
Monte Carlo Methods Appl. 2019; 25(4): 329–340

Research Article

Preston Hamlin, W. John Thrasher, Walid Keyrouz and Michael Mascagni*

Geometry entrapment in
Walk-on-Subdomains
https://doi.org/10.1515/mcma-2019-2052
Received August 3, 2019; revised October 13, 2019; accepted October 18, 2019

Abstract: One method of computing the electrostatic energy of a biomolecule in a solution uses a continuum
representation of the solution via the Poisson–Boltzmann equation. This can be solved inmanyways, andwe
consider a Monte Carlo method of our design that combines the Walk-on-Spheres and Walk-on-Subdomains
algorithms. In the course of examining the Monte Carlo implementation of this method, an issue was discov-
ered in the Walk-on-Subdomains portion of the algorithm which caused the algorithm to sometimes take an
abnormally long time to complete. As the problem occurs when a walker repeatedly oscillates between two
subdomains, it is something that could cause a large increase in runtime for any method that used a similar
algorithm. This issue is described in detail and a potential solution is examined.

Keywords:Monte Carlo, walk on subdomains, Brownian motion, Poisson–Boltzmann, walk entrapment

MSC 2010: 65C05, 65N75

1 Introduction
Whendealingwith a solution containing biomolecules, one common approach describes the systemas a con-
tinuum of various dielectric constants, rather than using detailed ionic interactions at the atomic or sub-
atomic level [3, 5]. In such a system, the electrostatic potential, u(x), satisfies Poisson’s equation inside
the molecule, while the potential in the solvent is distributed according to the Boltzmann law. This leads to
describing the distribution of the electrostatic potentials using the Poisson–Boltzmann Equation (PBE) [7]:

∆ψ(r) = κ2 sinh(ψ(r)). (1.1)

For low-potential systems, this equation may be linearized to yield the Linearized Poisson–Boltzmann Equa-
tion (LPBE):

∆ψ(r) = κ2ψ(r). (1.2)
Both equations (1.1) and (1.2) rely upon κ, the inverse Debye length and the associated Debye–Hückel

theory. The volume and surface of the biomolecule are formed from the union of the constituent atoms.
A solution of equation (1.2) models the molecule as a union of perfect spheres. Examples of this type of
representation are seen in Figure 1. Using this model, an estimate of the electrostatic potential can be con-
structed using a series of Markov processes started from each atomic center. The state space of each process

*Corresponding author: Michael Mascagni, Department of Computer Science, Florida State University, Tallahassee,
FL 32306-4530; and National Institute of Standards & Technology, ITL, Gaithersburg, MD 20899-8910, USA,
e-mail: mascagni@fsu.edu. https://orcid.org/0000-0003-3058-4580
Preston Hamlin, Department of Computer Science, Florida State University, Tallahassee, FL 32306-4530; and National Institute
of Standards & Technology, ITL, Gaithersburg, MD 20899-8970, USA, e-mail: hamlin@cs.fsu.edu.
https://orcid.org/0000-0002-5030-2467
W. John Thrasher, Department of Computer Science, Florida State University, Tallahassee, FL 32306-453, USA,
e-mail: wjt1321@my.fsu.edu. https://orcid.org/0000-0002-5487-5545
Walid Keyrouz, National Institute of Standards & Technology, ITL, Gaithersburg, MD 20899-8970, USA,
e-mail: walid.keyrouz@nist.gov. https://orcid.org/0000-0003-3807-813X



330 | P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains

(a) 1EDM (b) 1ETL (c) 3CLN

(d) 4U2W (e) 6F3W

Figure 1: Rendering of five sample input geometries.

is its current location in 3-dimensional Cartesian space and is herein referred to as a walker. Walkers traverse
the interior and exterior of the model, with the Coulombic potential at a particular walker location tallied
whenever the walker interfaces with the model’s boundary. The partial Coulombic potentials contributed
by each atom’s spawned walkers are then accumulated to yield the free energy of solvation. Despite mak-
ing several assumptions and approximations, this model has proven successful in predicting biomolecule
properties [5, 7, 8].

1.1 Walk on spheres

TheWalk-on-Spheres (WOS) family of Monte Carlo algorithms gain their name from the stepping mechanism
they use. Rather than taking discrete fixed-size steps or moving along a fine grid in 3-dimensional space,
WOS constructs a sphere centered at the walker’s current location with a radius of the distance between the
walker’s current location and the nearest point of intersection with the geometry. The walker’s next location
is then sampled from this sphere. This is repeated until the walker intersects with the boundary of the region
of interest. This method has been shown to have the same intersection probabilities as a Brownian motion
while performing better than traditional traversal mechanisms [9].

1.2 Walk on subdomains

The Walk-on-Subdomains (WOSD) family of algorithms is closely related to the WOS algorithms. However,
instead of walkers stepping through the entire domain until an exit point is found, the domain is divided
into subdomains and each step of the walk samples to the exit point of the subdomain. Any method that
approximates first-passage may be used to sample to the exit point, including using the WOS method inside
the subdomain [8]. If a walker’s first-passage probability can be calculated exactly, it has been shown to be
more efficient to use that probability to directly sample to the subdomain boundary [4].

In the algorithm used here, walkers are spawned within a subdomain and sample to its surface directly.
From there, walkers repeatedly sample to the surface of any alternate subdomain which they are also within.



P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains | 331

Figure 2: A run of WOS on the left demonstrates its capacity for expedient termination. A run of WOSD on the right demonstrates
its traversal of subdomains.

This continues until the walker reaches the true surface of the union of subdomains. Analogous to howWOS
will potentially intersect the surface each iteration, WOSD will always cross into a different subdomain each
iteration that does not reach the true surface of the domain.

2 Algorithm structure
The algorithm used to estimate the LPBE is a combination of WOS and WOSD. Traversal of the interior of
a biomolecule is done viaWOSD, while exterior traversal is done withWOS.Wewill discuss certain aspects of
this algorithm, but will not discuss the entire algorithm in detail, as this has been done previously [5, 7, 8].

2.1 Number of walks

Due to the potentially complex nature of the input geometry, it is possible that some regions are of greater
interest or are more active than others [6]. Having a fixed number of walkers spawning from each location
could cause some regions to be over- or under-represented. To account for this, the variance of the partial
computations at each spawn location is examined. A high variance indicates that the current collection of
walks differ substantially, and that more samples are required.

To determine an initial variance contribution estimate for each spawn location, a small number of walks
are launched at each sphere center. If the calculated variance for walks spawned in a given sphere is too
high, then more walks are scheduled to start at that location. This leads to each subdomain having a similar
contribution to the final variance of the walk. This method of “variance balancing” has been shown to lead
to a more efficient algorithm [6].

2.2 Internal walk

Initially, a walker is spawned at an atomic center, then the walker samples isotropically to the surface of the
initial sphere. From this point, whenever a walker is in the interior of the biomolecule, it proceeds using the
WOSD algorithm. If a walker resides on a sphere’s surface and is not inside any other spheres, it must be on



332 | P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains

one of the external portions composing themolecule’s surface. If not, the walker will select a different sphere
that it is also within. Then, the walker performs a sample to the surface of this target sphere using a Poisson
kernel. This process is repeated until the walker finds itself on the surface of the molecule.

2.3 Boundary conditions

When the walker reaches the surface, be it from the interior or exterior, the Coulombic potential is computed.
These potentials are summed at the end of the algorithm to yield the electrostatic free energy of solvation.
Upon reaching the surface, the probability pi of moving to the interior of the biomolecule and the probabil-
ity pe of moving to the exterior of the biomolecule are dependent upon the dielectric permeability of the two
regions, ϵi and ϵe:

pi = 1 − pe = ϵi
ϵi + ϵe .

2.4 External walk

After the walker exits the molecule, the external portion of the walk is performed using a Walk-on-Spheres
algorithm. At each step of the walk, there is a probability that the walker is terminated, based in part on its
distance to the boundary. Additionally, as the distance from the surface can grow exponentially, a walker is
treated as having “gone to infinity” after reaching a sufficient distance and is terminated immediately.

3 Entrapment
When running this algorithm, itwasnoticed that a small percentage of runsweremuch longer and, as a result,
took far more time. Upon investigating, it was determined that some walkers inside the biomolecule had an
abnormally high walk length when compared to the average; these walkers oscillated between two joined
spheres until they became entrapped at their cusp. In most cases, a stuck walker will escape after a few
minutes. However, in some cases a walker may be stuck for several days. As can be seen in Figure 3, which
shows the exact number of sample runs that finished with various run times, this can cause a few runs to
take much longer than most, even discounting those that take several days. The exact number of walkers
that finished at various walk lengths during one sample run that encountered entrapment for a few minutes

Figure 3: Run time counts for sample runs with the molecule 4U2W.



P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains | 333

Figure 4:Walk length counts for a sample run that encountered walker entrapment with the molecule 1ETL.

can be seen in Figure 4. The extreme cases appear to be relatively rare, with 1.6% of the 500 runs examined
in this paper getting stuck for more than 24 hours.

One of the benefits of Monte Carlo methods such as this algorithm is that parallelization can be relatively
easy to implement, while providing large benefits to efficiency. One way this is done is by running each of
independent walks on separate processes. However, when a small number of walks dominate the overall
run-time, such as when entrapment occurs, this potential improvement is greatly reduced. Thus, this issue
needs to be explored before creating a parallel version of this algorithm in order to maximize the benefit
of parallelization.

3.1 Sampling and subdomain connectivity

Walker entrapment is caused by a combination of the sampling method and subdomain connectivity. For
sample input geometries representing various biomolecules, this model often has low connectivity, which
means that points which are overlapped by multiple spheres are usually overlapped by only two spheres.
This leads to cycles where a walker repeatedly jumps between the same two spheres. The Poisson kernel
which is used for sampling from one surface to another uses a probability distribution which strongly favors
the nearby portions of the target surface. Repeated sampling between two particular spheres results in an
iterative minimization of the jump distances. If the oscillation continues, eventually the walker lies in the set
of points which represent the minimal distance to either sphere, namely the cusp formed by the intersection
of the two surfaces.

This issue is not restricted to this estimator, as it could extend to any instance of the WOSD algorithm.
If the connectivity of the subdomains is sufficiently low,walkerswill be pigeon-holed into a small set of traver-
sal patterns. Samplingmethodswhich introduce a preference for spatially proximate sections of a subdomain
such as the Poisson kernel will favor cycles between two subdomains and could eventually lead to walkers
becoming stuck. Any samplingmechanicwhich restricts or weights portions of a target subdomain over other
portions of the same subdomain has the potential to increase the likelihood of cyclic patterns. As the sub-
domain connectivity and sampling method are often intrinsic to the problem model, any solution to walker
entrapment must come from adjustments to other aspects of the algorithm.

3.2 Potential solutions

Two general strategies of solving this problemwere considered: freeing entrappedwalkers or terminating the
problematic walks. It seems possible to determine when awalker has become entrapped and then freeing the



334 | P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains

walker somehow. This would likely be done by forcing the walker into a new location. This would allow the
walk to continue, but would require the computational overhead of determining when awalker is entrapped,
whichwould likely require determining if thewalkerwas cycling between two atoms repeatedly. Additionally,
the potential bias created bymoving the stuck walker via amethod other than the Poisson kernel would have
to be examined.

Alternatively, walks could be terminated and then restarted after certain cutoff conditions were met. One
naturalmethod to consider for a cutoff condition is to terminatewalkers after they have completed a specified
number of steps in the interior walk and then switch to a new walker or restart the previous walker. For this
to work, a reasonable cutoff point needs to be determined. Terminating walkers that were stuck in a cycle for
an extended period was also considered.

After consideration, the decision wasmade to explore terminating the walkers after they complete a spe-
cific number of steps. This method was chosen over the others in part because of its simplicity. Any method
that required detecting whether a walker was in a cycle would require more computational overhead than a
method that just requires the number of steps a particular internal walker had taken. Cycle detection requires
keeping track of previous walker locations in addition to the number of steps.

3.3 First passage under restart

Recent research into generalizing the attributes of First PassageTime (FPT)processes examined theproperties
of First Passage Under Restart (FPUR), which is the process of stopping a FPT algorithm in the middle and
then restarting it. It has been shown that
(1) all FPT processes share certain characteristics under restart,
(2) restarting FPT processes can sometimes lead to an improvement in run time, and
(3) certain restart strategies will behave similarly no matter the process in question.
Using the fact that the overall completion time of a process under restart can be calculated explicitly given
the distributions of completion times and restart rates, restart strategies were examined and it was deter-
mined that the optimal average completion time using what is known as a sharp restart will always be the
optimal average completion time of a first-passage algorithm. In this case, a sharp restart refers to restarting
the algorithm after the process has taken a specific number of time steps [10].

Although the WOSD algorithm is not specifically concerned with first-passage location instead of first-
passage time, it is still a given that the optimal sharp restart rate will lead to the optimal overall completion
time. Given that, we chose to initially examine using sharp restart to avoid the walker entrapment problem,
restarting based on the number of steps the interior WOSD process had taken.

4 Numerical experiments

4.1 Methods

We added a sharp restart condition to the previously used algorithm and examined its impact on the final
result. One concern was whether to retain any accumulated statistics when restarting, but the decision was
made to discard any statistics accumulated in a restarted walk. It seems that in most situations discarding
previously accumulated statistics would lead to less potential for error, since restarted walks could begin at
the same atomic center.

We ran a series of tests on the same machine while keeping all parameters identical. We ran these tests
using both no restart and a set of restart points, on a variety of molecules. These molecules (shown in Fig-
ure 1) are identified by the Protein Data Bank [1] IDs 1EDM, 1ETL, 3CLN, 4U2W, and 6F3W. Combinations of
molecule and termination point were run 100 times; the exception was the 4U2W molecule experiments,
which were run 50 times only, because these experiments took significantly longer. When a run with no



P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains | 335

restart point went beyond 24 hours, it was considered “stuck” and was stopped and discarded. Although
it was assumed that we would run the experiments using the exact same set of termination points for each
molecule, this was not possible in practice. For each molecule, there was a point beyond which decreasing
the restart point would cause the run to either take an extremely long time to finish or potentially never fin-
ish at all. To understand why, consider the degenerate case of a molecule with a single atom at its center,
which does not touch the boundary. If each run is restarted after one step, no run from that atom will ever
successfully complete given that a single step will only reach the edge of this atom which, by definition, is
not on the boundary. In other molecule configurations, there may be similar points for which a molecule will
never, or at least very rarely, reach the boundary before a specific step. So, once a point that appeared to not
finish was found, each molecule was explored by attempting additional runs around that same point until
the minimum viable restart point for each molecule was found.

4.2 Results

The results of these experiments can be seen in Tables 1–5. As these results are averages, it is important to
provide the variance. When looking at the average result of the calculation for electrostatic free energy, the
variance was universally very small at < 0.1%of the average. For both average walk length and run time, the

Restart point Average result Error Average walk length Time (in seconds)

None −13.7129 0.0568 51.9212 78.3364
100,000,000 −13.7110 0.0567 20.9138 77.0880
10,000,000 −13.7096 0.0561 14.3072 79.5120
1,000,000 −13.7098 0.0558 14.1270 76.8071
100,000 −13.7111 0.0559 14.1596 77.3607
50,000 −13.7142 0.0558 14.1472 77.3041
10,000 −13.7058 0.0558 14.1364 74.7281
5,000 −13.7086 0.0562 14.1352 74.5378
1,000 −13.7198 0.0560 14.1346 75.9846
500 −13.7064 0.0565 14.1343 75.0565
100 −13.7144 0.0552 14.0657 74.4466
50 −13.7276 0.0549 13.9831 75.3199
25 −13.8333 0.0552 11.4818 70.2528
10 −13.7090 0.0454 7.3197 56.4636

Table 1: Results with varying restart points: 1EDM.

Restart point Average result Average error Average walk length Time (in seconds)

None −0.8868 0.0006 36.5192 189.7964
100,000,000 −0.8868 0.0006 19.6515 185.4263
10,000,000 −0.8868 0.0006 18.5510 179.0251
1,000,000 −0.8868 0.0006 18.5375 176.5825
100,000 −0.8867 0.0006 18.5372 175.3536
50,000 −0.8867 0.0006 18.5372 181.9247
10,000 −0.8867 0.0006 18.5372 177.6882
5,000 −0.8867 0.0006 18.5372 174.2456
1,000 −0.8867 0.0006 18.5369 172.7220
500 −0.8867 0.0006 18.5254 186.0867
100 −0.8880 0.0006 17.3952 178.5118
50 −0.8937 0.0006 15.4920 170.6816
25 −0.9100 0.0006 12.9868 156.7272
14 −0.8812 0.0005 10.1429 154.6872

Table 2: Results with varying restart points: 1ETL.



336 | P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains

Restart point Average result Average error Average walk length Time (in seconds)

None −30.7328 0.0965 56.0754 96.6112
100,000,000 −30.7300 0.0965 21.0292 99.0851
10,000,000 −30.7318 0.0964 15.3287 95.3058
1,000,000 −30.7285 0.0975 15.1058 93.1678
100,000 −30.7270 0.0966 15.1053 94.1206
50,000 −30.7468 0.0964 15.1050 93.1590
10,000 −30.7384 0.0962 15.1048 93.0327
5,000 −30.7408 0.0969 15.1048 92.9857
1,000 −30.7477 0.0966 15.1039 93.1639
500 −30.7359 0.0964 15.0970 93.9057
100 −30.7414 0.0966 14.7247 94.0392
50 −30.7778 0.0959 13.7335 91.8218
25 −30.9709 0.0939 11.7728 87.0892
11 −31.0929 0.0803 7.9566 67.3179

Table 3: Results with varying restart points: 3CLN.

Restart point Average result Average error Average walk length Time (in seconds)

None −10.8576 0.0084 81.6771 3066.4531
100,000,000 −10.8570 0.0084 35.6938 3155.2219
10,000,000 −10.8590 0.0084 33.9225 3364.1489
1,000,000 −10.8594 0.0083 33.8885 3287.5920
100,000 −10.8582 0.0084 33.8891 3105.3100
50,000 −10.8568 0.0084 33.8892 3124.3066
10,000 −10.8589 0.0084 33.8892 3094.1496
5,000 −10.8577 0.0084 33.8891 3172.9268
1,000 −10.8593 0.0086 33.8431 3152.0747
500 −10.8594 0.0084 33.6403 3318.5277
100 −10.9623 0.0081 27.3894 3059.3463
50 −11.2143 0.0078 22.3026 2535.3186
25 −12.0719 0.0078 16.9585 2320.4548
19 −11.2443 0.0070 14.6984 2015.4529

Table 4: Results with varying restart points: 4U2W.

Restart point Average result Average error Average walk length Time (in seconds)

None −1.08611 0.000658 27.146 102.5798
100,000,000 −1.08612 0.000655 20.51535 95.87435
10,000,000 −1.08611 0.000655 20.4744 95.03875
1,000,000 −1.08611 0.000655 20.47435 95.22887
100,000 −1.08614 0.000655 20.47436 94.90337
50,000 −1.08614 0.000656 20.47436 94.90442
10,000 −1.08611 0.000655 20.47435 94.91144
5,000 −1.08611 0.000655 20.47435 94.90833
1,000 −1.08611 0.000655 20.47419 95.08391
500 −1.08612 0.000655 20.46283 95.43036
100 −1.08689 0.000658 19.91288 98.87905
50 −1.09377 0.000649 18.13865 88.56578
25 −1.13828 0.000676 14.77466 73.45757
16 −0.95423 0.000556 11.32117 122.0429

Table 5: Results with varying restart points: 6F3W.



P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains | 337

variance was larger with no restart and larger restart points. The variance of the average walk length ranged
from < 0.01%of the average at smaller restart points and up to > 1400%of the averagewith no restart. Even
at its smallest, the variance for run time was much larger, with most values lying within 80% and 300% of
the average. For a given run of the algorithm, a single standard deviation is used as the error, as calculated
by summing the variance of the walks from each atom and taking the square root of that number. For each
termination point used, the mean error was then calculated.

As can be seen in the tables, using a restart point did not always lead to an improvement in run time.
Decreasing the restart point often led to a better run time, but this was not universal. None of the molecules
showed amonotonic decrease in run time as the restart point was decreased. In fact, molecule 4U2W showed
an increase in run time that was not alleviated until the restart point was reduced to 100 steps. It should be
noted, however, that this does not take into account the runs that were discarded as they took more than 24
hours, so the potential speed increase could be higher than what is shown in these results.

More important than raw run time, is whether this scheme removes the possibility of walker entrapment
while still providing the same results. An initial qualitative view of the results certainly makes that look pos-
sible; all results up to a certain point appear to not fluctuate much and remain well within the error bounds
of the original results as can be seen in Figure 5. In this figure, the error bounds are the average error of all
runs at a particular termination point, as previously discussed. This figure also shows the large difference
between estimates with no restart and estimates with some of the smaller restart points. In three of the cases,
the difference is large enough that it makes the error bounds around the results difficult to see. However,
a more quantitative method of examining whether the populations of results are significantly different is to
run a series of ANOVA tests on the results [2]. These tests were completed following two different schemes. In
the first set of ANOVA results, shown in Table 6, the tests included all restart points up to a specific value. So,
the first ANOVA test on a particular molecule was to determine whether it appeared all results were from the
same statistical distribution. The second test included all results except the runs restarted after 25 steps. Each
subsequent ANOVA test included one fewer restart point, removing the results that used the lowest restart
point included in the previous ANOVA test. The second set of ANOVA results, seen in Table 7, compared each
individual restart point solely to the results with no restart. Using a significance value of p < 0.05, it can be
seen that under both schemes, eachmolecule did not see a significant difference in results when using larger
restart points, but as the restart point was reduced, there came a point in each molecule where the results
were significantly different. Interestingly, this point was not identical for all molecules and did not seem to be
directly linked tomolecule size; this indicates that amolecule’s geometry likely contributes to the first restart
point that significantly differs from the original results.

Smallest included restart point 1EDM 1ETL 3CLN 4U2W 6F3W

25 < .001∗ < .001∗ < .001∗ < .001∗ < .001∗

50 < .001∗ < .001∗ .048∗ < .001∗ < .001∗

100 .946 < .001∗ .841 < .001∗ < .001∗

500 .934 .850 .794 .728 .999
1,000 .932 .790 .710 .730 .999
5,000 .993 .695 .818 .733 .999

10,000 .985 .740 .794 .651 .999
50,000 .996 .687 .730 .567 .999

100,000 .997 .768 .992 .628 .998
1,000,000 .983 .798 .989 .497 .999

10,000,000 .936 .886 .978 .471 .992
100,000,000 .832 .640 .841 .734 .934

Table 6: ANOVA including multiple restart points – p value (∗ p < 0.05).



338 | P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains

(a) 1EDM

(b) 1ETL

(c) 3CLN

(d) 4U2W

(e) 6F3W

Figure 5: Results for different molecules with various restart points.



P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains | 339

Included restart point 1EDM 1ETL 3CLN 4U2W 6F3W

25 < .001∗ < .001∗ < .001∗ < .001∗ < .001∗

50 .083 < .001∗ .002∗ < .001∗ < .001∗

100 .853 < .001∗ .541 < .001∗ < .001∗

500 .461 .483 .818 .313 .951
1,000 .432 .455 .266 .348 .929
5,000 .630 .214 .551 .945 .952

10,000 .441 .385 .681 .492 .965
50,000 .892 .284 .333 .652 .835

100,000 .841 .429 .670 .692 .808
1,000,000 .740 .672 .751 .367 .978

10,000,000 .718 .726 .943 .419 .967
100,000,000 .832 .640 .841 .734 .934

Table 7: ANOVA including single restart point – p value (∗ p < 0.05).

5 Summary and future work
Initial testing of using a sharp restart rate to solve the problem of walker entrapment during the WOSD algo-
rithm provided positive results. It seems clear that using this method properly can, with a suitably chosen
restart point, eliminate the issue without causing additional bias to the results and, in some cases, may even
cause an overall speed improvement when walker entrapment is eliminated. However, there remain several
avenues to explore in future work.

5.1 Choosing a restart point

As the potential exists for bias to occur if a restart point is chosen that is too small, an examination of an
appropriate choice for restart point should be completed. It may be that a uniform, large restart point may be
used successfully in most cases, but this is potentially not the most efficient method. As the inflection point
after which there is significant bias varies between molecules, it seems possible that this point is related to
the molecule geometry in some way. Potential variables to examine include the molecule size, the number
of atoms in the molecule, the degree of connectivity between atoms in the molecule, and other measures
of the shape of the molecule. If a reasonable relationship between the molecule’s geometry and the lowest
viable restart point can be found, then a method of automating the choice of restart point could potentially
be implemented.

Another avenue worth exploring is an examination of the efficiency of using this method to improve
the algorithm and its relation to the chosen restart point. Although using this method is likely to decrease
run times over many executions, choosing the wrong restart rate can actually cause the run time of a single
execution to increasewhen entrapment is not an issue. For at least onemolecule, 4U2W, it seems every viable
restart point causes an increase in run time. The effect on run time also seems as if it could potentially be
related to the geometry of the molecule.

5.2 Other remedies

Other methods of avoiding the walker entrapment problem can also be examined. For example, a different
samplingmethod that does not predisposewalkers to become stuck can replace the one currently being used,
if such a sampling method can be found. Additionally, the previously proposed method of attempting to
detect cycles and moving the walker to a slightly different point on the atomwhen it appears to be stuck may
be a solution. Yet another alternative is to simply replace the WOSD portion of the algorithm; the Walk-on-
Boundary method [11, 12] may be a viable replacement in some cases.



340 | P. Hamlin et al., Geometry entrapment in Walk-on-Subdomains

5.3 Parallelization

As eliminating walker entrapment will allow for a reduced maximum run-time for each portion of the algo-
rithm, this will cause the lengths of the interior walks to normalize. This should allow for more opportunities
to consistently increase the efficiency of the algorithm using parallelization. With these improvements, it
should be possible to create a consistent parallel implementation of this algorithm on either multi-processor
systems or GPUs. This result may also be generalizable to other first-passage Monte Carlo methods.

5.4 Generalizations

The problemofwalker entrapmentmay be found in other algorithms that useWOSDor similarmethods. Once
possible solutions for this problem in the LPBE algorithm have been examined more closely, these should
be examined for general applicability to the WOSD algorithm or other first-passage Monte Carlo methods.
Additionally, since using a sharp restart rate has been shown to improve the run time of first-passage time
algorithms, it seems reasonable to assume that it can be used to improve the efficiency of other first-passage
location algorithms, even if they do not suffer from problem of walker entrapment.

References
[1] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov and P. E. Bourne, The protein data

bank, Nucleic Acids Res. 28 (2000), 235–242.
[2] R. N. Cardinal and M. R. F. Aitken, ANOVA for the Behavioral Sciences Researcher, Psychology Press, London, 2013.
[3] M. O. Fenley, M. Mascagni, J. McClain, A. R. J. Silalahi and N. A. Simonov, Using correlated Monte Carlo sampling for

efficiently solving the linearized Poisson–Boltzmann equation over a broad range of salt concentration, J. Chem. Theory
Comput. 6 (2009), 300–314.

[4] J. A. Given, J. B. Hubbard and J. F. Douglas, A first-passage algorithm for the hydrodynamic friction and diffusion-limited
reaction rate of macromolecules, J. Chem. Phys. 106 (1997), 3761–3771.

[5] C.-O. Hwang, M. Mascagni and N. A. Simonov, Monte Carlo methods for the linearized Poisson–Boltzmann equation, in:
Advances in Numerical Analysis, Nova Science, Hauppauge (2004).

[6] T. Mackoy, R. C. Harris, J. Johnson, M. Mascagni and M. O. Fenley, Numerical optimization of a walk-on-spheres solver for
the linear Poisson–Boltzmann equation, Commun. Comput. Phys. 13 (2013), 195–206.

[7] M. Mascagni and N. A. Simonov, Monte Carlo method for calculating the electrostatic energy of a molecule, in:
Computational Science—ICCS 2003. Part I, Lecture Notes in Comput. Sci. 2657, Springer, Berlin (2003), 63–72.

[8] M. Mascagni and N. A. Simonov, Monte Carlo methods for calculating some physical properties of large molecules,
SIAM J. Sci. Comput. 26 (2004), no. 1, 339–357.

[9] M. E. Muller, Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Statist. 27 (1956), 569–589.
[10] A. Pal and S. Reuveni, First passage under restart, Phys. Rev. Lett. 118 (2017), Article ID 030603.
[11] K. K. Sabelfeld,Monte Carlo Methods in Boundary Value Problems, Springer, Berlin, 1991.
[12] K. K. Sabelfeld and N. A. Simonov, Stochastic Methods for Boundary Value Problems. Numerics for High-dimensional PDEs

and Applications, De Gruyter, Berlin, 2016.


	Geometry entrapment in Walk-on-Subdomains
	1 Introduction
	1.1 Walk on spheres
	1.2 Walk on subdomains

	2 Algorithm structure
	2.1 Number of walks
	2.2 Internal walk
	2.3 Boundary conditions
	2.4 External walk

	3 Entrapment
	3.1 Sampling and subdomain connectivity
	3.2 Potential solutions
	3.3 First passage under restart

	4 Numerical experiments
	4.1 Methods
	4.2 Results

	5 Summary and future work
	5.1 Choosing a restart point
	5.2 Other remedies
	5.3 Parallelization
	5.4 Generalizations



