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Quantum computers and simulators may offer significant advantages over their classical counter-
parts, providing insights into quantum many-body systems [1] and possibly improving performance
for solving exponentially hard problems [2], such as optimization [3, 4] and satisfiability [5]. Here we
report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA)
[4] using an analog quantum simulator. We estimate the ground state energy of the Transverse
Field Ising Model with long-range interactions with tunable range and we optimize the correspond-
ing combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot
individual qubit measurements. We execute the algorithm with both an exhaustive search and
closed-loop optimization of the variational parameters, approximating the ground state energy with
up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods
scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA
performance does not degrade significantly as we scale up the system size, and that the runtime is
approximately independent from the number of qubits. We finally give a comprehensive analysis of
the errors occurring in our system, a crucial step in the path forward towards the application of the
QAOA to more general problem instances.

A promising near-term application of quantum devices
is the production of highly entangled states with metro-
logical advantage or with properties of interest for many-
body physics and quantum information processing. One
possible approach to produce useful quantum states is to
use quantum devices to perform adiabatic quantum com-
puting [3, 6], which in some cases may provide an advan-
tage over classical approaches [7]. However, adiabatic
quantum computing has stringent adiabaticity require-
ments that hinder its applicability on existing quantum
platforms that have finite coherence times [8].

Alternatively, hybrid quantum-classical variational al-
gorithms may approximately solve hard problems in
realms such as quantum magnetism, quantum chemistry
[9], and high-energy physics [10]. This is because the key
resource of quantum computers and simulators is quan-
tum entanglement, which is exactly what makes these
many-body quantum problems hard. In a hybrid varia-
tional algorithm, entangled states are functions of vari-
ational parameters that are iteratively optimized by a
classical algorithm. One example is the Quantum Ap-
proximate Optimization Algorithm [4], which consists of
a “bang-bang” protocol that can provide approximate
answers in a time-efficient way, using devices with finite
coherence times and without the use of error-correction
[11–15].

Similarly to adiabatic quantum computing, the QAOA
protocol encodes the objective function of the optimiza-
tion problem in a target spin Hamiltonian. The opti-
mization steps of the QAOA are based on unitary evolu-
tion under the target Hamiltonian and a non commuting

“mixing” operator. In general, the QAOA relies on a clas-
sical outer loop to optimize the quantum circuit, aided
by physical intuition [16–19] or observed structure of the
variational parameters [14, 20–22], producing fast, low-
depth circuits for approximate solutions. The QAOA has
also been proposed as an efficient way to produce entan-
gled quantum states, such as the ground states of critical
Hamiltonians, which gives access to their corresponding
energies [23, 24].

In this work, we employ a collection of interacting
trapped-ion qubits to experimentally implement a spe-
cific instance of the QAOA, which is native to our quan-
tum hardware. We focus on both the energy minimiza-
tion of the quantum Hamiltonian and the combinato-
rial optimization of the corresponding classical problem.
Both problems are encoded in the transverse field anti-
ferromagnetic Ising Hamiltonian with long-range interac-
tions:

H =
∑
i<j

Jijσ
x
i σ

x
j︸ ︷︷ ︸

HA

+B
∑
i

σyi︸ ︷︷ ︸
HB

. (1)

Here we set the reduced Planck’s constant ~ = 1, σγi
(γ = x, y, z) is the Pauli matrix acting on the ith spin
along the γ direction of the Bloch sphere, Jij > 0 is the
Ising coupling between spins i and j, which, in our case,
falls off as a power law in the distance between the spins,
and B denotes the transverse magnetic field. It is well-
known [25] that the Hamiltonian (1) exhibits a quantum
phase transition for anti-ferromagnetic interactions with
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Figure 1. QAOA protocol. The system is initialized
along the y direction in the Bloch sphere in the |+〉⊗N state.
The unitary evolution under HA(B) is implemented for angles
γi(βi) for p times. At the end of the algorithm global mea-
surements in the x and the y basis are performed to compute

the average energy 〈H〉 = E(~β,~γ), which is compared to the
theoretical ground state energy Egs.

power law decay. One of the goals of this work is to find
an approximation of the ground state energy both at the
critical point (B/J0)c, where J0 is the average nearest-
neighbour coupling, and in the case of B = 0, optimizing
the QAOA output for the classical Hamiltonian HA. The
realization of the QAOA entails a series of unitary quan-
tum evolutions (see Fig. 1) under the non-commuting
Hamiltonians HA and HB (defined under Eq. (1)) that
are applied to a known initial state |ψ0〉. The state ob-
tained after p layers of the QAOA is:

|~β,~γ〉 =

p∏
k=1

e−iβk(HB/J0)e−iγk(HA/J0)|ψ0〉, (2)

where the evolution times (or, henceforth, “angles”)
βk and γk are variational parameters used in the k-th
QAOA layer to minimize the final energy E(~β,~γ) =

〈~β,~γ|H|~β,~γ〉.
In order to implement the quantum optimization algo-

rithm, each spin in the chain is encoded in the 2S1/2 |F =
0,mF = 0〉 ≡ |↓〉z and |F = 1,mF = 0〉 ≡ |↑〉z hyperfine
“clock” states of a 171Yb+ ion (see Supplementary). In
this work, depending on the number of qubits and mea-
surements required, we employ two different quantum
simulation apparatus to run the QAOA, which will herein
be referred to as system 1 [26] and system 2 [27] (see
Supplementary). Both systems are based on a linear rf
Paul trap where we store chains of up to N = 40 ions and
initialize the qubits in the ground state of HB , namely
the product state | ↑↑ · · · ↑〉y ≡ |+〉⊗N = |ψ0〉, where
|↑〉y ≡ (|↑〉z+ i|↓〉z)/

√
2 and B is assumed to be negative.

The unitary evolution under HA is realized by generat-
ing spin-spin interactions through spin-dependent optical
dipole forces implemented by an applied laser field. This
gives rise to effective long-range Ising couplings that fall
off approximately as Jij ≈ J0/|i−j|α [28]. The power-law
exponent α ∼ 1 and the interaction strengths vary in the

range J0/2π =(0.3-0.57) kHz, depending on the system
size and the experimental realization (see Supplementary
for details). The unitary evolution under HB is gener-
ated by applying a global rotation around the y-axis of
the Bloch sphere.

After each run of the algorithm, we perform a pro-
jective measurement of each spin in the x (y) basis to
measure 〈HA〉 (〈HB〉) (see Fig. 1). Measurements in the
x and y bases are carried out by performing a π/2 rota-
tion about the y(x)-axis of the Bloch sphere, illuminat-
ing the ions with resonant laser light, and collecting the
σzi -dependent fluorescence on a camera with site-resolved
imaging. The energy is calculated by combining the mea-
surements of the two-body correlators 〈σxi σxj 〉 and the
total magnetization along the y axis

∑
i〈σ

y
i 〉, where the

indices i, j range from 1 to N . We benchmark the ex-
perimental outcome E(~β,~γ) with the ground state Egs
of the target Hamiltonian (see Eq. 1) calculated nu-
merically with exact diagonalization or Density Matrix
Renormalization Group (DMRG) [29]. In order to quan-
tify the performance of the QAOA, we use the dimen-
sionless quantity

η ≡ E(~β,~γ)− Emax
Egs − Emax

, (3)

where Emax is the energy of the highest excited state.
This choice maps the entire many-body spectrum to the
[0, 1] interval. In the following we show that the best
experimental performance η∗ is close to the theoretical
performance ηth, which itself is less than unity for a finite
number p of QAOA layers.
Quantum Hamiltonian Optimization - We first focus

on the p = 1 optimization of the full quantum problem,
where two variational parameters (γ and β) are used to
minimize the energy of the Hamiltonian (1). In this case,
the time-evolved one- and two-point correlation functions
can be efficiently computed [30, 31]. This leads to a gen-
eral formula for the energy expectation under a state pro-
duced by the p = 1 QAOA that is used to compute the
theoretical performance of the algorithm (see Supplemen-
tary). In Fig. 2a we show an experimental exhaustive
search over the parameter space {γ, β} and compare it
to the theoretical performance of the algorithm, showing
good agreement for N = 20 qubits. We also compare the
performance of our algorithm as a function of B/J0 with
the expected QAOA performance ηth (see Fig. 2b).

As shown in Ref. [25], for transverse field greater than
the critical value, the ground state is a low entanglement
paramagnet, whereas below the critical point the ground
state is an entangled superposition of anti-ferromagnetic
states. We locate this critical point at |B/J0| = 0.31
for 20 qubits by computing the half-chain entanglement
entropy SL/2 = −Tr(ρL/2 log ρL/2) of the ground state
numerically, where ρL/2 is the half-chain reduced density
matrix. As shown in Fig. 2b, while the experimental per-
formance is η > 94% when |B/J0| is above the critical
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Figure 2. Exhaustive search for optimal performance. (a) Experimental (left) and theoretical (center) performance
landscape and their absolute difference (right) as a function of the variational parameters β and γ for N = 20 qubits (J0/2π =
0.57 kHz, B/J0 ∼ −0.3) , displaying an average absolute difference of 1.9% over 210 different {β, γ} pairs. The optimal
performance is η∗ = (93.8± 0.4)%, whereas the theoretical performance is ηth = 96.1%. Each data point is the result of 1100
(800) experimental repetitions to measure in the x (y) basis (data taken on system 1). (b) Exhaustive search optimization as
a function of B/J0 (see Eq. (1)) (data taken on system 1). The dark red solid line is the half-chain entanglement entropy
SL/2 computed numerically with DMRG. The dashed blue line represents the performance of the initial product state |ψ0〉.
(c) Comparison between experimental performances and numerics for B/J0 ∼ −0.3 and N = 12 as a function of γ and
β∗ = 1.12. Taking into account bit-flip errors and slow drifts in the experimental parameters explains well the discrepancy
between experimental and ideal performance (see Supplementary for details). (d) The p = 1 QAOA performance as a function of
system size N up to 40 qubits (data taken on system 2). Comparison between QAOA experimental and theoretical performance
for B/J0 ∼ −0.3. Green points show the baseline performance of the initial state |ψ0〉. Inset: Convergence of the entanglement
entropy peak as a function of number of qubits (see Supplementary). (e) p = 2 exhaustive search for N = 20 and B/J0 ∼ −0.3.
Left: every color corresponds to a fine scan of γ2 with a different set of variational parameters β1, β2 and γ1 (data taken on
system 2). Right: 3D color plot of the performance η, optimized over γ2, as a function of the parameters β1, β2 and γ1. The best
outcome is η∗ = (93.9± 0.3)% (colored red), whereas the theoretical performance is ηth = 98.4% (see main text for details). In
(b),(c),(d) and (e) the error bars are calculated by using the standard deviation from the mean of the measured performance.

point, the gain relative to the initial state |ψ0〉 is modest.
On the other hand, below the critical point, the target
state is more entangled, which allows for a larger exper-
imental performance gain, at the expense of a reduced
absolute performance. In order to quantitatively assess
the gain over the finite initial state performance, we in-
troduce a performance natural scale based on the quan-
tity ση(J0, B,N), namely the standard deviation around
the mean performance achieved implementing a QAOA
algorithm with random angles (see Supplementary for
details). For N = 20 and B/J0 ∼ −0.3, ση ∼ 2 × 10−3.
Our experimental performance at the critical point η∗ is
more than 20ση away from the initial state. On the other
hand, the discrepancy between the ideal and experimen-
tal performance can be explained by taking into account
our noise sources in the numerics (see Fig. 2c and the
Combinatorial Optimization section below).

We investigate the performance of the p = 1 QAOA al-
gorithm as a function of the number of qubits. For each

system size, we ensure that the spin-spin couplings Jij
have the same dependence on the qubit distance |i − j|
by varying the trap parameters (see Supplementary). As
shown in the inset of Fig. 2d, the half-chain entangle-
ment entropy as a function of system size N exhibits a
peak located at B/J0 ∼ −0.33, displaying the onset of
the phase transition as N tends to infinity. For all system
sizes, we optimize the algorithm by performing a scan of
the interaction angle γ and applying discrete variations
of the mixing angle β around the optimal value predicted
by the theory. In Fig. 2d we compare the optimal exper-
imental and theoretical performances η for different sys-
tem sizes from 20 up to 40 qubits for fixed B/J0 ∼ −0.3.
We observe experimentally that the QAOA yields a sim-
ilar performance as a function of number of qubits even
if the algorithm runtime stays approximately constant as
the number of qubits increases. Numerically, we found
that the performance η scales polynomially with N and
with the number of layers p (see Supplementary). Assum-
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a b

Figure 3. Gradient descent search for p=1 QAOA. (a) N = 12 and (b) N = 20. Left: performance η convergence as
a function of iterations of the classical-quantum hybrid algorithm with (a) N = 12 (J0/2π = 0.57 kHz, B/J0 = −0.3) with a
measured η∗ = (94.9 ± 0.2)% and (b) N = 20 qubits (J0/2π = 0.55 kHz, B/J0 = −0.3) with a measured η∗ = (94.7 ± 0.1)%.
Right: the algorithm trajectory on the theoretical performance landscape plotted as a function of γ and β. Each energy
evaluation takes 4000 (6000) shots for 12 (20) qubits. The error bars are standard deviation from the mean of the measured
performance (data taken on system 1).

ing extrapolation to higher numbers of qubits holds, this
scaling, combined with a polynomial-time search heuris-
tic, suggests that for any desired energy threshold ε, our
approach allows us to approximate the energy to a de-
gree η > 1− ε in time and number of layers that scale as
poly(N, 1/ε).

We experimentally perform a search for the optimal
p = 2 QAOA performance using 20 qubits. Unlike the
p = 1 case, there is no known analytic formula to effi-
ciently compute the energy. However, exploiting relation-
ships between optimal angles as a function of increasing
p, we use a bootstrapping heuristic (see Supplementary
for details) that allows the experiment to identify a set
of optimal angles faster than a global parameter search.
The bootstrapping heuristic computes a guess for opti-
mal angles at p given optimal angles at lower p. A local
optimizer, such as the greedy gradient descent described
below, is then needed to take this guess to the true opti-
mum. Our new heuristic method allows us to find varia-
tional parameters in time that scales polynomially with
the number of layers and sublinearly in the number of
qubits (when used in conjunction with the quantum de-
vice).

We start from the optimal guess and perform a fine
scan of γ2, while varying γ1, β1 and β2 in larger steps.
The result is shown in Fig. 2d, where we plot the per-
formances η as a function of γ2 for every set of parame-
ters used in the experiment. Fig. 2d shows also a colour
plot of all the optimal energies found as a function of
the other three parameters γ1, β1 and β2. The p = 2
QAOA performance with 20 qubits η∗ = (93.9 ± 0.3)%
is in agreement with the p = 1 performance in system
2, taken with the same parameters (see Fig. 2c). This
indicates that decoherence and bit-flip errors (see Sup-
plementary) accumulated during longer evolution times
are already balancing out the 2% expected performance
gain of one additional optimization layer.

As a brute force approach is inefficient, we implement

a closed-loop QAOA by interfacing the analog trapped-
ion quantum simulator with a greedy gradient-descent
algorithm to optimize the measured energy. In the p = 1
QAOA, we can visualize the optimization trajectory on
the theoretical performance surface as shown in Fig. 3.
Starting from a guess (β(0), γ(0)), we measure the approx-
imate local gradient by performing the energy measure-
ments in two orthogonal directions β(0)+δβ and γ(0)+δγ
to compute the new guess (β(1), γ(1)), where we measure
the new energy on the quantum simulator. As shown
in Fig. 3, the algorithm converges after about 10 itera-
tions. Compared to an exhaustive search, the gradient
descent uses fewer queries to the quantum simulator and
is therefore more robust to slow drifts in the experimental
system. For this reason, we are able to achieve a better
performance compared to the exhaustive search method.

Combinatorial Optimization - We further explore the
performance of the trapped-ion system by investigating
the combinatorial optimization of the classical Hamilto-
nian HA (see Eq. (1) with B = 0) approximately sam-
pling the output of the p = 1 QAOA, using high-fidelity,
single-shot measurement of all the qubits. It has been
proven, under reasonable complexity-theoretic assump-
tions, that no classical algorithm can efficiently sample
exactly from a sufficiently general class of p = 1 QAOA
circuits [11]. Recent results [32, 33] suggest that this
could also hold in the case of approximate sampling (see
Supplementary). In this case, by measuring in the x ba-
sis, it is possible to sample the probability distribution
of all the 2N eigenstates |xi〉 of the Hamiltonian HA.
We performed the experiment with 12 qubits so that we
can both compute the expected QAOA theoretical output
and also experimentally over-sample the Hilbert space of
all the possible 212 = 4096 possible outcomes. In Fig.
4a we show on a log scale the QAOA eigenstates proba-
bility distribution using the optimal variational parame-
ters β∗, γ∗ and compare the experimental eigenstate his-
togram with the exact diagonalization prediction of the
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Figure 4. Sampling from p = 1 QAOA. (a) Eigenstate probability histogram for 12 qubits with B = 0. The numerical
histogram is computed by decomposing the ideal QAOA output state on the {|xi〉} basis. We performed 10800 measurements to
oversample the Hilbert space of dimension 2N = 4096 at the optimal parameters β∗ = 0.25 and γ∗ = 0.31. The 4096 eigenstates
are grouped in bins of 20 for clarity purposes. The uncertainty bands follow the multinomial distribution standard deviation.
Here J0/2π = 0.33 kHz (see noise sources section in Supplementary for details). (b) Histogram of coarse-grained distributions
(see main text for details) comparing data, theory and the uniform distribution. The error bars here also represent the standard
deviation of the multinomial distribution. (c) Total Variation Distance and Kullback-Leibler divergence as a function of γ,
keeping β fixed at the optimal value. The distance from the uniform distribution increases as the γ parameter reaches the
optimal point γ∗. Dashed lines are the comparison between the ideal distribution for {β∗, γ∗} and the uniform distribution.
The uncertainty bands are based on the aforementioned error in the probability of each state bubble for the experimental
distribution, propagated to the TVD and the DK−L according to Eq. (4) (data taken on system 2).

QAOA output state, sorting the eigenstates according to
their energies.

However, sampling from the full QAOA output distri-
bution is a daunting task, since the experimental outcome
is extremely sensitive to fluctuations in the Hamiltonian
parameters and to experimental errors caused by detec-
tion and phonon-assisted bit-flip events and unwanted ef-
fective magnetic fields along the z direction of the Bloch
sphere caused by uncompensated light shift (see also Sup-
plementary). Given our measured experimental param-
eters, we can calculate the effect of these errors on the
quantum evolution, resulting in a good agreement with
the experimental outcome, as shown in Fig. 4a.

Another useful way to compare numerics and experi-
mental data is to implement the coarse-graining proce-
dure of the Hilbert space proposed in Ref. [34]. After
sorting in decreasing order the observed states according
to their experimental probability, we iteratively group the
states into “bubbles” of Hamming distance L around the
most probable state, producing a coarse-grained dataset.
We then apply the same coarse-graining to the theoret-
ical probability distribution and plot the comparison in

Fig. 4b. In this procedure the Hamming distance radius
is varied to ensure that each bubble contains a compara-
ble number of experimental shots, leading to bubbles of
average Hamming distance L̄ = 2.5. In order to quanti-
tatively compare the coarse-grained experiment and the
theory, we use two different metrics, namely the total
variation distance (TVD) and the Kullback-Leibler di-
vergence (DK−L), defined as:

TVD =
1

2

∑
i

|pi − qi|, (4)

DK−L = −
∑
i

pi log

(
qi
pi

)
, (5)

where pi(qi) is the experimental (theoretical) probability
of observing the i-th outcome. As shown in Fig. 4c, when
the system is in the initial state, it is closer to a uniform
probability distribution since |ψ0〉 is an equal superposi-
tion of all the eigenstates of HA. On the other hand, as
the γ parameter is scanned, we observe a net decrease of
both TVD and DK−L between the experiment and the
numerical minimum, in agreement with the decrease in
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energy, computed by measuring one and two-body corre-
lators.

The variational quantum algorithm reported here, with
up to 40 trapped-ion qubits, is the largest ever real-
ized on a quantum device. We approximate the ground
state energy of a non-trivial quantum Hamiltonian show-
ing almost constant time scaling with the system size.
Single-shot high-efficiency qubit measurements in differ-
ent bases give access to the full distribution of bit-strings
that is difficult or potentially impossible to model clas-
sically. With the addition of individual control over the
interactions between qubits as well as improvements to fi-
delity and system size, the variational quantum-classical
hybrid approach can be employed in this experimental
platform to give insight into quantum chemistry [35–37]
and hard optimization problems [38], such as Max-SAT
or exact cover [5], or be used for the production of highly
entangled states of metrological interest [39].
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SUPPLEMENTARY MATERIAL

Quantum Approximate Optimization Algorithm
(QAOA)

The QAOA is an approximate optimization algorithm
first introduced in 2014 by Farhi et al. [4], and has since
enjoyed growing interest. The QAOA uses alternating
evolutions under two non-commuting operators, typically
a problem (or cost) Hamiltonian HA that encodes the
cost function on the diagonal in (say) the σx basis, and a

transverse term HB = −
N∑
i=0

σyi that generates transitions

between bit strings, such that the initial state |+〉⊗Ny
evolves into an approximate ground state of HA.

Practically, the most valuable feature of the QAOA
seems to be its “learnability” via a classical outer loop
optimizer, where the discovery of the evolution angles in
the optimal QAOA schedule is achieved via the discovery
of structure in the angle sequences [14, 20, 21]. These
patterns are seen quite generally across local Hamiltonian
problems, and while steps towards a theory describing
optimal QAOA sequences have been taken [20], several
questions surrounding it remain open. Regardless, the
structure in optimal QAOA schedules may be harnessed
to implement approximate state preparation in a scalable
manner and with a low overhead on quantum resources.
We present a new heuristic method that helps achieves
this goal.

http://dx.doi.org/10.1103/PhysRevA.95.062317
http://dx.doi.org/10.1103/PhysRevA.97.022304
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First, we discuss how to discover optimal QAOA1
schedules, i.e., QAOA schedules for p = 1.

QAOA, p = 1

Despite its apparent simplicity, the p = 1 QAOA (or
QAOA1) can be a powerful state preparation ansatz.
For example, hardness-of-sampling results are known for
QAOA1 circuits [11], closely mirroring the hardness of
sampling from instantaneous quantum polynomial (IQP)
circuits (see next section for details). Furthermore, it is
known that the performance of the QAOA1 for certain
combinatorial optimization problems can be competitive
with the best classical algorithms for the same problems
[40]. Another desirable feature of the QAOA1 for local
spin Hamiltonians is the tractability of computing en-
ergy expectation values, as observed in [4]. A very simi-
lar result has also been known in the setting of quantum
dynamics [30, 31]. For a two-local transverse field spin
Hamiltonian as in Eq. (1) in the main text, this leads to
a formula for the energy expectation under a state pro-
duced by the QAOA1, starting from the product state
|+〉⊗N . These formulas are applicable to many cases of
interest in quantum state preparation and optimization.
Importantly, the time complexity to compute the formula
is O(N3) in the worst case, making it tractable to opti-
mize the QAOA1 protocols for large spin chains.

QAOA, p > 1

The general analytical formula for p = 1 does not ex-
tend to the case where we apply the QAOA for more
than one layer. Here, we must turn to classical numeri-
cal methods to find the optimal QAOA angles βi, γi for
each layer i. For p layers, this is an optimization on a
2p-dimensional space that grows exponentially with the
depth of the circuit. However, numerics done here and
in [14, 21] have identified the existence of minima that
exhibit patterns in the optimal QAOA angles, namely
that the angles, when plotted as a function of their index
i, form smooth curves for any p. While this observa-
tion points to a deeper theoretical mechanism at play,
it does not directly simplify the optimization problem,
since we must still search over all approximately smooth
sequences of the angles. Zhou et al. [14] have exploited
the smoothness of the functions by carrying out searches
in the Fourier domain. Here, we follow a different route
that arises from some novel observations of these family
of minima.

For each p, denote the special optimal angles by{(
β∗(p),γ∗(p)

)}
p
, which we can also think of as a pair

of angle curves (as a function of step index i). As p is
varied, we may think of these minima as a family. We

numerically find that this family exhibits the following
desirable features (for p sufficiently large):

1. The angles are non-negative, small and bounded.

2. For p sufficiently large, the two angle sequences
β∗(p) and γ∗(p) are approximately smooth.

3. The angle sequence β∗(p) (and correspondingly,
γ∗(p)) when viewed as a function on the normal-
ized time parameter si = i−1

p−1 , is convergent in the
parameter p. In other words, as p is increased, the
angle sequences β∗(p) and γ∗(p) approach a smooth,
asymptotic curve (See Fig. S1.)

4. The energy expectation E(β∗(p), γ∗(p)) approaches
the global minimum as p → ∞, and hence this
family is asymptotically optimal.

The significance of the first point is that in experimental
settings, large evolution times are infeasible to implement
due to decoherence, so these minima correspond to prac-
ticable QAOA protocols. The third and fourth points
suggest an inductive algorithm where a locally optimal
schedule for a given p may be discovered using the opti-
mal schedule for p− 1 as a prior.

Point 3 in the above list is a novel observation that
allows us to construct a heuristic that is efficiently scal-
able for large p. The main idea behind this construction
is that the minimal angle curves for a larger p may be
guessed from the optimal curve of a smaller p′ < p by
interpolation.

Using the above points, we use a bootstrapping algo-
rithm to find the optimal angle sequences, β∗(p) and γ∗(p),
for a given p, as described below. Let q = 1, . . . , p denote
an intermediate angle index. Then:

1. For q = 1, use an analytic formula to find β∗(1) and
γ∗(1).

2. For q = 2, choose an initial guess of β(2) =(
β∗(1), β∗(1) − 0.2

)
and γ(2) =

(
γ∗(1), γ∗(1) + 0.2

)
.

3. Perform a local optimization of β(2) and γ(2) in
order to find β∗(2) and γ∗(2).

4. Repeat the next steps (5-7) for q = 3, . . . , p.

5. Create interpolating functions through the angle
sequences, β∗(q−1) and γ∗(q−1), using the normal-
ized time si = i−1

q−2 as the independent parameter

(we use a linear interpolation for q = 3 and cubic
for q > 3).

6. Choose the initial guesses for β(q) and γ(q) by sam-
pling the interpolating function from (5) at evenly
spaced points separated by a normalized time dis-
tance of ∆s = 1/(q − 1).

7. Perform a local optimization of β(q) and γ(q) in
order to find β∗(q) and γ∗(q).
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Figure S1. Convergence in p and N . Convergence of optimal angle curves with increasing QAOA layers p (left), and
number of spins N (right). The p-convergence plot was generated for an N = 8 spin system, for p ranging from 20 up to 30,
with higher p shaded darker. The N -convergence figure was generated for a 15 layer QAOA, for N in the range of 4 to 14, with
higher N curves shaded darker.

The resulting angles β∗(p) and γ∗(p) should be at least
a good local minimum of the energy expectation value
and approaches the global minimum as p→∞.

The q = 2 interpolation in step 2 is based on our ob-
servation that the β angles tend to curve down at the
end and the γ angles tend to curve up.

An important feature of our algorithm is that its
asymptotic runtime is expected to be efficient in p. This
feature is predicated on the previous result that the an-
gle curves are generally convergent as p tends to infinity.
The argument proceeds as follows: if we assume a maxi-
mal deviation of the initial guess for layer q to be εq ≥ 0,
then the total l2-norm distance between the initial guess
and the optimized curve is no greater than εq

√
q, by the

Cauchy-Schwarz inequality. Therefore, the local search
algorithm is confined to a ball of radius at most εq

√
q,

and for a fixed error tolerance, the convergence time for
a standard local optimizer is O(ε2qq). Summing over con-
vergence times for all from q = 1, . . . , p, we have

T = O

(
p∑
q=1

qε2q

)
≤ O(p2) (6)

The last inequality above comes about as follows: while
the summand depends on the convergence rate of the se-
quence {εq}pq=1, it is upper bounded by O(q) for a con-
verging set of paths and an initial error ε1 of order 1. The
latter is true since our angle search domain is bounded
and independent of N . Therefore, the sum is no greater
than O(p2). In practice, even faster runtimes are pos-
sible. Therefore, the bootstrap algorithm exploits the
structure of the special minima and provides a scalable
route to multi-step QAOA for the long-range TFIM. In
fact, as discussed in the supplement and in [20], there is

mounting numerical evidence that the path approach ap-
plies across a very general variety of models on discrete
as well as continuous systems.

Convergence in N

In the previous sections, we introduced a bootstrap
algorithm that is asymptotically efficient in the number
of layers p. However, in order to be fully scalable the
algorithm must also be scalable in the system size N .
This may not be possible in general (say for random
spin models), as the optimized angles for a particular
small system may have no bearing on the angles for a
larger system. However, for the long-range TFIM, and
indeed any translationally-invariant model with a well-
defined notion of metric and dimension arising from the
functional form of the coupling coefficients Jij , it is rea-
sonable to expect that the optimized angles depend on
system size in a predictable way. This is indeed the case
for the long-range TFIM. There, it can be seen that the
angle curves for varying N appear similar in shape. Use-
fully, the curves also appear to be convergent to an ideal-
ized curve for a hypothetical continuous, long-range spin
chain. Once again, this feature suggests that the op-
timized QAOA angle curves for small systems may be
used as initial guesses for larger systems within the same
Hamiltonian family.

While it is not clear (due to numerical limitations) how
fast the curves converge, we argue that the rate should
be weakly dependent (or independent) of the system size
N . For a given coupling function (such as inverse power-
law) that decays as a function of distance, we define a



10

α

-B/J

0.5

1.0

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

β(s) ⟶

γ(s) ⟶

s ⟶0 1

Figure S2. Angle sequence curves. A collage of angle sequence curves, arranged by the Hamiltonian parameters for which
they were computed. In each subplot, curves for different p ranging from 20 to 30 are overlaid, with higher p curves shaded
darker. The horizontal axis represents fractional step s = (i− 1)/(p− 1) ranging from 0 to 1, while the vertical axis gives the
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collage shows the persistence of structure in the optimal angle sequences for a range of Hamiltonians within the same family.

characteristic length scale, which may be called the skin
depth δ, that is the number of sites from the bound-
ary that the coupling is a factor of e smaller than the
nearest-neighbour value. In other words, we define δ
such that Ji,i+δ ∼ Ji,i+1/e. Clearly, δ is independent
of the system size N and depends only on the parame-
ters of the coupling function. For instance, for the long-
range TFIM, δ ∼ e1/α. As N tends to infinity, the frac-
tional skin depth δ/N then “falls away” and becomes
vanishing with respect to the bulk region of the chain.
Now, we make the assumption that any deviations in the
optimal QAOA schedules from N to N + 1 arise from
change in the fractional skin depth, which is reasonable
for a translationally invariant model. The incremental
change in the fractional skin depth from N to N + 1 is
δ/N − δ/(N + 1) ∼ O(1/N2). Therefore, if the change in
the optimal QAOA curves εN (in, say, l1-norm distance)
is a smooth function of the the fractional skin depth,
then we expect it to vary as εN ∼ 1/poly(N). Therefore,
the total running time of a bootstrap from small system

sizes to a given size N should be O

(
N∑
k=1

1/poly(N)

)
which is sub-linear in N . Combining this observation
with the convergence in p, we see that for a given Hamil-
tonian family, optimized QAOA angle curves for small
p may be used as a rubric for the optimization for
longer circuit depths. Furthermore, if the Hamiltonian is
translationally-invariant with decaying interactions, the
optimized QAOA schedules are expected to scale with N

as well. Therefore, the state preparation procedure under
the QAOA for such a Hamiltonian family is scalable in
circuit “volume”, for a wide range of Hamiltonian param-
eters (Fig. S2). This is our main theoretical contribution
in this work.

Scaling of η in p,N

Our performance parameter η, defined as

η ≡ E(~β,~γ)− Emax
Egs − Emax

, (7)

measures how close (in energy) the prepared state is to
the ground state of the system. As described in previous
sections, the optimal angle curves for QAOA appear to
converge to a smooth, hypothetical curve, as a function of
p as well as N . We show that under the assumption that
such a curve exists, there is a fast heuristic for finding
optimal angles for any finite p that is time-efficient in p
and the number of spins N (when used in conjunction
with the quantum device). In this section, we show that
not only is the search efficient, but the quality of the
optimum is numerically seen to improve with p,N as well.

In Fig. S3, we show the result of the numerical study.
We chose as the target Hamiltonian an idealized trans-
verse field Ising model with inverse power-law couplings,
with the power α = 1.1 chosen to closely mimic the ex-
perimental Hamiltonian. The number of spins was var-
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Figure S3. Performance scaling in p,N . Behaviour of performance parameters η (left) and squared ground state overlap
(right) with increasing number of spins N (x axis) and p (colors), for ideal power-law coupling with α = 1.1. We find that
for each p, 1/(1− η) grows linearly in N with a slope that depends on p. (Inset) The slope is linear in p, suggesting that the
performance converges to 1 as η ∼ 1 − 1/(pN). On the right, we empirically observe that |〈ψ|ψ0〉|2 ∼ p/N , indicating that
constant overlap with the ground state can be achieved with linear depth QAOA. The x axis has been scaled as 1/N so that
the linear relationship with the squared overlap is apparent. The inset shows the linear trend with p.

ied from N = 8 to 20. Via DMRG, the critical value of
the transverse field for a finite chain can be located by
maximizing the von Neumann entropy at half-cut. This
was done independently for each value of N . Then, us-
ing our heuristic, we located the optimal angle curve,
and computed η for the final state prepared using this
angle sequence, for each N . The plot shows the trend
of 1/(1 − η) with N , for a range of p = 0, 1, 2, 3, 4, 5,
with 0 corresponding to a trivial protocol where the ini-
tial state is returned. While the number of spins could
not be extended beyond 20 due to computational limi-
tations, the trend is clear. We see that 1/(1 − η) grows
linearly with N and p (inset). While the linear trend in
N is encouraging, we similarly expect the inverse spec-
tral gap (and indeed, the density of low-lying states) to
increase with N . Empirically for the target Hamiltonian,
we observe a gap scaling of ∼ 1/N2. Assuming the den-
sity of low-lying states scales similarly, this suggests that
the squared overlap with the ground state should fall off
with N . Numerics confirm this expectation and indicate
a scaling of the squared overlap of |〈ψ|ψ0〉|2 ∼ p/N .

The linear scaling with p for both the energy and fi-
delity metric, combined with a polynomial-time search
heuristic, suggests that for any desired energy (or proba-
bility) threshold ε, our approach allows us to approximate
the state to within 1 − ε (in energy or fidelity) in time
and number of layers that scale as poly(N, 1/ε).

Characteristic scale for η

The figure of merit η characterizes how close the final
state is to the ground state of the system. At η = 0,

the system is in the highest excited configuration, while
η = 1 corresponds to a perfectly prepared ground state.
QAOA, starting from the initial state |+〉⊗n, gives a state
with figure of merit η ∈ [0, 1], from the initial value of
η0. The difference between the final η and η0 indicate
the success of our QAOA protocol.

While η is normalized to the range [0, 1], differences in
η are still somewhat arbitrary. In long-range Ising models
with a transverse field η0 is not 0 but typically greater
than 0.5, making the difference in η an unsatisfactory
metric of success. Therefore, in addition to the initial and
final η, we must provide a characteristic scale for η that
quantifies the typical deviation from η0. A natural choice
is the standard deviation of η for QAOA with random
angles.

For QAOA1 with evolution angles β, γ, it is possible to
estimate the standard deviation analytically as a function
of the underlying model parameters B and J0 and on the
number of qubits N . This derives from the analytical
formula for the energy expectation E(β, γ) which can be
stated as follows:

E(β, γ) = EI + EII + EIII (8)



12

where

EI = B

N∑
i=1

∏
k 6=i

cos (2γJik) (9)

EII = − sin (4β)

2

∑
i,j

Jij sin (2γJij)
∏
k 6=i,j

cos (2γJik)

(10)

EIII = − sin2 (2β)

4

∑
s=±1,i,j

Jij
∏
k 6=i,j

cos (2γ (Jik + (−1)sJjk))

(11)

where the Hamiltonian has long-range power law cou-
plings Jij ∼ 1

|i−j|α (with Jii = 0), and a transverse field

of strength B. Then, our goal is to compute the stan-
dard deviation (normalized by the spectral bandwidth
∆ := Emax − Egs),

σE
∆

=

√
〈E2〉β,γ − 〈E〉2β,γ

∆
(12)

which gives us the characteristic scale for η. We define
the average 〈·〉β,γ as

〈f〉β,γ := lim
Tβ ,Tγ→∞

1

4TβTγ

Tβ∫
−Tβ

Tγ∫
−Tγ

f(β, γ)dβdγ (13)

In the limit, the average is precisely the constant term
of the Fourier transform of f . Since the function is a
sum of trigonometric monomials, its moments over the
angle variables β, γ can be computed analytically term
by term. We will need the following properties of the
coupling function:

1. (Symmetry) Since the inverse power law only de-
pends on distance between nodes, we have Jij =
J(2j−i)j In other words, the inverse power-law is
symmetric under a lateral flip (or “mirroring”). We
assume a finite, open chain, and therefore couplings
Jij with |j− i| > N−j do not have an image under
mirroring.

2. (Incommensurateness) The coupling strengths Jij
are, in general, mutually indivisible irrational num-
bers whose sums and differences are also irrational
and mutually distinct, e.g. for i 6= j, k 6= l,
Jik ± Jjk 6= Jil ± Jjl (with a very small set of ex-
ceptions due to, say, symmetry).

The mean 〈E〉β,γ consists of three parts correspond-
ing to the terms EI , EII , EIII . Performing the β integral
first, we see that 〈EII〉β,γ = 0. Next, we may argue that

in products of the form
∏
k

cos(2γJik), the cosine factors

are of degree one if they have no mirror images, and de-
gree two otherwise. The only way to have a non-zero

expectation is if all terms are systematically paired up
by mirroring, so that the overall product is quadratic in
a product of cosines. For the summand in EI , this can
only happen if N is odd and i is exactly at the center
of the chain, in which case the average is B/2(N−1)/2.
When N is even, the mean is 0. Finally, for general i, j
the last term is zero by property 2, since the cosines are
generically incommensurate and therefore barring very
few exceptions, most phases do not cancel out. How-
ever, in the special case that i, j are mirror images, i.e.
i = N − j, we have perfectly paired terms when N is
even (and one unpaired term at k = bN/2c when N is
odd). Counting all occurrences of this case, the mean

is approximately 1
2N/2+1

N∑
i=1

Ji(N−i) . NJ0/2
N/2 where

J0 is the nearest-neighbor coupling in the chain. Note
that asymptotically in N , 〈E〉β,γ ∼ O(N/2N/2) which
approaches 0 in the infinite N limit.

Next, we estimate the term 〈E〉2β,γ . By the orthogo-
nality of trigonometric polynomials in β, we first have
that 〈E〉2β,γ = 〈EI〉2β,γ + 〈EII〉2β,γ + 〈EIII〉2β,γ . Therefore,
we estimate each term separately. As before, we require
that the cosines pair up so that their phases can cancel.
First, we have

〈EI〉2β,γ = B2
∑
i,j

N∏
k=1

cos(2γJik) cos(2γJjk) (14)

Each summand is a product of 2N cosines, and only
survives averaging if every cosine is paired. This happens
exactly when either i = j or i = N − j (There is also the
“disconnected” contribution that cancels with the mean).
In each case, the squared cosines give a factor of 1/2
from averaging. Moreover, using mirror symmetry we
can have fourth powers of some of the cosines, which
give a factor 3/8 from averaging. In all, the mean (minus
the disconnected part) is no greater than

〈EI〉2β,γ . 4NB2

(
3

8

)(N−1)/2

(15)

A similar reasoning for EII , EIII give us the following
estimates:

〈EII〉2β,γ .
1

4
NJ2

0

(
3

8

)(N−1)/2

(16)

〈EIII〉2β,γ .
3

16
NJ2

0

(
3

8

)(N−1)/2

(17)

Finally, this gives

〈E〉2β,γ . N

(
3

8

)N/2 [
8B2 + J2

0

]
∼ O(N · (3/8)

N/2
)

(18)
Therefore, we see that the standard deviation ση =

σE/∆ ∼
√

8B2+J2
0

∆ · N1/4 (3/8)
N/4

, which is exponen-
tially suppressed for large N . For N = 20 ions, we have
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N1/4 · (3/8)
N/4 ∼ 0.02. While this is already small, the

normalization

√
8B2+J2

0

∆ will have an additional linear N
factor in the denominator, making the scale for η about
0.002. Therefore, a typical final QAOA performance of
η & 0.95 is several standard deviations above a typical
η0 ∼ 0.85.

Evidence for hardness of sampling from general
QAOA circuits

In this section we expand upon previous work [4] that
gives evidence for exact sampling hardness of QAOA cir-
cuits, using the techniques of Refs. [32, 33] to give evi-
dence for hardness of approximate sampling. First we re-
label the bases Y → X → Z so that the p = 1 experiment
is equivalent to preparing a state |ψ0〉 = |↑〉⊗Nx , evolving
under a Hamiltonian Hz diagonal in the computational
basis, followed by a uniform rotation H̃ = e−iβ

∑
i σ

x
i

and measurement in the computational basis. Follow-
ing Ref. [4], it suffices to consider QAOA circuits with
β = π/4. The output state is H̃⊗Ne−iγHzH⊗N |0N 〉 for
some cost function C diagonal in the computational ba-
sis.

Generalized gap of a function

The main idea behind proving exact sampling hard-
ness is to examine a particular output amplitude, say
the amplitude of the |0N 〉 basis state. In Ref. [32], the
output state after a so-called IQP circuit (which only dif-
fers from the one here in that the final rotation is a global
Hadamard H⊗N instead of H̃⊗N ) has an amplitude pro-
portional to a quantity known as the gap of a Boolean
function, gap(f) =

∑
x:f(x)=0 1 −∑x:f(x)=1 1, the dif-

ference in the number of inputs that map to 1 and the
number of inputs that map to 0 under f . Finding the gap
of a general function is a GapP-complete problem. This
is a very hard problem since the class GapP includes #P,
which in turn includes the whole of NP. The authors
of Ref. [32] prove that the gap of a degree-3 polynomial
over Z2, f , may be expressed as an output amplitude
of an IQP circuit. They also show that the finding the
gap of such functions f is still GapP-complete. Follow-
ing Ref. [32], we examine the |0N 〉 output amplitude of a
QAOA state:

〈0N |H̃⊗Ne−iγHzH⊗N |0N 〉 =
1

2N

∑
x,y

〈y|i
∑
i yi+f̃(x)|x〉,

(19)

where now we define the function f̃ to have the range Z4

and the Hamiltonian Hz satisfies e−iγHz |x〉 = if̃(x)|x〉
for a computational basis state |x〉. The output am-
plitude is thus proportional to a ‘generalized gap’

ggap(f) :=
∑
x:f(x)=0 1 + i

∑
x:f(x)=1 1 + i2

∑
x:f(x)=2 1 +

i3
∑
x:f(x)=3 1 of a function f(x) = f̃(x) + wt(x), where

wt(x) is the Hamming weight of x. This modified func-
tion f(x) is also a degree-3 polynomial over Z4. Note that
this restriction to degree-3 comes from the fact that the
gates Z, CZ and CCZ are universal for classical compu-
tation (indeed, the Toffoli alone is universal for classical
computation) and there is a natural degree-3 polynomial
coming from this construction. The quantity we have
defined, ggap(f), can be easily shown to be GapP-hard
to compute, by reducing gap to ggap. This suffices for
exact sampling hardness assuming the polynomial hier-
archy (PH) does not collapse.

Approximate sampling hardness

For approximate sampling hardness, we need two other
properties, namely anti-concentration and a worst-to-
average case reduction. Anti-concentration of a cir-
cuit roughly says that the output probability is suf-
ficiently spread out among all possible outcomes so
that not many output probabilities are too small. We
choose a random family of QAOA circuits by choos-
ing Hz such that the function f(x) is a degree-3 poly-
nomial

∑
i,j,k ai,j,kxixjxk +

∑
i,j bi,jxixj +

∑
i cixi with

uniformly random weights bi,j and ci ∈ Z4. Anti-
concentration then follows from the Paley-Zygmund in-
equality and Lemma 4 of the Supplemental Material of
Ref. [32] (with r = s = 4).

Finally, we need to show that the problem of approx-
imating the generalized gap is average-case hard. Cur-
rently, no scheme for quantum computational supremacy
has achieved this, and the best known result in this di-
rection is in Ref. [33], where the authors show a worst-to-
average case reduction for the problem of exactly comput-
ing an output probability of a random quantum circuit.
The authors remark that their techniques may be ex-
tended to any distribution parametrized by a continuous
variable. In principle, we have such a parameter γ avail-
able here, which continuously changes the parameters bi,j
and ci. However, we have only shown anti-concentration
when the weights bi,j and ci are chosen from a finite set.
It remains to be seen whether one can have the property
of anti-concentration and average-case hardness holding
at the same time for some specific QAOA output distri-
bution.

Trapped-ion experimental systems

In this work two quantum simulators have been used,
referred to as system 1 and 2. System 1 [26] is a room-
temperature ion-trap apparatus, consisting of a 3-layer
linear Paul trap with transverse center-of-mass (COM)
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Figure S4. System 2 characterization. (a) Sideband resolved spectroscopy of a 32 ion chain with frequencies νyCOM =
4.18 MHz and νzCOM = 4.06 MHz, with both transverse families identified. Inset: geometrical configuration of the global Raman
beams (blue arrows) with respect to the transverse principal axes of the trap (black arrows). The ellipsoid shows qualitatively
an equipotential surface of the trap. (b) Average spin-spin interaction matrix element Ji,i+r as a function of ion separation
r = |i−j| for the data taken in Fig. 2c in the main text, calculated with the system parameters directly measured with sideband
spectroscopy, using Eq. (21). The results are normalized to the average nearest-neighbour coupling J0 for each system size.

motional frequency νCOM = 4.7 MHz and axial center-
of-mass frequencies νx ranging from 0.39 to 0.6 MHz de-
pending on the number of trapped ions. In this system
Langevin collisions with the residual background gas in
the ultra high vacuum (UHV) apparatus are the main
limitation to ion chain lifetime [41]. These events can
melt the crystal and eject the ions from the trap because
of rf-heating or other mechanisms.

System 2 [27] is a cryogenic ion-trap apparatus based
on a linear blade trap with four segmented gold coated
electrodes. The trap is held at 6.5 K in a closed cy-
cle cryostat, where differential cryo-pumping reduces the
background pressure at low 10−12 Torr level, which al-
lows for long storage times of large ion chains. For this
reason system 2 has been used to perform the QAOA
with a large number of qubits (Fig. 2b) or when a large
number of measurements was required (Fig. 4). The two
transverse trap frequencies are νyCOM = 4.4 MHz and
νzCOM = 4.26 MHz, and the axial frequency ranges from
0.27 to 0.46 MHz.

State preparation

The qubit is initialized by applying resonant 369.5
nm light for about 20 µs to optically pump into the
| ↓〉z state. To perform global rotations in the Bloch
sphere, we apply two far-detuned, non-copropagating
Raman beams whose beatnote is tuned to the hyper-
fine splitting ν0 = 12.642821 GHz of the clock states
2S1/2|F = 0,mF = 0〉 and 2S1/2|F = 1,mF = 0〉 en-
coding the qubit [42]. State preparation in our imple-
mentation of the QAOA requires qubit initialization in
the |↓〉z state by optically pumping the ions and then a
global rotation into the |↑〉y state using stimulated Ra-
man transitions. We detect the state of each ion at the

end of each experimental sequence using state-dependent
fluorescence, with single site resolution. In order to im-
prove the accuracy of global qubit rotations, we employ
a composite pulse sequence based on the dynamical de-
coupling BB1 scheme [43]. This allows us to compensate
for inhomogeneity due to the Raman beam’s Gaussian
profile and achieve nearly 99% state preparation fidelity.
The BB1 four pulse sequence is:

U1(π/2) = e−i
π
2 σ

θ
i e−iπσ

3θ
i e−i

π
2 σ

θ
i e−i

π
4 σ

x
i ,

where after the first π/2 rotation e−i
π
4 σ

x
i , three addi-

tional rotations are applied: a π-pulse along an angle
θ = cos−1(−1/16) = 93.6◦, a 2π-pulse along 3θ, and
another π-pulse along θ. The axes of these additional
rotations are in the x-y plane of the Bloch sphere with
the specified angle referenced to the x-axis.

Generating the Ising Hamiltonian

We generate spin-spin interactions by employing a spin
dependent force with a pair of non-copropagating 355 nm
Raman beams, with a wavevector difference ∆k aligned
along the transverse motional modes of the ion chain.
The two off-resonant Raman beams are controlled us-
ing acousto-optic modulators which generate two inter-
ference beatnotes at frequencies ν0 ± µ in the Mølmer-
Sørensen configuration [44]. In the Lamb-Dicke regime,
the laser-ion interaction gives rise to the effective spin-
spin Hamiltonian in Eq. (1) in the main text, where the
coupling between the i-th and j-th ion is:

Jij = Ω2νR
∑
m

bimbjm
µ2 − ν2

m

. (20)

Here Ω is the Rabi frequency, νR = h∆k2/(8π2M) is the
recoil frequency, νm is the frequency of the m-th normal
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Figure S5. Log-log plot of spin-spin interactions: red points represent the average Ising couplings between spins separated
by distance r = |i − j|, calculated from experimental parameters using Eq. 20. These plots show the exact average couplings
and fits corresponding to the N = 12 and N = 20 gradient descent experiments (Fig. 3 in the main text) and the N = 40
exhaustive search experiment (Fig. 2c in the main text). The power law fit (blue dashed curve) fails to match the couplings for
larger spin separations, as does an exponential fit (green dashed curve). The compound formula (Eq. 23) fits well the actual
couplings for all spin separations, even for a chain of 40 ions. The fitted parameters {J0, α′, β′} for N = 12, 20, and 40 are
{0.580, 0.322, 0.229}, {0.517, 0.318, 0.181}, and {0.369, 0.383, 0.134} respectively.

mode, bim is the eigenvector matrix element for the i-th
ion’s participation to the m-th normal mode (

∑
i |bim|2 =∑

m |bim|2 = 1) [45], and M is the mass of a single ion.
Differently from system 1, where the wavevector dif-

ference ∆k of the Raman beams is aligned along one of
the principal axes of the trap, in system 2 the spin-spin
interaction stems from the off-resonant coupling to both
families of transverse normal modes. Eq. (20) is then
generalized to:

Jij = Jyij + Jzij ,

J`ij = Ω2
`ν
`
R

∑
m

bimbjm

µ2 − (ν`m)
2 , ` = y, z, (21)

where ν`R is the recoil frequency given by the projection of
the Raman wavevector ∆k along the two transverse prin-
cipal axes of the trap ` = y, z. We infer an angle ϑ ∼ 40o

between ∆k and the z principal axis (see inset in Fig.
S4a) from the ratio between the resonant spin-phonon
couplings to the two transverse COM modes. Before ev-
ery experiment, we perform Raman sideband cooling on
both the COM and the two nearby tilt modes for both
transverse mode families.

As we scale up the number of qubits (see Fig. 2c in
the main text), we vary the axial confinement in order
to maintain a self-similar functional form of the spin-
spin interaction (see Fig. S4b). For the data in Fig.
2c in the main text, we set the detuning to δ = µ −
ωyCOM = 2π × 45 kHz and the axial frequency to νx =
0.46, 0.37, 0.36, 0.31, 0.27 MHz, for N = 20, 25, 30, 35, 40
respectively. For the data in Fig. 4 in the main text, the
detuning is δ/2π = 45 kHz and the νx = 0.54 MHz.

Fitting Ising Couplings to Analytic Form

By directly measuring trap parameters and spin-
phonon couplings, we can calculate the spin-spin inter-

action matrix Jij with Eqs. (20) and (21). However, in
order to efficiently compute the ground state energy of
the Hamiltonian in Eq. (1) (see main text) for N & 25
using DMRG, we approximate the Ising couplings using
a translational invariant analytic function of the ion sep-
aration r = |i−j|. For N < 20 the spin-spin coupling Jij
between the two qubits at distance r is well approximated
by a power law decay:

Jij ≈
J0

rα
, (22)

where, as stated in the main text, J0 is the average
nearest-neighbor coupling and α is the power law expo-
nent [28]. However for larger system sizes, this approxi-
mation fails to capture the actual decay of the interaction
matrix.
In order to use the DMRG algorithm to accurately com-
pute the ground state energies, we developed a compound
function to better fit our couplings. This function is a
product of a power law decay and an exponential decay
parametrized by J0, α′ and β′:

Jij ≈
J0

rα′ e
−β′(r−1) (23)

As seen in Fig. S5, this functional form fits well the exact
Ising couplings even for a chain of 40 ions, while both a
power law and a pure exponential fit diverge significantly.

State Detection

We detect the ion spin state by globally rotating all
the spins into the measurement basis with a composite
BB1 π/2 pulse as described above, to rotate the x or y
basis into the z basis), followed by the scattering of reso-
nant laser radiation on the 2S1/2|F = 1〉 ↔2P1/2|F = 0〉
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Figure S6. Errors in trapped-ion quantum simulator: (a) Phonon-assisted bit-flips per ion predicted by evolving the
coherent off-resonant spin-phonon drive for 12 ions. The simulation includes slow drifts of the trap frequency and of the laser
power over 500 shots, each including a Hamiltonian evolution of 0.11 ms, with δ/2π = 45 kHz and Ω/2π = 440 kHz. The
shaded region is defined as the average pi plus and minus one standard deviation (see main text for details). (b) Energy as a
function of the γ parameter scan for Fig. 4 in the main text. Taking into account our total bit-flip error budget together with
uncompensated light shift, we explain most of the discrepancy between our experimental performance and the ideal QAOA
energy output.

cycling transition (wavelength near 369.5 nm and radia-
tive linewidth γ/2π ≈ 20 MHz). If the atom is projected
in the |↑〉z “bright” state, it fluoresces strongly, while if
projected in the |↓〉z “dark” state it fluoresces almost no
photons because the laser is far from resonance [42].

In both systems the fluorescence of the ion chain is im-
aged onto an Electron Multiplying Charge Coupled De-
vice (EMCCD) camera (Model Andor iXon Ultra 897)
using an imaging objective with 0.4 numerical aperture
and a magnification of 90x for both systems. The fluo-
rescence of each ion covers roughly a 7x7 array of pix-
els on the EMCCD. After collecting the fluorescence for
an integration time of 0.65 (1) ms for system 1 (2), we
use a binary threshold to determine the state of each
ion, discriminating the quantum state of each ion with
near 98% (97%) accuracy in system 1 (2). The residual
2 (3)% errors include off-resonant optical pumping of the
ion between spin states during detection as well as detec-
tor cross-talk between adjacent ions, readout noise, and
background counts.

In system 2 the individual ion range-of-interests (ROIs)
on the camera are updated with periodic diagnostic im-
ages, acquired by applying a nearly resonant cooling laser
for 50 ms so that each ion fluoresces strongly regard-
less of its state. The signal to background noise ratio
in the diagnostic shots is larger than 100, yielding pre-
cise knowledge of the ions’ center locations and taking
into account the slow ∼ 2µm pk-pk drift due to thermal
expansion/contraction of the cryostat. Ion separations
range from 1.5 µm to 3.5 µm depending on the trap set-
tings and the distance from the chain center, and are
always much larger than the resolution limit of the imag-
ing system. We utilize the pre-determined ion centers

to process the individual detection shots and optimize
the integration area on the EMCCD camera to collect
each ion’s fluorescence while minimizing cross-talk. We
estimate cross-talk to be dominated by fluorescence from
nearest-neighbor, which can cause a dark ion to be erro-
neously read as bright.

Error sources

The fidelity of the quantum simulation is limited by ex-
perimental noise that causes the system to depart from
the ideal evolution and that can have several sources that
are reviewed below. One important error source is off-
resonant excitation of motional modes of the ion chain,
which causes residual spin motion-entanglement. When
the motion is traced out at the end of the measurement
this results in a finite probability of an unwanted bit-
flip. The probability of this error to occur on the ith ion
[26] is proportional to pi ∼

∑N
m=1 (ηimΩ/δm)

2
, where

ηim = bim
√
νR/νCOM (see Eq. (20)) and δm = µ−ωm is

the beatnote detuning from the m-th normal mode. We
trade off a lower error for a weaker spin-spin coupling
by choosing a δCOM such that (ηCOMΩ/δCOM)

2 . 1/10.
By considering the off-resonant contributions of all the
modes (see Fig. S6), we estimate the phonon error to
cause about 1% bit-flip per ion. Additionally, this ef-
fect is amplified by fluctuations in the trap frequency
and laser light intensity at the ions’ location, increasing
the probability of a phonon-assisted bit-flip event. To
take this into account, we included slow drifts and fluc-
tuations of the trap frequency and of the laser power on
the timescale of 500 experimental repetitions assuming



17

noise spectral density falling as 1/f . Given our typi-
cal trap frequency and laser power fluctuations, we as-
sume a relative standard deviation ∆Ω/Ω ∼ 2% and
∆δCOM/δCOM ∼ 9% over the timescale required to av-
erage over quantum projection noise and we end up esti-
mating an average bit-flip probability pi ∼ 9% (see Fig.
S6a). Moreover laser intensity, beam steering and trap
frequency slow drifts over the time scale of a few hours
required for data-taking cause averaging over different
Ising parameters J0. In particular, beam steering fluc-
tuations create an imbalance between the red and blue
ν0 ± µ beatnotes at the ions, producing an effective Bz
noisy field, that has been measured to be as high as 0.3J0.
To take into account these drifts, we calculated several
evolutions sampling from a gaussian distribution of val-
ues of Bz and J0, using as a variance the standard devi-
ations (σJ0 = 0.02J0 and σBz = 0.3J0) observed in the
experiment. Another source of bit-flip errors is imper-
fect detection. Off-resonant pumping limits our average
detection fidelity to 98%(97%) for system 1 (2). A de-
tection error is equivalent to a random bit-flip event so

the two errors will sum up. A specific source of noise in
system 2 is mechanical vibrations at 41 Hz and 39 Hz
due to residual mechanical coupling to the cryostat [27].
This is equivalent to phase-noise on the Raman beams,
which leads to dephasing of the qubits. Other less im-
portant noise sources are related to off-resonant Raman
scattering errors during the Ising evolution (estimated in
7 · 10−5 per ion) and RF heating of the transverse COM
motional mode of the ion chain in system 1.

In Fig. S6b, we plot the experimentally measured en-
ergy as a function of γ, and the corresponding theoretical
curves with and without incorporating errors. Using the
time dependent average bit-flip probability evolution that
we estimated from our error model considering phonons
and detection errors and averaging over slow drifts in ex-
perimental parameters J0 and Bz, we get a good agree-
ment with the experimental data (see also Fig. 2c in the
main text, where the same parameters have been used),
showing that we have a good understanding of the noise
sources in our system.
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