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Blind Measurement of Receiver System Noise
Daniel G. Kuester, Adam Wunderlich, Duncan A. McGillivray, Dazhen Gu, and Audrey K. Puls

Abstract—Tightly-packaged receivers pose a challenge for
noise measurements. Their only outputs are often diagnostic or
benchmark information — “user data” that result from unknown
processing. These include data rate test results, signal-to-noise
ratio estimated by the receiver, etc. Some of these are important
gauges of communication viability that may be enshrined in
performance and conformance specifications. Engineers can esti-
mate these parameters based on standards and simplified system
models, but there are few means to validate against physical
measurements.

We propose here a set of measurement techniques to com-
plement and support models of system noise. The approach is
founded on a semi-parametric model of the noise response of
a full-stack receiver. We probe this response experimentally by
systematically perturbing signal and excess noise levels at the
receiver input. The resulting technique is blind to protocol and
implementation details. We introduce the design and implemen-
tation of some novel test capabilities required for these tests: a
precision programmable excess noise source, and a highly direc-
tive programmable attenuator. We also introduce a regression
procedure to estimate system noise (or noise figure) from the
controlled input conditions and summary statistics of the user
data output. We also estimate uncertainty in the measurement
by combining traditional methods with a Monte Carlo method
that propagates random errors through the regression.

Case studies demonstrate the measurement with consumer
wireless networking and geolocation equipment. These include
verification by repeatability testing and cross-comparison against
Y -factor measurements.

I. INTRODUCTION

DEMAND for wireless spectrum has led to an increasing
number of shared and tightly-adjacent spectrum allo-

cations. New transmissions in these contexts, in aggregate,
increase the risk of undesired noise in receivers. Yet measuring
this impact has become particularly difficult, because wireless
manufacturers have tended to sacrifice receive test ports to
reduce size, weight, and cost. Thus, while system noise is now
especially important, insights based in physical measurements
are often out of reach.

The simplified receive system of Fig. 1 illustrates this
conundrum in the context of a benchtop noise measurement.
First, there is no analog or digitized waveform output here,
because the system has bridged the radio frequency (RF) input
to some other processed information domain. Further, tightly-
integrated packaging prevents connections to intermediate
outputs. Packaged consumer products may also require bi-
directional communication to produce any output at all. It is
a shortcoming of modern metrology that any one of these
conditions make basic noise parameters unmeasurable.

Background and motivation: Accepted radio engineering
practices includes a variety of reductive approaches to noise
measurement and analysis. Designers combine various ap-
proaches that depend on practical measurement constraints
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Fig. 1. The only receiver output available from packaged wireless equipment
is usually heavily processed data, which is incompatible with test equipment.
Cascaded analysis is also impractical because the parameters NF and gain G
are unknown.

and the level of detail needed to meet a specification. A
typical start is the rule of thumb that a receiver’s noise
figure (NF) should be only slightly greater than that of its
front-end low-noise amplifier (LNA) [1, p. 495]. The Friis
equation [2] adds the NF and gain of each cascaded stage
in the front-end shown by Fig. 1. The model parameters are
measurable with the Y -factor technique [3], [4]. More intricate
models and measurements also account for wave parameters
of signals and noise [5], as well as semiconductor device
characteristics [6]. Unfortunately, the receiver “black box” of
Fig. 1 leaves these parameters unknown and inaccessible for
measurement. Systems models and third-party testers must
then make guesses or assumptions to characterize the receive
system as a whole.

Communication industry test standards attempt to circum-
vent the missing noise measurement by testing sensitivity
instead [7], [8] — the input signal power threshold that
provides a minimum level of system operation. The goals here
are to support both performance comparison between receivers
and link budget analyses. Only interoperable receivers can be
compared directly this way, however, because the choice of
link threshold is (i) specific to the receiver function and pro-
tocol, and (ii) depends on signal and protocol characteristics.
Application to link budgeting is also limited, because the test
conditions need to match the interference environment [9].

A noise measurement technique that is blind to the receiver
implementation has many potential applications, such as:

i) Characterization for link optimization: A designer, cus-
tomer, or third party could test a receiver for link bud-
geting or to confirm specification compliance.

ii) Spectrum sharing and coexistence analysis: Spectrum
policy stakeholders face pressure to quantify coexistence
performance between entrants and incumbents [10], [11].
These assessments require detailed signal-to-interference-
plus-noise ratio (SINR) link models for data rate [12],
[13] or radar detection probability [14]. Large tests have
been undertaken in support of this work, including some
by the authors (e.g., [15]–[20]), but have lacked the noise
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Fig. 2. The test space, which bridges the physical RF (left) and user data
(right) domains.

component of SINR [21].
We elaborated the need for noise measurement data for inter-
ference testing in [21] through analysis of the coexistence test
campaign in [20]. This led to our initial concept [22] for blind
noise measurements.

Proposed Measurement: A test setup that accepts the “user
data” outputs of Fig. 1 is shown by Fig. 2. The device on
the left is a transmitter or transceiver that excites user data
output from the device under test (DUT); the device can be
a test instrument or even consumer wireless equipment. The
measurement system attenuates this signal and adds excess
thermal noise at calibrated, programmable levels. The attenua-
tion may be directional in order to support tests of transceivers
during bi-directional or full-duplex communication. We sam-
ple these inputs jointly at carefully chosen levels, and record
the perturbed user data at the output. These user data, like the
examples in Fig. 1, should be expected to respond as a function
of input carrier-to-noise ratio (CNR) plus random variability;
we verify this assumption post-hoc with the test data.

We propose a statistical regression technique to compute
a measurement value from the test data. A minimum-error
estimator identifies the measurand that aligns the user data
as a function of CNR. To estimate measurement uncertainty, a
Monte Carlo simulation repeats the regression on test data that
is perturbed by (i) the variability in user data and (ii) physical
models for uncertainty in signal and noise.

New work was necessary on several fronts to realize this
new measurement:

i) a formal definition of “user data” as a system output,
ii) new sampling techniques to reduce the number of re-

quired samples,
iii) a new non-parametric method to estimate the measurand,
iv) a Monte Carlo simulation approach to propagate uncer-

tainties from variability in user data through the regres-
sion into the measurand,

v) methods to assess whether the user data is CNR-
dependent,

vi) a topology design and calibration method for the test
system that implements the measurements, and

vii) a design for a highly-directive, programmable attenuation
test system supporting live bi-directional links and a
transceiver DUT.

We detail these contributions in this article, and frame their
role in the measurement. As examples, we also present case
studies of measurement applications to a consumer wireless
local-area network (WLAN) client (Section V) and a global
positioning system (GPS) L1 receiver (Section VI). Some
additional discussion is also given to a WLAN access point
(AP) in Appendix A.

TABLE I
RECEIVER RESPONSE PARAMETER LISTING

B Noise integration bandwidth
C Carrier power available to the receiver input

CNR Carrier-to-noise ratio, in dB
E Excess noise power injected into the receiver
f User data response function

kB 1.38 . . .× 10−23 J/K
N Physical noise power integrated across bandwidth B

N |in System noise power of a receiver or front-end
NF Noise figure of a receive system or front-end
T Noise temperature
T0 Reference noise temperature (conventionally 290 K)
T1 Minimum noise temperature of the measurement system
y User data output from the receiver
εy Random variable that encapsulates user data variability

II. MODEL OF RECEIVER NOISE RESPONSE

The measurand is receive system noise (N |in) or noise figure
(NF). These quantify the input-referred1 noise performance
of a DUT with an input termination at specified noise tem-
perature. The input parameter space in experiments is CNR,
which is determined by (i) incident signal power C and
incident excess noise E, together and (ii) the measurand.
These parameters are not new, but we review them for the
present context. Finally, with these in mind, we give a simple
stochastic functional model for the relationship between the
input CNR and output user data.

A. Measurand Parameters

The canonical input noise level parameters in microwave
networks are noise temperature T (in Kelvin), noise power N
(integrated across noise bandwidth B), and NF [1]. Noise mea-
surements are fundamentally traceable to physical temperature,
and so naturally connected with T [29], but expression with
N is convenient for comparison against signal power. These
parameters are related through frequency-dependent power
spectral density N0(f) as

N =

∫ fH

fL

N0(f) df ≈ kBTB, (1)

with B = fH − fL. The approximation is effectively exact
except at very high frequency or cryogenic physical temper-
ature [30]. Our convention here is to imply our use of this
approximation when we use T . The frequency indicated with
units implies B — for example, 0 dBm/10 MHz to suggest
B = 107 Hz. The bounds for the integration in frequency (or
averaging in time) need to be defined clearly because they
vary by application.

B. Noise in of a Receiver Front-End

Consider the 2-port receive front-end in Fig. 1. At its input,
there are signal and noise waves incident with available power
C and kBT1, respectively. The available power output by the
front-end has signal component Cout and noise component
1Also known as “equivalent input noise” in some acoustics and electromag-
netic compatibility literature [23]–[25] and similar to the more qualitative
“noise-equivalent power” in use by radio astronomy and optical detection
[26]–[28].
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Nout. The sensitivity of a receive system built with this front-
end is limited by Cout/Nout.

When we consider the assembled receive system of Fig. 1,
this output is inaccessible. This motivates the use of input-
referred system noise, N |in, which relates Cout/Nout back to
the front-end input as

C

N |in
=
Cout

Nout
. (2)

The front-end adds new noise, so N |in > kBT1B. The NF
quantifies the resulting decrease in output CNR under the
condition that input temperature is equal to the reference
(T1 → T0). Thus,

NF = 10 log10

(
C

kBT0B

)
(
Cout

Nout

) = 10 log10

N |in
kBT0B

, (3)

from (1) and (2), and matching [2]. The NF can therefore be
understood as an alternate form of N |in, expressed here in
dB to follow modern convention. An expanded calculation for
physical measurements at input temperature T1 is given by
Appendix C.

C. Equivalent Thermal Noise Power

The model (1) idealizes the added noise as additive
and white. Yet, a realistic receive system is complicated
by response to other factors like electromagnetic interfer-
ence (EMI), state machines with hidden variables, and non-
deterministic execution. We assume that these random pro-
cesses, together, comprise an equivalent level of additive (but
not necessarily white) noise2.

Under this assumption, the following thought experiments
are equivalent:

i) Suppose that we replace the input source and receiver
electronics with noiseless copies. In this case, adding N |in
at the receiver input reproduces the behavior of the actual
receive system.

ii) Injecting noise into the receiver equal to N |in doubles the
noise floor, reducing CNR by 3 dB.

It is therefore equally valid to think either in terms of the
indirect noise response as (i) or the physical input noise levels
in (ii).

D. Input Parameter Space

In order to probe this CNR space, we add a new degree
of freedom: excess available noise, with total power E in the
same band as N |in. This noise is injected at the receiver input,
and is uncorrelated with the input-referred noise of N |in. The
total CNR under these conditions is

CNR = 10 log10

(
C

N |in + E

)
. (4)

2Components of this discrepancy that vary with CNR are randomized in
Monte Carlo uncertainty simulations (Section III-F) and included in the esti-
mated uncertainty result. A verification technique like the cross-comparison
in Appendix E identify some definitional and systematic errors.

We adopt the convention for this work of expressing and
computing CNR in dB. The reference condition for impedance
in each power quantity is available power (following the
definitions of noise figure).

The experiments that follow will sweep attenuation on C
and E to probe the CNR input space. These do not leave us
any means to separate undesired components of the transmitter
output (noise, phase noise, distortion, etc.), so we leave them
as components of the signal power, C.

E. User Data and its Response Function

We adopt a simple non-parametric model to represent the
transformation of input CNR to processed receiver output
(“user data”). Each output sample, y, is assumed to respond
as a function of CNR plus random variability,

y = f (CNR) + εy, (5)

across a range of CNR. The response function, f , is specific
to type of output from the receive system. It characterizes
the averaged transformation from the physical CNR domain
into the user data output domain. Its argument, from (4),
is in dB units3. The random variable εy , with unknown
distribution, represents random variability in the user data.
This variability encapsulates non-deterministic processes in the
link and receiver, such as noisy self-estimates of CNR, impacts
of noise on state transitions, and unknown impacts of memory
from previous CNR conditions.

III. MEASUREMENT METHOD

The idea behind the experiment is to perturb a DUT at
different calibrated levels of both signal and excess noise,
and sample the resulting user data output. A new statistical
regression technique estimates both the DUT system noise
measurement value, as well as its uncertainty interval.

Each sampling point is a pair of power levels, (C,E),
that produces a resulting sample of user data output, y. An
experiment comprises two sets of My sampling points:

i) yE=0 – excess noise disabled:
These output samples are acquired with input sampling
that varies C with no excess noise. Since N |in is the only
noise in CNR here, the trend in yE=0 against C traces
the user data response function, f(CNR). We therefore
use these data to compute a user data response function
estimate, f̂E=0(CNR).

ii) yE>0 – excess noise enabled:
These samples result from jointly varying both C and
E. The resulting user data response function estimate,
f̂E>0(CNR), depends on noise as N |in + E.

The regression that we introduce below hinges on perturbing
the CNR for the E = 0 data differently than that of E > 0.
We developed a new approach to selecting the input sampling
points, which is detailed by Section III-B. Each yE=0 or
yE>0 sample is an average of (and corresponding estimate
3This transformation follows link modeling convention, and makes the mag-
nitude of the uncertainty sensitivity coefficient equal to one, as shown in
Appendix D.
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of variability in) the steady-state window of an Ms-point time
series, which is described in Section III-C.

The regression process seeks the measurement value (N |in)
that transforms the CNR to align the function estimates
f̂E=0(CNR) and f̂E>0(CNR). We approach this as an iter-
ative optimization. The optimizer iterates searches trial levels
of noise (Nt) for the minimum integrated residual error
|f̂E=0(CNR)−f̂E>0(CNR)|2 as

1: Rmin ← unset
2: while optimizer.not_converged() do
3: Nt ← optimizer.next()
4: CNRt ← 10 log10[C/(E +Nt)]
5: f̂E=0(CNRt)← estimate on yE=0, CNRt Sec. III-D
6: f̂E>0(CNRt)← estimate on yE>0, CNRt Sec. III-D
7: R2 ←

∫
(f̂E=0 − f̂E>0)2 dCNR Sec. III-E

8: if Rmin is unset or R < Rmin then
9: N |in ← Nt

10: Rmin ← R
11: end if
12: optimizer.update (Nt, R)
13: end while
The optimizer is unspecified here for generality. For the
examples in this paper, we use brute force optimization,
presuming that the regression is computationally inexpensive.
The trial CNR, CNRt, is determined by Nt and the calibrated
input levels with (4). The computation to estimate f̂E=0 and
f̂E>0 applies a Gaussian kernel to the y data and CNRt.
The minimum value of the regression residual R, which
characterizes the disagreement between these estimates, points
to the measurement value result. Last, the Monte Carlo sim-
ulation of Section III-F gives an estimate of the measurement
uncertainty by perturbing the above process with physical error
distributions and user data variability.

Measurement hardware implementation is left to Section IV,
and examples of application-specific details are given in the
subsequent case study examples. The computations that follow
are performed in linear power and attenuation (i.e., dB are only
converted after all computations are complete), except CNR,
which is in dB following (4).

A. User Data Selection

A receiver is likely to support many different user data
outputs, but we select one to perform the regression. It is
acceptable at this stage to simply guess that it responds as a
function of CNR as defined in (5); this is validated later with
the processed data (Section II-E). Suitable user data candidates
could include

• benchmarking data determined by test software, such as
data rate, network latency, or positioning accuracy; or,

• receiver self-diagnostic information such as self-
estimated CNR, C/N0, or bit error rate.

When possible, memory depth of user data processing in the
DUT should be minimized to reduce correlation between time
series samples.

B. Input Sample Selection and Sequencing

The selection of input power levels that comprise the input
sampling pair (C,E) needs to be approached very carefully.
Since the test centers on comparison between estimated user
data responses (f̂E=0 and fE>0(CNR)) over CNR, the sam-
pling points should approximate the same number and values
of CNR for both E = 0 and E > 0. Close agreement in the
achieved CNR for these sample points can help to reduce or
eliminate biases in estimating f̂ (and their propagation to the
final N |in). A useful secondary goal in the sampling point
selection is to maximize the statistical power of the regression,
in order to reduce test time or measurement uncertainty.

The sequence order of the input samples is also important,
because a DUT may hold residual memory from prior input
samples. This may create undesired correlation between sam-
ples of y, biasing f̂ estimates and the resulting measurement
value N |in. To mitigate this memory effect, we randomize the
sequence of input samples in the experimental acquisition.

Input samples for E = 0: Ideally, the vector of sampling
points would exactly duplicate the input CNRs of the E > 0
samples. This is impossible, because the input CNR depends
on the unknown N |in. This leaves us with a bootstrapping
problem, which we resolve with an initial guess. We param-
eterize the set of E = 0 sample points for this approach as
follows:

• Ng: initial guess for the measurement result;
• min(CNRg),max(CNRg): goal for the bounds on the

achieved input CNR; and,
• My: the number of sampling points.

The Ng guess could come from a datasheet specification, if
available, or a few dB above kBT0B. The CNRg bounds
should be chosen with the goal of producing a strongly CNR-
responsive range of yE=0. This domain could be gauged from
a datasheet or protocol specification, or exploring experimen-
tally. We have observed the best results for My on the order
of several tens or more.

The following algorithm generates the My input sample
pairs (C[k], E[k]) from the above E = 0 sampling param-
eters:

1: span← max(CNRg)−min(CNRg)
2: for k ← 1 . . .My do
3: CNRg[k]← min(CNRg) + (k/My)× span
4: C[k]← Ng × 10CNRg [k]/10

5: E[k]← 0
6: end for

The C calculation here comes from (4).
Input samples for E > 0: Because sampling with E > 0

opens a new degree of freedom, we also add another pair of
constraining parameters:

• min(ENRg),max(ENRg): bounds on sample values for
the excess noise ratio (ENR), 10 log10(E/Ng), (in dB).

A reasonable value for the minimum is 0 dB, so that at least
half of each E+N |in is excess noise. The maximum should be
the lesser of (i) measurement hardware output limitations and
(ii) any known minimum threshold at which the DUT does
not respond with CNR.
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The following algorithm transforms ENR bounds and CNR
into (C,E):

1: span← max(ENRg)−min(ENRg)
2: for k = 1 to My do
3: ENRg[k]← min(ENRg) + (k/My)× span
4: E[My + k] = Ng10ENRg [k]/10

5: end for
6: shuffle(E[My . . . 2My])
7: for k = 1 to My do
8: C[My + k] = (Ng + E[My + k])10CNRg[k]/10

9: end for
This procedure completes the last My pairs of (C,E), for 2My

total samples. The E in these CNR values are spread uniformly
in dB. The extra shuffling step on the non-zero elements of E
decorrelates it from CNRg , mitigating bias from any behaviors
not captured by the response model in (5).

Sequencing: Some experimental errors are random variables
that vary both (i) slower than a single sampling point acqui-
sition and (ii) faster than the acquisition of 2My sampling
points. Examples in C and E could include temperature drifts
or time-dependent ambient noise in the laboratory. Sources
of error in y could include random residual state inside the
receiver from other recent samples.

We mitigate bias from these errors by randomizing the se-
quence of sampling points, a standard practice in experimental
design. The effect is to “average out” the resulting biases
[31]. Further, the slow-varying errors tend to transform into
uncorrelated random errors in yE=0 and yE>0, which we can
propagate into measurement uncertainty. We maximize this
benefit by randomizing all 2My sampling points, shuffling the
E = 0 and E > 0 sampling points together.

Comparison with prior efforts: Our previous experiments
[22] sampled on a regular grid in (C,E) as shown by Fig. 3a.
The grid edges shown are selected to ensure that sample points
at 20 dB CNR are achieved even at maximum ENR. The CNR
achieved here, shown on the right, is irregular. Sampling points
outside the CNR range of E = 0, 0 dB to 20 dB, must be
discarded, wasting testing time with useless data.

The new sampling method we propose to resolve this
problem is illustrated by Fig. 3b. Suppose that the guess Ng

is close to the measurement result, N |in, and that the receiver
requires a valid link CNR > 0 dB to output user data. In
this case, the CNR, based on the total noise N |in + E, is
distributed evenly across the intended range 0 dB to 20 dB.
The figure on the right demonstrates that the CNR maintains
a valid link matching the E = 0 domain (blue shaded region),
and a balanced distribution in CNR across the 20 dB range of
impacts from E.

C. Output Time-Series of User Data
We acquire Ms samples time series of user data at each

(C,E). From each of these time series, we estimate (i) a
central value y, which is the input for the estimate the user data
response function f(CNR)) (Section III-D), and (ii) the user
data variability, εy , for uncertainty simulations (Section III-F).

The y is computed only within the estimated steady-state
span of the time series. To reject initial transients in the time-
series, we apply the marginal standard error rule 5 (MSER-5)

CNR decrease from E (dB)|

|

Link margin < 0 dB

Valid domain for direct
E = 0 comparison 

(a) Sampling in prior work: equal spacing on (C,E) in dB
Valid domain for direct

E=0 comparison

CNR decrease from E (dB)|

|
Link margin < 0 dB

1

(b) Proposed sampling: uniform distribution on (CNR, CNR lost to noise)

Fig. 3. Examples of E > 0 input samples (CNRg 0 dB to 20 dB, ENRg

-3 dB to 23 dB, My = 100) generated (a) equispaced on C and E following
our prior work [22], and (b) with the proposed technique.

method, which was found to offer superior performance in a
comparison study [32]. This algorithm locates the first sample
in the time-series at which the standard deviation of batched
5-sample averages is minimized when the previous samples
are deleted, and requires Ms > 128 [33].

The steady-state window of data is the basis for the re-
maining statistics. The y estimate is the median average,
chosen to mitigate the effect of outliers. The εy estimate is the
estimated 95% confidence interval that captures the variability
in this median. For time series that include strong correlations,
classical estimators of confidence intervals for quantiles are
unsuitable, since they are designed for independent samples.
For this reason, we applied the averaged group quantile
method of Heidelberger and Lewis [34] that is designed for
quantile estimation from statistically dependent sequences.
This method is nonparametric (it makes no distributional
assumptions about the data).

The estimated confidence interval for the steady-state me-
dian captures variability only within the collected time series.
It does not capture errors that are constant during the time
series acquisition, such as initial DUT state at the begin-
ning of acquisition, temperature drift, attenuation errors, etc.
These factors are addressed in the uncertainty analysis of
Section III-F.

D. User Data Response Function Estimate

The regression relies on comparing the two sets of user data
responses that result from E = 0 and E > 0 at the same CNR.
Yet, the input sample points do not produce the same set of
CNR conditions for the E = 0 and E > 0 data partitions,
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TABLE II
ANALYSIS PARAMETER LISTING

f̂E=0 User data response function estimate from E = 0 data
f̂E>0 User data response function estimate from E > 0 data
MMC Number of Monte Carlo simulation runs
Nt Trial values of N |in selected by the optimizer
R Regression residual error at a trial Nt

Rmin Regression residual error at the measurand N |in
yE=0 y sampled without excess noise
yE>0 y sampled with excess noise

because N |in is unknown. Instead, we estimate continuous-
domain functions, f̂E=0(CNR) and f̂E>0(CNR), to support
direct comparison. The same estimation process needs to be
applied to each of yE=0 and yE>0 to minimize bias.

Since the unknown response function can take many forms,
we estimate the response function by non-parametric re-
gression. We use the locally-estimated scatterplot smoothing
(LOESS) technique [?], [35], [36] here, in its original im-
plementation [37]. It is designed to accommodate data with
exactly the response function given by (5).

The principal parameter in LOESS regression, “span,” sets
the degree of smoothing. It is expressed as a fraction of
the total span of the independent data (in this case, CNR),
typically in the range 0.25 to 0.5 [38]. We have tested “span”
values within this range on experimental data, but have not
observed meaningful impact on the measurement value or its
uncertainty; for consistency, we apply span 0.4. We scale this
slightly for E > 0 data, to ensure that the smoothing width
in dB units is the same as the E = 0 data. A more detailed
parameter selection study may be useful in the future when a
larger body of experimental data is available.

E. Noise Power Measurement Value Estimate
This is the computation that gives the measurement value,

N |in. For simplicity, we use a brute-force search method with
a resolution of 0.01 dB, though a study of other techniques
would be worthwhile. Other algorithms could be considered
in future work.

The optimization needs a cost function that quantifies
the fitness of trial values of the measurand. The user data
response function estimates f̂E=0(CNR) and f̂E>0(CNR)
estimate of the same underlying f of (5). The measurement
value N |in will, ideally, align the two estimated functions as
f̂E=0(CNR) ≈ f̂E>0(CNR). We therefore propose that the
cost function should be the residual error in this alignment,
evaluated numerically as:

R(Nt)
2 =

1

K

K∑
k=1

∆2
k(Nt). (6)

The sum should sample at least K > My points. The residual
at the kth CNR, ∆k, is

∆k(Nt) = f̂E=0(CNRk;Nt)− f̂E>0(CNRk;Nt). (7)

The semicolon notation means that the response functions need
to be re-estimated from the test data for each Nt. The CNR
values, in turn, are spread evenly in dB as

CNRk =

(
k

K

)
[min(CNR)−max(CNR)] . (8)

The min and max here indicate the extrema supported by both
estimates f̂E=0 and f̂E>0.

To mitigate the possibility of non-convex R and to acceler-
ate numerical evaluation, we recommend constraining the pa-
rameter search by (i) the physical lower bound N |in ≥ kBT1B,
and (ii) the interval defined by some minimum fraction (for
example, 0.5) of overlap between the CNR sampling in the
E > 0 and E = 0 sampling points.

F. Measurement Uncertainty

Uncertainty estimation is mature and well-understood in
total power and Y -factor noise measurements [4]. The physical
sources of error in these measurements (such as impedance
mismatch, connector repeatability, and detector linearity) are
related to the measurand through a measurement equation that
is closed-form and differentiable. This type of model suits the
classical law of propagation of uncertainty [39].

In contrast, the regression process that we have defined for
blind noise measurement is both nonlinear and nonparametric.
We therefore require a new approach to uncertainty analysis.
To make the problem tractable, we propose a hybrid method.
The idea is to propagate random errors through the estima-
tion procedure with Monte Carlo simulation. The resulting
uncertainty estimate, uMC, encapsulates random errors between
subsequent samples of y. We then show that the classical law
of propagation of uncertainty can be used to combine uMC
with the systematic uncertainties in C and E.

Random and definitional errors in the regression: Random
errors in the regression represent variability that arises between
different samples of user data. This uncertainty comprises
contributions from random variability in the user data, errors
introduced by the regression process, and physical errors that
vary between sampling points. Definitional errors represent
imperfection in aligning the user data response estimates with
the CNR response model.

Propagating uncertainty from these errors is complicated
by the transformations of the user data through the highly
non-linear regression process and the unknown processing
underlying the user data in the DUT. Purely analytical methods
are not straightforward, and possibly intractable. Ideally, a
data-driven approach should be nonparametric, but to our
knowledge, the problem of uncertainty estimation for non-
parametric regression has not been addressed in the present
context4.

We are left to use Monte Carlo simulation to estimate this
uncertainty component, uMC. It is computed by simulating (i)
random error sources in C and E, (ii) empirical variability in
the user data, and (iii) the order and sign of the disagreements
between E > 0 function estimate relative to E = 0 user data
(“cross-residuals”). Each Monte Carlo trial is implemented as
follows:

1: perturb C and E sample points with Gaussian errors (with
standard uncertainty estimated from variability as assessed
in Appendix C)

4The statistical literature calls this regression problem “errors in variables
regression,” where the errors in the controlled independent variable are of the
Berkson type [40].
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2: perturb each user data sample y with normally-distributed
errors scaled by (its 95% CI width)/(2× 1.96)

3: estimate N |in following Section III-E
4: compute a cross-residuals vector, f̂E=0(CNR)− yE>0

5: randomize the sign of each cross-residual
6: generate new perturbed yE>0 by adding random cross-

residual samples to f̂E=0

7: re-estimate N |in with perturbed yE>0 (Section III-E)
Steps 1-4 perturb the result with random errors in physical
inputs and user data outputs. Randomizing the structural
differences in errors between E = 0 and E > 0 (the “cross-
residuals”) in 5-7 helps to encapsulate the extent to which the
user data did not respond as a function of CNR.

The estimated 95% confidence interval (CI) bounds on N |in
are taken from the 2.5% and 97.5% quantiles of the empirical
distribution of Monte Carlo trials. We estimate the standard
uncertainty from the CI as uMC ≈ CI length/(2 · 1.96). This
assumes that the simulation results have Gaussian distribution,
which can be verified with large MMC. Variability in the
estimated uMC can be reduced by increasing the number of
sampling points.

The resulting uncertainty estimate is unavoidably looser
than one informed by a model for the process in the receiver
that generates user data. One reason is that the variability in
cross-residuals includes LOESS smoothing artifacts in f̂E=0,
even though this smoothing should not propagate as error in
N |in when applied to f̂E>0. Randomizing the sign of the
cross-residuals helps to ensure that the error is unbiased, but
broadens the uncertainty interval. As a result, this uncertainty
estimate should be considered conservative.

Systematic errors in the regression: Each power level C
and E was calibrated before the measurement data acquisition.
The calibration is a measurement of the offset value (in
dB) that corrects attenuation to physical output power at the
center frequency under test. The calibration measurements
themselves include errors; only some of these vary between
calibration measurements. The calibration technique detailed
in Appendix C applies constant offset corrections to each of
C and E. Because the same offset calibration (and calibration
error) applies at each input sampling point, we refer to these
calibration errors as systematic errors in the regression; these
are constant for all acquired data. This systematic regression
error, in turn, consists of random calibration errors and
systematic calibration errors.

Appendix D shows that a systematic regression error in E
(in dB) produces an error that propagates to N |in with equal
magnitude. This means that any component of uncertainty
in the calibration of E propagates into the measurand with
the same magnitude (both also in dB). The classical law of
propagation of uncertainty therefore applies with its usual
restrictions. For the uncertainty component corresponding with
each error source, the sensitivity coefficient propagates to the
measurand with the same value as for E [39], so analysis of
these error sources applies in the classical sense, just as in [4].

Errors in the calibration of C cause an constant shift along
the CNR (independent) axes in the user data. This changes the
input conditions of the receiver during test. If receiver response
in the new input domain is still CNR-dependent and produces

a) Transmitter or
b) Transceiver

Shielding

Programmable

a) Classical or
b) directional

Fixed RF

a) DUT Receiver or
b) DUT Transceiver

Fig. 4. Testbed topology for measurements noise figure of (a) a receiver
DUTs excited by a transceiver through a classical (reciprocal) attenuator, or
(b) a transceiver DUT excited by another transceiver through the directional
attenuator of Fig. 5.

the same user data variability, then calibration error in C has
no impact on N |in by the reasoning of Appendix D. Otherwise,
changes in variability contribute to the random errors in the
regression that are captured by Monte Carlo5 in uMC. .

Combined uncertainty: The combined standard uncertainty,
uc, is the root sum square (RSS) of uncertainties that originate
from the above (i) random errors in the regression, (ii) random
errors in the calibration of E, and (iii) systematic errors in the
calibration of E. Following [39], the expanded uncertainty to
95% confidence is U = 2uc.

This calculation presumes underlying errors are uncorre-
lated. This is reasonable for the calibration techniques given
by Appendix C, because the dominant errors originate in mea-
surements taken with different instruments that are calibrated
against different physical standards.

G. Assessing Dependence of User Data on CNR

The minimum value of the residual (7) — achieved during
optimization at the measurement value, N |in — gauges the
extent to which user data behaves as a function of CNR. It
is scaled in the arbitrary user data units, however, and we
also desire a unitless relative normalization to compare the
performance between different types of user data and DUTs.
For this purpose, we define the following relative residual:

R
2

=
1

K

K∑
k=1

[
∆k(N |in)

f̂E=0(CNRk;N |in)

]2
. (9)

The expression is evaluated at the final measurement result.
The user data “responds as a function of CNR” if R ≈ 0. A
relative residual that nears or exceeds 1, in contrast, suggests
that the user data behavior exhibits some other behavior,
or extremely high veriability in y. These large R tend to
correspond with large measurement uncertainty.

IV. LABORATORY IMPLEMENTATION

The basic measurement system topology is illustrated by
Fig. 4. The transmitter or transceiver on the left excites the
signal incident on the DUT. This signal’s center frequency
and bandwidth determine those of the DUT noise measurand.
The new use of the directional attenuator here extends testing
beyond [22] to support transceiver DUTs that share ports with
5Fixed shift in CNR caused by calibrations shifts the sampling range of
the acquired data slightly. This change in the test domain may change (i)
variability in the user data, which is captured by the random errors in the
regression, or (ii) power-dependent behaviors in the receiver, as characterized
by the relative residual discussed in Appendix E
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Fig. 5. Test schematic for a directional variable attenuator in tests of
transceiver DUTs following Fig. 4b.

transmission. This ensures that only the link incident toward
the DUT is tested, even for transceivers that are duplexed in
any of time, frequency, or coding. We have implemented this
test for receivers to 6 GHz with readily-available commercial
parts. We use programmable attenuator components that span
110 dB range and 0.25 dB resolution to accommodate the
wide range of tolerance for link loss in different DUTs. The
calibration of the attenuator settings is detailed in Appendix C.

Programmable excess noise: Sampling points with excess
noise require the test system to operate as a programmable-
ENR noise source.

Amplified noise diodes are readily available to consumers
and make a convenient excitation source for this application.
We purchased one specified at around 57 dB ENR to 10 GHz.
The minimum insertion loss between the source and the DUT
in Fig. 4 is determined by the attenuator and the coupler.
Our reference implementation with a 20 dB directional coupler
totals 27 dB to 29 dB loss near 6 GHz, leaving a programmable
ENR range on the order of 0 dB to 30 dB.

We disable noise output for E = 0 samples by setting
the noise path attenuation to its maximum (i.e., minimum
transmission) so that E � kBT1B. Network analyzer mea-
surements confirmed that this setting attenuated the output by
at least 100 dB, reducing E to at least 70 dB below thermal
noise. An attenuation range of 60 dB is enough to effectively
disable the programmable excess noise, biasing N |in + E by
less than 0.01 dB. We also observed no measurable difference
between the attenuator and a room-temperature termination
on a spectrum analyzer, confirming that the minimum excess
noise power is negligibly small.

It is important to ensure that the noise level is controlled
precisely, because uncertainties in the calibrated output prop-
agate to the measurement result. We recommend calibration
for the excess power level with the Dicke radiometer tech-
nique detailed in Appendix C. It is simple and yields lower
uncertainty than the power measurement method in our prior
work [22].

Programmable directional attenuation: Transceiver DUT
testing needs programmable directional attenuation. This per-
mits control over the signal power incident on the DUT
without impact to the signal transmit from the DUT, which
may be required for normal operation of the DUT.

(a)

Attenuator setting programmed for C (dB)

(b)

Fig. 6. Directional attenuation (a) benchtop implementation, and (b) measured
attenuation at 5.3 GHz. The data illustrates the design goal: flat reverse
attenuation and 1 dB attenuator setting per 1 dB forward attenuation.

We define directional attenuation by the following perfor-
mance goals:

i) Loss in the “forward” path (waves incident into port 1,
scattered from port 2 toward the DUT) is programmable.
Ideally, the realized forward attenuation (in dB) is con-
trolled exactly by attenuation in the forward attenuator
(in dB).

ii) Loss in the “reverse” path (waves incident from the
DUT into port 2, scattered out of port 1 toward the
test system) is fixed. Ideally, this is independent of the
forward attenuation.

Deviation from these ideals introduces a random error in the
input sampling points, and in turn the measurement uncer-
tainty. An automated measurement system needs at least a few
tens of dB of programmable range in forward attenuation; a
coarse adjustment can be made before test time with fixed
attenuators. Wideband operation is desirable to reduce the
number of directional attenuators that need to be implemented
and calibrated. To our knowledge, it has been some time since
the last published work on directional attenuation [41]. The
results of that work is not suited for our purposes here, because
forward attenuation tuning range was only 20 dB, achieved
fractional bandwidth was about 10%, and its rectangular
waveguide implementation is incompatible with most DUTs.

We developed a multi-stage coaxial directional attenuator
with expanded bandwidth and attenuation range for versatile
use in measurements. Its schematic is shown by Fig. 5. The
forward and reverse paths are split with two stages of cir-
culators. Forward waves propagate through the programmable
attenuator, and reverse waves are attenuated by the fixed 10 dB.
The remaining fixed pad attenuators help to maintain isolation
between the forward and reverse paths in case of reflections at
the junctions with the DUT (or its excitation). The indicated
use of double-junction circulators gives a similar benefit at the
junction between the constituent circulators.

A coaxial implementation for 4.4 GHz to 6 GHz is pictured
in Fig. 6a. The lower bandwidth limit is the pass-band of
an output filter, and the upper limit is the programmable
attenuator. The main practical constraint to improving the
bandwidth of this topology is the circulators, which are
available commercially up to about an octave. We calibrated
and characterized this directional attenuator as described in
Appendix C. Across the full bandwidth and 0 dB to 60 dB
attenuation settings, the forward attenuation error was 0.04 dB
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root mean square (RMS), and the reverse attenuation error was
0.02 dB RMS. These are the standard uncertainties in the C
and E input sampling points, respectively.

Shielding: Shielding each block from the electromagnetic
environment mitigates ambient noise and interference. Un-
shielded noise and interference adds to N |in, biasing the
measurement. We used enclosures with shielding effectiveness
specified above 80 dB between hundreds of MHz to 6 GHz.
This shielding provides data pass-throughs for test automation
with filtered connectors.

Automation: These measurements need robust control and
data acquisition from the DUT. The 2×My×Ms (order of at
least 104) time series samples need to be acquired faithfully
and without crashing. This may be the greatest difficulty in
the experiment, because many devices are not designed to
facilitate this type of test. The automation needs to include
ongoing, aggressive validation at run-time in order to confirm
that the DUT is in the intended state, and command retries
when appropriate.

Fortunately, the list of basic functions needed for this type
of test is usually short. Many require only a subset of the
following:

• acquire: fetch a user data time series (or part of it)
• wait: pause testing until the DUT is ready
• reset: attempt to clear the receiver state and memory
• [dis]connect: for testing with stateful network con-

nections
Many DUTs act as black boxes that give little or no feedback
to acknowledge proper operation. The resulting uncertainty
about the state of the DUT may raise concerns about the
integrity of the measurement. Luckily, the body of test data is
itself useful for automation problem-solving and validation:

i) R ≈ 0 confirms the automation behavior by confirm-
ing that the control and outputs have produced CNR-
dependent response by DUT;

ii) noisy or intermittently missing y may suggest that control
over DUT state reset, [dis]connect, or wait are
inconsistent, and;

iii) constant y suggests that acquire does not give the
expected data.

Still, i) and ii) leave some ambiguity. Spurious outputs, or
user data response that is not a function of CNR, may be a
feature of the DUT that cannot be overcome externally. The
unavoidable result in these cases will be noisy or spurious user
data.

V. CASE STUDY ON A 5 GHZ WLAN CLIENT

Recent interest in coexistence between WLAN and LTE
license-assisted access (LTE-LAA) motivated us to test WLAN
equipment operating in the 5 GHz industrial, scientific, and
medical (ISM) band. Physical layer modeling in this problem
space typically hinges on the response of user data as a
function of SINR, for example in [12]. The receive node noise
performance is therefore one of the input parameters required
to determine this SINR.

Our first case study here demonstrates noise measurements
of a consumer WLAN client. The measurements that follow

TABLE III
WLAN COMMUNICATION LINK PARAMETERS

Communication standard IEEE 802.11a
Center frequency 5.3 GHz (channel 60)

Channel bandwidth and B 20 MHz
AP power output setting 11 dBm

Network protocol TCP/IP
TCP socket buffer size, Mbytes 8 kB

TABLE IV
WLAN EXPERIMENTAL PARAMETERS

Sampling points in each of E = 0 and E > 0 My 41
Time series samples per y Ms 1000
Monte Carlo simulations MMC 105

Test system ambient temperature T1 300.2 K
Sampling guess

of the client Ng -95 dBm/20 MHz
of the AP Ng -92 dBm/20 MHz
of the LNA Ng -99 dBm/20 MHz

CNR goal domain CNRg 10 dB to 20 dB
ENR goal domain ENRg 0 dB to 20 dB

do not access the front-end output of the DUT. Use of generic
data throughput tests as user data also means that no support
from the manufacturer was required, because we used no
special debug or diagnostic programming mode.

A case study on the AP device used to excite these tests
is given in Appendix A. The raw experimental data for both
tests are published in [42].

A. Equipment Under Study

The DUT is a consumer WLAN client, configured with the
communication link parameters listed in Table III. The noise
measurement frequency is determined by the excitation signal
from the AP, 5.3 GHz.

1) WLAN Client: We purchased a consumer WLAN client
with a coaxial RF connection. The test PC gave it data and
power by USB. We had no access to control or diagnostic
information over the DUT beyond the generic capability of
the networking drivers that were installed automatically by
the automation computer operating system..

2) WLAN Access Point: The WLAN access point was a
packaged consumer device that also functions as a network
router, manufactured by a different vendor than the client.
The network connection to the automation computer was
category 6 ethernet wired to a dedicated network interface,
specified at 1 Gbps by its manufacturer. Control over the
WLAN center frequency is in the configuration page of the
AP, accessed by web browser from the automation computer.
We set this before collecting any data, and changed no other
settings.

3) Verification LNA: This was a commercially-available
LNA with coaxial ports. We calibrated its gain and noise
figure as a reference at the WLAN center frequency with a
commercial Y -factor measurement, discussed in Appendix E.

B. Test Implementation

The automation computer operated the AP and client as
IPV4 network interfaces. The test runs entirely on the ap-
plication layer of the 802.11a protocol through the default
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operating system drivers. The automation computer connected
the sender and receiver into a single closed network. We bound
the transmission control protocol (TCP) socket connections
to the corresponding send and receive interfaces to ensure
that traffic passed was routed through the WLAN link. The
communication between the AP and the client DUT that we
used for testing here is therefore live bi-directional traffic.
Most of the data traffic was WLAN uplink (AP to client), but
lower layers of the 802.11 protocol here also send handshaking
and other overhead through the downlink. The parameters of
the experiment are listed in Table IV.

User data selection: The user data under test is median
estimated data rate, tested from the AP into the DUT with
TCP sockets. This “key performance indicator” is widely used
and frequently tested, and applicable in general to computer
networking equipment. The median statistic helps reduce the
variability of the result. The time series for each y rate
has Ms = 1000 samples, which are each estimated by
sending Mbytes pseudo-random bytes to the DUT. The data rate
estimate Mbytes/∆t, where ∆t is the time elapsed estimated
from processor clock ticks on the automation computer. This
type of timing estimate is suited for this application, because it
only needs to be CNR-dependent with low variability; absolute
accuracy is not required.

Data acquisition: We implemented Python scripts to auto-
mate the measurement, including and the client DUT. These
functions use the general-purpose WLAN drivers and TCP/IP
network implementations provided by the operating system in
the automation computer. We only use generic, open drivers
and software libraries in order to increase the likelihood that
these scripts can also support other WLAN client models and
vendors.

A fresh TCP/IP socket makes a new network connection
for each sampling point. Nagle’s algorithm [43] is disabled in
these sockets, reducing the use of TCP/IP memory buffers that
might span multiple measurement sample points.

The following automation loop acquired time series in each
sampling point:

1: attempt WLAN client reconnect
2: if WLAN client connected then
3: for Ms time series samples do
4: send Mbytes randomized data to the DUT
5: record data throughput rate
6: end for
7: disable traffic
8: disconnect WLAN client
9: end if

This applies to testing either WLAN client or AP DUTs.
Our automation control over the AP that interacts with the
DUT was the most limited, and we were unable to implement
reset. Each sampling point took about 10 s to 15 s, mostly
spent awaiting new connections in the DUT.

Experimental parameter selection: The Ng guess for input
sampling was determined by a coarse initial measurement.
The guess for the LNA input noise came from the Y -factor
characterization of the LNA. The goal range for CNR spans
a wide range of observable changes in data rate.

Relative residual = 0.014

(a) User data, estimated response functions, and E > 0 sample points

Rmin = 0.22

(b) N |in regression residual

0.5

1.0

1.5

2.0

(c) Random error simulations for uMC

Fig. 7. Data, regression, and simulation of uncertainty from random error in
the first WLAN client measurement.

C. Results and Discussion

The measured WLAN client system noise was (−96.08 ±
0.18) dBm/20 MHz, or, equivalently, (4.84 ± 0.18) dB noise
figure. The acquired data and regression analysis for this
measurement are shown by Fig. 7. Further repeatability and
Y -factor verification measurements are shown in Fig. 8.

Data and regression: Figure 7a shows the user data samples
and resulting response functions estimates. The data rate trends
upward with CNR, following changes in modulation scheme
at various thresholds in CNR. The CNR values along the
horizontal axis are calculated from the calibrated input signal
power C, the calibrated input excess noise power E, and the
measurement value N |in. The vertical axis shows user data.
The C and E sample points for E > 0 sampling points are
inset on the lower right.

The superimposed E = 0 and E > 0 curves give some intu-
ition for the alignment achieved by the regression. The relative
residual, 1.4%, quantifies this overlap. Random errors in the
underlying data seem to dominate the slight disagreement in
the collected data points. Yet, each response function estimate
shows clear over-smoothing relative to its underlying data.
This discrepancy between the data trend and the estimated
response functions increases the uncertainty due to random
error in the regression; this is captured in the measurement
uncertainty simulation (Section III-F).

We look for qualitative confidence in the robustness of the
regression process for this data by examining its intermediate
results. First, observe that the residual response with trial
measurand values, given by Fig. 7b, is locally convex. We
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TABLE V
NOISE MEASUREMENT UNCERTAINTY — WLAN CLIENT

Error Source ui Type
Random & definitional errors in the regression (uMC) 0.07 dB A
Excess noise attenuation at calibration 0.04 dB A
Connector repeatability 0.035 dB B
ENR of calibration noise diode 0.012 dB A
DUT to test system mismatch loss 0.012 dB A
Calibration reading variability 0.01 dB A
Calibration reading mismatch loss 0.01 dB A
Noise source temperature drift 0.01 dB B
Combined: uc = RSS(ui) = 0.09 dB Expanded: U = 2uc = 0.18 dB

therefore expect that small error perturbations should still
produce measurement values clustered around a central value.
This is borne out by the symmetric and single-modal shape of
the histogram of Monte Carlo results in Fig. 7c.

Measurement uncertainty: The uncertainty budget is listed
in Table V, which gives ±0.18 dB expanded uncertainty in
N |in to 95% confidence. The “Type A” uncertainties refer to
errors modeled through statistics, while “Type B” uncertain-
ties are estimated from datasheet information, following the
standardized metrology terminology [39].

The dominant uncertainty term is the random and defi-
nitional error, uMC, estimated by the Monte Carlo simula-
tion technique from Section III. The accounting procedure
according to the propagation of uncertainty method here is
appropriate here, because the trials are normally distributed
(Fig. 7c) [39].

The remaining terms arise from physical errors calibrating
E according Appendix C. This is the same type of analysis is
detailed in, e.g., [4]. The RSS of these uncertainty components,
uE = 0.06 dB, is the lower bound of the standard uncertainty
achievable through the acquisition and regression defined in
Section III. Thus, no changes to the experimental parameters
listed in Table IV can reduce the expanded uncertainty of the
measurement below 2uE = 0.12 dB.

Each sensitivity coefficient is 1, so the ith standard uncer-
tainty, ui, is akin to an estimated standard deviation of the
error. The distribution of errors underlying each uncertainty
term are assumed Gaussian.

Verification: Repeat measurements give insight into random
variability within the test method. A summary of 50 test runs
is shown by Fig. 8.

The repeated measurements help us validate the random
variability predicted by the Monte Carlo uncertainty simu-
lation. Each interval N |in±1.96uMC is shown together with
repeatability statistics in Fig. 8a. The shaded region indicates
estimated 95% variability interval on repeat measurements,
computed as ±1.96 times the sample standard deviation of
all measurement runs. The sample distribution of the repeat
measurements is given by the histogram in Fig. 8b. Its lacks
of dramatic outliers supports the assumption that uMC en-
capsulates Gaussian-distributed errors. The empirical standard
deviation in the N |in, 0.07 dB, is in this case equal to the
Monte Carlo prediction, uMC.

The regression residual ensemble (Fig. 8c) of these runs
still shows a clear trend of curves that still point to a small
cluster of minima near the measurement value. The estimated
response ensemble in Fig. 8d show tight, overlapping bands
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Fig. 8. WLAN client DUT measurement and analysis verification based on
50 repeat measurements and Y-factor measurements for cross-comparison.

for E = 0 (green) and E > 0 (orange) after alignment with
the measurement value. These steps in the regression process
seem robust to any imperfections in this underlying data.

To ensure proper accounting of any large systematic errors,
we performed cross-comparison against Y -factor measure-
ments. We measured a calibrated LNA cascaded with the DUT
input, following Appendix E, which gave the results in Fig. 8e.
The measured noise figures and corresponding uncertainty
intervals on the measured noise figures overlap. Most of
the uncertainty in the Y -factor measurements comes from
impedance mismatch and the noise diode characterization,
which are subsets of the uncertainties in the blind technique.
Thus, in general, the Y -factor measurements should produce
smaller uncertainties than our packaged device technique.
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TABLE VI
GPS SIGNAL EXCITATION PARAMETERS

Center frequency GPS L1, 1575.42 MHz
Satellites 11

Time July 4, 2016 01:35:18 – 01:38:18 UTC
Location N 31◦ 35.893636’, 110◦ 16.670841’ W

1352.3 m elevation
Signal codes L1 C/A, L1C pilot, Pseudo Y, M-code

WAAS 2 augmentation signals
Satellite mask 5◦ elevation

VI. CASE STUDY: GPS L1 RECEIVER

Thermal noise is thought to dominate the total noise in
global navigation satellite systems, so it receives close at-
tention in receiver design. Recent concern over potential
interference from cellular service proposed in adjacent bands
has motivated further interest in the GPS L1 band, specifically.
The application of interference test results requires ancillary
noise performance data as part of a GPS link model [21].
Receivers packaged with built-in LNAs need to be assessed
with a blind method like the one we proposed here.

We used noise measurements of a consumer off-the-shelf
(COTS) GPS L1 receiver given in [22] with a preliminary
version of the blind measurement. We reanalyze these data
here with the new blind technique. We have now also released
the data to the public [42].

A. Equipment Under Test

The DUT receiver was consumer equipment marketed for
prototyping integration of GPS L1 capabilities. Its front-end
was integrated with the rest of the electronics on a printed
circuit board, with no access to physical signal outputs, so
measurement was the only practical approach. The device
outputs a data stream that includes an estimate of carrier-
to-noise-density, C/N0, as well as position, time, and details
about the GPS satellite constellation.

B. Test Implementation

Measurements of the packaged GPS L1 receiver followed
the configuration and procedures of [20]. Table VI summarizes
the corresponding parameters of the GPS signal. This signal
was emulated by a GPS test instrument. The measurement
frequency of the blind noise measurement is determined by
the excitation, 1575.42 MHz, which is also the frequency at
which we calibrated attenuation and excess noise.

The original experiment differed from the techniques we
developed in this paper in key ways:

• The acquisition on E > 0 was a hand-tuned truncated
grid on (C,E) (in dB), instead of the procedure in
Section III-B,

• many more samples were acquired at E > 0 than E = 0,
• the source of excess noise was a vector signal generator

modulated with circular white noise,
• excess noise output E was calibrated against power and

attenuation instead of calibrated noise, and
• the reference LNA for verification was characterized with

a commercial noise diode based on ENR calibration data
provided by the vendor.

TABLE VII
NOISE MEASUREMENT UNCERTAINTY — GPS L1 RECEIVER

Error Source ui Type
Calibration of the spectrum analyzer reading 0.14 dB A
Impedance mismatch 0.11 dB B
Long term stability of the spectrum analyzer 0.10 dB B
Random & definitional errors in the regression (uMC) 0.07 dB A
Frequency response of the spectrum analyzer 0.05 dB B
Connection repeatability 0.05 dB A
Attenuation error at calibration 0.04 dB A
Combined: uc = RSS(ui) = 0.23 dB Expanded: U = 2uc = 0.45 dB

The regression and uncertainty techniques of our packaged
receiver measurement technique still apply to these data,
despite these differences.

User data selection and time series acquisition: The output
y under consideration here is the steady-state median of the
DUT’s self-estimate of carrier-to-noise-density, C/N0, which
was reduced to a scalar time-series by taking the median across
all visible satellites at each time point. The user data increased
almost monotonically across about 20 dB of input CNR.

As typical for this application, the self-estimated C/N0 in-
cluded phase noise [20, Appendix B], unlike the CNR defined
by (4). This discrepancy does not impact the analysis or result,
however, because the self-reported C/N0 still responds as a
function of CNR.

Experimental Parameters: The time-series of user data sam-
ples streamed at 20 samples/s for 180 s, producing a time series
with Ms = 3600 samples per sample in y. Sampling points
below the illustrated range of CNR resulted in uninterpretable
y outputs, so the user data response function estimate omits
these data.

We chose bounds on C and E by manually tuning the
attenuators to locate the domain that gave significant range
of variation in y. Without the benefit of the new sampling
techniques in Section III-B, we acquired many more sampling
points in yE>0 than yE=0. As discussed in Section III, these
extra samples did little to reduce uMC. The resulting difference
in the input resolution also poses an unknown risk of bias
in the response function estimates. Thus, to clarify plots and
reduce computation time, the reanalysis decimates the E > 0
data to the same number of sampling points as E = 0.

C. Results and discussion

The measured system noise of the GPS receiver was
(−169.55± 0.45) dBm/Hz. The corresponding noise figure is
(4.41± 0.45) dB.

Data and regression: Figure 9a overlays the user data and
estimated response functions with and without excess noise.
The CNR values shown are computed with the calibrated
input levels and the measurement result. The estimated 95%
confidence intervals on user data variability in each sampling
point are too slim to be visible. The user data point subsets
E = 0 and E > 0 also overlap too closely to separate by eye.
It is not surprising that the alignment is much better than that
of the WLAN data, with relative regression residual at 0.2%,
confirming the assumed dependence on CNR.

Measurement uncertainty: This experiment demonstrates
that the calibrations of physical noise may dominate the
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Fig. 9. GPS L1 receiver DUT user data, regression, and validation, plus
calibration of device-reported C/N0.

measurement uncertainty. Uncertainty sources are listed in
Table VII.

The calibration procedure here assumed flat frequency re-
sponse in the spectrum analyzer. The grouped uncertainties
that result, from [20, Table C.20], are dominated by this
frequency response. The minimum combined standard uncer-
tainty achievable with this test system is thus 0.22 dB. A
future test could reduce this uncertainty by following the more
accurate Dicke radiometer calibration of Appendix C.

The user data variability and the regression process, cap-
tured through Monte Carlo simulation in uMC, is negligibly
small compared to the physical calibration uncertainties. In a
future measurement, this uncertainty could be reduced dra-
matically with the improved noise calibration technique of
Appendix C.

Another application of these data is to calibrate the user

data C/N0 to a physical value at the input connector ref-
erence plane. We define the calibrated physical C/N0 equal
to the input CNR averaged over the L1 band allocation with
B = 1 Hz. The trend at low C/N0 is a fixed scaling factor
(losses, digitizer, manufacturing variability, etc.) relative to the
calibrated C/N0; the saturation of the user data at high C/N0

is a common symptom of phase noise. Fig. 9d shows the
calibrated and user C/N0 data together. At the lowest C/N0

levels, where phase noise contributions are small, the space
between the curves suggests an offset correction of +2.8 dB.
Adding this to the user data converts to the physical value
at the GPS receiver antenna connector. This number is then
suitable to use in a link budget.

Verification: The Y -factor cross-comparison measurement,
like the WLAN test, was a blind measurement of a calibrated
LNA in cascade with the DUT. This followed the same
procedure as in Appendix E.

The results of the cross-comparison against the Y -factor
method are shown by Fig. 9e. The calibration of excess
noise in this measurement was the same as in the bare DUT,
and includes the same shortcomings. The blind measurement
uncertainty here is therefore much larger than that of the
Y -factor validation measurement. Still, the 95% confidence
intervals overlap, validating the test method.

VII. CONCLUSION

We have proposed a blind method to measure the system
noise in receive systems. We believe it is the first general-
purpose technique for receivers and transceivers that output
unknown functions of CNR.

The measurement requires an automated system to inject
calibrated and programmable levels of signal attenuation and
excess noise. The calibration for these levels is performed
with typical laboratory measurement instruments, and could be
supplied for a measurement system by an external party. These
characteristics are frequency-dependent, but can otherwise be
re-used to support different applications, standards, and pro-
tocols. The test execution also requires automation functions
to acquire user data output; these could be implemented
to support a specific DUT, or a broader industry standard.
If a calibrated measurement transmitter is unavailable as a
signal source for the DUT, a power sensor is also needed to
characterize signal power incident on the DUT.

The case studies on consumer equipment achieved mea-
surement uncertainties on the order of tenths of a dB. The
WLAN client measurement result demonstrated that uncer-
tainty contributions may be reasonably balanced among the
traditional physical calibrations and new sources of regression
uncertainty. The GPS receiver measurements showed that
the regression technique can be sufficiently accurate that the
physical level measurements may dominate the uncertainty of
the measurement. An additional study on an WLAN AP, given
in Appendix A, shows an example of the expected increase in
estimated uncertainty that arises when the user data include
outliers.

Further development of the technique could streamline the
test execution automated selection of experimental parameters,
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study the regression performance with various different user
data response functions, and consider further improvements to
the robustness of the regression. Research could also consider
support for dependence of user data on total power instead of
CNR.

This basic test method opens new application opportunities.
First, a figure of merit like relative residual may be a useful
gauge for the effectiveness of automated control over a com-
munication receiver. Focused attention on user data response
functions may be useful on its own to develop metrology
for key performance indicators. The extension of the new
regression technique to over-the-air noise measurements could
also be a useful benefit for integrated receive antenna systems,
as in [22]. Application in the presence of interference may lead
to a technique for blind measurement of receiver interference
rejection, giving a more intuitive characterization of spectrum
sharing impacts on incumbent receivers.

APPENDIX A
CASE STUDY ON A WLAN ACCESS POINT

We used the test configuration of Section V to measure
the AP as the DUT. The changes needed for this test were to
swap the client and the AP radio connections, send benchmark
traffic to the AP instead of the client, and calibrate the signal
power C from the client instead of the AP. This case illustrates
the response of the regression procedure to a small number of
outliers in the user data.

A. Test Implementation

The measurement followed the procedure of Section V,
with an added 6 s delay to allow the DUT to adjust in each
input sampling point. A shortcoming of this type of state reset
approach is a lack of feedback that it has been effective at run-
time. We are left to assess this with the regression residual
after the test is complete.

The blind measurement result for the WLAN AP was
(−92.61 ± 0.32) dBm/20 MHz system noise, or, equivalently,
(8.30± 0.32) dB noise figure. The results are presented in the
same format here as for the client.

B. Results and Discussion

Data and regression: The AP DUT results draw attention
to the impact of outliers in user data, shown in Figure 10a
near CNR = 17 dB for E > 0. This distorts the E > 0
response estimate. The relative residual is 16%, indicating
looser alignment between E > 0 and E = 0 user data
compared to the WLAN client results.

The impact of the outliers is visible in Fig. 10b as a wider
spread in the minimum trough, which increases sensitivity to
errors in input power. As a result, the histogram of Monte
Carlo trials in Fig. 10c has greater spread than that of the
WLAN client. Still, the histogram is unimodal and symmetric,
so the outliers have not introduced unstable edge cases in the
regression calculations.

We believe the outliers in this test were caused by sending
data before the link was ready. This type of synchronization

Relative residual = 0.160

(a) N |in regression residual

Rmin = 0.67

(b) Cost function in N |in estimate

0.4

0.8

1.2

1.6

2.0

(c) Simulations of random errors

Fig. 10. Data, regression, and simulation of uncertainty from random error
in the first WLAN AP measurement.

TABLE VIII
NOISE MEASUREMENT UNCERTAINTY — WLAN AP

Error Source Uncertainty Type
Random & definitional errors in the regression (uMC) 0.15 dB A
Excess noise attenuation at calibration 0.04 dB A
Connector repeatability 0.035 dB B
ENR of calibration noise diode 0.012 dB A
DUT to test system mismatch loss 0.012 dB A
Calibration reading variability 0.01 dB A
Calibration reading mismatch loss 0.01 dB A
Noise source temperature drift 0.01 dB B

Combined (RSS): uc = 0.16 dB Expanded: U = 2uc = 0.32 dB

problem might be corrected by increasing the wait time before
acquisition or power cycling the AP between tests.

The uncertainty budget in Table VIII breaks down the
estimated expanded uncertainty, 0.32 dB. The dominant term,
uMC, made the uncertainty larger than that of the WLAN
client. The remaining physical terms are the same as for the
WLAN client, because the same calibration of E was still in
use. Improving our control over the communication test might
yield a total uncertainty approaching the minimum limit of
0.12 dB in expanded uncertainty.

Verification: Repeat measurements and Y -factor cross-
validation present another opportunity to understand the im-
pact of the user data outliers.

The outliers typically to appear in 1 to 2 random sampling
points (similar to Fig. 10a) per measurement. They propagate
into more variability in the measurement values and uMC
shown in Fig. 11a. The average uMC, 0.15 dB, is still close
to the sample standard deviation resulting from the repeat
measurement runs, 0.16 dB (Fig. 11b), which indicates that
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Fig. 11. WLAN AP DUT measurement and analysis verification based on
repeat measurements and Y-factor measurements for cross-comparison.

the Monte Carlo simulation tended to accurately characterize
the measurement variability.

The ensembles in Figs. 11c,d illustrate the outlier impacts in
more detail. Trends are still visible as clear bands, but some
curves deviate. The trend toward lower-valued errors in the
response function causes the slight shift in the minima of the
residuals (and therefore the measurement result). The Monte
Carlo simulations capture this effect in uMC by randomizing
the sign of the errors, at the expense of increased variability.

Results of Y-factor cross-comparison testing are given by
Fig. 11e. The estimated 95% confidence intervals for the
proposed blind noise and Y -factor methods overlap, verifying
the test method and result for data rate user data on this DUT.

Ng/N|in

Achieved CNR (dB) - min(Achieved CNR) (dB)

E = 0

E > 0

Fig. 12. Normalized location of actual input CNR samples (horizontal axis)
given various levels error in the initial guess Ng (vertical axis). The yE>0

samples (green dots) must be within the 0 dB to 30 dB range of yE=0 (orange
crosses) for use in the regression.

APPENDIX B
SENSITIVITY OF INPUT SAMPLING GUESSES

The accuracy needed for the initial guess for the measure-
ment result, Ng , is not obvious. “Large” errors may place
E > 0 sampling points outside the range of CNR supported
by E = 0 data; these samples must be discarded during the
regression. Lost test data make the regression less robust to
biases in the function estimates f̂ , and increase the resulting
uncertainty by reducing the statistical power of the test.

A comparison between the actual realized CNR and the
goal CNR is shown by Fig. 12 for various levels of error
in Ng/N |in. The impact of these is illustrated by at various
errors Ng/N |in. Samples in yE>0 outside the 30 dB span of
yE=0 must be discarded. The fortunate result here is that the
measurement is forgiving even at the extremes Ng/N |in =
±10 dB, which lead to keeping at least half of yE>0 samples.

A measurement with significant error in Ng and large uncer-
tainty might be improved by iterating. The new measurement
takes the prior N |in as Ng .

APPENDIX C
CALIBRATION METHODS

This appendix details the calibration methods that we used
for the measurement system of Section IV in the WLAN case
studies (Section V and Appendix A). These general-purpose
procedures also apply for other testbed systems and receiver
applications.

Programmable attenuators: The programmable attenuators
adjust the power levels in C and E. Attenuation level errors
therefore contribute to the uncertainty in the input sample
points, which propagate to uncertainty in the measurement
value, N |in.

Total attenuation through these devices (as well as the fully
assembled measurement system) includes a fixed attenuation
offset (in dB) plus a variable attenuation (in dB). We focus
on the variable attenuation. This is the realized attenuation
relative to the 0 dB attenuation setting, which varies with
frequency. This relative attenuation includes deviations from
the programmed attenuation setting (as large as around 2.5 dB
on our devices). We leave the fixed attenuation to contribute
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to the total loss through the test system, which is calibrated
in the next subsection.

The uncertainty in the variable attenuation characterizes the
error in variable attenuation as a function of the frequency
and programmed attenuation setting. This uncertainty in both
C and E propagates into the measurand as random error in
the input sampling point values that are used for regression.
This uncertainty is an input to the Monte Carlo simulation that
is used to perturb the input power. Uncertainty in attenuation
of E also contributes to systematic error in the regression in
the next section.

The calibration measurement is a 2-port S-parameter char-
acterization of each attenuator. They need to be disconnected
from the measurement system for this test, because the added
loss in the test system is difficult to measure at higher
attenuation settings. The measurement sweep covers all sup-
ported attenuation settings in 100 MHz frequency steps, and
power and resolution bandwidth configured to achieve |S21|
noise floor around -120 dB. Our network analyzer, chosen to
maximize dynamic range, achieved this requirement at 1 Hz
resolution bandwidth, and 8 dBm power output. We calibrate
the attenuators to settings as high as 90 dB. We also test with
added vector averaging to ensure that the 110 dB attenuation
setting is accurate to within 1 dB, ensuring its effectiveness as
an “off” switch.

We record the measured relative attenuation with the atten-
uation setting as a lookup table for use during test.

S-parameter measurements that verify the assembled test
system are shown by Fig. 13. The residual attenuation errors
result from mismatch between the attenuator blocks and the
rest of the test system. We incorporate them into Monte Carlo
simulations as random uncertainties.

Offset correction for excess noise power: The excess noise
output calibration plane is the interface between the fully-
assembled test system and the DUT. The calibration frequency
should be the center frequency of the excitation signal (i.e.,
the signal with power level C). For a traceable noise reference,
we use a connectorized noise diode calibrated against NIST
primary standards, following [29]. The noise diode used to per-
form the calibration should ideally be specified with ENR of

at least 15 dB (for strong detection on the spectrum analyzer),
but less than the maximum testbed output power, maxE.

The calibration procedure for the excess noise output E
follows that of a Dicke radiometer [44]:

1: connect the reference noise source to a spectrum analyzer
and record the noise level Pref that is integrated across the
measurement band, [fL, fH ], in linear units

2: substitute the measurement system output in place of the
reference noise source at the DUT reference plane

3: adjust the calibrated excess noise attenuation level until
the spectrum analyzer reading matches that of the refer-
ence noise source; record it as Psys

The residual imbalance, 10 log10(Pref/Psys), should be within
1 attenuation step. The maximum excess noise power is the
calibration offset,

Emax (dBm/B) =10 log10 (kT0) + ENR (dB)
+ balance attenuation (dB)
+ residual imbalance (dB). (10)

The offset correction to determine the calibrated excess noise
during operation of the testbed is then

E (dBm/B) = Emax (dBm/B)− Atten. in E (dB), (11)

with the calibrated attenuation value described in the previous
section.

The correction applied by (10) and (11) makes the combined
uncertainty in E (and therefore N |in) dependent on errors in
the reference noise diode calibration, attenuator calibration,
and spectrum analyzer measurement. These need to be con-
sidered in the total uncertainty budget.

Offset correction for signal power: The signal power mea-
surement helps to ensure the intended CNR test conditions at
the receiver input. The concern here is the impact of random
errors in the attenuation levels on C. We calibrated the offset
in C by measuring signal power at the (non-DUT) transceiver
output with a coupler and power sensor, and subtracting loss
to the DUT.

Correction to measurement system physical temperature:
We need to correct the noise figure from the physical noise
temperature of the measurement system, T1, to the refer-
ence temperature, T0. Consider the the measured input noise
powers characterized at T1 as N |T=T1

in , and the idealized
output produced with no input noise as N |T=0

in . The additive
contributions of input noise are

N |T=T1

in = N |T=0
in + kT1B, and

N |in = N |T=0
in + kT0B.

Solving for N |in with (3) cancels N |T=0
in , giving

NF = 10 log10

(
N |T=T1

in

kT0B
+
T0 − T1
T0

)
, (12)

the corrected noise figure.
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APPENDIX D
MEASURAND SENSITIVITY TO EXCESS NOISE ERRORS

The guide to the expression of uncertainty in measurement
(GUM) [39] standardizes error propagation techniques that es-
timate the standard uncertainty of the measurand as a weighted
RSS of many constituent uncertainty sources. The sensitivity
coefficient, a component of each weighting coefficient, scales
the uncertainty term by its impact on the measurand. The
scaling term applied to the uncertainty term is the square of
the sensitivity.

The sensitivity coefficient that we focus on here tracks errors
in E through to the measurand. We demonstrate here that the
sensitivity coefficient for E is −1 when the measurand is in
dB.

Consider systematic errors that shift all calibrated values of
E by a fixed offset, 10 log10(a) dB, in the user data response,

y = f

(
10 log10

[
C

aE +N |in

])
+ n. (13)

Now define a response function with offset (in dB), g(CNR) =
f(10 log10 a + CNR). The user data response with the same
error as (13) in terms of g is

y = g

(
10 log10

[
C

E +N |in/a

])
+ n. (14)

Executing the experimental procedure in Section III with g (in
place of f ) shifts the CNR of the input sampling points by
−10 log10(a) dB. The constant offset in dB in the argument
of g cancels in the optimization by equation (7). Hence,
the sensitivity coefficient on excess noise is −1, because an
error in E of 10 log10(a) dB produces the error in N |in of
−10 log10(a) dB. The square of this coefficient is therefore 1.

APPENDIX E
Y -FACTOR CROSS-COMPARISON METHOD

Verification to address systematic errors requires compar-
ison against a traceable noise figure measurement. Our ap-
proach here is to compare two measurements of a reference
LNA in cascade with the DUT input: (i) our proposed blind
measurement and (ii) cascaded noise figure calculation based
on calibrated two-port Y -factor measurement of the reference
LNA.

The LNA gain and noise figure were measured on a com-
mercial noise-figure meter with the Y-factor method. The noise
figure of this cascaded system, NFCASC, is approximately equal
to the LNA Y -factor measurement result. More precisely, by
[2],

NFCASC = 10 log10

(
FLNA +

FDUT − 1

GLNA
.

)
. (15)

FDUT and FLNA are the DUT and LNA noise factors (noise fig-
ure in linear units), respectively; GLNA is the available power
gain of the LNA. This verification depends on the DUT noise
figure measurand that is under verification (10 log10 FDUT), but
with sufficient LNA gain, only very weakly. The calculated
noise figure becomes effectively a Y -factor measurement

TABLE IX
Y -FACTOR CROSS-COMPARISON PARAMETERS

WLAN Client FLNA = 1.72± 0.06 dB
GLNA = 20.60± 0.13 dB
FDUT = 4.84± 0.22 dB

GPS L1 Receiver FLNA = 3.60± 0.10 dB
GLNA = 19.90± 0.13 dB
FDUT = 4.41± 0.45 dB

WLAN AP FLNA = 1.72± 0.06 dB
GLNA = 20.60± 0.13 dB
FDUT = 8.30± 0.34 dB

result that is nearly independent of our proposed blind mea-
surement. The calibration values of these parameters are listed
for each DUT in this paper by Table IX.

The use of the LNA in measurements of a transceiver DUT
attenuates the link in the reverse direction (from the DUT into
the measurement system). This is acceptable as long as there
is sufficient link margin.

We estimate cascaded uncertainty on NFCASC by Monte
Carlo analysis. Errors in FLNA, FDUT, and GLNA are taken
to follow a Gaussian distribution (truncated to positive values)
with standard uncertainty equal to half of the stated uncertainty
(expanded at 95% confidence). Each of these are treated as
uncorrelated random variables, which we use to perturb (15)
over 106 Monte Carlo trials. The 2.5% and 97.5% quantiles of
the empirical distribution for these trials yield an approximate
95% uncertainty interval for NFCASC.
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