measurements into our model and 308 produce expected observables for a given flux. For this study, we use ^{c1}downward pre-309 cipitating heavy ion measurements from a northern auroral pass during Perijove (PJ) 310 $\overline{7 \text{ on July } 11, 2017, \text{ displayed in Figure 4. } c^2 \text{These measurements are taken during a}}$ 311 time when Juno's magnetic footprint is leaving the polar cap and crossing equator-312 ward over the main auroral oval. 313

Re-normalization and interpolation of all of the data is necessary to make the flux 314 compatible with the ion precipitation model. The re-normalization requires multiply-315 ing the measured intensity by the JEDI energy bin widths (Mauk et al., 2017) and 2π 316 to obtain a flux in ions/ cm^2/s . The first three energy bins (170.7, 240.2, and 323.6 keV) 317 on the JEDI instrument are unable to distinguish between oxygen and sulfur, but for-318 tunately these low energy bins will not contribute to X-ray production. We then use a 319 simple linear interpolation to give the data finer resolution so the results are smoother, 320 although it has no effect on the total X-ray production. These flux measurements are 321 then used as an input ion flux into our model, or more simply, one can multiply the out-322 put from various monoenergetic runs (which are normalized to an input of $1 \text{ ion/cm}^2/\text{s}$) 323 by the re-normalized flux given by JEDI. 324

It is important to note that although the low energy bins are unable to distinguish 325 between oxygen and sulfur, the higher energy bins of JEDI make separate oxygen and 326 sulfur measurements, and in the case presented, oxygen happens to be more abundant. 327 This is not necessarily a typical measurement and, as suggested by X-ray observation, 328 we generally expect sulfur to produce higher concentrations of X-ray emission. Data have 329 indicated that the sulfur to oxygen (S:O) ratio varies between measurements (Delamere 330 et al., 2005; Dougherty et al., 2017; Kim et al., 2019) which needs to be considered when 331 comparing approximated synthetic X-ray spectra with that from observation. Figure 4 332 has an S:O ratio of about 0.8 which is a mid-range ratio presented by Radioti et al. (2005, 333 2006), where the S:O ratio is shown to vary between 0.3-1.2. 334

Jupiter's X-ray aurora is known to be highly time variable. The X-ray aurora pulses/flares 335 on timescales of a few minutes, while the power output from the aurora can vary by a 336 factor of a few from rotation to rotation (0.5 - 2 GW) and the spectrum is known to change 337 significantly on similar timescales (e.g. Branduardi-Raymont et al. (2007); Elsner et al. 338 (2005); Hui et al. (2010)). The spatial location of the emission may also vary across the 339 auroral zone (Dunn et al., 2017; Gladstone et al., 2002; Jackman et al., 2018), with some 340 suggestion that sulfur X-ray lines may be brighter at lower auroral latitudes (Dunn et 341 al., 2016). 342

^{c1} SJH-1: Text added.

 $^{^{\}rm c2}$ SJH-1: Text added.

Figure 4. ^{c4}<u>Downward</u> precipitating oxygen and sulfur flux measurements from JEDI on the Juno spacecraft during Perijove 7. The points marked with a diamond are the actual JEDI measurements. The lines represents the interpolation of the data that we applied to the measurements. Note the power law distribution seen in both species; however, oxygen appears to have an extended high energy tail when compared with sulfur.

343 **3 Results**

344

3.1 Ion Production Rates

When referring to ion production rates here, we are only focusing on production from charge transfer collisions, i.e. $X^q \to X^{q-1}$, and not stripping collisions, which change^{c1} the charge state in the opposite direction. ^{c2}We will only consider the ion production rate from the collisions that ^{c3}produce photons, ^{c4}<u>i.e., mainly</u> TI, SC, and SC+SS. Furthermore, the ion production rate as a function of altitude, P(z), can be calculated outright for a product ion species, *i*, (e.g. O⁷⁺ or S⁸⁺) as follows:

$$P(z) = n(z)[\sigma^i_{q,q-1}(E(z))]\phi^i_q\Phi^i$$
(11)

where n(z) is the neutral atmosphere density of H₂, $\sigma_{q,q-1}^{i}(E(z))$ denotes the charge trans-fer cross-sections for species *i* with energy *E* at altitude *z*, ϕ_{q}^{i} is the equilibrium fraction 345 346 given in Equations 2 and 3, and Φ^i represents the total flux of the initial ion beam. How-347 ever, our model uses a Monte Carlo method that tracks each ion individually and counts 348 each charge exchange collision that occurs for a given charge state. These collisions are 349 tracked through a set of altitude bins with a given input of $\sim 20,000$ incident ions and 350 then the production rate is normalized to an input of $1 \text{ ion/cm}^2/\text{s}$. The production rates 351 as a function of H_2 density and altitude for O^{6+} and O^{7+} are shown in Figure 5. For sul-352 fur, Figure 6 shows the S^{7+} and S^{8+} charge transfer production rates. It is to be em-353 phasized, these production rates only include charge exchange from the three ^{c5} collisional 354 processes discussed in Section 2.5, that is TI, SC, and SC+SS; although other processes 355 can contribute to lowering the overall charge state without emitting a photon (e.g. the 356 Auger process). The altitude integrated production rates for every charge state and var-357 ious initial ion energies can be found in Appendices A and B, including the production 358 rate of directly excited ions. It is worth noting that^{c6}, for sulfur, these results use pre-359 liminary data^{c7}, ^{c8} and may be subject to revision. 360

It is evident ${}^{c9}\underline{\text{from Figures 5}}{}^{c10}\underline{\text{and 6}}$ that the production rate of X-ray producing charge states from charge exchange collisions, O^{6+} and S^{7+} , is obtained with energies as low as 200 keV/u, which is well within the range of ion energies measured by Juno above the polar caps (Haggerty et al., 2017; Clark, Mauk, Haggerty, et al., 2017; Clark, Mauk, Paranicas, et al., 2017).

366 3.2 X-ray Efficiencies

The emitted photon flux is determined by using the production rates, shown in Fig-367 ures 5 and 6, and Equation 7, where 4π is included to convert the intensity units from 368 $cm^{-2} s^{-1} sr^{-1} to cm^{-2} s^{-1}$. X-ray emission efficiency is a way of quantifying how many 369 photons are emitted given an incident ion energy and is found by dividing $4\pi I$ by the 370 initial energy of the monoenergetic ion beam. Table 1 shows the combined X-ray effi-371 ciencies from both charge exchange and direct excitation emission given an incident ion 372 energy, at various viewing angles, using both atmosphere 1 and 2, and with an input of 373 $1 \text{ ion/cm}^2/\text{s}$. The same is also shown in Figures 7 and 8. Given the approximations noted 374 above to infer the electron state populations from charge transfer and projectile excita-375

^{c1} SJH-1: s

^{c2} SJH-1: At times, w

^{c3} SJH-1: we believe-

^{c4} SJH-1: Text added.

 $^{^{}c5}$ SJH-1: collisions

^{c6} SJH-1: Text added.

 $^{^{\}rm c7}$ SJH-1: Text added.

^{c8} SJH-1: that will subsequently be checked and refined prior to publication

^{c9} SJH-1: Text added.

c10 SJH-1: Text added.

Figure 5. The O^{6+} and O^{7+} production rates from TI, SC, and SC+SS vs. H₂ density and altitude for various incident ion energies (E=0.2, 0.3, 0.5, 1.0, 2.0, 5.0, 10.0, and 25.0 MeV/u). The production rates have been normalized to a single incident ion/cm²/s.

Figure 6. The S^{7+} and S^{8+} production rates from TI, SC, and SC+SS vs. H₂ density and altitude for various incident ion energies (E=0.2, 0.3, 0.5, 1.0, and 2.0 MeV/u). The production rates have been normalized to a single incident ion/cm²/s.

				(- 0)		
Energy		0°)			90°)	
[keV/u]	O ⁶⁺	O7+	S^{8+}	S^{9+}	O^{6+}	O7+	S^{8+}	S^{9+}
200	0.0141	0.0005	0.0023	0.0001	0.0139	0.0005	0.0019	0.0001
300	0.1195	0.0106	0.0514	0.0085	0.1165	0.0104	0.0365	0.0072
400	0.2008	0.0317	0.2093	0.0745	0.1901	0.0309	0.1195	0.0563
500	0.2669	0.0735	0.3208	0.1882	0.2358	0.0701	0.1327	0.1206
600	0.2884	0.1206	0.3020	0.2145	0.2235	0.1107	0.0772	0.1022
700	0.2787	0.1578	0.2557	0.1924	0.1760	0.1357	0.0370	0.0589
800	0.2573	0.1810	0.2169	0.1663	0.1240	0.1409	0.0185	0.0300
900	0.2333	0.1911	0.1858	0.1443	0.0827	0.1303	0.0106	0.0157
1000	0.2105	0.1918	0.1608	0.1265	0.0551	0.1118	0.0069	0.0093
2000	0.0954	0.1244	0.0527	0.0474	0.0029	0.0128	0.0009	0.0009
Atmosphere 2 (Well-mixed atmosphere)								
Energy	y 0°)	
$[l_{0}V/n]$	0^{6+}	0^{7+}	C 8+	C 9+	0^{6+}	0^{7+}	C 8+	c^{9+}

Atmosphere 1 (Original atmosphere)

Atmosphere 2 (Well-mixed atmosphere)								
Energy		00)		90°			
[keV/u]	O^{6+}	O ⁷⁺	S^{8+}	S^{9+}	O^{6+}	O ⁷⁺	S^{8+}	S^{9+}
200	0.0140	0.0005	0.0022	0.0001	0.0134	0.0005	0.0015	0.0001
300	0.1192	0.0106	0.0507	0.0084	0.1068	0.0100	0.0267	0.0057
400	0.2000	0.0317	0.2048	0.0736	0.1643	0.0289	0.0799	0.0418
500	0.2653	0.0733	0.3113	0.1849	0.1867	0.0633	0.0792	0.0817
600	0.2861	0.1201	0.2904	0.2093	0.1606	0.0954	0.0397	0.0600
700	0.2761	0.1570	0.2441	0.1864	0.1156	0.1111	0.0170	0.0297
800	0.2545	0.1799	0.2060	0.1602	0.0756	0.1096	0.0084	0.0138
900	0.2307	0.1898	0.1760	0.1386	0.0478	0.0967	0.0050	0.0072
1000	0.2080	0.1904	0.1521	0.1212	0.0311	0.0802	0.0033	0.0044
2000	0.0942	0.1234	0.0498	0.0453	0.0017	0.0087	0.0006	0.0006

Table 1. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects from a single incident ion/cm²/s with an isotropic downward distribution of pitch angles. The viewing angles of 0° and 90° are displayed for both atmosphere 1 and 2. The efficiencies shown here include X-ray production from both charge exchange and direct excitation collisions.

tion, the full set of efficiencies for every X-ray emitting charge state at each energy and
 three different viewing angles plus a no opacity case can be found in Appendices A and
 B.

The most efficient X-ray emission for O^{6+} is with an incident ion energy of ~ 600 379 keV/u for both atmospheres, $\sim 1 \text{ MeV/u}$ for O⁷⁺, $\sim 500 \text{ keV/u}$ S⁸⁺, and $\sim 600 \text{ keV/u}$ for 380 S^{9+} . The well-mixed atmosphere has minimal effects on emission from low energy ion 381 precipitation because the ions are not precipitating deeply enough for the large column 382 density to have much of an impact on the X-rays. As one would expect, the viewing an-383 gle of 90° greatly reduces emission for high energy ion precipitation when comparing with 384 X-rays that propagate directly up and out of the atmosphere at 0° . This is even more 385 true for X-ray production from sulfur which is the overall most efficient X-ray producer 386 (i.e., S^{8+} at 500 keV/u) with a viewing angle of 0° , but the efficiency is reduced by nearly 387 60% (for atmosphere 1) when the viewing angle changes to 90° , whereas O^{6+} is only re-388 duced by about 23% (for atmosphere 1) making it the most efficient emitter at 90°. This 389 is an important effect to consider when looking at fluxes from earth-orbit-based X-ray 390 observations, which are generally taken at a steep viewing angle, especially for the south-391 ern aurora. 392

Figure 7. The entire outgoing X-ray flux efficiency for all X-ray producing oxygen charge states as a function of initial ion energy from a single incident $ion/cm^2/s$ with an isotropic downward distribution of pitch angles. The condition of no opacity is shown by the solid line, an exit angle of 0° is represented by the dashed line, an exit angle of 80° by the dotted line, and an exit angle of 90° by the dash-dot line. Atmosphere 1 is in black and atmosphere 2 is in gray. Every exit angle is with respect to the Jovian spin axis. The figure on the right is a magnified portion of the figure on the left (represented by the black rectangle), used to emphasize the efficiencies of ions in the energy range of JEDI measurements.

Figure 8. The entire outgoing X-ray flux efficiency for all X-ray producing sulfur charge states as a function of initial ion energy from a single incident ion/cm²/s with an isotropic downward distribution of pitch angles. The condition of no opacity is shown by the solid line, an exit angle of 0° is represented by the dashed line, an exit angle of 80° by the dotted line, and an exit angle of 90° by the dash-dot line. Atmosphere 1 is in black and atmosphere 2 is in gray. Every exit angle is with respect to the Jovian spin axis. The figure on the right is a magnified portion of the figure on the left (represented by the black rectangle), used to emphasize the efficiencies of ions in the energy range of JEDI measurements.

Ozak et al. (2010) reported that the most efficient X-ray emission for O^{6+} , O^{7+} , 393 and S^{8+} was for incident ions with energies of 1.5 MeV/u, 2.5 MeV/u, and 1 MeV/u, 394 and efficiency values of ~ 0.009 , ~ 0.003 , and ~ 0.015 , respectively. These ^{c1} energies are 395 2-3x higher than what JEDI typically observe^{c2}s. But our revised model with the SIM 396 cross-sections indicate that for O^{6+} , O^{7+} , and S^{8+} the most efficient X-ray emissions oc-397 cur at energies of 600 keV/u, 1 MeV/u, and 500 keV/u with efficiencies of 0.29, 0.19, and 398 0.32, respectively (from Tab. 1, atmosphere 1, 0° viewing angle). Two major contribu-399 tions account for such a great difference in X-ray efficiencies. First, with the more com-400 plete treatment of the fundamental atomic collision processes, it requires much less en-401 ergy than inferred in the previous models to strip both oxygen and sulfur ions to a high, 402 X-ray producing charge state, allowing X-rays to be created at much lower energies than 403 previously thought. Second, we are depositing much more energy higher up in the at-404 mosphere due to the increase in stopping power shown by Schultz et al. (2019), ultimately 405 generating X-rays higher in the atmosphere than previously modeled, making them less 406 susceptible to opacity effects even when considering an upper-limit, highly-mixed atmo-407 sphere. 408

There are several useful ways to interpret X-ray efficiencies. Because the efficien-409 cies are calculated with an input of $1 \text{ ion/cm}^2/\text{s}$, one can view each efficiency as the num-410 ber of X-ray photons emitted given an initial ion energy. That is to say, if a single oxy-411 gen ion with an energy of 300 keV/u is precipitating, then it is expected that ~ 0.1 ^{c1} photons/cm²/s/(keV/u) 412 x 300 keV/u \approx 30 photons/cm²/s will be emitted. Therefore, 1 oxygen ion/cm²/s at $\overline{300}$ 413 keV/u will produce about 30 photons/cm²/s, or 1 ion/s precipitating results in 30 pho-414 tons/s. This is an extremely quick estimate that can be made when trying to interpret 415 the emission from a measured JEDI ion flux and is useful if considering an X-ray instru-416 ment for a future mission to Jupiter. 417

Another practical application of the X-ray efficiencies is to calculate total X-ray power emission for a given initial ion energy. For example; we have just calculated that 1 oxygen ion/s at 300 keV/u will produce 30 photons/s. The average emitted photon energy associated with oxygen is 600 eV (See Section 3.3). The power out is then 30 photons/s x 600 eV x 1.6×10^{-9} c²Joules/eV $\approx 3 \times 10^{-15}$ c³Joules/s or 3×10^{-15} Watts. Thus, given an ion flux, one can approximate the total power output from the precipitating ions.

Finally, given an ion flux one can estimate the power output from the entirety of 424 the polar cap, or a defined area that Juno has flown over while an X-ray observation has 425 been made simultaneously. If photons/cm²/s is calculated, either through the aforemen-426 tioned method or as a direct result output from our model with a variety of initial ion 427 energies, then finding the power/cm²/s is a matter of combining the two previous meth-428 ods. That is, $(\text{photons/cm}^2/\text{s}) \propto (\text{average photon energy [eV]}) \propto (1.6 \times 10^{-19} \text{ c}^4 \text{Joules/eV})$ 429 results in W/cm². Now, if the area of the measurement is known, or deduced by geom-430 etry, multiplying power/ cm^2 by the area will result in the total power for that area, which 431 can be directly compared to an observed total X-ray power (or luminosity). 432

433 3.3 X-ray Spectra

Distributing the X-ray intensity into individual lines, as given by the approximate treatment of the synthetic spectra as described in Section 2.5, we can provide X-ray spectra. Figure 9 shows the total X-ray emission for a single oxygen plus a single sulfur ion

^{c1} SJH-1: required-^{c2} SJH-1: d^{c1} SJH-2: $\frac{\text{photons } 1}{\text{cm}^2 \text{s} \text{ keV/u}}$ ^{c2} SJH-2: $\frac{\text{Joules}}{\text{eV}}$ ^{c3} SJH-2: $\frac{\text{Joules}}{\text{s}}$ ^{c4} SJH-2: $\frac{\text{Joules}}{\text{eV}}$

Figure 9. Approximated synthetic X-ray spectra showing the contribution from each charge state. This spectrum includes emission from both charge exchange and direct excitation collisions considering no opacity effects from an incident ion beam of 500 keV/u with an input is $1 \text{ ion/cm}^2/\text{s}$ for both species. Not shown is the emission from S¹⁴⁺ which peaks at ~2450 eV with an intensity several orders of magnitude lower than the more prominent emission lines.

(sulfur to oxygen ratio of 1:1), both with incident energies of 500 keV/u. The emission 437 lines have been distributed with a normalized Gaussian and $\sigma=20$ eV, simulating instru-438 ment response functions (discussed in Section 2.5). The emission is plotted by charge 439 state to show where in the spectrum each emission line contributes the most, i.e. sul-440 fur dominates at photon energies between 150-500 eV, while oxygen is prominent between 441 500-900 eV. This particular spectrum (Fig. 9) accounts for no opacity effects and we have 442 included emission from both charge exchange and direct excitation collisions. The emis-443 sion from S^{14+} has two peaks at ~430 eV and ~2450 eV, but the latter is multiple or-444 ders of magnitude below the rest of the emission and would therefore be much fainter 445 than the dominant lines in Figure 9. 446

Figure 10 is the same total emission from Figure 9 (black line) with opacity effects 447 applied from both atmosphere 1 and 2 at three different viewing angles. It is apparent 448 that ^{c1}the lower energy X-ray emission^{c2}s from sulfur ^{c3}are much more ^{c4}affected by opac-449 ity than ^{c5}those from oxygen, which was indicated by the X-ray efficiencies in Table 1. 450 This is due to the relatively large photo-absorption cross-sections at longer wavelengths, 451 shown by Cravens et al. (2006). The relative absorption is useful when comparing emis-452 sions from the northern and southern aurorae, because the southern aurora is generally 453 observed at a much steeper viewing angle than the northern aurora. 454

It is also important to note how little X-ray absorption occurs at this energy of 500 keV/u, even for atmosphere 2. A 500 keV/u oxygen ion (total energy of 8 MeV) is nearing the upper energy limit of the JEDI instrument of 10 MeV (Mauk et al., 2017) and

^{c3} SJH-1: is

^{c1} SJH-1: Text added.

^{c2} SJH-1: Text added.

^{c4} *SJH-1*: e

 $^{^{}c5}$ SJH-1: that

Figure 10. Approximated synthetic X-ray spectra with opacity effects at three viewing angles through an atmosphere with a deep, originally considered homopause (atmosphere 1) and an atmosphere that is well-mixed through the top of the atmosphere (atmosphere 2), what we consider an upper-limit to opacity effects. Initial ion energies are 500 keV/u for both oxygen and sulfur precipitation and the input is 1 ion/cm²/s for both species. Photon energies below about 400 eV are shown to be much more affected by the opacity than higher photon energies.

a 500 keV/u sulfur ion (16 MeV) is above that limit. This suggests that precipitation
of ions with energies within the JEDI limits will have X-ray emission that will escape
without undergoing large opacity effects, and should be detectable, even if a very wellmixed atmosphere is present. Due to the new SIM cross-sections precluding the X-ray
producing ions ^{c6}from precipitat^{c7}ing deep into the atmosphere, these results are much
different than those presented by Ozak et al. (2010), which show a reduction in sulfur
emission by nearly two orders of magnitude when considering a 90° viewing angle.

465

3.4 Inputting JEDI Measurements

Finally, we input the JEDI flux measurements, displayed in Figure 4, into our model 466 and are able to determine ion production rates, direct excitation rates, and an expected 467 X-ray spectrum. In the results presented using JEDI measurements we only consider at-468 mosphere 1, the original atmosphere in Figure 1 with a well defined homopause. Displayed 469 in Figure 11 are the ion production rates from X-ray producing charge exchange colli-470 sions (TI, SC, SC+SS) combined with the production rates from X-ray producing di-471 rect excitation collisions (SI+SPEX, DI+SPEX, and TEX+SPEX) associated with the 472 PJ 7 ion flux measurements. This demonstrates that the ions seen during this pass are 473 of sufficient energy to reach X-ray producing charge states. It is also evident that X-ray 474 emitting ions do not precipitate deeply enough to go much below the homopause, indi-475 cating that absorption will have minimal effects. 476

^{с6} *SJH-1*: tо

 $^{^{\}rm c7}$ SJH-1: е

Figure 11. Ion production rate from X-ray producing charge exchange collisions combined with X-ray producing direct excitation collisions of each ion charge state vs. H_2 density and altitude from Juno's PJ 7 pass. Also included is the altitude integrated production rate of each charge state displayed. It is evident from the charge states obtained that X-rays will be produced.

Figure 12. Predicted X-ray spectrum from JEDI's ion flux measurements during the PJ 7 polar cap pass in 2017. This spectrum assumes an opacity effect with an exit angle of 80° through atmosphere 1. It appears emission from oxygen is the most prominent source of X-rays associated with this flux measurement, which may have been anticipated from the JEDI data taken at this time, but is likely not always the case.

Displayed in ^{c1}Figure 12 is the X-ray spectrum we predict using ^{c2}a JEDI^{c3} mea-477 surement ^{c4} of an instant of a particularly high ion flux during PJ 7 (Fig. 4), included 478 is X-ray production from both charge exchange and direct excitation collisions. This par-479 ticular spectrum considers opacity effects with a photon exit angle of 80°, which we as-480 sume to be a common viewing angle from earth-orbit-based observations; although, opac-481 ity effects make little difference on the X-ray emission from ions with this low of initial 482 energy. (When comparing an 80° exit angle to a 90° exit angle, the total emitted flux 483 from oxygen emission was only reduced by 5.4% for the 90° case, while emission from 484 sulfur was diminished by 15%.) 485

486

3.5 Comparing Simulated and Observed X-ray Spectra

The XMM-Newton Observatory observed Jupiter continuously from 19:29 on July 487 10th to 09:38 on July 12th, 2017. Part of this observation was simultaneous with the Juno 488 JEDI ion measurements presented in Section 3.4 and Figure 4. Unfortunately, since Jupiter's 489 aurorae rotate with the planet, the Northern X-ray aurora was not in view from Earth 490 precisely when Juno conducted *in situ* particle measurements in the X-ray auroral re-491 gion, but was observable two hours prior to this and one hour after (see supporting in-492 formation for comparisons of Juno flight with auroral viewing). Here, we compare the 493 simulated Northern auroral X-ray spectrum from the Juno JEDI in situ measurements 494 with contemporaneous observed X-ray auroral spectrum. 495

We extracted and calibrated the observed X-ray spectrum from Jupiter's Northern aurora during the two intervals (19:29-21:30 on July 10th and 01:00-06:00 on July

^{c1} *SJH-1*: **f**

^{c2} SJH-1: Text added.

^{c3} SJH-1: 's measured ion flux

^{c4} SJH-1: Text added.

11th (UT)) that bracketed the Juno JEDI ion measurements (Sec. 3.4; Fig. 4 & Fig. 12). 498 ^{c1}One-way light travel from Jupiter to XMM-Newton between July 10th - 12th, 2017 499 was 45 minutes. The northern aurora rotated out of view for XMM-Newton at $\sim 21:30$ 500 UT (light emitted from Jupiter at 20:45) and came back into view at $\sim 01:50$ (light 501 emitted from Jupiter at 01:05). During this interval there was not perfect coinci-502 dence of Juno measuring the X-ray emitting region and the subsequent X-rays being 503 observed at Earth. We found that the X-ray aurora in this interval was relatively dim 504 $(\sim 50\%$ of the power output observed in the subsequent two auroral observations on the 505 July 11 and July 12 supporting information). 506

We took the simulated X-ray photon fluxes emitted from the *in situ* ion flux mea-507 surements at a 60 degree viewing angle, to represent the latitudinal location of the ob-508 served ^{c1}northern X-ray emissions (e.g. see Gladstone et al. (2002); Dunn et al. (2017)). 509 We multiplied these photon fluxes per cm^2 by the area of a typical dim X-ray auroral 510 region (e.g. time-binned X-ray projections in Dunn et al. (2016)) to attain a total flux 511 of photons from the aurora. We then scaled these auroral photon fluxes by $^{c2}4\pi r^2$ to ac-512 count for their dispersion between Jupiter and XMM-Newton. Having calculated fluxes 513 arriving at XMM, we applied XMM-Newton's time-dependent instrument responses on 514 July 10th (XMM-Newton calibration, response matrices, and ancillary response files) to 515 the simulated photon fluxes. This provided a simulated X-ray spectrum for what would 516 be detected by XMM-Newton on July 10-11th, 2017. Finally, we compared the simulated 517 and observed spectra by calculating the reduced Chi-Squared between the two. 518

Figure 13 shows the comparison between the simulated spectrum (black lines) and 519 the observed data from 19:29-21:30 on July 10th, 2017 (blue crosses). The results were 520 similar for both intervals (see supporting information). The simulated oxygen emission 521 between 0.5-0.9 keV is an excellent fit to the observed spectrum for both intervals pro-522 ducing a reduced χ^2 of 1.3-1.5 (Table 12). However, below 0.5 keV the simulated sul-523 fur photon fluxes do not well reproduce the observed emission, which leads to a reduced 524 χ^2 of 4-5 for the overall spectrum from both intervals (Table 12). Consequently, we in-525 vestigate a "boosted" sulfur model (black dash-dotted line in Fig. 13) to determine how 526 much sulfur emission is necessary to reproduce the observed spectrum. A sulfur boost 527 of 100x is needed to fit the emission measured by XMM-Newton; this is concerning due 528 to the luminosity associated with this large of a boost ($\sim 7 \text{ GW}^{c11}$, which is notably 529 higher than typical X-ray observations, discussed in Section 3.6). This lower energy 530 spectrum could also be fit well with a bremsstrahlung continuum, but this does not re-531 solve the high luminosity issue. Alternatively, this discrepancy may be a result of the 532 poor effective area for the XMM-Newton EPIC-pn instrument below 0.3 keV. Ultimately, 533 more input data (JEDI measurements) and XMM-Newton observation comparisons are 534 required for greater statistical significance; because, as Figure 4 indicates, the high en-535 ergy tail of the sulfur spectrum falls off more rapidly than that of oxygen, which is likely 536 not always the case. ^{c12}It is to be considered that the sulfur data is preliminary; how-537 ever, we do not expect any substantial changes in the sulfur cross-sections to resolve 538 the disagreement presented here. 539

The spectral morphology in c13 the <0.3 keV X-ray energy range appears linelike, but could also be fitted well by a large flux of photons from a low energy bremsstrahlung continuum (see supporting information for details). The discrepancy between $0.2-0.5^{c14}$

^{c1} SJH-1: Text added. ^{c1} SJH: N ^{c2} SJH-1: 2 ^{c11} SJH-2: Text added. ^{c12} SJH-2: Text added. ^{c13} SJH-1: this ^{c14} SJH-1: Text added.

Figure 13. An XMM-Newton EPIC-pn observation of Jupiter's Northern X-ray Auroral spectrum from 19:29-21:30 on July 10th, 2017 (blue crosses) binned to ensure at least 5 counts per energy channel. Overlaid on the observational data is the simulated photon fluxes from Figure 12 ^{c7} that has been normalized using the XMM-Newton EPIC-pn instrument response to produce a simulated X-ray spectrum (black solid line, S:O ratio of 0.8) and a second, sulfur boost of 100x, X-ray spectrum (black dash-dotted line). This assumes an X-ray auroral region of $c^{8}2.5^{\circ}$ x 7.5° c^{9} (a surface area of $\sim 2x10^{17}$ cm²) System III latitude-longitude^{c10}, demonstrating a good morphological fit to the spectra based on the shape of emission.

keV also appears between Figures 10 and 12. Figure 4 shows that there was an S:O ra-543 tio of 0.8 during this interval. Radioti et al. (2005, 2006) showed that the S:O ratio in 544 the magnetosphere varies from 0.3-1.2, so this ratio appears to be a typical measurement. 545 However, figures 9 and 10 suggest that this may have been an intermittent relatively low 546 ratio, showing that an S:O ratio of 1:1 ^{c15} produces a spectrum that morphologically is 547 much closer to the observed X-ray spectrum. Thus, a secondary process (aside from sul-548 fur precipitation) should likely be considered to contribute to that part of the spectrum. 549 The X-ray aurora is also known to be highly time variable on scales of 10s of minutes 550 to hours (e.g. Dunn et al. (2017)) so it may be that the conditions changed between the 551 perijove pass through the X-ray auroral zone and the auroral emissions that were ob-552 served. 553

To account for the low predicted sulfur emission, we ^{c1}briefly consider a bremsstrahlung component to either replicate a forest of sulfur lines between 0.2-0.5 keV or to reproduce a high energy bremsstrahlung component (above 0.9 keV), which is sometimes present in the X-ray aurora from energetic electrons (e.g. Branduardi-Raymont et al. (2004, 2008)).

^{c15} SJH: ratio-

 $^{^{\}rm c1}$ SJH: Text added.

Observation	Model	Reduced χ^2 Fits	Auroral Power	Auroral Power
Time			Observed	Simulated
			$[\mathrm{mW}/\mathrm{m}^2]$	$[\mathrm{mW}/\mathrm{m}^2]$
10 July	CX+DE	5	$1 x 10^{-13}$	$3x10^{-14}$
19:29-21:30				
10 July	CX+DE+	1.3	$1 x 10^{-13}$	$7 x 10^{-14}$
19:29-21:30	Bremsstrahlung			
11 July	CX+DE	4	$8 x 10^{-14}$	$3x10^{-14}$
01:00-05:30				
11 July	CX+DE+	1.5	$8 \text{x} 10^{-14}$	$5x10^{-14}$
01:00-05:30	Bremsstrahlung			

Table 2. Table showing XMM-Newton Northern auroral observations with auroral models, their resulting reduced χ^2 fits and the observed and simulated auroral powers.

Including these bremsstrahlung components was found to improve the fits (Table 12)^{c2}. Much of Jupiter's UV aurora is known to be produced by electron precipitation and a bremmstrahlung continuum has been found to provide an excellent fit to the X-ray emission above 2 keV in Branduardi-Raymont et al. (2004)^{c3}. But, in this work we concentrate on the spectral line emission from ion precipitation. Figures for these fits can be found in the supporting information alongside comparisons of the Juno flight path with the X-ray auroral emission region and X-ray lightcurves from this interval.

In summary, our models produce excellent predictions for the observed X-ray emis-565 sion from oxygen precipitation into the atmosphere, if the X-ray auroral zone covers a 566 region of between 5° to 10° by 5° to 10° in System III latitude-longitude. There are still 567 open questions about whether the sulfur emission is under-estimated because of time-568 varying changes in the ion precipitation or because of some, as yet unidentified, differ-569 ences between the treatment of oxygen and sulfur behaviour. To identify this will require 570 additional XMM-Newton observations coincident with Juno measurements at perijove. 571 These observations are planned for September 2019. 572

573

3.6 X-ray Luminosity

Can heavy ion precipitation produce *enough* X-ray emission to explain the total 574 observational soft X-ray luminosity of 1-2 GW (Elsner et al., 2005; Gladstone et al., 2002) 575 A quick estimate confirms that the new model can produce such luminosity. The X-ray 576 emission our model produces when the JEDI ion flux measurement shown in Figure 4 577 are input is $\sim 4 \times 10^6$ photons/cm²/s. This is the sum of all oxygen and sulfur X-ray emis-578 sion from both charge exchange and direct excitation with an exit angle of 80° from the 579 original atmosphere. Integrating the emission in Figure 12^{c1} , results in $\sim 2.5 \times 10^9 \text{ eV/cm}^2/\text{s}$. 580 Converting this to Watts/cm² by multiplying by a factor of 1.6×10^{-19} J/eV yields a power 581 output of 4×10^{-9} W/cm². Now, the total area of X-ray emission on the Jovian polar cap 582 can be assumed to come from within a latitude of $\sim 5^{\circ}$. This gives an area of $2\pi R_{\rm J}^2$ (1-583 $\cos\theta$ $\approx 10^{18} \text{ cm}^2 (\text{R}_{\text{J}} = \text{Jovian radii} = 71,492 \text{ km}). 4 \text{x} 10^{-9} \text{ W/cm}^2 \text{ x} 10^{18} \text{ cm}^2 = 4 \text{x} 10^9$ 584 W, or 4 GW. It appears, based on this quick, "back of the envelope" calculation, that 585 we can now account for the entirety of the output power of the X-rays. Of course, the 586 area of emission needs to be greatly constrained^{c_2} and this was for a single, instanta-587

^{c2} SJH-1: ; however, no physical explanation (i.e. electron flux measurements) for the electron bremsstrahlung is provided here.

^{c3} SJH-1: Text added.

^{c1} SJH-1: Changed

^{c2} SJH-1: Text added.

neous JEDI measurement that observed a high ion flux, but this shows it is now fea-588 sible the ion flux measurements at Jupiter are responsible for the X-ray emission. 589

4 Discussion and Conclusions 590

Spectral lines from precipitating ions have been known to dominate Jupiter's X-591 ray aurora since the launch of XMM-Newton and Chandra in 1999 (Branduardi-Raymont 592 et al., 2004; Elsner et al., 2005). New in situ measurements by Juno have detected the 593 ion precipitation that leads to these X-ray emissions. Previous modeling required much 594 higher energy ions (Cravens et al., 1995; Ozak et al., 2010, 2013; Houston et al., 2018), 595 which were difficult to explain with given knowledge of Jupiter's magnetosphere. This 596 forced us to rethink the processes producing X-ray emission from ion precipitation. Schultz 507 et al. (2019) determined not every process was being accounted for in the original pre-598 cipitation modeling, but simultaneous processes (both target and ion) needed to be considered. This led to a completely new series of processes and cross-sections that we have 600 now utilized for the updated heavy ion precipitation model described here. The initial 601 ion energy necessary to produce X-rays has been reduced dramatically, and is now well 602 within the heavy ion energy range being measured by the Juno spacecraft. 603

604

To summarize the findings of our model:

1. New data, accounting for SIM processes has shifted the charge state distribution 605 of both oxygen and sulfur to lower energies than before. The repercussions being 606 it now requires less energy to strip ions to X-ray producing charge states, result-607 ing in precipitation that does not penetrate as deeply into the atmosphere. 608 2. Direct excitation is now considered as a new X-ray production mechanism, which 609 adds to the total flux and to the spectrum. 610 3. Because the ions are not precipitating as deep into the atmosphere as previous mod-611 els suggested, there is less absorption of photon emission when opacity effects are 612 considered. 613 4. If an atmosphere of fully mixed constituents is used, the X-ray efficiency is reduced; 614 but, emission from ions at the energies measured by JEDI is only reduced by about 615 15-20% compared to the original atmosphere. 616 5. While the oxygen collisional data have been carefully checked and published, the 617 analogous data for sulfur utilized here in a preliminary form is now in final prepa-618 ration and checking for publication. 619 6. X-ray spectra separated into line emission using Gaussian distributions are pro-620 ducible and can be used in coordination with JEDI ion flux measurements and earth-621 orbit-based X-ray observations. When comparing the two, opacity effects need to 622 be considered based on the geometry of the earth and Jupiter at the time. 623 7. Approximated synthetic X-ray spectra comparisons with XMM-Newton observa-624 tions have good agreement with oxygen emission; however, lower energy photoe-625 mission needs to be explored further to isolate the discrepancy at lower energies, 626 in the sulfur part of the spectrum. This could be by having an increased sulfur 627 flux or by including emission from electron bremsstrahlung. ^{c1}Although the sul-628 fur data is preliminary, we do not expect any changes to the data to be significant 629 enough to resolve the differences seen. 630 8. JEDI flux measurements input into the model generate enough X-rays to account 631 for the total X-ray power that has been observed in the past. 632

This paper has shown that the observed soft X-ray auroral emission from Jupiter 633 can indeed be explained by the precipitation of energy heavy ions (as observed by Juno). 634

c1 SJH-2: Text added.

Hence, X-ray observation can be used to estimate heavy ion fluxes with energies in ex-

 $_{636}$ cess of $\sim 200 \text{ keV/u}$ (i.e., 3 MeV and higher) and to determine the morphology of this

precipitation made over the polar caps. Such precipitation has been shown to be associated with downward field-aligned currents, both due to the primary ion precipitation

and the resultant secondary electron escape from the atmosphere (Cravens et al., 2003;

Houston et al., 2018; Ozak et al., 2010, 2013). The ion precipitation is also responsible

as a source of ionization in the thermosphere, ^{c2}which was explored further in the ear-

⁶⁴² lier model presented by Houston et al. (2018). ^{c3}The model established here has very

similar atmospheric ion production rates as previously reported. But a deeper discus-

sion is reserved for a future publication, to examine the affects on ionospheric conduc-

tivities, which are important for understanding magnetosphere-ionosphere coupling. Much

work remains to be done on the Jovian polar aurora.

^{c2} SJH-2: Text added.

 $^{^{\}rm c3}$ SJH-2: and here will affect

647 Acknowledgments

This work was supported at the University of Kansas by NASA grant NNX14AG79G. See the supporting information for data used to produce the figures and tables in this paper. ^{c1}Data associated with the ion precipitation model used here can be found on the corresponding AGU website and all X-ray data presented here are publicly available on the XMM-Newton Science archive: https://nxsa.esac.esa.int/nxsa-web/#search.

653 References

654	Branduardi-Raymont, G., Bhardwaj, A., Elsner, R. F., Gladstone, G. R., Ramsay,
655	G., Rodriguez, P., Cravens, T. E. (2007). A study of Jupiter's aurorae with
656	XMM-Newton. A & A, 463(2), 761-774. Retrieved from https://doi.org/
657	10.1051/0004-6361:20066406 doi: 10.1051/0004-6361:20066406
658	Branduardi-Raymont, G., Elsner, R. F., Galand, M., Grodent, D., Cravens, T. E.,
659	Ford, P., Waite, J. H. (2008). Spectral morphology of the X-ray emission
660	from Jupiter's aurorae. Journal of Geophysical Research: Space Physics,
661	113(A2). Retrieved from http://dx.doi.org/10.1029/2007JA012600
662	(A02202) doi: 10.1029/2007JA012600
663	Branduardi-Raymont, G., Elsner, R. F., Gladstone, G. R., Ramsay, G., Rodriguez,
664	P., Soria, R., & Waite, J. H. (2004). First observation of Jupiter by XMM-
665	Newton. A&A, 424(1), 331-337. Retrieved from https://doi.org/10.1051/
666	0004-6361:20041149 doi: 10.1051/0004-6361:20041149
667	Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A.,
668	Valek, P. (2017, September). Energetic particle signatures of magnetic
669	field-aligned potentials over Jupiter's polar regions. grl , 44, 8703-8711. doi:
670	10.1002/2017 GL074366
671	Clark, G., Mauk, B. H., Paranicas, C., Haggerty, D., Kollmann, P., Rymer, A.,
672	Valek, P. (2017, May). Observation and interpretation of energetic
673	ion conics in Jupiter's polar magnetosphere. grl , 44, 4419-4425. doi:
674	10.1002/2016 GL072325
675	Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., Valek, P.
676	(2018). Precipitating electron energy flux and characteristic energies in
677	Jupiter's main auroral region as measured by Juno/JEDI. Journal of Geo-
678	physical Research: Space Physics, 123(9), 7554-7567. Retrieved from https://
679	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025639 doi:
680	10.1029/2018JA025639
681	Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bontond,
682	B., Waite, J. (2017). Jupiter's magnetosphere and aurorae observed by
683	the Juno spacecraft during its first polar orbits. Science, 356 (6340), 826–832.
684	Retrieved from http://science.sciencemag.org/content/356/6340/826
685	doi: 10.1126/science.aam5928
686	Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L.,
687	Joergensen, P. S., Levin, S. M. (2018). A new model of Jupiter's magnetic
688	neid from Juno's first nine orbits. Geophysical Research Letters, 45(6), 2590-
689	2090. Retrieved from https://agupubs.onlinelibrary.wiley.com/dol/abs/
690	[10.1002/2018GL07/312] (01: 10.1002/2018GL07/312]
691	Cravens, I. E., Clark, J., Bhardwaj, A., Elsner, R., Walte Jr., J. H., Maurellis,
692	A. N., Draiduardi-Raymont, G. (2000). A-ray emission from the outer
693	Coophagical Research: Space Physica, 111(A7) Detriound from http://
b94	acumubs onlinelibrary uiley com/dei/abs/10_1020/2005 10011412
b95	agupubs.oniineiibiary.wiiey.com/doi/abs/10.1029/2005JA011413 doi: 10.1020/2005JA011413
696	10.1029/20003A011413

^{c1} SJH-2: Text added.

c 07	Cravene T E Howell E Waite I H & Cladetone C R (1005) Auroral even
697	convens, I. E., Howen, E., Watte, J. H., & Gladstone, G. R. (1995). Autoral oxy-
698	gen precipitation at suppler. Journal of Geophysical Research. Space 1 hysics, $100(\Lambda_0)$ 17152 17161 Detriound from https://orupubg.orlinelibrory
699	100(A9), $11103-11101$. Retrieved from https://agupubs.om/ineriorary
700	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
701	Cravens, I. E., Walte, J. H., Gombosi, I. I., Lugaz, N., Gladstone, G. R., Mauk,
702	B. H., & MacDowall, R. J. (2003). Implications of Jovian A-ray emission
703	for magnetosphere-ionosphere coupling. Journal of Geophysical Research:
704	Space Physics, 108 (A12). Retrieved from http://dx.doi.org/10.1029/
705	2003JA010050 (1465) doi: 10.1029/2003JA010050
706	Delamere, P. A., Bagenal, F., & Steffl, A. (2005). Radial variations in the lo plasma
707	torus during the Cassini era. Journal of Geophysical Research: Space Physics,
708	110(A12). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
709	abs/10.1029/2005JA011251 doi: 10.1029/2005JA011251
710	Dougherty, L. P., Bodisch, K. M., & Bagenal, F. (2017). Survey of Voyager plasma
711	science ions at Jupiter: 2. Heavy ions. Journal of Geophysical Research: Space
712	<i>Physics</i> , 122(8), 8257-8276. Retrieved from https://agupubs.onlinelibrary
713	.wiley.com/doi/abs/10.1002/2017JA024053 doi: $10.1002/2017JA024053$
714	Dunn, W. R., Branduardi-Raymont, G., Elsner, R. F., Vogt, M. F., Lamy, L., Ford,
715	P. G., Jasinski, J. M. (2016). The impact of an icme on the Jovian X-ray
716	aurora. Journal of Geophysical Research: Space Physics, 121(3), 2274-2307.
717	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
718	10.1002/2015JA021888 doi: 10.1002/2015JA021888
719	Dunn, W. R., Branduardi-Raymont, G., Ray, L. C., Jackman, C. M., Kraft, R. P.,
720	Elsner, R. F., Coates, A. J. (2017). The independent pulsations of
721	Jupiter's northern and southern X-ray auroras. Nature Astronomy, $1(11)$,
722	758-764. Retrieved from https://doi.org/10.1038/s41550-017-0262-6
723	doi: 10.1038/s41550-017-0262-6
724	Elsner, R. F., Lugaz, N., Waite, J. H., Cravens, T. E., Gladstone, G. R., Ford, P.,
725	Majeed, T. (2005). Simultaneous Chandra X-ray, Hubble Space Tele-
726	scope ultraviolet, and Ulysses radio observations of Jupiter's aurora. Journal
727	of Geophysical Research: Space Physics, 110(A1). Retrieved from http://
728	dx.doi.org/10.1029/2004JA010717 (A01207) doi: 10.1029/2004JA010717
729	Folkner, W. M., Iess, L., Anderson, J. D., Asmar, S. W., Buccino, D. R., Durante,
730	D., Levin, S. M. (2017). Jupiter gravity field estimated from the first two
731	Juno orbits. Geophysical Research Letters, $44(10)$, 4694-4700. Retrieved
732	<pre>from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/</pre>
733	2017GL073140 doi: 10.1002/2017GL073140
734	Gérard, JC., Bonfond, B., Grodent, D., Radioti, A., Clarke, J. T., Gladstone,
735	G. R., Shematovich, V. I. (2014). Mapping the electron energy in Jupiter's
736	aurora: Hubble spectral observations. Journal of Geophysical Research: Space
737	<i>Physics</i> , 119(11), 9072–9088. Retrieved from http://dx.doi.org/10.1002/
738	2014JA020514 (2014JA020514) doi: 10.1002/2014JA020514
739	Gladstone, G. R., Waite, J. H., Grodent, D., Lewis, W. S., Crary, F. J., El-
740	sner, R. F., Cravens, T. E. (2002, 02 28). A pulsating auroral X-
741	ray hot spot on Jupiter. Nature, 415(6875), 1000–1003. Retrieved from
742	http://dx.doi.org/10.1038/4151000a
743	Grozdanov, T., & Janev, R. (1978). One-electron capture in slow collisions of highly
744	charged ions with atoms. <i>Physics Letters A</i> , $66(3)$, 191 - 194. Retrieved from
745	http://www.sciencedirect.com/science/article/pii/0375960178906539
746	doi: https://doi.org/10.1016/0375-9601(78)90653-9
747	Haggerty, D. K., Mauk, B. H., Paranicas, C. P., Clark, G., Kollmann, P., Rvmer.
748	A. M., Levin, S. M. (2017). Juno/JEDI observations of 0.01 to >10 MeV
749	energetic ions in the Jovian auroral regions: Anticipating a source for polar
750	X-ray emission. Geophysical Research Letters, 44(13), 6476–6482. Retrieved
751	from http://dx.doi.org/10.1002/2017GL072866 (2017GL072866) doi:

752	10.1002/2017GL072866
753	Houston, S. J., Ozak, N., Young, J., Cravens, T. E., & Schultz, D. R. (2018). Jo-
754	vian auroral ion precipitation: Field-aligned currents and ultraviolet emis-
755	sions. Journal of Geophysical Research: Space Physics, 123(3), 2257-2273.
756	Retrieved from https://agupubs.onlinelibrarv.wilev.com/doi/abs/
757	10.1002/2017JA024872 doi: 10.1002/2017JA024872
758	Hui, Y., Schultz, D. R., Kharchenko, V. A., Bhardwai, A., Branduardi-Raymont, G.,
759	Stancil, P. C Dalgarno, A. (2010). Comparative analysis and variabil-
760	ity of the Jovian X-ray spectra detected by the Chandra and XMM-Newton
761	observatories. Journal of Geophysical Research: Space Physics, 115(A7).
762	Retrieved from https://agupubs.onlinelibrarv.wilev.com/doi/abs/
763	10.1029/2009JA014854 doi: 10.1029/2009JA014854
764	Iess, L., Folkner, W. M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Bolton,
765	S. J. (2018, 03 07). Measurement of Jupiter's asymmetric gravity field. <i>Nature</i> .
766	555, 220 EP Retrieved from https://doi.org/10.1038/nature25776
767	Jackman, C., Knigge, C., Altamirano, D., Gladstone, R., Dunn, W., Elsner, R.,
768	Ford, P. (2018). Assessing quasi-periodicities in Jovian X-ray emissions: Tech-
769	niques and heritage survey. Journal of Geophysical Research: Space Physics.
770	123(11), 9204-9221.
771	Kim, T. K., Ebert, R., Valek, P., Allegrini, F., McComas, D., Bagenal, F., Nico-
772	laou, G. (2019). Method to derive ion properties from Juno JADE including
773	abundance estimates for O^+ and S^{2+} . Journal of Geophysical Research: Space
774	<i>Physics</i> , 0. Retrieved from https://agupubs.onlinelibrary.wilev.com/
775	doi/abs/10.1029/2018JA026169 doi: 10.1029/2018JA026169
776	Mauk, B. H., Haggerty, D. K., Jaskulek, S. E., Schlemm, C. E., Brown, L. E.,
777	Cooper, S. A., Stokes, M. R. (2017, Nov 01). The Jupiter Energetic Parti-
778	cle Detector Instrument (JEDI) investigation for the Juno mission. Space Sci-
779	ence Reviews, 213(1), 289-346. Retrieved from https://doi.org/10.1007/
780	s11214-013-0025-3 doi: 10.1007/s11214-013-0025-3
781	Maurellis, A. N., & Cravens, T. E. (2001). Ionospheric effects of comet Shoemaker-
782	Levy 9 impacts with Jupiter. <i>Icarus</i> , 154(2), 350 - 371. Retrieved from
783	http://www.sciencedirect.com/science/article/pii/S0019103501967090
784	doi: https://doi.org/10.1006/icar.2001.6709
785	Metzger, A. E., Luthey, J. L., Gilman, D. A., Hurley, K. C., Schnopper, H. W.,
786	Seward, F. D., & Sullivan, J. D. (1983, October). The detection of x
787	rays from Jupiter. Journal of Geophysical Research, 88, 7731-7741. doi:
788	10.1029/JA088iA10p07731
789	Moore, K. M., Yadav, R. K., Kulowski, L., Cao, H., Bloxham, J., Connerney,
790	J. E. P., Levin, S. M. (2018). A complex dynamo inferred from the
791	hemispheric dichotomy of Jupiter's magnetic field. Nature, 561(7721), 76–
792	78. Retrieved from https://doi.org/10.1038/s41586-018-0468-5 doi:
793	10.1038/s41586-018-0468-5
794	Olson, R. E. (1981, Oct). n,l distributions in A^{q+} + H electron-capture collisions.
795	Phys. Rev. A, 24, 1726-1733. Retrieved from https://link.aps.org/doi/10
796	.1103/PhysRevA.24.1726 doi: 10.1103/PhysRevA.24.1726
797	Oppenheimer, J. R. (1928, Mar). On the quantum theory of the capture of elec-
798	trons. Phys. Rev., 31, 349-356. Retrieved from https://link.aps.org/doi/
799	10.1103/PhysRev.31.349 doi: 10.1103/PhysRev.31.349
800	Orton, G. S., Hansen, C., Caplinger, M., Ravine, M., Atreya, S., Ingersoll, A. P.,
801	Bolton, S. (2017). The first close-up images of Jupiter's polar regions: Results
802	from the juno mission junocam instrument. Geophysical Research Letters,
803	44(10), 4599-4606. Retrieved from https://agupubs.onlinelibrary.wiley
804	.com/doi/abs/10.1002/2016GL072443 doi: $10.1002/2016GL072443$
805	Ozak, N., Cravens, T. E., & Schultz, D. R. (2013). Auroral ion precipitation
806	at Jupiter: Predictions for Juno. $Geophysical Research Letters, 40(16),$

807	4144-4148. Retrieved from http://dx.doi.org/10.1002/grl.50812 doi:
808	$10.1002/{ m grl}.50812$
809	Ozak, N., Schultz, D. R., Cravens, T. E., Kharchenko, V., & Hui, YW. (2010).
810	Auroral X-ray emission at Jupiter: Depth effects. Journal of Geophysical
811	Research: Space Physics, 115(A11). Retrieved from http://dx.doi.org/
812	10.1029/2010JA015635 (A11306) doi: 10.1029/2010JA015635
813	Parkinson, C. D., Stewart, A. I. F., Wong, A. S., Yung, Y. L., & Ajello, J. M.
814	(2006). Enhanced transport in the polar mesosphere of Jupiter: Evidence from
815	Cassini UVIS helium 584 Å airglow. Journal of Geophysical Research: Planets,
816	111(E2). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/
817	abs/10.1029/2005JE002539 doi: 10.1029/2005JE002539
818	Radioti, A., Krupp, N., Woch, J., Lagg, A., Glassmeier, KH., & Waldrop, L. S.
819	(2005). Ion abundance ratios in the Jovian magnetosphere. Journal of
820	Geophysical Research: Space Physics, 110(A7). Retrieved from https://
821	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JA010775 doi:
822	10.1029/2004JA010775
823	Radioti, A., Krupp, N., Woch, J., Lagg, A., Glassmeier, KH., & Waldrop, L. S.
824	(2006). Correction to "Ion abundance ratios in the Jovian magnetosphere".
825	Journal of Geophysical Research: Space Physics, 111(A10). Retrieved
826	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
827	2006JA011990 doi: 10.1029/2006JA011990
828	Sada, P., Bjoraker, G., Jennings, D., McCabe, G., & Romani, P. (1998, December).
829	Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter. <i>Icarus</i> ,
830	136(2), 192201. Retrieved from https://doi.org/10.1006/icar.1998.6021
831	doi: 10.1006/icar.1998.6021
832	Sánchez-Lavega, Á., Hueso, R., Eichstädt, G., Orton, G., Rogers, J., Hansen, C. J.,
833	Bolton, S. (2018, October). The Rich Dynamics of Jupiter's Great Red
834	Spot from JunoCam: Juno Images. Astronomical Journal, 156, 162. doi:
835	10.3847/1538-3881/aada81
836	Schultz, D. R., Gharibneiad, H., Cravens, T. E., & Houston, S. J. (2019). Data
837	for secondary-electron production from ion precipitation at Jupiter ii: Simul-
838	taneous and non-simultaneous target and projectile processes in collisions
839	of $oq + h2$ (q=08). Atomic Data and Nuclear Data Tables, 126, 1 - 69.
840	Retrieved from http://www.sciencedirect.com/science/article/pii/
841	S0092640X18300627 doi: https://doi.org/10.1016/j.adt.2018.08.002
842	Schultz, D. R., Lee, TG., & Loch, S. D. (2010, jul). Calculations and analysis
843	of cross sections required for argon charge exchange recombination spec-
844	troscopy. Journal of Physics B: Atomic. Molecular and Optical Physics.
845	(3(14), 144002. Retrieved from https://doi.org/10.1088%2F0953-4075%
846	2F43%2F14%2F144002 doi: 10.1088/0953-4075/43/14/144002
847	Schultz D B Ozak N Cravens T E & Gharibneiad H (2017) Ionization
848	of molecular hydrogen and stripping of oxygen atoms and ions in collisions of
849	$O^{q+} + H_2$ (q = 0 - 8): Data for secondary electron production from ion pre-
850	cipitation at Jupiter. Atomic Data and Nuclear Data Tables, 113, 1 - 116
851	Retrieved from http://www.sciencedirect.com/science/article/pii/
852	S0092640X16300109 doi: 10.1016/i.adt.2016.04.003
853	Seiff, A., Kirk, D. B., Knight, T. C. D., Mihalov, J. D. Blanchard, R. C. Young
854	B. F Wang, J. (1996). Structure of the atmosphere of Jupiter
855	Galileo probe measurements. Science 272(5263) 844–845 Retrieved
856	from http://science.sciencemag.org/content/272/5263/844 doi:
857	10.1126/science.272.5263.844
050	Seiff A Kirk D B Knight T C D Young L A Milos F S Venkatanathy
950	E Schubert G (1997) Thermal structure of Juniter's upper atmo-
860	sphere derived from the Galileo probe $Science$ 976(5300) 102–104 Re-
861	trieved from http://science.sciencemag.org/content/276/5309/102 doi:

- ⁸⁶² 10.1126/science.276.5309.102
- Sinclair, J., Orton, G., Greathouse, T., Fletcher, L., Moses, J., Hue, V., & Irwin, P.
 (2018). Jupiter's auroral-related stratospheric heating and chemistry II: Anal-
- ysis of IRTF-TEXES spectra measured in December 2014. *Icarus*, 300, 305 -
- 326. Retrieved from http://www.sciencedirect.com/science/article/pii/
- ⁸⁶⁷ S0019103517302154 doi: https://doi.org/10.1016/j.icarus.2017.09.016

A Additional Oxygen Tables

Table A.1. Altitude integrated ion production $[cm^{-2} s^{-1}]$ from charge exchange collisions (i.e. TI, SC, SC+SS) for oxygen with incident ion energies between 10 and 25000 keV/u with no opacity effects considered. Everything has been normalized to a single incident ion/cm²/s.

Ion Charge State	Energy 10 keV/u	50	75	100	200	300
0	2.27E+02	7.67E+02	8.12E+02	8.21E+02	8.26E+02	8.24E+02
O^+	1.34E + 02	9.43E + 02	1.16E + 03	1.24E + 03	1.28E+03	1.27E + 03
O++	$1.25E{+}01$	2.24E + 02	3.99E + 02	5.54E + 02	7.11E+02	7.12E + 02
O^{3+}	3.57 E-01	$2.73E{+}01$	$8.23E{+}01$	1.78E + 02	4.79E+02	5.03E + 02
O^{4+}	3.06E-03	1.28E + 00	7.01E + 00	$2.65E{+}01$	2.67E+02	3.66E + 02
O^{5+}		4.16E-02	4.18E-01	$2.90E{+}00$	1.55E+02	4.79E + 02
O^{6+}			1.04E-04	2.08E-03	1.33E+00	$1.79E{+}01$
O ⁷⁺				1.04E-04	9.14E-02	2.33E+00
	Energy					
Ion Charge State	500 keV/u	1000	2000	5000	10000	25000
0	8.24E+02	8.23E+02	8.22E+02	8.22E+02	8.21E+02	8.28E+02
O^+	1.27E + 03	1.27E + 03	1.27E + 03	1.27E + 03	1.27E + 03	1.28E + 03
O++	1.25E + 01	2.24E + 02	3.99E + 02	5.54E + 02	7.11E+02	7.12E + 02
O^{3+}	5.03E + 02	5.02E + 02	5.03E + 02	5.02E + 02	5.01E+02	5.05E + 02
O^{4+}	3.75E + 02	3.74E + 02	3.74E + 02	3.74E + 02	3.73E+02	3.77E + 02
O^{5+}	6.73E + 02	7.00E + 02	7.00E + 02	6.99E + 02	6.98E+02	7.04E + 02
O^{6+}	7.01E+01	1.17E + 02	1.19E + 02	1.19E + 02	1.18E+02	1.19E+02
O^{7+}	2.35E+01	1.10E + 02	$1.49E{+}02$	1.61E + 02	1.63E+02	1.64E + 02

Table A.2. Altitude integrated ion production $[cm^{-2} s^{-1}]$ from direct excitation collisions (i.e. SI+SPEX, DI+SPEX, TEX+SPEX) for oxygen with incident ion energies between 10 and 25000 keV/u with no opacity effects considered. Everything has been normalized to a single incident ion/cm²/s.

Ion Charge State	Energy 10 keV/u	50	75	100	200	300
0	2.53E+02	1.02E+03	1.13E+03	1.17E+03	1.18E+03	1.18E+03
O^+	1.94E+01	3.48E + 02	5.33E + 02	6.30E + 02	6.86E + 02	6.86E + 02
O^{++}	3.21E + 00	8.89E + 01	1.95E + 02	3.23E + 02	5.17E + 02	5.21E + 02
O^{3+}	7.55E-02	7.28E + 00	2.91E + 01	8.40E + 01	3.72E+02	4.10E + 02
O^{4+}	7.14E-04	3.04E-01	1.67E + 00	8.88E + 00	1.43E+02	2.25E + 02
O^{5+}		5.31E-03	9.45 E-02	1.04E + 00	1.15E+02	4.43E + 02
O^{6+}		<u>-</u>	1.04E-04	2.29E-03	1.63E+00	1.97E + 01
O ⁷⁺					1.59E-02	9.38E-01
	Energy					
Ion Charge State	500 keV/u	1000	2000	5000	10000	25000
0	1.18E+03	1.18E + 03	1.18E+03	1.18E + 03	1.17E+03	1.18E+03
O^+	6.85E + 02	6.84E + 02	6.83E + 02	6.85E + 02	6.83E + 02	6.89E + 02
O++	5.21E + 02	5.20E + 02	5.20E + 02	5.20E + 02	5.19E + 02	5.23E + 02
O^{3+}	4.11E+02	4.10E + 02	4.10E + 02	4.10E + 02	4.09E+02	4.13E + 02
O^{4+}	2.39E+02	2.38E + 02	2.38E + 02	2.38E + 02	2.38E+02	2.40E + 02
O^{5+}	6.60E + 02	6.91E + 02	6.91E + 02	6.90E + 02	6.89E + 02	6.96E + 02
O^{6+}	7.00E+01	1.09E + 02	1.11E + 02	1.11E + 02	1.11E+02	1.12E + 02
O ⁷⁺	1.47E+01	$9.39E{+}01$	1.34E+02	1.48E + 02	1.49E+02	$1.51E{+}02$

Table A.3. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angles of 0° , 80° , and 90° are displayed for atmosphere 1. The efficiency shown here is that solely from charge exchange collisions for oxygen. We also include the X-ray efficiencies that correspond to the JEDI energy bins at the time of writing.

Energy	No Op	acity	0°		80	0	90°	
[keV/u]	O^{6+}	07+	O^{6+}	07+	O^{6+}	O ⁷⁺	O^{6+}	07+
100	0.00002	<u>-</u>	0.00002	<u>-</u>	0.00002		0.00002	
121	0.00013	<u>-</u>	0.00013	<u>-</u>	0.00013		0.00013	
125	0.00017	0.00001	0.00017	0.00001	0.00017	0.00001	0.00017	0.00001
150	0.00084	0.00004	0.00084	0.00004	0.00084	0.00004	0.00083	0.00004
175	0.00281	0.00017	0.00280	0.00017	0.00280	0.00017	0.00279	0.00017
200	0.00676	0.00045	0.00676	0.00045	0.00675	0.00045	0.00670	0.00045
218	0.01122	0.00083	0.01121	0.00083	0.01120	0.00083	0.01110	0.00082
250	0.02283	0.00201	0.02282	0.00201	0.02278	0.00201	0.02251	0.00199
300	0.04796	0.00569	0.04793	0.00569	0.04780	0.00567	0.04690	0.00560
350	0.07630	0.01209	0.07623	0.01208	0.07591	0.01204	0.07364	0.01182
400	0.10308	0.02163	0.10294	0.02161	0.10232	0.02151	0.09755	0.02098
450	0.12439	0.03339	0.12417	0.03335	0.12311	0.03316	0.11448	0.03205
456	0.12697	0.03509	0.12673	0.03504	0.12560	0.03483	0.11634	0.03363
500	0.13987	0.04676	0.13952	0.04668	0.13787	0.04634	0.12372	0.04429
600	0.15391	0.07349	0.15318	0.07328	0.14981	0.07241	0.11957	0.06671
700	0.15051	0.09296	0.14925	0.09254	0.14353	0.09083	0.09536	0.07866
800	0.14038	0.10470	0.13850	0.10395	0.13006	0.10107	0.06782	0.07982
900	0.12843	0.10958	0.12589	0.10844	0.11476	0.10415	0.04539	0.07304
1000	0.11703	0.11002	0.11385	0.10843	0.10024	0.10258	0.03000	0.06267
1250	0.09460	0.10269	0.08997	0.09985	0.07150	0.09008	0.01143	0.03800
1500	0.07939	0.09270	0.07349	0.08865	0.05176	0.07529	0.00491	0.02157
1750	0.06784	0.08262	0.06095	0.07756	0.03774	0.06155	0.00251	0.01233
2000	0.05952	0.07455	0.05169	0.06854	0.02774	0.05030	0.00138	0.00715
5000	0.02374	0.03229	0.01087	0.02029	0.00113	0.00440	0.00004	0.00018
10000	0.01182	0.01628	0.00121	0.00373	0.00007	0.00026		0.00001
25000	0.00477	0.00657	0.00003	0.00009		0.00001		<u>-</u>

Atmosphere 1 (Original atmosphere)

Table A.4. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angles of 0° , 80° , and 90° are displayed for atmosphere 2. The efficiency shown here is that solely from charge exchange collisions for oxygen. We also include the X-ray efficiencies that correspond to the JEDI energy bins at the time of writing.

Energy	No Op	acity	0°		80°		90°	
$[\mathrm{keV/u}]$	O^{6+}	O^{7+}	O^{6+}	07+	O^{6+}	O ⁷⁺	O^{6+}	O^{7+}
100	0.00002	<u>_</u>	0.00002	<u>-</u>	0.00002		0.00002	
121	0.00013		0.00013	<u>-</u>	0.00013		0.00013	
125	0.00017	0.00001	0.00017	0.00001	0.00017	0.00001	0.00017	0.00001
150	0.00084	0.00004	0.00084	0.00004	0.00083	0.00004	0.00081	0.00004
175	0.00281	0.00017	0.00280	0.00017	0.00279	0.00017	0.00270	0.00017
200	0.00676	0.00045	0.00675	0.00045	0.00670	0.00045	0.00646	0.00044
218	0.01122	0.00083	0.01120	0.00083	0.01112	0.00082	0.01065	0.00080
250	0.02283	0.00201	0.02278	0.00201	0.02257	0.00200	0.02135	0.00193
300	0.04796	0.00569	0.04783	0.00568	0.04719	0.00563	0.04346	0.00536
350	0.07630	0.01209	0.07601	0.01206	0.07462	0.01192	0.06620	0.01119
400	0.10308	0.02163	0.10255	0.02156	0.10008	0.02125	0.08452	0.01957
450	0.12439	0.03339	0.12357	0.03326	0.11976	0.03267	0.09518	0.02940
456	0.12697	0.03509	0.12610	0.03494	0.12210	0.03431	0.09618	0.03079
500	0.13987	0.04676	0.13871	0.04653	0.13337	0.04554	0.09835	0.03988
600	0.15391	0.07349	0.15199	0.07296	0.14328	0.07076	0.08631	0.05738
700	0.15051	0.09296	0.14783	0.09204	0.13597	0.08829	0.06296	0.06434
800	0.14038	0.10470	0.13701	0.10330	0.12234	0.09779	0.04145	0.06216
900	0.12843	0.10958	0.12444	0.10768	0.10746	0.10042	0.02621	0.05453
1000	0.11703	0.11002	0.11248	0.10761	0.09361	0.09867	0.01673	0.04529
1250	0.09460	0.10269	0.08885	0.09904	0.06658	0.08638	0.00626	0.02641
1500	0.07939	0.09270	0.07256	0.08792	0.04817	0.07213	0.00270	0.01487
1750	0.06784	0.08262	0.06018	0.07692	0.03512	0.05895	0.00140	0.00850
2000	0.05952	0.07455	0.05103	0.06798	0.02581	0.04817	0.00077	0.00493
5000	0.02374	0.03229	0.01072	0.02013	0.00105	0.00423	0.00003	0.00012
10000	0.01182	0.01628	0.00119	0.00369	0.00007	0.00025		0.00001
25000	0.00477	0.00657	0.00003	0.00009		0.00001		

Atmosphere 2 (Well-mixed atmosphere)

Table A.5. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angles of 0° , 80° , and 90° are displayed for atmosphere 1. The efficiency shown here is that solely from direct excitation collisions for oxygen.

Energy	No Op	acity	00)	80	0	90°)
[keV/u]	O^{6+}	O7+	O^{6+}	O7+	O^{6+}	O7+	O^{6+}	O7+
100	0.00003		0.00003	<u>-</u>	0.00003		0.00003	
121	0.00014		0.00014		0.00014			
125	0.00020		0.00020		0.00020		0.00020	
150	0.00098		0.00098		0.00098		0.00097	
175	0.00313	0.00002	0.00313	0.00002	0.00313	0.00002	0.00311	0.00002
200	0.00747	0.00007	0.00746	0.00007	0.00745	0.00007	0.00740	0.00007
218	0.01242	0.00017	0.01242	0.00017	0.01240	0.00017	0.01230	0.00017
250	0.02443	0.00054	0.02442	0.00054	0.02437	0.00054	0.02408	0.00054
300	0.04852	0.00194	0.04849	0.00194	0.04835	0.00193	0.04741	0.00192
350	0.07465	0.00498	0.07458	0.00498	0.07426	0.00497	0.07195	0.00492
400	0.09801	0.01013	0.09788	0.01012	0.09726	0.01010	0.09252	0.00994
450	0.11545	0.01736	0.11523	0.01735	0.11421	0.01729	0.10580	0.01690
456	0.11761	0.01849	0.11738	0.01848	0.11629	0.01842	0.10727	0.01798
500	0.12752	0.02654	0.12719	0.02652	0.12562	0.02641	0.11202	0.02556
600	0.13589	0.04735	0.13522	0.04728	0.13209	0.04696	0.10395	0.04400
700	0.13063	0.06541	0.12949	0.06525	0.12430	0.06448	0.08060	0.05705
800	0.12044	0.07738	0.11876	0.07706	0.11125	0.07557	0.05622	0.06109
900	0.10968	0.08317	0.10744	0.08263	0.09765	0.08012	0.03734	0.05722
1000	0.09991	0.08502	0.09713	0.08419	0.08527	0.08044	0.02481	0.04944
1250	0.08049	0.08112	0.07653	0.07945	0.06070	0.07217	0.00968	0.02952
1500	0.06746	0.07423	0.06245	0.07164	0.04397	0.06090	0.00434	0.01657
1750	0.05762	0.06658	0.05179	0.06316	0.03211	0.04975	0.00233	0.00939
2000	0.05053	0.06048	0.04391	0.05623	0.02363	0.04057	0.00138	0.00550
5000	0.02016	0.02673	0.00932	0.01641	0.00104	0.00311	0.00015	0.00025
10000	0.01006	0.01347	0.00107	0.00266	0.00012	0.00022	0.00006	0.00007
25000	0.00406	0.00544	0.00005	0.00009	0.00003	0.00003	0.00003	0.00003

Atmosphere 1 (Original atmosphere)

Table A.6. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angles of 0° , 80° , and 90° are displayed for atmosphere 2. The efficiency shown here is that solely from direct excitation collisions for oxygen.

Energy	No Op	acity	0°		80°		90°	
[keV/u]	O^{6+}	O7+	O^{6+}	O^{7+}	O^{6+}	07+	O^{6+}	O7+
100	0.00003	<u>_</u>	0.00003		0.00003		0.00003	
121	0.00014	<u>_</u>	0.00014	<u>_</u>	0.00014		0.00013	
125	0.00020	<u>_</u>	0.00020	<u>_</u>	0.00020		0.00019	<u> </u>
150	0.00098	<u>_</u>	0.00098	<u>_</u>	0.00097		0.00095	
175	0.00313	0.00002	0.00313	0.00002	0.00311	0.00002	0.00302	0.00002
200	0.00747	0.00007	0.00745	0.00007	0.00741	0.00007	0.00714	0.00007
218	0.01242	0.00017	0.01240	0.00017	0.01231	0.00017	0.01179	0.00017
250	0.02443	0.00054	0.02438	0.00054	0.02414	0.00054	0.02280	0.00053
300	0.04852	0.00194	0.04838	0.00193	0.04772	0.00192	0.04382	0.00185
350	0.07465	0.00498	0.07435	0.00497	0.07297	0.00493	0.06447	0.00469
400	0.09801	0.01013	0.09749	0.01010	0.09508	0.01000	0.07979	0.00933
450	0.11545	0.01736	0.11466	0.01731	0.11103	0.01708	0.08743	0.01561
456	0.11761	0.01849	0.11678	0.01844	0.11297	0.01819	0.08812	0.01656
500	0.12752	0.02654	0.12643	0.02645	0.12143	0.02603	0.08837	0.02315
600	0.13589	0.04735	0.13414	0.04711	0.12623	0.04602	0.07426	0.03805
700	0.13063	0.06541	0.12825	0.06495	0.11769	0.06282	0.05266	0.04678
800	0.12044	0.07738	0.11749	0.07664	0.10464	0.07322	0.03415	0.04740
900	0.10968	0.08317	0.10621	0.08210	0.09147	0.07727	0.02157	0.04220
1000	0.09991	0.08502	0.09598	0.08361	0.07968	0.07730	0.01396	0.03501
1250	0.08049	0.08112	0.07559	0.07883	0.05658	0.06902	0.00546	0.01989
1500	0.06746	0.07423	0.06167	0.07105	0.04095	0.05812	0.00254	0.01105
1750	0.05762	0.06658	0.05114	0.06264	0.02990	0.04744	0.00142	0.00628
2000	0.05053	0.06048	0.04336	0.05576	0.02200	0.03866	0.00088	0.00369
5000	0.02016	0.02673	0.00919	0.01626	0.00098	0.00297	0.00013	0.00021
10000	0.01006	0.01347	0.00106	0.00264	0.00012	0.00022	0.00006	0.00006
25000	0.00406	0.00544	0.00005	0.00008	0.00003	0.00003	0.00003	0.00003

Atmosphere 2 (Well-mixed atmosphere)

869 B Additional Sulfur Tables

	Energy				
Ion Charge State	10 keV/u	50	75	100	200
S	2.33E + 02	9.94E + 02	1.07E + 03	1.08E + 03	1.08E+03
S^+	2.07E + 02	2.24E + 03	2.66E + 03	2.78E + 03	2.81E + 03
S^{++}	3.88E + 01	9.92E + 02	$1.51E{+}03$	1.85E + 03	2.09E + 03
S^{3+}	2.16E + 00	1.79E + 02	4.61E + 02	8.23E + 02	1.42E + 03
S^{4+}	3.01E-02	$1.39E{+}01$	$6.23E{+}01$	$1.79E{+}02$	8.22E + 02
S^{5+}	3.57E-04	7.27E-01	5.21E + 00	2.77E + 01	6.14E + 02
S^{6+}	<u>_</u>	1.89E-03	3.04E-02	3.29E-01	$4.12E{+}01$
S^{7+}	<u>_</u>	1.02E-04	6.12E-04	1.00E-02	$4.99E{+}00$
S^{8+}	<u>_</u>	<u>_</u>	_	1.53E-04	3.35E-01
S^{9+}	<u>_</u>			<u>-</u>	2.23E-02
S^{10+}	<u>_</u>	<u>_</u>	_	<u>_</u>	7.14E-04
S^{11+}	<u>_</u>	<u>-</u>	_	<u>_</u>	5.10E-05
S^{12+}	<u>_</u>		<u>-</u>	<u>_</u> _	<u>-</u>
S^{13+}	<u>_</u>		<u>-</u>	<u>_</u> _	<u>-</u>
S^{14+}	<u>_</u>		<u>-</u>	<u>_</u> _	<u>-</u>
S^{15+}	<u>_</u>	<u>-</u>	_	<u>_</u>	<u>-</u>
	Energy				
Ion Charge State	Energy 300 keV/u	500	1000	2000	
Ion Charge State S	Energy 300 keV/u 1.08E+03	500 1.08E+03	$1000 \\ 1.08E+03$	2000 1.08E+03	
Ion Charge State S S ⁺	Energy 300 keV/u 1.08E+03 2.81E+03	500 1.08E+03 2.81E+03	1000 1.08E+03 2.81E+03	2000 1.08E+03 2.81E+03	
Ion Charge State S S ⁺ S ⁺⁺	Energy 300 keV/u 1.08E+03 2.81E+03 2.09E+03	$500 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03$	$1000 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03$	2000 1.08E+03 2.81E+03 2.09E+03	
Ion Charge State S S ⁺ S ⁺⁺ S ³⁺	Energy 300 keV/u 1.08E+03 2.81E+03 2.09E+03 1.45E+03	$500 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03$	$1000 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03$	$\begin{array}{c} 2000\\ 1.08E{+}03\\ 2.81E{+}03\\ 2.09E{+}03\\ 1.45E{+}03 \end{array}$	
Ion Charge State S S^+ S^{++} S^{3+} S^{4+}	Energy 300 keV/u 1.08E+03 2.81E+03 2.09E+03 1.45E+03 9.50E+02	$500 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03 \\ 9.56E+02$	$1000 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03 \\ 9.56E+02$	$\begin{array}{c} 2000\\ 1.08E{+}03\\ 2.81E{+}03\\ 2.09E{+}03\\ 1.45E{+}03\\ 9.56E{+}02 \end{array}$	
Ion Charge State S S ⁺ S ⁺⁺ S ³⁺ S ⁴⁺ S ⁵⁺		$500 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03 \\ 9.56E+02 \\ 1.33E+03$	$1000 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03 \\ 9.56E+02 \\ 1.33E+03$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03 \end{array}$	
Ion Charge State S S ⁺ S ⁺⁺ S ³⁺ S ⁴⁺ S ⁵⁺ S ⁶⁺	$\begin{array}{c c} Energy\\ 300 \ keV/u\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.50E+02\\ 1.18E+03\\ 1.87E+02 \end{array}$	$500 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03 \\ 9.56E+02 \\ 1.33E+03 \\ 3.28E+02$	$1000 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03 \\ 9.56E+02 \\ 1.33E+03 \\ 3.29E+02 \\$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02 \end{array}$	
Ion Charge State $S = S^{+} + S^{++} + S^{3+} + S^{5+} + S^{5+} + S^{6+} + S^{7+} + S^{7+} + S^{6+} + S^{7+} $	$\begin{array}{c c} Energy\\ 300 \ keV/u\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.50E+02\\ 1.18E+03\\ 1.87E+02\\ 5.56E+01\\ \end{array}$	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ \end{array}$	$1000 \\ 1.08E+03 \\ 2.81E+03 \\ 2.09E+03 \\ 1.45E+03 \\ 9.56E+02 \\ 1.33E+03 \\ 3.29E+02 \\ 1.92E+02 \\ 1.$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02 \end{array}$	
Ion Charge State S S^+ S^{++} S^{3+} S^{4+} S^{5+} S^{6+} S^{7+} S^{8+}	$\begin{array}{c c} Energy\\ 300 \ keV/u\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.50E+02\\ 1.18E+03\\ 1.87E+02\\ 5.56E+01\\ 1.03E+01\\ \end{array}$	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ 9.98E+01 \end{array}$	$\begin{array}{c} 1000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.29E+02\\ 1.92E+02\\ 1.16E+02\\ \end{array}$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02\\ 1.16E+02\\ \end{array}$	
Ion Charge State S S^+ S^{++} S^{3+} S^{4+} S^{5+} S^{6+} S^{7+} S^{8+} S^{9+}	$\begin{array}{c} {\rm Energy}\\ 300\ {\rm keV/u}\\ 1.08{\rm E}{+}03\\ 2.81{\rm E}{+}03\\ 2.09{\rm E}{+}03\\ 1.45{\rm E}{+}03\\ 9.50{\rm E}{+}02\\ 1.18{\rm E}{+}03\\ 1.87{\rm E}{+}02\\ 5.56{\rm E}{+}01\\ 1.03{\rm E}{+}01\\ 1.87{\rm E}{+}00\\ \end{array}$	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ 9.98E+01\\ 6.18E+01 \end{array}$	$\begin{array}{c} 1000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.29E+02\\ 1.92E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01 \end{array}$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01 \end{array}$	
Ion Charge State S S^+ S^{++} S^{3+} S^{4+} S^{5+} S^{6+} S^{7+} S^{8+} S^{9+} S^{10+}	$\begin{array}{c c} Energy\\ 300 \ keV/u\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.50E+02\\ 1.18E+03\\ 1.87E+02\\ 5.56E+01\\ 1.03E+01\\ 1.87E+00\\ 2.31E-01\\ \end{array}$	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ 9.98E+01\\ 6.18E+01\\ 2.60E+01\\ \end{array}$	$\begin{array}{c} 1000\\ 1.08\pm+03\\ 2.81\pm+03\\ 2.09\pm+03\\ 1.45\pm+03\\ 9.56\pm+02\\ 1.33\pm+03\\ 3.29\pm+02\\ 1.92\pm+02\\ 1.16\pm+02\\ 8.92\pm+01\\ 5.34\pm+01\end{array}$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01 \end{array}$	
Ion Charge State $S = S^+$ $S^+ = S^{3+}$ $S^{4+} = S^{5+}$ $S^{6+} = S^{7+}$ $S^{8+} = S^{9+}$ $S^{10+} = S^{11+}$	$\begin{array}{c c} Energy\\ 300 \ keV/u\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.50E+02\\ 1.18E+03\\ 1.87E+02\\ 5.56E+01\\ 1.03E+01\\ 1.87E+00\\ 2.31E-01\\ 3.42E-02 \end{array}$	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ 9.98E+01\\ 6.18E+01\\ 2.60E+01\\ 1.66E+01\\ \end{array}$	$\begin{array}{c} 1000\\ 1.08\pm+03\\ 2.81\pm+03\\ 2.09\pm+03\\ 1.45\pm+03\\ 9.56\pm+02\\ 1.33\pm+03\\ 3.29\pm+02\\ 1.92\pm+02\\ 1.16\pm+02\\ 8.92\pm+01\\ 5.34\pm+01\\ 6.12\pm+01\\ \end{array}$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01\\ 6.13E+01\\ \end{array}$	
Ion Charge State S S^+ S^{++} S^{3+} S^{4+} S^{5+} S^{6+} S^{7+} S^{8+} S^{9+} S^{10+} S^{11+} S^{12+}	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ 9.98E+01\\ 6.18E+01\\ 2.60E+01\\ 1.66E+01\\ 1.11E+01\\ \end{array}$	$\begin{array}{c} 1000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.29E+02\\ 1.92E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01\\ 6.12E+01\\ 7.91E+01\end{array}$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01\\ 6.13E+01\\ 8.15E+01 \end{array}$	
Ion Charge State S S ⁺ S ⁺⁺ S ³⁺ S ⁴⁺ S ⁵⁺ S ⁶⁺ S ⁷⁺ S ⁸⁺ S ⁹⁺ S ¹⁰⁺ S ¹¹⁺ S ¹²⁺ S ¹³⁺	$\begin{array}{c c} Energy\\ 300 \ keV/u\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.50E+02\\ 1.18E+03\\ 1.87E+02\\ 5.56E+01\\ 1.03E+01\\ 1.87E+00\\ 2.31E-01\\ 3.42E-02\\ 7.96E-03\\ 1.12E-03\\ \end{array}$	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ 9.98E+01\\ 6.18E+01\\ 2.60E+01\\ 1.66E+01\\ 1.11E+01\\ 1.03E+01\\ \end{array}$	$\begin{array}{c} 1000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.29E+02\\ 1.92E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01\\ 6.12E+01\\ 7.91E+01\\ 2.27E+02 \end{array}$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01\\ 6.13E+01\\ 8.15E+01\\ 2.78E+02\end{array}$	
Ion Charge State S S ⁺ S ⁺⁺ S ³⁺ S ⁴⁺ S ⁵⁺ S ⁶⁺ S ⁷⁺ S ⁸⁺ S ⁹⁺ S ¹⁰⁺ S ¹¹⁺ S ¹²⁺ S ¹³⁺ S ¹⁴⁺	Energy 300 keV/u 1.08E+03 2.81E+03 2.09E+03 1.45E+03 9.50E+02 1.18E+03 1.87E+02 5.56E+01 1.03E+01 1.87E+00 2.31E-01 3.42E-02 7.96E-03 1.12E-03	$\begin{array}{c} 500\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.28E+02\\ 1.86E+02\\ 9.98E+01\\ 6.18E+01\\ 2.60E+01\\ 1.66E+01\\ 1.66E+01\\ 1.11E+01\\ 1.03E+01\\ 7.41E-02\end{array}$	$\begin{array}{c} 1000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.29E+02\\ 1.92E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01\\ 6.12E+01\\ 7.91E+01\\ 2.27E+02\\ 1.19E+01\end{array}$	$\begin{array}{c} 2000\\ 1.08E+03\\ 2.81E+03\\ 2.09E+03\\ 1.45E+03\\ 9.56E+02\\ 1.33E+03\\ 3.30E+02\\ 1.92E+02\\ 1.16E+02\\ 8.92E+01\\ 5.34E+01\\ 6.13E+01\\ 8.15E+01\\ 2.78E+02\\ 3.81E+01 \end{array}$	

Table B.1. Altitude integrated ion production $[cm^{-2} s^{-1}]$ from charge exchange collisions (i.e. TI, SC, SC+SS) for sulfur with incident ion energies between 10 and 2000 keV/u with no opacity effects considered. Everything has been normalized to a single incident ion/cm²/s.

Table B.2. Altitude integrated ion production $[cm^{-2} s^{-1}]$ from direct excitation collisions (i.e. SI+SPEX, DI+SPEX, TEX+SPEX) for sulfur with incident ion energies between 10 and 2000 keV/u with no opacity effects considered. Everything has been normalized to a single incident ion/cm²/s.

	Energy				
Ion Charge State	10 keV/u	50	75	100	200
S	3.33E + 02	2.58E+03	2.95E+03	3.05E+03	3.08E+03
S^+	4.71E + 01	1.22E+03	1.72E + 03	1.98E + 03	2.12E+03
S^{++}	2.07E + 00	1.78E + 02	4.77E + 02	7.89E + 02	1.15E+03
S^{3+}	1.57E-01	3.13E+01	1.50E + 02	3.73E + 02	1.01E+03
S^{4+}	2.26E-03	2.27E+00	1.34E + 01	6.17E + 01	7.08E+02
S^{5+}		1.07E-01	1.52E + 00	1.20E + 01	5.16E+02
S^{6+}		1.51E-04	3.92E-03	7.59E-02	1.50E+01
S^{7+}				6.53E-04	9.02E-01
S^{8+}			<u>-</u>	<u>-</u>	1.16E-01
S^{9+}			<u>-</u>	<u>-</u>	4.12E-03
S^{10+}					5.02E-04
S^{11+}					5.02E-05
S^{12+}					
S^{13+}					
S^{14+}					
S^{15+}			<u>-</u>	<u>-</u>	
		•			
	Energy				
Ion Charge State	300 keV/u	500	1000	2000	
S	3.08E + 03	3.07E+03	3.08E + 03	3.08E+03	
S^+	2.12E + 03	2.12E+03	2.12E + 03	2.12E + 03	
S^{++}	1.16E + 03	1.16E + 03	1.16E + 03	1.16E + 03	
S^{3+}	1.08E + 03	1.08E+03	1.08E + 03	1.08E + 03	
S^{4+}	9.24E + 02	9.41E + 02	9.41E + 02	9.42E + 02	
S^{5+}	1.20E + 03	1.42E+03	1.42E + 03	1.42E + 03	
S^{6+}	9.54E + 01	2.01E+02	2.03E+02	2.03E+02	
S^{7+}	1.72E + 01	9.47E + 01	1.00E + 02	1.00E + 02	
S^{8+}	5.32E + 00	6.71E+01	7.97E + 01	7.96E + 01	
S^{9+}	6.79E-01	3.37E + 01	5.15E + 01	5.15E + 01	
S^{10+}	8.24E-02	1.65E+01	3.83E + 01	3.80E + 01	
S^{11+}	1.30E-02	9.15E+00	3.52E + 01	3.54E + 01	
S^{12+}	1		F 001 01	C OCT I OI	
	2.15E-03	6.59E+00	5.89E+01	0.00E+01	
S^{13+}	2.15E-03 6.50E-04	6.59E+00 1.15E+01	5.89E+01 2.46E+02	6.06E+01 3.00E+02	
S^{13+} S^{14+}	2.15E-03 6.50E-04	$\begin{array}{c} 6.59E{+}00\\ 1.15E{+}01\\ 1.25E{-}01 \end{array}$	5.89E+01 2.46E+02 1.05E+01	3.00E+01 3.00E+02 2.97E+01	

Table B.3. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angle of 0° are displayed for atmosphere 1. The efficiency shown here is that solely from charge exchange collisions for sulfur.

Energy			N	o Opacity			
[keV/u]	S^{8+}	S^{9+}	S^{10+}	S ¹¹⁺	S^{12+}	S^{13+}	S^{14+}
125	0.00002	<u>-</u>	<u>-</u>	<u>-</u>			
150	0.00010	<u>-</u>					
175	0.00048	0.00002				<u>-</u>	
200	0.00168	0.00011					
250	0.01033	0.00119	0.00009	0.00001			
300	0.03435	0.00622	0.00077	0.00011	0.00003		
350	0.07751	0.02099	0.00377	0.00086	0.00026	0.00007	
400	0.13211	0.05073	0.01291	0.00427	0.00181	0.00076	
450	0.17796	0.09057	0.03048	0.01437	0.00774	0.00495	0.00002
500	0.19957	0.12365	0.05208	0.03326	0.02226	0.02065	0.00015
600	0.19061	0.14001	0.07467	0.06741	0.06023	0.08874	0.00122
700	0.16565	0.12694	0.07368	0.07715	0.08247	0.15869	0.00334
800	0.14505	0.11168	0.06641	0.07405	0.08766	0.20345	0.00609
900	0.12878	0.09920	0.05931	0.06757	0.08488	0.22342	0.00907
1000	0.11593	0.08921	0.05339	0.06117	0.07910	0.22688	0.01191
1250	0.09275	0.07149	0.04272	0.04902	0.06474	0.20672	0.01681
1500	0.07726	0.05951	0.03565	0.04084	0.05431	0.18070	0.01895
1750	0.06618	0.05094	0.03055	0.03507	0.04660	0.15759	0.01950
2000	0.05796	0.04462	0.02672	0.03063	0.04077	0.13882	0.01907
Energy				0°			
					101	~19	~141
[keV/u]	S^{8+}	S^{9+}	S^{10+}	S ¹¹⁺	S^{12+}	S ¹³⁺	S^{14+}
$\frac{[\rm keV/u]}{125}$	$\frac{S^{8+}}{0.00002}$	S ⁹⁺	S ¹⁰⁺	S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125}$ 150		S ⁹⁺	S ¹⁰⁺	S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 175 \\ 175 \\ 175 \\ 175 \\ 175 \\ 175 \\ 100 \\ 1$	$\frac{\mathrm{S}^{8+}}{0.00002}\\0.00010\\0.00047$		S ¹⁰⁺	S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200$	$\frac{\mathrm{S}^{8+}}{0.00002}\\ 0.00010\\ 0.00047\\ 0.00167$		S ¹⁰⁺	S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ \end{array}$	$\begin{array}{c} \mathrm{S}^{8+} \\ 0.00002 \\ 0.00010 \\ 0.00047 \\ 0.00167 \\ 0.01024 \end{array}$		S ¹⁰⁺	S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ \end{cases}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00119 \\ 0.00619 \end{array}$	S ¹⁰⁺ 0.00009 0.00077	S ¹¹⁺ 0.00001 0.00011	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ \end{cases}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00119 \\ 0.00619 \\ 0.02083 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	S ¹¹⁺ 0.00001 0.00011 0.00086	S ¹²⁺	S ¹³⁺	
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ \end{cases}$	$\begin{array}{c} \mathrm{S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.00619 \\ 0.02083 \\ 0.05025 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \end{array}$	S ¹¹⁺ 	S ¹²⁺	S ¹³⁺	<u>S</u> ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ \end{cases}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.000119 \\ 0.000619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \end{array}$	$\begin{array}{c c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \end{array}$	S ¹¹⁺ 	S ¹²⁺ 	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV}/\text{u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ \end{array}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.00619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \end{array}$	S ¹¹⁺ 	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\frac{[\text{keV}/\text{u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ \end{cases}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00119 \\ 0.00619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \end{array}$	$\begin{array}{c c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \end{array}$	S ¹¹⁺ 	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\frac{[\text{keV}/\text{u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ \end{cases}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921\\ 0.15150\\ \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.00619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \\ 0.12194 \end{array}$	$\begin{array}{c c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \\ 0.07190 \end{array}$	S ¹¹⁺ 	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ \end{tabular}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921\\ 0.15150\\ 0.12849 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.00619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \\ 0.12194 \\ 0.10528 \end{array}$	$\begin{array}{c c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \\ 0.07190 \\ 0.06388 \end{array}$	S ¹¹⁺ 	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\frac{[\text{keV/u]}}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ \end{cases}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921\\ 0.15150\\ 0.12849\\ 0.11009 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.000619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \\ 0.12194 \\ 0.10528 \\ 0.09141 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \\ 0.07190 \\ 0.06388 \\ 0.05598 \end{array}$	S ¹¹⁺ 	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\frac{[\text{keV}/\text{u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1000 \\ 1000 \\ 125 \\ 1$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921\\ 0.15150\\ 0.12849\\ 0.11009\\ 0.09534 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00119 \\ 0.00619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \\ 0.12194 \\ 0.10528 \\ 0.09141 \\ 0.08011 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \\ 0.07190 \\ 0.06388 \\ 0.05598 \\ 0.04923 \end{array}$	S ¹¹⁺ 	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\frac{[\text{keV}/\text{u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1250 \\ \end{cases}$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921\\ 0.15150\\ 0.12849\\ 0.11009\\ 0.09534\\ 0.06888\\ \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.00019 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \\ 0.12194 \\ 0.10528 \\ 0.09141 \\ 0.08011 \\ 0.08011 \\ 0.05982 \end{array}$	$\begin{array}{c} {\rm S}^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \\ 0.07190 \\ 0.06388 \\ 0.05598 \\ 0.04923 \\ 0.03679 \end{array}$	$\begin{array}{c} S^{11+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00011 \\ 0.00086 \\ 0.00426 \\ 0.01433 \\ 0.03314 \\ 0.06701 \\ 0.07635 \\ 0.07278 \\ 0.06572 \\ 0.05867 \\ 0.04496 \end{array}$	$\begin{array}{c c} S^{12+} \\ \hline \\ \hline \\ \hline \\ 0.00003 \\ 0.00026 \\ 0.00181 \\ 0.00773 \\ 0.02221 \\ 0.05998 \\ 0.08191 \\ 0.08666 \\ 0.08331 \\ 0.07686 \\ 0.06068 \end{array}$	S ¹³⁺ 	S ¹⁴⁺
$\begin{array}{ l l l l l l l l l l l l l l l l l l$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921\\ 0.15150\\ 0.12849\\ 0.11009\\ 0.09534\\ 0.06888\\ 0.05167\end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.00619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \\ 0.12194 \\ 0.10528 \\ 0.09141 \\ 0.08011 \\ 0.05982 \\ 0.04624 \end{array}$	$\begin{array}{c c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \\ 0.07190 \\ 0.06388 \\ 0.05598 \\ 0.04923 \\ 0.03679 \\ 0.02854 \end{array}$	$\begin{array}{c} S^{11+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00011 \\ 0.00086 \\ 0.00426 \\ 0.01433 \\ 0.03314 \\ 0.06701 \\ 0.07635 \\ 0.07278 \\ 0.06572 \\ 0.05867 \\ 0.04496 \\ 0.03564 \end{array}$	S ¹²⁺ 	S ¹³⁺ 	S14+
$\begin{array}{ l l l l l l l l l l l l l l l l l l$	$\begin{array}{r} {\rm S}^{8+}\\ 0.00002\\ 0.00010\\ 0.00047\\ 0.00167\\ 0.01024\\ 0.03391\\ 0.07618\\ 0.12911\\ 0.17269\\ 0.19194\\ 0.17921\\ 0.15150\\ 0.12849\\ 0.11009\\ 0.09534\\ 0.06888\\ 0.05167\\ 0.03981 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00011 \\ 0.00019 \\ 0.00619 \\ 0.02083 \\ 0.05025 \\ 0.08948 \\ 0.12176 \\ 0.13648 \\ 0.12194 \\ 0.10528 \\ 0.09141 \\ 0.08011 \\ 0.05982 \\ 0.04624 \\ 0.03672 \end{array}$	$\begin{array}{c c} S^{10+} \\ \hline \\ \hline \\ 0.00009 \\ 0.00077 \\ 0.00375 \\ 0.01284 \\ 0.03027 \\ 0.05162 \\ 0.07358 \\ 0.07190 \\ 0.06388 \\ 0.05598 \\ 0.04923 \\ 0.03679 \\ 0.02854 \\ 0.02272 \end{array}$	$\begin{array}{c} S^{11+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00011 \\ 0.00086 \\ 0.00426 \\ 0.01433 \\ 0.03314 \\ 0.06701 \\ 0.07635 \\ 0.07278 \\ 0.06572 \\ 0.05867 \\ 0.04496 \\ 0.03564 \\ 0.02910 \end{array}$	S ¹²⁺ 	S ¹³⁺ 	S14+ 0.00002 0.00015 0.00121 0.00334 0.00607 0.00904 0.01185 0.01664 0.01860 0.01896

Atmosphere 1 (Original atmosphere)

Table B.4. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. Viewing angles of 80° and 90° are displayed for atmosphere 1. The efficiency shown here is that solely from charge exchange collisions for sulfur.

Energy		runospi		80°	(spliere)		
[keV/11]	S8+	S^{9+}	S^{10+}	S11+	S^{12+}	S^{13+}	S^{14+}
$\frac{[10, 7, 4]}{125}$	0.00002						2
150	0.00002					<u>-</u>	
175	0.00010	0.00002					
200	0.00162	0.00011				<u>-</u>	
$\frac{200}{250}$	0.00984	0.00116	0.00009	0.00001			
300	0.03200	0.00603	0.00076	0.00011	0.00003		
350	0.07051	0.02013	0.00367	0.00085	0.00026	0.00007	
400	0.11672	0.04811	0.01250	0.00421	0.00179	0.00075	
450	0.15163	0.08471	0.02930	0.01413	0.00765	0.00490	0.00002
500	0.16248	0.11359	0.04957	0.03258	0.02194	0.02041	0.00015
600	0.13816	0.12174	0.06880	0.06515	0.05884	0.08713	0.00121
700	0.10425	0.10197	0.06436	0.07277	0.07931	0.15406	0.00331
800	0.07775	0.08107	0.05370	0.06721	0.08217	0.19411	0.00601
900	0.05797	0.06380	0.04334	0.05798	0.07651	0.20778	0.00890
1000	0.04345	0.05016	0.03452	0.04872	0.06752	0.20369	0.01161
1250	0.02220	0.02817	0.01954	0.03095	0.04572	0.16341	0.01597
1500	0.01231	0.01657	0.01152	0.02018	0.03088	0.12204	0.01739
1750	0.00735	0.01025	0.00715	0.01371	0.02135	0.09018	0.01724
2000	0.00466	0.00662	0.00459	0.00952	0.01510	0.06700	0.01618
Energy				90°			
[keV/u]	S^{8+}	S^{9+}	S^{10+}	S^{11+}	S^{12+}	S^{13+}	S^{14+}
125	0.00001						
150	0.00009						
175	0.00041	0.00002					
200	0.00140	0.00010					
250	0.00796	0.00105	0.00008	0.00001			
300	0.02387	0.00519	0.00068	0.00011	0.00003		
350	0.04837	0.01656	0.00324	0.00080	0.00025	0.00006	
400	0.07273	0.03760	0.01071	0.00391	0.00170	0.00072	
450	0.08421	0.06225	0.02418	0.01292	0.00718	0.00468	0.00002
500	0.07789	0.07701	0.03900	0.02926	0.02035	0.01935	0.00015
600	0.04480	0.06372	0.04579	0.05407	0.05178	0.07970	0.00118
700	0.02137	0.03639	0.03238	0.05213	0.06319	0.13267	0.00318
800	0.01059	0.01843	0.01833	0.03799	0.05554	0.15203	0.00566
900	0.00599	0.00957	0.00963	0.02374	0.04068	0.14184	0.00817
1000	0.00379	0.00562	0.00534	0.01387	0.02666	0.11634	0.01033
1250	0.00163	0.00220	0.00186	0.00432	0.00872	0.05583	0.01299
1500	0.00088	0.00113	0.00092	0.00196	0.00368	0.02668	0.01312
1750	0.00053	0.00066	0.00053	0.00110	0.00192	0.01381	0.01241
2000	0.00035	0.00043	0.00034	0.00068	0.00114	0.00763	0.01131

Atmosphere 1 (Original atmosphere)

Table B.5. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angle of 0° are displayed for atmosphere 2. The efficiency shown here is that solely from charge exchange collisions for sulfur.

Energy			N	o Opacity			
[keV/u]	S^{8+}	S ⁹⁺	S^{10+}	S ¹¹⁺	S^{12+}	S^{13+}	S^{14+}
125	0.00002						<u>_</u>
150	0.00010						<u>-</u>
175	0.00048	0.00002					<u> </u>
200	0.00168	0.00011					<u>-</u>
250	0.01033	0.00119	0.00009	0.00001			<u> </u>
300	0.03435	0.00622	0.00077	0.00011	0.00003		<u> </u>
350	0.07751	0.02099	0.00377	0.00086	0.00026	0.00007	<u> </u>
400	0.13211	0.05073	0.01291	0.00427	0.00181	0.00076	<u> </u>
450	0.17796	0.09057	0.03048	0.01437	0.00774	0.00495	0.00002
500	0.19957	0.12365	0.05208	0.03326	0.02226	0.02065	0.00015
600	0.19061	0.14001	0.07467	0.06741	0.06023	0.08874	0.00122
700	0.16565	0.12694	0.07368	0.07715	0.08247	0.15869	0.00334
800	0.14505	0.11168	0.06641	0.07405	0.08766	0.20345	0.00609
900	0.12878	0.09920	0.05931	0.06757	0.08488	0.22342	0.00907
1000	0.11593	0.08921	0.05339	0.06117	0.07910	0.22688	0.01191
1250	0.09275	0.07149	0.04272	0.04902	0.06474	0.20672	0.01681
1500	0.07726	0.05951	0.03565	0.04084	0.05431	0.18070	0.01895
1750	0.06618	0.05094	0.03055	0.03507	0.04660	0.15759	0.01950
2000	0.05796	0.04462	0.02672	0.03063	0.04077	0.13882	0.01907
Energy				0°			
[keV/u]	S^{8+}	S^{9+}	S^{10+}	S ¹¹⁺	S^{12+}	S^{13+}	S^{14+}
125	0.00002						<u>_</u>
150	0.00010						
175	0.00047	0.00002					
200	0.00165	0.00011					<u> </u>
250	0.01012	0.00118	0.00009	0.00001			<u> </u>
300	0.03339	0.00613	0.00076	0.00011	0.00003		<u> </u>
350	0.07476	0.02060	0.00371	0.00086	0.00026	0.00007	<u> </u>
400	0.12624	0.04958	0.01268	0.00422	0.00180	0.00075	<u> </u>
450	0.16819	0.08807	0.02984	0.01421	0.00768	0.00492	0.00002
500	0.18611	0.11951	0.05076	0.03283	0.02204	0.02050	0.00015
600	0.17222	0.13299	0.07182	0.06607	0.05935	0.08780	0.00121
700	0.14454	0.11795	0.06954	0.07481	0.08066	0.15619	0.00333
800	0.12201	0.10123	0.06124	0.07081	0.08486	0.19885	0.00604
900	0.10425	0.08755	0.05331	0.06354	0.08112	0.21643	0.00899
1000	0.09015	0.07658	0.04670	0.05649	0.07450	0.21748	0.01177
1250	0.06503	0.05707	0.03477	0.04311	0.05850	0.19203	0.01650
1500	0.04875	0.04409	0.02694	0.03414	0.04696	0.16200	0.01842
1750	0.03754	0.03500	0.02144	0.02786	0.03851	0.13607	0.01877
2000	0.02947	0.02836	0.01735	0.02308	0.03216	0.11517	0.01814

Atmosphere 2 (Well-mixed atmosphere)

Table B.6. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. Viewing angles of 80° and 90° are displayed for atmosphere 2. The efficiency shown here is that solely from charge exchange collisions for sulfur.

Energy		Atmosphe		80°	iospiiere)		
[keV/u]	S ⁸⁺	S ⁹⁺	S^{10+}	S ¹¹⁺	S^{12+}	S^{13+}	S^{14+}
$\frac{125}{125}$	0.00002	~	~ 	~	~ 	~ 	~
150	0.00009						
175	0.00044	0.00002					
200	0.00154	0.00011					
250	0.00922	0.00112	0.00008	0.00001			
300	0.02947	0.00572	0.00072	0.00011	0.00003		
350	0.06386	0.01891	0.00347	0.00082	0.00025	0.00007	
400	0.10384	0.04470	0.01169	0.00404	0.00173	0.00073	
450	0.13230	0.07776	0.02711	0.01348	0.00738	0.00478	0.00002
500	0.13862	0.10275	0.04526	0.03089	0.02106	0.01984	0.00015
600	0.11235	0.10593	0.06038	0.06028	0.05546	0.08362	0.00119
700	0.08137	0.08516	0.05375	0.06509	0.07285	0.14540	0.00325
800	0.05905	0.06551	0.04272	0.05787	0.07320	0.17956	0.00587
900	0.04337	0.05047	0.03323	0.04827	0.06613	0.18824	0.00866
1000	0.03227	0.03926	0.02591	0.03964	0.05694	0.18111	0.01123
1250	0.01640	0.02188	0.01442	0.02471	0.03752	0.14143	0.01531
1500	0.00909	0.01286	0.00847	0.01609	0.02521	0.10477	0.01662
1750	0.00543	0.00796	0.00526	0.01096	0.01743	0.07731	0.01647
2000	0.00345	0.00514	0.00338	0.00764	0.01236	0.05754	0.01547
Energy		1	I	90°	1	1	1
$[\mathrm{keV/u}]$	S^{8+}	S^{9+}	S^{10+}	S^{11+}	S^{12+}	S^{13+}	S^{14+}
125	0.00001	<u>-</u>				<u>-</u>	
150	0.00007						
175	0.00034	0.00002					
200	0.00113	0.00009					
250	0.00609	0.00086	0.00007	0.00001			
300	0.01732	0.00410	0.00055	0.00009	0.00002		<u>-</u>
350	0.03359	0.01259	0.00249	0.00067	0.00022	0.00006	
400	0.04824	0.02752	0.00793	0.00320	0.00144	0.00064	
450	0.05301	0.04366	0.01719	0.01029	0.00597	0.00411	0.00002
500	0.04589	0.05121	0.02633	0.02257	0.01652	0.01678	0.00014
600	0.02259	0.03628	0.02626	0.03697	0.03823	0.06468	0.00111
700	0.00948	0.01756	0.01518	0.03026	0.04100	0.09898	0.00293
800	0.00450	0.00803	0.00724	0.01850	0.03111	0.10298	0.00510
900	0.00257	0.00410	0.00349	0.01006	0.01997	0.08746	0.00724
1000	0.00164	0.00244	0.00194	0.00542	0.01186	0.06631	0.00905
1250	0.00071	0.00097	0.00070	0.00168	0.00362	0.02883	0.01131
1500	0.00038	0.00050	0.00035	0.00078	0.00153	0.01334	0.01163
1750	0.00023	0.00029	0.00020	0.00044	0.00080	0.00680	0.01122
2000	0.00015	0.00019	0.00013	0.00028	0.00048	0.00373	0.01044

Atmosphere 2 (Well-mixed atmosphere)

Table B.7. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angle of 0° are displayed for atmosphere 1. The efficiency shown here is that solely from direct excitation collisions for sulfur.

Energy			N	o Opacity	I ()		
[keV/u]	S^{8+}	S^{9+}	S^{10+}	S ¹¹⁺	S^{12+}	S^{13+}	S^{14+}
125				<u>_</u>	<u>_</u>	<u>-</u>	
150	0.00003	<u>_</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	
175	0.00013		<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	
200	0.00060	0.00002	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	
250	0.00455	0.00035	0.00003	<u>-</u>		<u>-</u>	
300	0.01774	0.00231	0.00027	0.00004	0.00001	0.00001	
350	0.04474	0.00900	0.00164	0.00039	0.00010	0.00008	
400	0.08190	0.02446	0.00655	0.00210	0.00079	0.00081	
450	0.11585	0.04698	0.01763	0.00764	0.00404	0.00548	
500	0.13365	0.06738	0.03289	0.01821	0.01317	0.02286	
600	0.13013	0.07984	0.05156	0.03814	0.04072	0.09703	
700	0.11346	0.07309	0.05221	0.04407	0.05900	0.17309	
800	0.09936	0.06444	0.04732	0.04241	0.06448	0.22100	0.00001
900	0.08822	0.05710	0.04235	0.03873	0.06317	0.24218	0.00001
1000	0.07929	0.05126	0.03798	0.03508	0.05871	0.24513	0.00001
1250	0.06358	0.04104	0.03041	0.02820	0.04796	0.22260	0.00001
1500	0.05286	0.03429	0.02530	0.02351	0.04016	0.19461	0.00002
1750	0.04544	0.02937	0.02172	0.02016	0.03447	0.16986	0.00002
2000	0.03967	0.02567	0.01898	0.01767	0.03015	0.14960	0.00002
Energy				0°			
Energy [keV/u]	S^{8+}	S^{9+}	S^{10+}	$\frac{0^{\circ}}{\mathrm{S}^{11+}}$	S^{12+}	S^{13+}	S^{14+}
$\frac{\text{Energy}}{[\text{keV/u}]}$	S ⁸⁺	S ⁹⁺	S ¹⁰⁺	0° S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{\text{Energy}}{[\text{keV/u}]}$ $\frac{125}{150}$	S^{8+} 	S ⁹⁺	S ¹⁰⁺	0° S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{\text{Energy}}{[\text{keV/u}]}$ $\frac{125}{150}$ 175		S ⁹⁺	S ¹⁰⁺	0° S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{\text{Energy}}{[\text{keV/u}]} \\ \frac{125}{150} \\ 175 \\ 200 \\ \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline & 0.00003 \\ 0.00013 \\ 0.00059 \end{array}$	S ⁹⁺ 0.00002	S ¹⁰⁺	0° S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{\rm Energy}{\rm [keV/u]} \\ \frac{125}{150} \\ 175 \\ 200 \\ 250 \\ \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline & 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \end{array}$	S ⁹⁺ 0.00002 0.00035	S ¹⁰⁺	0° S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\begin{array}{r} \hline Energy \\ \hline [keV/u] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline & 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \end{array}$	S ⁹⁺ 0.00002 0.00035 0.00230	S ¹⁰⁺ 0.00003 0.00027	0° S ¹¹⁺ 0.00004	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\begin{array}{r} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \end{array}$	S ⁹⁺ 0.00002 0.00035 0.00230 0.00894	S ¹⁰⁺ 0.00003 0.00027 0.00163	0° S ¹¹⁺ 0.00004 0.00039	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\begin{array}{r} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00894 \\ 0.02425 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	S ¹²⁺ 0.00001 0.00010 0.00079	S ¹³⁺	S ¹⁴⁺
$\begin{array}{r} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline & 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00894 \\ 0.02425 \\ 0.04648 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \\ \\ \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \end{array}$	S ¹²⁺ 	$\begin{array}{c} S^{13+} \\ \hline \\ 0.00001 \\ 0.00008 \\ 0.00081 \\ 0.00547 \end{array}$	S ¹⁴⁺
$\begin{array}{r} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00894 \\ 0.02425 \\ 0.04648 \\ 0.06645 \end{array}$	S ¹⁰⁺ 	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \\ \\ \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00209 \\ 0.00761 \\ 0.01813 \end{array}$	S ¹²⁺ 0.00001 0.00010 0.00079 0.00404 0.01314	S ¹³⁺ 0.00001 0.00008 0.00081 0.00547 0.02282	S ¹⁴⁺
$\begin{array}{ c }\hline Energy \\ \hline [keV/u] \\\hline 125 \\150 \\175 \\200 \\250 \\300 \\350 \\400 \\450 \\500 \\600 \\\end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ \end{array}$	S ⁹⁺ 	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \\ 0.03262 \\ 0.05083 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.03786 \\ \end{array}$	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\begin{array}{ c }\hline Energy \\ \hline [keV/u] \\\hline 125 \\150 \\175 \\200 \\250 \\300 \\350 \\400 \\450 \\500 \\600 \\700 \\\end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ 0.10418 \end{array}$	S ⁹⁺ 	S ¹⁰⁺ 	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.03786 \\ 0.04351 \end{array}$	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\begin{array}{r} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ 0.10418 \\ 0.08836 \\ \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00894 \\ 0.02425 \\ 0.04648 \\ 0.06645 \\ 0.07801 \\ 0.07044 \\ 0.06100 \\ \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \\ 0.03262 \\ 0.05083 \\ 0.05097 \\ 0.04553 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.03786 \\ 0.04351 \\ 0.04151 \\ 0.04151 \\ \end{array}$	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$\begin{array}{c} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ 0.10418 \\ 0.08836 \\ 0.07571 \\ \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00230 \\ 0.002425 \\ 0.04648 \\ 0.06645 \\ 0.07801 \\ 0.07044 \\ 0.06100 \\ 0.05290 \\ \hline \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \\ 0.03262 \\ 0.05083 \\ 0.05097 \\ 0.04553 \\ 0.03995 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.03786 \\ 0.04351 \\ 0.04351 \\ 0.03742 \\ \end{array}$	$\begin{array}{c c} S^{12+} \\ \hline \\ \hline \\ \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00404 \\ 0.01314 \\ 0.04054 \\ 0.05857 \\ 0.06369 \\ 0.06190 \\ \hline \end{array}$	$\begin{array}{c} S^{13+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00008 \\ 0.00081 \\ 0.00547 \\ 0.02282 \\ 0.09677 \\ 0.17232 \\ 0.21940 \\ 0.23937 \\ \end{array}$	S ¹⁴⁺
$\begin{array}{c} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ 0.10418 \\ 0.08836 \\ 0.07571 \\ 0.06546 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00230 \\ 0.02425 \\ 0.04648 \\ 0.06645 \\ 0.07801 \\ 0.07044 \\ 0.06100 \\ 0.05290 \\ 0.04635 \end{array}$	$\begin{array}{c} \mathrm{S}^{10+} \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \\ 0.03262 \\ 0.05083 \\ 0.05097 \\ 0.04553 \\ 0.03995 \\ 0.03495 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.003786 \\ 0.04351 \\ 0.04351 \\ 0.04151 \\ 0.03742 \\ 0.03332 \\ \end{array}$	$\begin{array}{c c} S^{12+} \\ \hline \\ \hline \\ \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00404 \\ 0.01314 \\ 0.04054 \\ 0.05857 \\ 0.06369 \\ 0.06190 \\ 0.05688 \end{array}$	$\begin{array}{c} S^{13+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00008 \\ 0.00081 \\ 0.00547 \\ 0.02282 \\ 0.09677 \\ 0.17232 \\ 0.21940 \\ 0.23937 \\ 0.24074 \end{array}$	S ¹⁴⁺
$\begin{array}{c} \hline \text{Energy} \\ \hline \text{[keV/u]} \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1250 \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ 0.10418 \\ 0.08836 \\ 0.07571 \\ 0.06546 \\ 0.04740 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00894 \\ 0.02425 \\ 0.04648 \\ 0.06645 \\ 0.07801 \\ 0.07044 \\ 0.06100 \\ 0.05290 \\ 0.04635 \\ 0.03475 \end{array}$	$\begin{array}{c} \mathrm{S}^{10+} \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \\ 0.03262 \\ 0.05083 \\ 0.05097 \\ 0.04553 \\ 0.03995 \\ 0.03495 \\ 0.02604 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.03786 \\ 0.04351 \\ 0.04151 \\ 0.03742 \\ 0.03332 \\ 0.02534 \\ \end{array}$	$\begin{array}{c c} S^{12+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00404 \\ 0.01314 \\ 0.04054 \\ 0.05857 \\ 0.06369 \\ 0.06190 \\ 0.05688 \\ 0.04458 \end{array}$	$\begin{array}{c} S^{13+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00008 \\ 0.00081 \\ 0.00547 \\ 0.02282 \\ 0.09677 \\ 0.17232 \\ 0.21940 \\ 0.23937 \\ 0.24074 \\ 0.21312 \end{array}$	S ¹⁴⁺
$\begin{array}{ c }\hline Energy \\ \hline [keV/u] \\\hline 125 \\\hline 150 \\\hline 175 \\\hline 200 \\\hline 250 \\\hline 300 \\\hline 350 \\\hline 400 \\\hline 450 \\\hline 500 \\\hline 600 \\\hline 700 \\\hline 800 \\\hline 900 \\\hline 1000 \\\hline 1250 \\\hline 1500 \\\hline \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ 0.10418 \\ 0.08836 \\ 0.07571 \\ 0.06546 \\ 0.04740 \\ 0.03547 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00894 \\ 0.02425 \\ 0.04648 \\ 0.06645 \\ 0.07801 \\ 0.07044 \\ 0.06100 \\ 0.05290 \\ 0.04635 \\ 0.03475 \\ 0.02711 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \\ 0.03262 \\ 0.05083 \\ 0.05097 \\ 0.04553 \\ 0.03995 \\ 0.03495 \\ 0.03495 \\ 0.02604 \\ 0.02007 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.03786 \\ 0.04351 \\ 0.04151 \\ 0.03742 \\ 0.03332 \\ 0.02534 \\ 0.01987 \end{array}$	$\begin{array}{c} S^{12+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00404 \\ 0.01314 \\ 0.04054 \\ 0.05857 \\ 0.06369 \\ 0.06190 \\ 0.05688 \\ 0.04458 \\ 0.03553 \end{array}$	$\begin{array}{c} S^{13+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00008 \\ 0.00081 \\ 0.00547 \\ 0.02282 \\ 0.09677 \\ 0.17232 \\ 0.21940 \\ 0.23937 \\ 0.24074 \\ 0.21312 \\ 0.18011 \end{array}$	S ¹⁴⁺
$\begin{array}{ c }\hline Energy \\ \hline [keV/u] \\\hline 125 \\150 \\175 \\200 \\250 \\300 \\350 \\400 \\450 \\500 \\600 \\700 \\800 \\900 \\1000 \\1250 \\1500 \\1750 \\\end{array}$	$\begin{array}{r} & S^{8+} \\ \hline \\ 0.00003 \\ 0.00013 \\ 0.00059 \\ 0.00451 \\ 0.01753 \\ 0.04404 \\ 0.08018 \\ 0.11267 \\ 0.12890 \\ 0.12277 \\ 0.10418 \\ 0.08836 \\ 0.07571 \\ 0.06546 \\ 0.04740 \\ 0.03547 \\ 0.02743 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00035 \\ 0.00230 \\ 0.00230 \\ 0.00894 \\ 0.02425 \\ 0.04648 \\ 0.06645 \\ 0.07801 \\ 0.07044 \\ 0.06100 \\ 0.05290 \\ 0.04635 \\ 0.03475 \\ 0.02711 \\ 0.02166 \end{array}$	$\begin{array}{c} \mathrm{S}^{10+} \\ \hline \\ 0.00003 \\ 0.00027 \\ 0.00163 \\ 0.00651 \\ 0.01751 \\ 0.03262 \\ 0.05083 \\ 0.05097 \\ 0.04553 \\ 0.03995 \\ 0.03495 \\ 0.03495 \\ 0.02604 \\ 0.02007 \\ 0.01593 \end{array}$	$\begin{array}{c} 0^{\circ} \\ S^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00039 \\ 0.00209 \\ 0.00761 \\ 0.01813 \\ 0.03786 \\ 0.04351 \\ 0.04151 \\ 0.03742 \\ 0.03332 \\ 0.02534 \\ 0.01987 \\ 0.01601 \end{array}$	$\begin{array}{c} S^{12+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00404 \\ 0.01314 \\ 0.04054 \\ 0.05857 \\ 0.06369 \\ 0.06190 \\ 0.05688 \\ 0.04458 \\ 0.03553 \\ 0.02897 \end{array}$	$\begin{array}{c} S^{13+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00008 \\ 0.00081 \\ 0.00547 \\ 0.02282 \\ 0.09677 \\ 0.17232 \\ 0.21940 \\ 0.23937 \\ 0.24074 \\ 0.21312 \\ 0.18011 \\ 0.15135 \end{array}$	S ¹⁴⁺

Atmosphere 1 (Original atmosphere)

Table B.8. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. Viewing angles of 80° and 90° are displayed for atmosphere 1. The efficiency shown here is that solely from direct excitation collisions for sulfur.

Energy		T	(80°	1 /		
[koV/11]	S 8+	S ₀ +	S^{10+}	S 11+	S 12+	Ç 13+	S 14+
$\frac{\left[100774\right]}{125}$							2
150	0.00003						
175	0.00003						
200	0.00010	0.00002		<u>-</u>			
$\frac{200}{250}$	0.00000000000000000000000000000000000	0.00002	0.00003	<u>-</u>			
300	0.01663	0.00225	0.00027	0.00004	0.00001	0.00001	
350	0.04099	0.00867	0.00160	0.00039	0.00010	0.00008	
400	0.07301	0.02332	0.00635	0.00206	0.00079	0.00080	
450	0.09983	0.04424	0.01696	0.00748	0.00399	0.00544	
500	0.11030	0.06238	0.03137	0.01776	0.01297	0.02265	
600	0.09587	0.07025	0.04762	0.03657	0.03972	0.09554	
700	0.07267	0.05965	0.04568	0.04103	0.05659	0.16875	
800	0.05414	0.04776	0.03827	0.03764	0.06014	0.21207	0.00001
900	0.04034	0.03773	0.03083	0.03206	0.05643	0.22680	0.00001
1000	0.03017	0.02981	0.02433	0.02647	0.04928	0.22159	0.00001
1250	0.01547	0.01713	0.01358	0.01595	0.03228	0.17560	0.00001
1500	0.00859	0.01035	0.00794	0.00980	0.02095	0.12857	0.00001
1750	0.00523	0.00655	0.00491	0.00630	0.01393	0.09243	0.00001
2000	0.00338	0.00430	0.00317	0.00419	0.00944	0.06624	0.00001
Energy				000	1	1	
LINCISY				90*			
[keV/u]	S^{8+}	S^{9+}	S^{10+}	$\frac{90^{3}}{S^{11+}}$	S ¹²⁺	S ¹³⁺	S^{14+}
$\frac{[\text{keV/u]}}{125}$	S ⁸⁺	S ⁹⁺	S ¹⁰⁺	90 ⁻ S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u]}}{125}$	$\frac{S^{8+}}{0.00002}$	S ⁹⁺	S ¹⁰⁺	90° S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u]}}{125}$ $\frac{125}{150}$ 175	$\frac{S^{8+}}{0.00002}$ 0.00012	S ⁹⁺	S ¹⁰⁺	S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200$	$\begin{array}{r} & S^{8+} \\ \hline & 0.00002 \\ 0.00012 \\ 0.00050 \end{array}$	S ⁹⁺ 0.00002	S ¹⁰⁺	90 ⁻ S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125}$ 150 175 200 250	$\begin{array}{c} & S^{8+} \\ \hline & 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \end{array}$	S ⁹⁺ 0.00002 0.00031	S ¹⁰⁺	90° S ¹¹⁺	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u]}}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 300 \\ 125 \\ 1$	$\begin{array}{r} & S^{8+} \\ \hline & 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \end{array}$	S ⁹⁺ 0.00002 0.00031 0.00196	S ¹⁰⁺ 0.00002 0.00024	$ \begin{array}{c} 90^{-} \\ \overline{S^{11+}} \\ \hline 0.00004 \end{array} $	S ¹²⁺	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125} \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline & 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \end{array}$	S ⁹⁺ 	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} 90^{-} \\ \overline{S^{11+}} \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline $	S ¹²⁺ 0.00001 0.00009	S ¹³⁺	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125}$ $\frac{125}{150}$ 175 200 250 300 350 400	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \end{array}$	S ⁹⁺ 	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ 0.00004 \\ 0.00036 \\ 0.00189 \end{array}$	S ¹²⁺ 0.00001 0.00009 0.00074	S ¹³⁺ 0.00001 0.00007 0.00077	S ¹⁴⁺
$\frac{[\text{keV/u}]}{125}$ $\frac{125}{150}$ 175 200 250 300 350 400 450	$\begin{array}{c} & S^{8+} \\ \hline & 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \end{array}$	S ⁹⁺ 0.00002 0.00031 0.00196 0.00727 0.01867 0.03341	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \end{array}$	S ¹²⁺ 	S ¹³⁺ 	S ¹⁴⁺
$ \begin{array}{c} [\text{keV/u}] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \end{array} $	$\begin{array}{r} & S^{8+} \\ \hline & 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \end{array}$	S ⁹⁺ 	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.001562 \end{array}$	S ¹²⁺ 	S ¹³⁺ 0.00001 0.00007 0.00077 0.00521 0.02156	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV}/\mathrm{u}] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \\ 0.03238 \end{array}$	S ⁹⁺ 	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \end{array}$	$\begin{array}{c} S^{12+} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	S ¹³⁺ 	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV/u}] \\ \hline \\ [\mathrm{keV/u}] \\ \hline \\ 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \\ 0.03238 \\ 0.01558 \end{array}$	S ⁹⁺ 0.00002 0.00031 0.00196 0.00727 0.01867 0.03341 0.04355 0.03846 0.02249	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \\ 0.02341 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \\ 0.02754 \end{array}$	$\begin{array}{c c} S^{12+} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ 0.00001 \\ 0.00009 \\ 0.00074 \\ 0.00373 \\ 0.01200 \\ 0.03473 \\ 0.04456 \end{array}$	$\begin{array}{c c} S^{13+} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ 0.00001 \\ 0.00007 \\ 0.00007 \\ 0.000077 \\ 0.00521 \\ 0.02156 \\ 0.08782 \\ 0.14553 \end{array}$	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV}/\mathrm{u}] \\ \hline \\ [\mathrm{keV}/\mathrm{u}] \\ \hline \\ 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \\ 0.05483 \\ 0.03238 \\ 0.01558 \\ 0.00787 \end{array}$	S ⁹⁺ 0.00002 0.00031 0.00196 0.00727 0.01867 0.03341 0.04355 0.03846 0.02249 0.01159	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \\ 0.02341 \\ 0.01337 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \\ 0.02754 \\ 0.01911 \end{array}$	$\begin{array}{c c} S^{12+} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ 0.00001 \\ 0.00009 \\ 0.00074 \\ 0.00074 \\ 0.00373 \\ 0.01200 \\ 0.03473 \\ 0.04456 \\ 0.03965 \end{array}$	$\begin{array}{c} S^{13+} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV}/\mathrm{u}] \\ \hline [\mathrm{keV}/\mathrm{u}] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \\ 0.03238 \\ 0.01558 \\ 0.00787 \\ 0.00463 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00031 \\ 0.00196 \\ 0.00727 \\ 0.01867 \\ 0.03341 \\ 0.04355 \\ 0.03846 \\ 0.02249 \\ 0.01159 \\ 0.00614 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \\ 0.02341 \\ 0.01337 \\ 0.00715 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \\ 0.02754 \\ 0.01911 \\ 0.01129 \end{array}$	$\begin{array}{c c} S^{12+} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.00001 \\ 0.00009 \\ 0.00074 \\ 0.00373 \\ 0.01200 \\ 0.03473 \\ 0.04456 \\ 0.03965 \\ 0.02864 \end{array}$	$\begin{array}{c c} S^{13+} \\ \hline \\ \hline \\ \hline \\ 0.00001 \\ 0.00007 \\ 0.00077 \\ 0.00521 \\ 0.02156 \\ 0.08782 \\ 0.14553 \\ 0.16435 \\ 0.14966 \end{array}$	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV}/\mathrm{u}] \\ \hline [\mathrm{keV}/\mathrm{u}] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \\ 0.05721 \\ 0.05483 \\ 0.01558 \\ 0.00787 \\ 0.00463 \\ 0.00307 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00031 \\ 0.00196 \\ 0.00727 \\ 0.01867 \\ 0.03341 \\ 0.04355 \\ 0.03846 \\ 0.02249 \\ 0.01159 \\ 0.00614 \\ 0.00371 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \\ 0.02341 \\ 0.01337 \\ 0.00715 \\ 0.00406 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \\ 0.02754 \\ 0.01911 \\ 0.01129 \\ 0.00634 \end{array}$	$\begin{array}{c} \mathrm{S}^{12+} \\ \hline \\ \hline \\ 0.00001 \\ 0.00009 \\ 0.00074 \\ 0.00373 \\ 0.01200 \\ 0.03473 \\ 0.04456 \\ 0.03965 \\ 0.02864 \\ 0.01796 \end{array}$	$\begin{array}{c c} S^{13+} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV}/\mathrm{u}] \\ \hline [\mathrm{keV}/\mathrm{u}] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1250 \end{array}$	$\begin{array}{r} & S^{8+} \\ \hline & 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \\ 0.03238 \\ 0.01558 \\ 0.00787 \\ 0.00463 \\ 0.00307 \\ 0.00156 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00031 \\ 0.00196 \\ 0.00727 \\ 0.01867 \\ 0.03341 \\ 0.04355 \\ 0.03846 \\ 0.02249 \\ 0.01159 \\ 0.00614 \\ 0.00371 \\ 0.00164 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \\ 0.02341 \\ 0.01337 \\ 0.00715 \\ 0.00406 \\ 0.00160 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \\ 0.02754 \\ 0.01911 \\ 0.01129 \\ 0.00634 \\ 0.00214 \end{array}$	$\begin{array}{c} S^{12+} \\ \hline \\ \hline \\ \hline \\ 0.00001 \\ 0.00009 \\ 0.00074 \\ 0.00373 \\ 0.01200 \\ 0.03473 \\ 0.04456 \\ 0.03965 \\ 0.02864 \\ 0.01796 \\ 0.00546 \\ \end{array}$	$\begin{array}{c} \mathrm{S}^{13+} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV}/\mathrm{u}] \\ \hline [\mathrm{keV}/\mathrm{u}] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1250 \\ 1500 \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05483 \\ 0.03238 \\ 0.01558 \\ 0.00787 \\ 0.00463 \\ 0.00307 \\ 0.00156 \\ 0.00097 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00031 \\ 0.00196 \\ 0.00727 \\ 0.01867 \\ 0.03341 \\ 0.04355 \\ 0.03846 \\ 0.02249 \\ 0.01159 \\ 0.00614 \\ 0.00371 \\ 0.00164 \\ 0.00097 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \\ 0.02341 \\ 0.01337 \\ 0.00715 \\ 0.00406 \\ 0.00160 \\ 0.00095 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \\ 0.02754 \\ 0.01911 \\ 0.01129 \\ 0.00634 \\ 0.00214 \\ 0.00112 \end{array}$	$\begin{array}{c} S^{12+} \\ \hline \\ \hline \\ \hline \\ 0.00001 \\ 0.00009 \\ 0.00074 \\ 0.00373 \\ 0.01200 \\ 0.03473 \\ 0.04456 \\ 0.03965 \\ 0.02864 \\ 0.01796 \\ 0.00240 \\ \end{array}$	$\begin{array}{c} \mathrm{S}^{13+} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	S ¹⁴⁺
$\begin{array}{c} [\mathrm{keV/u}] \\ \hline [\mathrm{keV/u}] \\ \hline 125 \\ 150 \\ 175 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1000 \\ 1250 \\ 1500 \\ 1750 \end{array}$	$\begin{array}{c} & S^{8+} \\ \hline \\ 0.00002 \\ 0.00012 \\ 0.00050 \\ 0.00358 \\ 0.01267 \\ 0.02877 \\ 0.04675 \\ 0.05721 \\ 0.05721 \\ 0.05483 \\ 0.005721 \\ 0.05483 \\ 0.003238 \\ 0.01558 \\ 0.00787 \\ 0.00463 \\ 0.00307 \\ 0.00156 \\ 0.00097 \\ 0.00070 \end{array}$	$\begin{array}{c} S^{9+} \\ \hline \\ 0.00002 \\ 0.00031 \\ 0.00196 \\ 0.00727 \\ 0.01867 \\ 0.03341 \\ 0.04355 \\ 0.03846 \\ 0.02249 \\ 0.01159 \\ 0.00614 \\ 0.00371 \\ 0.00164 \\ 0.00097 \\ 0.00067 \end{array}$	$\begin{array}{c} S^{10+} \\ \hline \\ \hline \\ 0.00002 \\ 0.00024 \\ 0.00141 \\ 0.00546 \\ 0.01411 \\ 0.02498 \\ 0.03223 \\ 0.02341 \\ 0.01337 \\ 0.002415 \\ 0.00406 \\ 0.00160 \\ 0.00095 \\ 0.00063 \end{array}$	$\begin{array}{c} 90^{\circ} \\ \text{S}^{11+} \\ \hline \\ \hline \\ 0.00004 \\ 0.00036 \\ 0.00189 \\ 0.00674 \\ 0.01562 \\ 0.02923 \\ 0.02754 \\ 0.01292 \\ 0.02754 \\ 0.01129 \\ 0.00634 \\ 0.00214 \\ 0.00214 \\ 0.00112 \\ 0.00074 \end{array}$	$\begin{array}{c} S^{12+} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} \mathrm{S}^{13+} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	S ¹⁴⁺

Atmosphere 1 (Original atmosphere)

Table B.9. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. No opacity effects and the viewing angle of 0° are displayed for atmosphere 2. The efficiency shown here is that solely from direct excitation collisions for sulfur.

Energy	No Opacity						
[keV/u]	S^{8+}	S^{9+}	S^{10+}	S ¹¹⁺	S^{12+}	S^{13+}	S^{14+}
125							
150	0.00003						
175	0.00013	<u>-</u>		<u>-</u>		<u>-</u>	
200	0.00060	0.00002					
250	0.00455	0.00035	0.00003	<u>-</u>		<u>-</u>	
300	0.01774	0.00231	0.00027	0.00004	0.00001	0.00001	
350	0.04474	0.00900	0.00164	0.00039	0.00010	0.00008	
400	0.08190	0.02446	0.00655	0.00210	0.00079	0.00081	
450	0.11585	0.04698	0.01763	0.00764	0.00404	0.00548	
500	0.13365	0.06738	0.03289	0.01821	0.01317	0.02286	
600	0.13013	0.07984	0.05156	0.03814	0.04072	0.09703	
700	0.11346	0.07309	0.05221	0.04407	0.05900	0.17309	
800	0.09936	0.06444	0.04732	0.04241	0.06448	0.22100	0.00001
900	0.08822	0.05710	0.04235	0.03873	0.06317	0.24218	0.00001
1000	0.07929	0.05126	0.03798	0.03508	0.05871	0.24513	0.00001
1250	0.06358	0.04104	0.03041	0.02820	0.04796	0.22260	0.00001
1500	0.05286	0.03429	0.02530	0.02351	0.04016	0.19461	0.00002
1750	0.04544	0.02937	0.02172	0.02016	0.03447	0.16986	0.00002
2000	0.03967	0.02567	0.01898	0.01767	0.03015	0.14960	0.00002
Energy				0°			
$[\mathrm{keV/u}]$	S^{8+}	S^{9+}	S^{10+}	S^{11+}	S^{12+}	S^{13+}	S^{14+}
125							
150	0.00003			<u>-</u>		<u>-</u>	
175	0.00013						
200	0.00059						1
250	0.00000	0.00002					
	0.00446	$0.00002 \\ 0.00034$	0.00003				
300	0.00446 0.01729	$\begin{array}{c} 0.00002 \\ 0.00034 \\ 0.00228 \end{array}$	0.00003 0.00027	0.00004	0.00001	0.00001	
$\frac{300}{350}$	$\begin{array}{c} 0.00446 \\ 0.01729 \\ 0.04327 \end{array}$	$\begin{array}{c} 0.00002 \\ 0.00034 \\ 0.00228 \\ 0.00885 \end{array}$	0.00003 0.00027 0.00161	0.00004 0.00039	0.00001 0.00010	0.00001 0.00008	
$300 \\ 350 \\ 400$	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851 \end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\end{array}$	$\begin{array}{c}\\ 0.00003\\ 0.00027\\ 0.00161\\ 0.00643 \end{array}$	0.00004 0.00039 0.00208	0.00001 0.00010 0.00079	0.00001 0.00008 0.00080	
$300 \\ 350 \\ 400 \\ 450$	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991 \end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\\ 0.04587\end{array}$	$\begin{array}{c} \hline 0.00003 \\ 0.00027 \\ 0.00161 \\ 0.00643 \\ 0.01727 \end{array}$	0.00004 0.00039 0.00208 0.00754	0.00001 0.00010 0.00079 0.00401	0.00001 0.00008 0.00080 0.00545	
$300 \\ 350 \\ 400 \\ 450 \\ 500$	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520 \end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\\ 0.04587\\ 0.06542 \end{array}$	0.00003 0.00027 0.00161 0.00643 0.01727 0.03209	0.00004 0.00039 0.00208 0.00754 0.01792	0.00001 0.00010 0.00079 0.00401 0.01303	0.00001 0.00008 0.00080 0.00545 0.02270	
$300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600$	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ \end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\\ 0.04587\\ 0.06542\\ 0.07634 \end{array}$	$\begin{array}{c}\\ 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964 \end{array}$	0.00004 0.00039 0.00208 0.00754 0.01792 0.03722	0.00001 0.00010 0.00079 0.00401 0.01303 0.04008	0.00001 0.00008 0.00080 0.00545 0.02270 0.09601	
$300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700$	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ 0.09954 \end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\\ 0.04587\\ 0.06542\\ 0.07634\\ 0.06848\\ \end{array}$	$\begin{array}{c} 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964\\ 0.04930\\ \end{array}$	$\begin{array}{c} \hline \\ 0.00004 \\ 0.00039 \\ 0.00208 \\ 0.00754 \\ 0.01792 \\ 0.03722 \\ 0.04246 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00401 \\ 0.01303 \\ 0.04008 \\ 0.05760 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00008 \\ 0.00080 \\ 0.00545 \\ 0.02270 \\ 0.09601 \\ 0.17038 \end{array}$	
$300 \\ 350 \\ 400 \\ 450 \\ 500 \\ 600 \\ 700 \\ 800$	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ 0.09954\\ 0.08401 \end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\\ 0.04587\\ 0.06542\\ 0.07634\\ 0.06848\\ 0.05901 \end{array}$	$\begin{matrix} 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964\\ 0.04930\\ 0.04362\end{matrix}$	$\begin{array}{c} \hline \\ 0.00004 \\ 0.00039 \\ 0.00208 \\ 0.00754 \\ 0.01792 \\ 0.03722 \\ 0.04246 \\ 0.04015 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00401 \\ 0.01303 \\ 0.04008 \\ 0.05760 \\ 0.06224 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00008 \\ 0.00080 \\ 0.00545 \\ 0.02270 \\ 0.09601 \\ 0.17038 \\ 0.21602 \end{array}$	0.00001
300 350 400 450 500 600 700 800 900	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ 0.09954\\ 0.08401\\ 0.07178\end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\\ 0.04587\\ 0.06542\\ 0.07634\\ 0.06848\\ 0.05901\\ 0.05101 \end{array}$	$\begin{array}{c} 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964\\ 0.04930\\ 0.04362\\ 0.03800\\ \end{array}$	$\begin{array}{c} \hline \\ 0.00004 \\ 0.00039 \\ 0.00208 \\ 0.00754 \\ 0.01792 \\ 0.03722 \\ 0.04246 \\ 0.04015 \\ 0.03592 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00401 \\ 0.01303 \\ 0.04008 \\ 0.05760 \\ 0.06224 \\ 0.06010 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00008 \\ 0.00080 \\ 0.00545 \\ 0.02270 \\ 0.09601 \\ 0.17038 \\ 0.21602 \\ 0.23461 \end{array}$	0.00001
300 350 400 450 500 600 700 800 900 1000	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ 0.09954\\ 0.08401\\ 0.07178\\ 0.06198 \end{array}$	$\begin{array}{c} 0.00002\\ 0.00034\\ 0.00228\\ 0.00885\\ 0.02398\\ 0.04587\\ 0.06542\\ 0.07634\\ 0.06848\\ 0.05901\\ 0.05101\\ 0.04462 \end{array}$	$\begin{matrix} 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964\\ 0.04930\\ 0.04362\\ 0.03800\\ 0.03310 \end{matrix}$	$\begin{matrix} 0.00004\\ 0.00039\\ 0.00208\\ 0.00754\\ 0.01792\\ 0.03722\\ 0.04246\\ 0.04015\\ 0.03592\\ 0.03181 \end{matrix}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00401 \\ 0.01303 \\ 0.04008 \\ 0.05760 \\ 0.06224 \\ 0.06010 \\ 0.05491 \\ \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.0008 \\ 0.00545 \\ 0.02270 \\ 0.09601 \\ 0.17038 \\ 0.21602 \\ 0.23461 \\ 0.23493 \\ \end{array}$	0.00001 0.00001
300 350 400 450 500 600 700 800 900 1000 1250	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ 0.09954\\ 0.08401\\ 0.07178\\ 0.06198\\ 0.04481 \end{array}$	0.00002 0.00034 0.00228 0.02398 0.04587 0.06542 0.07634 0.06848 0.05901 0.05101 0.04462 0.03340	$\begin{matrix} 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964\\ 0.04930\\ 0.04362\\ 0.03800\\ 0.03310\\ 0.02456\end{matrix}$	$\begin{array}{c} \hline \\ 0.00004 \\ 0.00039 \\ 0.00208 \\ 0.00754 \\ 0.01792 \\ 0.03722 \\ 0.04246 \\ 0.04015 \\ 0.03592 \\ 0.03181 \\ 0.02407 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00401 \\ 0.01303 \\ 0.04008 \\ 0.05760 \\ 0.06224 \\ 0.06010 \\ 0.05491 \\ 0.04274 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.0008 \\ 0.00080 \\ 0.00545 \\ 0.02270 \\ 0.09601 \\ 0.17038 \\ 0.21602 \\ 0.23461 \\ 0.23493 \\ 0.20662 \end{array}$	
300 350 400 450 500 600 700 800 900 1000 1250 1500	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ 0.09954\\ 0.08401\\ 0.07178\\ 0.06198\\ 0.04481\\ 0.03351 \end{array}$	0.00002 0.00034 0.00228 0.02398 0.04587 0.06542 0.07634 0.06848 0.05901 0.05101 0.04462 0.03340 0.02604	$\begin{matrix} 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964\\ 0.04930\\ 0.04362\\ 0.03800\\ 0.03310\\ 0.02456\\ 0.01891 \end{matrix}$	$\begin{array}{c} \hline \\ 0.00004 \\ 0.00039 \\ 0.00208 \\ 0.00754 \\ 0.01792 \\ 0.03722 \\ 0.04246 \\ 0.04015 \\ 0.03592 \\ 0.03181 \\ 0.02407 \\ 0.01884 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00010 \\ 0.00079 \\ 0.00401 \\ 0.01303 \\ 0.04008 \\ 0.05760 \\ 0.06224 \\ 0.06010 \\ 0.05491 \\ 0.04274 \\ 0.03400 \\ \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.0008 \\ 0.00080 \\ 0.00545 \\ 0.02270 \\ 0.09601 \\ 0.17038 \\ 0.21602 \\ 0.23461 \\ 0.23493 \\ 0.20662 \\ 0.17416 \end{array}$	0.00001 0.00001 0.00001 0.00001 0.00001
300 350 400 450 500 600 700 800 900 1000 1250 1500 1750	$\begin{array}{c} 0.00446\\ 0.01729\\ 0.04327\\ 0.07851\\ 0.10991\\ 0.12520\\ 0.11818\\ 0.09954\\ 0.08401\\ 0.07178\\ 0.06198\\ 0.04481\\ 0.03351\\ 0.02591 \end{array}$	0.00002 0.00034 0.00228 0.00885 0.02398 0.04587 0.06542 0.07634 0.06848 0.05901 0.05101 0.04462 0.03340 0.02604 0.02080	$\begin{matrix}\\ 0.00003\\ 0.00027\\ 0.00161\\ 0.00643\\ 0.01727\\ 0.03209\\ 0.04964\\ 0.04930\\ 0.04964\\ 0.04930\\ 0.04362\\ 0.03800\\ 0.03310\\ 0.02456\\ 0.01891\\ 0.01500 \end{matrix}$	$\begin{array}{c} \hline \\ 0.00004 \\ 0.00039 \\ 0.00208 \\ 0.00754 \\ 0.01792 \\ 0.03722 \\ 0.04246 \\ 0.04015 \\ 0.03592 \\ 0.03181 \\ 0.02407 \\ 0.01884 \\ 0.01517 \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.00079 \\ 0.00401 \\ 0.01303 \\ 0.04008 \\ 0.05760 \\ 0.06224 \\ 0.06010 \\ 0.05491 \\ 0.04274 \\ 0.03400 \\ 0.02770 \\ \end{array}$	$\begin{array}{c} \hline \\ 0.00001 \\ 0.0008 \\ 0.00080 \\ 0.00545 \\ 0.02270 \\ 0.09601 \\ 0.17038 \\ 0.21602 \\ 0.23461 \\ 0.23493 \\ 0.20662 \\ 0.17416 \\ 0.14617 \end{array}$	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002

Atmosphere 2 (Well-mixed atmosphere)

Table B.10. The X-ray efficiency $([cm^2sec]^{-1}[keV/u]^{-1})$ of outgoing photons as a function of initial ion energy including opacity effects. Viewing angles of 80° and 90° are displayed for atmosphere 2. The efficiency shown here is that solely from direct excitation collisions for sulfur.

Energy		runospiie		80°	iosphere)		
[keV/u]	S^{8+}	S ⁹⁺	S^{10+}	S ¹¹⁺	S^{12+}	S^{13+}	S^{14+}
125							
150	0.00003						
175	0.00012						
200	0.00055	0.00002				<u>-</u>	<u>-</u>
250	0.00409	0.00033	0.00003	<u>-</u>		<u>-</u>	<u>-</u>
300	0.01540	0.00215	0.00026	0.00004	0.00001	0.00001	<u>-</u>
350	0.03736	0.00823	0.00151	0.00037	0.00009	0.00008	<u>-</u>
400	0.06542	0.02194	0.00594	0.00197	0.00076	0.00078	<u>-</u>
450	0.08778	0.04118	0.01573	0.00708	0.00384	0.00529	
500	0.09491	0.05733	0.02874	0.01666	0.01242	0.02197	
600	0.07866	0.06250	0.04193	0.03330	0.03726	0.09138	
700	0.05722	0.05122	0.03823	0.03585	0.05161	0.15840	
800	0.04149	0.03987	0.03044	0.03138	0.05297	0.19449	0.00001
900	0.03047	0.03094	0.02359	0.02560	0.04793	0.20287	0.00001
1000	0.02265	0.02424	0.01820	0.02051	0.04058	0.19366	0.00001
1250	0.01161	0.01385	0.01001	0.01203	0.02560	0.14807	0.00001
1500	0.00648	0.00838	0.00588	0.00736	0.01646	0.10687	0.00001
1750	0.00398	0.00532	0.00366	0.00475	0.01092	0.07632	0.00001
2000	0.00260	0.00351	0.00238	0.00317	0.00740	0.05453	0.00001
Energy		1	I	90°	1	1	
$[\mathrm{keV/u}]$	S^{8+}	S^{9+}	S^{10+}	S^{11+}	S^{12+}	S^{13+}	S^{14+}
125	<u>-</u>	<u>-</u>		<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>
150	0.00002						
175	0.00010						
200	0.00041	0.00002					
250	0.00278	0.00026	0.00002				
300	0.00938	0.00160	0.00020	0.00003	0.00001		
350	0.02037	0.00575	0.00109	0.00029	0.00008	0.00007	
400	0.03168	0.01429	0.00409	0.00150	0.00063	0.00068	
450	0.03694	0.02459	0.01017	0.00518	0.00306	0.00452	
500	0.03333	0.03053	0.01721	0.01155	0.00963	0.01838	
600	0.01713	0.02370	0.01902	0.01879	0.02510	0.06918	
700	0.00752	0.01209	0.01157	0.01476	0.02803	0.10348	
800	0.00386	0.00581	0.00583	0.00853	0.02127	0.10372	0.00001
900	0.00240	0.00313	0.00308	0.00447	0.01331	0.08419	0.00001
1000	0.00168	0.00199	0.00184	0.00243	0.00747	0.06045	0.00001
1250	0.00096	0.00099	0.00086	0.00098	0.00226	0.02403	0.00001
1500	0.00066	0.00064	0.00058	0.00060	0.00108	0.01076	0.00001
1750	0.00051	0.00047	0.00042	0.00045	0.00068	0.00539	0.00001
2000	0.00042	0.00037	0.00033	0.00037	0.00047	0.00302	0.00001

Atmosphere 2 (Well-mixed atmosphere)

⁸⁷⁰ C Discussion on Data Usage

In the appendix we have provided as much of the derived data as possible (the oxygen collision data made violable by Schultz et al. (2019)) with the goal that anyone can use it to estimate their own X-ray flux as long as they have access to an initial JEDI spectrum. Here we want to layout as clearly as possible how to take an ion flux and produce an X-ray power.

1. The first, and arguably most difficult, part is converting the JEDI energy spec-876 trogram into a usable ion flux. To be done accurately, this requires knowing the 877 width of each energy bin on JEDI at the time of measurement. We have included 878 the energy bin widths in Table C.1 that correspond to the data in Figure 4. It is 879 likely the energies bins will be changed and resized, if they have not already. 880 2. Once the bin widths are known, one can convert the intensity from counts/steradian/cm²/s/keV 881 to counts/cm²/sec by multiplying each flux intensity by 2π and the correspond-882 ing energy bin width. A second thing to consider is that the first three energy bins 883 cannot distinguish between oxygen and sulfur ions. In this study we used an O:S 884 ratio of 2:1 to separate the flux in the first three energy bins, motivated by the 885 likely source of SO_2 from Io's volcanoes. A different ratio can be used, but those 886 low energies will not affect X-ray production, anyway. 887 3. Once an intensity of $counts/cm^2/s$ vs. ion energy (in keV/u, not total energy) is 888 obtained, one can multiply the intensity by the ion energy (keV/u) and the X-ray 889 efficiency for each charge state of the ion species at a given ion energy in Appendix 890 A or B. To account for all X-rays, charge exchange and direct excitation need to 891 be considered, in which case the X-ray efficiencies can be summed together. This 892 will result in the number of photons/cm²/s produced by each ion charge state and 893 species. 4. Summing the photon production rate for each charge state together will give the 895 total X-ray production rate for a given JEDI pass. 896 5. Multiplying the photon production rate by the average photon energy, 1.6×10^{-19} 897 J/eV, $10^6 \ \mu W/W$, and $10^4 \ cm^2/m^2$ will yield the power in $\mu W/m^2$. In general, 898 the average photon energy is likely between 500-600 eV. If sulfur emission is higher than oxygen, then 500 eV is more accurate and if oxygen emission is greater, the 900 average photon energy probably tends closer to 600 eV. 901

As an example, for the JEDI oxygen measurement discussed in this text, the total photon production and power is calculated at each step in Table C.1.

The total X-ray production shown in Table C.1 is only about 7% percent higher than what is shown in Figure 12, where the power flux was found by integrating over every photon energy. This exact same process can be used for sulfur, but in this example sulfur emission is much less than oxygen.

		Oxygen		
Energy	JEDI Flux*	Energy Bin	Intensity	Energy
$[\mathrm{keV}]$	$[c/str/cm^2/s/keV]$	Width [keV]	$[c/cm^2/s]$	[keV/u]
171	249.9	66	103631	11
240	339.7	71	151542	15
324	279.0	105	184066	20
477	219.8	216	298306	30
746	89.50	346	194571	47
956	43.61	251	68776	60
1240	22.56	300	42525	78
1930	8.687	880	48032	121
3490	3.018	2280	43235	218
7300	0.914	5340	30667	456
Energy	X-Ray Efficiency [†]	X-ray Production		
[keV/u]	$[\rm cm^2 sec]^{-1} [\rm keV/u]^{-1}$	$\rm photons/cm^2/s$		
L / J				
11	0.0000	0.000		
	0.0000 0.0000	0.000 0.000		
	$\begin{array}{c} 0.0000 \\ 0.0000 \\ 0.0000 \end{array}$	0.000 0.000 0.000		
	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000 \end{array}$	0.000 0.000 0.000 0.000		
	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000		
$ \begin{array}{c} 11 \\ 15 \\ 20 \\ 30 \\ 47 \\ 60 \end{array} $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$		
$ \begin{array}{c} 11\\ 15\\ 20\\ 30\\ 47\\ 60\\ 78\\ \end{array} $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$		
$ \begin{array}{c} 11\\ 15\\ 20\\ 30\\ 47\\ 60\\ 78\\ 121 \end{array} $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.74 \mathrm{x} 10^3 \end{array}$		
$ \begin{array}{c} 11\\ 15\\ 20\\ 30\\ 47\\ 60\\ 78\\ 121\\ 218\\ \end{array} $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.0246\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.74 \mathrm{x} 10^{3}\\ 2.32 \mathrm{x} 10^{5} \end{array}$		
$ \begin{array}{c} 11\\ 15\\ 20\\ 30\\ 47\\ 60\\ 78\\ 121\\ 218\\ 456\\ \end{array} $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0003\\ 0.0246\\ 0.2951 \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.74 \mathrm{x} 10^{3}\\ 2.32 \mathrm{x} 10^{5}\\ 4.13 \mathrm{x} 10^{6} \end{array}$		

Table C.1. Example of calculating X-ray production rates associated with JEDI oxygen ionflux measurements.

 \ast These are the same flux measurements as those shown in Figure 4.

[†] X-ray efficiency values in Appendix A or B. These values are the sum of O^{6+} and O^{7+} from both charge exchange and direct excitation for an exit angle of 80° in atmosphere 1.