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We propose a protocol for sympathetically cooling neutral atoms without destroying the quantum
information stored in their internal states. This is achieved by designing state-insensitive Rydberg
interactions between the data-carrying atoms and cold auxiliary atoms. The resulting interactions give rise
to an effective phonon coupling, which leads to the transfer of heat from the data atoms to the auxiliary
atoms, where the latter can be cooled by conventional methods. This can be used to extend the lifetime of
quantum storage based on neutral atoms and can have applications for long quantum computations. The
protocol can also be modified to realize state-insensitive interactions between the data and the auxiliary
atoms but tunable and nontrivial interactions among the data atoms, allowing one to simultaneously cool
and simulate a quantum spin model.
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Introduction.—In recent years, neutral atoms stored in
individual traps [1–7] have emerged as a powerful resource
for quantum information and quantum technologies [8–13].
Considerable effort is currently being invested in develop-
ing neutral atom traps that are insensitive to the internal
state of the atom [2,14–16]. These so-called magic traps
attempt to achieve what is naturally available with trapped
ions, since the trapping of the latter relies on the net charge
of the ion, and hence is independent of its internal
electronic state. The magic trapping of neutral atoms
reduces heating and dephasing associated with the fact
that different electronic states may have different trapping
potentials. Nevertheless, even with such magic trapping
conditions, heating of the motional degrees of freedom
(d.o.f.) of the atoms can occur because of, for example, the
shaking of the atomic array due to laser intensity noise [17],
mechanical forces from Rydberg interactions [18–20], or
incoherent light scattering [21].
Such heating of the atomic motion, when combined with

state-dependent Rydberg mediated gates, generally leads to
reduced fidelities and loss of coherence, which is particu-
larly problematic for long quantum simulations or compu-
tations [22–24]. It is therefore desirable to develop schemes
to cool the atomic motion without destroying the quantum
information stored in the internal states. The conventional
laser cooling techniques [25–27] are not suitable for this
task since they involve optical pumping which, in general,
destroys the quantum information.

Several approaches for this problem have already been
proposed in the past, from immersing the atomic lattice in a
superfluid [28] to using cavity-assisted cooling [29]. It has
also been shown that alkaline-earth atoms can be laser-
cooled without destroying the quantum information pro-
vided it is stored in the nuclear spin [30].
In this Letter, we introduce two schemes for achieving

state-insensitive interactions between neutral atoms,
another natural and useful tool of trapped ions. We further
show how to use these interactions to realize a state-
preserving cooling procedure, inspired by sympathetic
cooling of trapped ions [31,32]. In contrast to the protocols
in Refs. [28,29], ours requires only ingredients and capa-
bilities that are already present in many neutral atom
experiments: auxiliary atoms and Rydberg interactions.
The scenariowe have inmind is the following: we assume

one starts with a quantum data register composed of an array
of N atoms, each in an individual trap, cooled to the
vibrational ground state and optically pumped to a particular
ground state. Each atom encodes a two-level system in its
ground states. One then uses Rydberg interactions to
performa quantumcomputation or simulation, duringwhich
the atoms are heated. To cool the data register we introduce
N auxiliary atoms, one for each data atom [see Fig. 1(a)], that
have been precooled using any of the standardmethods. The
data and auxiliary atoms can then be coupled via Rydberg
interactions, implementing a phonon-swap gate—a coher-
ent exchange of vibrational quanta. A key requirement of
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this protocol is for the interactions between the auxiliary and
data atoms to be insensitive to the internal state of the data
atoms. Unlike the Coulomb interaction between ions which
naturally satisfies this requirement, the Rydberg interactions
between neutral atoms are inherently state dependent. Aswe
show in this Letter, a careful choice of theRydberg states can
nevertheless satisfy this requirement.
Another requirement is that the phonon-swap inter-

actions should not induce unwanted state-dependent cou-
plings between the data atoms. In the first of our two
schemes [see Figs. 1(c), 1(d)], the interactions between any
pair of atoms (data-data and data-auxiliary) are independent
of the internal state. This scheme consists of pausing the
quantum computation or simulation, performing the pho-
non swap, and then resuming the computation or simu-
lation. In the second scheme, the data and auxiliary atoms
are addressed separately, which allows one to design state-
insensitive data-auxiliary interactions but tunable data-data
interactions. As an example, we show how this can be used
to implement the phonon-swap while simultaneously per-
forming a quantum simulation of a spin model on the data
atoms. Finally, for both of the above schemes, one can laser
cool the auxiliary atoms during the phonon swap. Because
of the quantum Zeno effect [33], this has the additional
advantage of preventing certain coherent heating mecha-
nisms, such as those due to the Rydberg interactions, from
taking place at all. We leave the detailed study of such a
scheme for future work.
Phonon-swap for two atoms.—Let us first consider

the case of two atoms: a two-level data atom “d” and a

single-level auxiliary atom “a.” The two atoms are each
trapped in a three-dimensional harmonic potential separated
by a distance r. In recent experiments [4,25–27,34,35], the
confinement along two directions (x, y) is often much
stronger than along the third (z); i.e., the trap frequencies
satisfy ωx, ωy ≫ ωz. For simplicity, we focus on cooling
the weakest direction (z). Cooling the two components
perpendicular to the interatomic axis is a trivial generaliza-
tion of this section. The third component [y direction in
Fig. 1(a)] requires more care but can be cooled via an
adiabatic protocol [36].
The Hamiltonian consisting of both the vibrational and

the internal d.o.f. is (ℏ ¼ 1) Ĥ ¼ ωzðd̂†d̂þ â†âÞ þ Ĥsþ
ĤintðrÞ, where d̂ðâÞ is the phonon annihilation operator of
the data (auxiliary) atom along the z direction; Ĥs acts on
the internal (spin) d.o.f. of the data atom, and ĤintðrÞ
describes the interaction between the two atoms that, in
principle, couples motion and spin. Since we want to
preserve the spin state of the data atom, the phonon
dynamics should be decoupled from the spin; i.e., we
want Ĥint ¼ 1internal ⊗ VðrÞ to be an identity operator
on the internal states. As we later show, by weakly
laser dressing the ground states with Rydberg states, it is
possible to obtain effective interactions of such form, where
VðrÞ¼A=ðr6þR6

cÞ for couplingA and blockade radiusRc.
For now, let us assume these interactions and Taylor

expand them to second order in the small quantum
fluctuations on top of the macroscopic separation r0, which
we assume to be along one of the strongly confined
directions [Fig. 1(a)]. This gives rise to a quadratic
Hamiltonian [36],

Ĥph;2 ¼ ωzðd̂†d̂þ â†âÞ −G
2
½ðd̂þ d̂†Þ2 þ ðâþ â†Þ2�

þ Gðd̂þ d̂†Þðâþ â†Þ; ð1Þ

where G ¼ ð3A=Mωzr80Þf1=½1þ ðRc=r0Þ6�2g is the pho-
non coupling strength and M is the atomic mass. In the
regime where ωz ≫ G, only the number-conserving terms
are relevant, giving a “beam splitter” interaction (in the
rotating frame) Ĥph;2 ¼ Gðâ†d̂þ d̂†âÞ. This Hamiltonian
effectuates a state-transfer between the two vibrational
modes in a time of ts ¼ π=2G, swapping the phonons of
the data atom with those of the auxiliary atom. This cools
the data atom down to the initial phonon occupancy of the
auxiliary atom.
Phonon-swap for 1D chain.—The discussed protocol

can be easily generalized for an ensemble of atoms. We
simply associate each data atom with a cold auxiliary atom.
For concreteness, we consider a chain of data atoms with a
lattice constant x0, separated by a distance of y0 from a
chain of cold auxiliary atoms [Fig. 1(a)]. The many-body
Hamiltonian is quadratic with approximate power-law
decaying hopping between the sites [36]

(a) (b)

(c) (d)

FIG. 1. Schematic of the phonon-swap protocol. (a) For each
data atom (red, bottom) we place another auxiliary atom (blue,
top) at an equal distance y0. We assume a 1D chain of data and
auxiliary atoms, with a lattice spacing of x0. (b) The Rydberg
interactions give rise to effective coupling G between the vibra-
tional modes of the data and auxiliary atoms. (c),(d) Two schemes
that lead to spin-insensitive interactions between the data and
the auxiliary atoms are, in (c), the ground states of all atoms
are weakly coupled to Rydberg S1=2 states. In (d), the data atoms
are coupled to n0P1=2 states and the auxiliary to nS1=2, where
jn − n0j ≫ 1.

PHYSICAL REVIEW LETTERS 123, 213603 (2019)

213603-2



Ĥph;1D ¼
X
i≠j

G
η8ji − jj8 ðâ

†
i âj þ d̂†i d̂jÞ

þ
X
ij

G
½η2ði − jÞ2 þ 1�4 ðâid̂

†
j þ â†i d̂jÞ; ð2Þ

where η≡ x0=y0. Here we defined G in terms of the
smallest distance between a data atom and its auxiliary, i.e.,
y0 (see Fig. 1). Clearly, as η → ∞, it is sufficient to consider
only the nearest-neighbor data-auxiliary interactions. In
such a case, we recover the situation in the previous section:
each data-auxiliary pair perfectly swaps their phonons after
a time of ts ¼ π=2G. If we also take into account next-
nearest-neighbor data-auxiliary interactions, we find [36]
that the average phonon occupancy of the data atoms is

n̄dðtÞ ¼
n̄að0Þ þ n̄dð0Þ

2
−
n̄að0Þ − n̄dð0Þ

2

× J0

�
4Gt

ð1þ η2Þ4
�
cosð2GtÞ; ð3Þ

where n̄dðtÞ [n̄aðtÞ] is the average occupancy of data
(auxiliary) atoms at time t and J0ðzÞ is a Bessel function
of the first kind. Equation (3) is quantitatively accurate (see
Fig. 2) at short timescales, when the effects of the long-
range interactions are less important. As η → ∞ we have
J0 → 1 which reproduces the case of independent pairwise
phonon swaps. Moreover, ts ¼ π=2G is still the nearly
optimal swap time (see Fig. 2) and even with η ¼ 1 we
can still achieve a high-efficiency swap. Assuming for
simplicity that the auxiliary atoms are initially in the
vibrational ground state, we obtain a swap efficiency of
1 − ½n̄dðtsÞ=n̄dð0Þ� ¼ 1

2
þ 1

2
J0ðπ=8Þ ≈ 98%. Furthermore,

Eq. (3) remains qualitatively accurate even at longer
timescales. As t → ∞ we have J0 → 0 and we see that
the mean phonon occupancy of all atoms is the average of
the total initial number of phonons, as expected.

The above discussion concludes that to cool an atomic
register consisting of many atoms in arbitrary geometries
and dimensions, we simply perform the phonon swap as if
all the data-auxiliary pairs are independent. The many-body
interactions only lead to a small degradation in the swap
efficiency.
State-insensitive Rydberg interactions.—We now turn to

discuss how to obtain the spin-independent interactions by
utilizing the van der Waals (vdW) couplings between
Rydberg states. Specifically, we concentrate on alkali atoms
and consider weakly laser admixing two hyperfine ground
states (see Supplemental Material for an explicit example
[36]) representing the spin-1=2, jgþi, jg−i, to Rydberg states
jrþi, jr−i, depicting the magnetic sublevels of either S1=2 or
P1=2 manifolds, as shown in Figs. 1(c), 1(d). The vdW
couplings ĤvdW between the Rydberg states then give rise to
effective interactions between the dressed ground states. The

relevant Hamiltonian is Ĥ ¼ P
i¼1;2ðĤðiÞ

A þ ĤðiÞ
L Þ þ ĤvdW

where ĤðiÞ
A ¼ −ΔðiÞ

þ jrðiÞþ ihrðiÞþ j − ΔðiÞ
− jrðiÞ− ihrðiÞ− j and ĤðiÞ

L ¼
ðΩðiÞ

þ =2ÞjgðiÞþ ihrðiÞþ j þ ðΩðiÞ
− =2ÞjgðiÞ− ihrðiÞ− j þ H:c: are the

atomic and laser Hamiltonians, respectively, in the rotating

framewithin the rotatingwave approximation.Here,ΩðiÞ
� are

Rabi frequencies and ΔðiÞ
� ≫ ΩðiÞ

� the laser detunings. Note
that for the auxiliary atoms, it is sufficient to consider a
single ground state and hence a single laser. However, we
must take into account all the states in the Rydbergmanifold
because, in general, ĤvdW may contain both diagonal and
off-diagonal matrix elements. This fact has been used
previously to construct tunable spin-spin interactions
[37,38]. A sufficient condition to obtain spin-independent
interactions is for ĤvdW to be proportional to an identity,
together with a suitable choice of the laser parameters. We
show below two simple schemes using S1=2 and P1=2 states
that satisfy well this requirement.
The vdW Hamiltonian between two atoms in either

S1=2 þ S1=2, S1=2 þ P1=2 or P1=2 þ P1=2 in the Zeeman
basis has the following form [36]:

ĤvdW ¼ C6

r6
14 −

CðaÞ
6 þ CðbÞ

6 − CðcÞ
6 − CðdÞ

6

r6
D0ðθ;ϕÞ; ð4Þ

C6 ≡ 2

27
½CðaÞ

6 þ 4CðbÞ
6 þ 2ðCðcÞ

6 þ CðdÞ
6 Þ�; ð5Þ

where the CðpÞ
6 coefficients correspond to the four different

channels describing the possible (L, J) quantum numbers
of the intermediate states and D0ðθ;ϕÞ is a traceless matrix
that depends on the angles between the interatomic
and quantization axes. The channels for S1=2 þ S1=2 and
S1=2 þ P1=2 are shown in Table I.
Phonon-swap with Sþ S states.—The first scheme uses

the fact that for a pair of atoms in nS1=2 states, the second
term in Eq. (4) approximately vanishes [37,39]. This can be

FIG. 2. The average number of phonons in the data atoms as a
function of time computed numerically (solid lines) for different
values of ωz for two chains of 50 atoms, including the counter-
rotating terms in Eq. (1), and using Eq. (3) (dashed line). Here,
η ¼ 1, n̄dð0Þ ¼ 20, n̄að0Þ ¼ 0.
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seen from Table I, which shows that the difference
between the four channels is only in the fine structure of
the intermediate states. In the limit of vanishing fine

structure, we have CðaÞ
6 ¼ CðbÞ

6 ¼ CðcÞ
6 ¼ CðdÞ

6 . This can
also be understood intuitively: the vdW interactions arise
from second-order perturbation theory, where the two
electrons undergo virtual transitions to intermediate states
allowed by the selection rules. If we neglect the fine
structure, we are free to use the uncoupled basis
(jL;mLi ⊗ jS;mSi) for the intermediate levels. Since
S1=2 states are proportional to electronic spin states with
definite mS, i.e., jS1=2; mJ ¼ � 1

2
i ¼ jL ¼ 0; mL ¼ 0i ⊗

jS ¼ 1
2
; mS ¼ � 1

2
i and because the dipole-dipole inter-

actions do not act on the electronic spin, the vdW couplings
cannot mix states with different mJ. The correction to this
scales as ΔFS=δ, where ΔFS is the fine structure splitting
and δ the energy difference to the intermediate states.
Neglecting these small corrections, and to fourth order in

the small parameter ϵ ¼ Ω=2Δ, the effective spin-spin
interactions between any two data atoms are given by

ĤintðrÞ ¼ diagðṼþþṼþ−Ṽ−þṼ−−Þ: ð6Þ

In the case of data-auxiliary interactions, we have a 2 × 2
version of Eq. (6). In both cases, the matrix elements are

Ṽμν ¼
�
Ωð1Þ

μ Ωð2Þ
ν

4Δð1Þ
μ Δð2Þ

ν

�
2 C6

r6 − C6

Δð1Þ
μ þΔð1Þ

ν

; ð7Þ

which are spin independent (i.e., Ṽþþ¼Ṽþ−¼Ṽ−þ¼Ṽ−−)
for a suitable choice of the laser parameters. A trivial
example consists of the two laser fields being identical. The
cooling protocol with this scheme would thus consist of
stopping the quantum simulation or computation, weakly
coupling the ground states of both the data and auxiliary
atoms to nS1=2 states, and waiting for a time of ts. As
an example, Rb atoms separated by 2.36 μm, and
weakly coupled to 60S1=2 (C6=2π ≈ 138.5 GHz μm6) with
Ω=2π ¼ 100 MHz [40] and Δ=2π ¼ 200 MHz would
experience a phonon coupling ofG=2π ≈ 1.48 kHz assum-
ing a trap frequency of ωz=2π ¼ 15 kHz. G is about an
order of magnitude smaller than the trap frequency and

about 2 orders of magnitude larger than the effective decay
rate ϵ2Γ60S=2π ≈ 0.043 kHz, where Γ60S is the decay rate
of 60S1=2 states. The deviation of ĤvdW from identity,
which we define by the ratio of the operator norms of the two
terms in Eq. (4), is, in this case, ≈0.027. This error can be
reduced by driving the two atoms to different principal
quantum numbers [Fig. 3(b)]. This generally reduces theC6

coefficient [Fig. 3(a)], but it can nevertheless be suffici-
ently strong. For instance, 74S1=2 þ 64S1=2 yields C6=2π ≈
29 GHz μm6 (a factor of 5 smaller than for 60S1=2þ60S1=2)
with an error of ≈0.003 (an order of magnitude smaller).
Phonon-swap with Sþ P states.—This brings us to the

second scheme, in which the auxiliary atoms are coupled to
nS1=2 states, while the data atoms to n0P1=2 states, where
jΔnj ¼ jn0 − nj ≫ 1 in order to ensure that the dipolar
interactions between them can be ignored [41]. Such a
configuration not only gives spin-independent data-
auxiliary interactions, as we will explain below, but also
gives rise to tunable spin-spin interactions between the data
atoms [37]. To see why S1=2 þ P1=2 gives rise to ĤvdW ∝ 1,
note that channels (a, c) as well as (b, d) in Table I only
differ by the fine structure in one of the terms. In the limit of
vanishing fine structure, the four channels cancel each other
pairwise, eliminating D0ðθ;ϕÞ in Eq. (4).
Intuitively, the same argument as in the S1=2 þ S1=2 case

shows that there cannot be any mixing between states
involving different mJ of the S1=2 atom. Hence, in the
absence of fine structure in the intermediate manifold, the
S1=2 atom is effectively decoupled and ĤvdW must at least

TABLE I. The four channels describing the dipole-allowed
virtual processes ðL1; J1Þ þ ðL2; J2Þ → ðL0

1; J
0
1Þ þ ðL0

2; J
0
2Þ that

lead to vdW interactions.

S1=2 þ S1=2 S1=2 þ P1=2

(a) S1=2 þ S1=2 → P1=2 þ P1=2 S1=2 þ P1=2 → P1=2 þ S1=2
(b) S1=2 þ S1=2 → P3=2 þ P3=2 S1=2 þ P1=2 → P3=2 þD3=2

(c) S1=2 þ S1=2 → P3=2 þ P1=2 S1=2 þ P1=2 → P3=2 þ S1=2
(d) S1=2 þ S1=2 → P1=2 þ P3=2 S1=2 þ P1=2 → P1=2 þD3=2

(a) (b)

(d)(c)

FIG. 3. (a),(c) The spin-insensitive interaction strength C6 and
(b),(d) deviation from identity for (top) nS1=2 þ n0S1=2 and
(bottom) nS1=2 þ n0P1=2 as a function of n and Δn ¼ n0 − n
for Rb atoms. In the case of nS1=2 þ n0P1=2, we take
min jΔnj ¼ 10.
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be block diagonal. Within this approximation, we can
understand why the remaining off-diagonal matrix ele-
ments also vanish by focusing solely on the P1=2 atom. For
each possible sub-channel of the P1=2 atom [Fig. 4], there
are exactly two processes that can couple its mJ ¼ þ 1

2
and

mJ ¼ − 1
2
states. These two processes, however, precisely

destructively interfere. The resulting spin interactions
between the data and auxiliary atoms have the same
form as in Eqs. (6) and (7). The corresponding C6, and
the error due to the spin-dependent couplings, are shown in
Figs. 3(c), 3(d), respectively.
The data atoms, on the other hand, experience nontrivial

spin-spin interactions due to the P1=2 þ P1=2 vdW cou-
plings. For the configuration in Fig. 1 (quantization axis
parallel to interatomic axis), the D0ðθ;ϕÞ matrix reads

D0ð0;ϕÞ ¼
2

81

0
BBB@

1 0 0 0

0 −1 −4 0

0 −4 −1 0

0 0 0 1

1
CCCA; ð8Þ

which gives rise to the following spin-1=2 Hamiltonian for
the data atoms:

Ĥ ¼
X
ij

Jijz Ŝ
ðiÞ
z þ JijzzŜzŜz þ ðJijþ−Ŝ

ðiÞ
þ ŜðjÞ− þ H:c:Þ; ð9Þ

where ŜðiÞα are the spin-1=2 operators of atom i and Jijμν are
coefficients that depend on the geometry, laser parameters,
and Rydberg interactions [37]. This approach can be
extended to generate other spin-1=2 models, for instance,
in two dimensions [37], with simultaneous cooling.
Summary and outlook.—We have presented a protocol

for sympathetically cooling Rydberg atoms without
destroying the quantum information stored in their internal
states. This can have applications for future Rydberg-based
quantum computers and simulators as well as other
quantum technologies. Note that while we focused here
on the weak coupling regime (G ≪ ωz), which inevitably
limits the phonon-swap time to ∼1=G ≫ 1=ωz, it is
possible to speed it up by working in the strong coupling
regime G ∼ ωz and employing optimal control techniques
[42–44]. Furthermore, while we used vdW interactions,
state-insensitive interactions can also be realized with
dipole-dipole interactions and microwave dressing of

Rydberg states [45]. Finally, our state-insensitive interac-
tion schemes could potentially be used in other contexts,
such as generating nonclassical states [46] and novel phases
of matter [47] combining motional and electronic d.o.f.
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This supplemental material is organized as follows: in Sec. I, we derive the Hamiltonian for the van-der-Waals
interactions between the Zeeman sublevels of two atoms in either S1/2 + S1/2, S1/2 + P1/2, or P1/2 + P1/2. In Sec. II,
we derive the Hamiltonian for the phonon interactions between two atoms and discuss how to implement the phonon-
swap for up to two trap components. We also comment on the validity of the Taylor approximation. Then, in Sec. III,
we present the adiabatic protocol for the phonon-swap and discuss how to perform 3D cooling by swapping all three
trap components. In Sec. IV, we generalize the phonon-swap for a 1D chain of data and auxiliary atoms and derive
the time-dependence of the average phonon number in each species. Finally, in Sec. V, we give an example of the
spin-1/2 states and the choice of the laser polarizations for a 87Rb atom.

I. VDW INTERACTIONS

In this section, we derive the van-der-Waals interactions (Eqs. (4), (5), and (8) in the main text) between the
Zeeman sublevels of two atoms. In second order perturbation theory, this can be written as [S1]

ĤvdW = P̂
∑
α,β

V̂ddQ̂α,βV̂dd
δαβ

P̂ , (S1)

where Q̂α,β = |α, β〉 〈α, β| and P̂ =
∑
k,l |k, l〉 〈k, l| are projectors onto the intermediate and initial states, respectively.

The dipole-dipole operator, V̂dd, is given by

V̂dd = −
√

24π

5

1

r3

∑
µ,ν

C1,1;2
µ,ν;µ+νY

µ+ν
2 (θ, φ)∗d̂(1)µ d̂(2)ν , (S2)

where CJ1,J2;Jm1,m2;M
is a Clebsch-Gordan coefficient and Y ml spherical harmonics. d̂

(1)
µ and d̂

(2)
ν are the spherical compo-

nents of the dipole operators for the two atoms (µ, ν ∈ {−1, 0, 1}), whose matrix elements are

〈na, La, Ja,ma| d̂q |nc, Lc, Jc,mc〉 ≡ Rna,La,Ja,nc,Lc,JcJ
q
La,Ja,ma,Lc,Jc,mc

, (S3)

where

Rna,La,Ja,nc,Lc,Jc =

∫
Rna,La,Jc(r)Rnc,Lc,Jc(r)r

3dr, (S4)

is the overlap of the radial wavefunctions Rn,L,J(r) and

JqLa,Ja,ma,Lc,Jc,mc = (−1)2Jc+1/2+ma
√

(2Ja + 1)(2Jc + 1)(2La + 1)(2Lc + 1)(
Jc 1 Ja
mc q −ma

)(
La 1 Lc
0 0 0

){
Ja 1 Jc
Lc 1/2 La

}
.

(S5)

We can write the sum over the intermediate states α, β in Eq. (S1) as follows∑
α,β

=
∑

channels

∑
nα,nβ

∑
mα,mβ

, (S6)



2

S1/2 + S1/2 S1/2 + P1/2 P1/2 + P1/2

(a)

(b)

(c)

(d)

S1/2 + S1/2 → P1/2 + P1/2

S1/2 + S1/2 → P3/2 + P3/2

S1/2 + S1/2 → P3/2 + P1/2

S1/2 + S1/2 → P1/2 + P3/2

S1/2 + P1/2 → P1/2 + S1/2

S1/2 + P1/2 → P3/2 +D3/2

S1/2 + P1/2 → P3/2 + S1/2

S1/2 + P1/2 → P1/2 +D3/2

P1/2 + P1/2 → S1/2 + S1/2

P1/2 + P1/2 → D3/2 +D3/2

P1/2 + P1/2 → S1/2 +D3/2

P1/2 + P1/2 → D3/2 + S1/2

TABLE S1. The four channels describing the dipole-allowed virtual processes (L1, J1) + (L2, J2) → (L′
1, J

′
1) + (L′

2, J
′
2) that

lead to vdW interactions, in the case of both atoms in S1/2 states (left), one atom in S1/2 and the other in P1/2 (middle), both
atoms in P1/2 states (right).

where the channels for S1/2 + S1/2, S1/2 + P1/2 and P1/2 + P1/2 are given in Table S1.

Note that specifying the channel specifies both the L and J quantum numbers (the principal quantum numbers n
are also implicitly specified for the left-hand-side of the channel).

Using Eqs. (S2), (S3) and (S6) we can rewrite Eq. (S1) in the following form

ĤvdW =
1

r6

∑
channels

 ∑
nα,nβ

(Rα,1)2(Rβ,2)2

δαβ

×
∑
mk,ml
m′k,m

′
l

24π

5

∑
mα,mβ

∑
µ,ν
µ′,ν′

C1,1;2
µ,ν;µ+νY

µ+ν ∗
2 Jµ1k,αJ

ν
2l,β

C1,1;2
µ′,ν′;µ′+ν′Y

µ′+ν′ ∗
2 Jµ

′

α,1k′
Jν
′

β,2l′

 |mk,ml〉 〈mk′ ,ml′ |

.
(S7)

In Eq. (S7), each term in the parentheses on the first line only depends on the intermediate nα, nβ values, for a given
channel. The label α in Rα,1 is short for nα, Lα, Jα where Lα, Jα are specified by the channel. Similarly, the label 1
(2) is specifying the n,L, J values of the first (second) term in the channel.

The quantity in the second line of Eq. (S7) is a 4 × 4 matrix in the subspace of the magnetic sublevels
|++〉 , |+−〉 , |−+〉 , |−−〉. For a given channel, the matrix elements are found by summing over the mα,mβ val-
ues and are independent of n.

Thus, for a given channel, p, we can define a C
(p)
6 coefficient and a matrix D(p)

C
(p)
6 =

∑
nα,nβ

(Rα,1)2(Rβ,2)2

δαβ
,

D(p)
kl,k′l′ =

24π

5

∑
mα,mβ

∑
µ,ν
µ′,ν′

C1,1;2
µ,ν;µ+νY

µ+ν ∗
2 Jµ1k,αJ

ν
2l,β

C1,1;2
µ′,ν′;µ′+ν′Y

µ′+ν′ ∗
2 Jµ

′

α,1k′
Jν
′

β,2l′

. (S8)

With these, the van-der-Waals Hamiltonian takes the simple form

ĤvdW =
1

r6

∑
p

C
(p)
6 D(p). (S9)

For the channels in Table S1 (same results for all three cases) we find (different definition than in [S1])

D(a) =
2

27
1−D0,

D(b) =
8

27
1−D0,

D(c) =
4

27
1+D0,

D(d) =
4

27
1+D0,

(S10)
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where

D0(θ, φ) =


1
81 (3 cos(2θ)− 1) 2

27e
−iφ cos(θ) sin(θ) 2

27e
−iφ cos(θ) sin(θ) 2

27e
−2iφ sin2(θ)

1
27e

iφ sin(2θ) 1
81 (1− 3 cos(2θ)) 1

81 (−3 cos(2θ)− 5) 1
27 (−2)e−iφ cos(θ) sin(θ)

1
27e

iφ sin(2θ) 1
81 (−3 cos(2θ)− 5) 1

81 (1− 3 cos(2θ)) 1
27 (−2)e−iφ cos(θ) sin(θ)

2
27e

2iφ sin2(θ) − 1
27e

iφ sin(2θ) − 1
27e

iφ sin(2θ) 1
81 (3 cos(2θ)− 1)

 , (S11)

is a traceless matrix.
Finally, the vdW Hamiltonian is thus given by Eq. (4) in the main text.

II. PHONON INTERACTIONS

In this section, we derive the effective phonon interactions (Eq. (1) in the main text) between two atoms in harmonic
traps, separated by a macroscopic distance r. We assume that the interactions are independent of the internal state
and are given by

Ĥint(r) =
A

r6 +R6
c

, (S12)

where Rc is a blockade radius and A depends on the vdW interaction strength. We further assume that the position of
each atom can be decomposed into quantum fluctuations on top of a coherent (classical) part: ri → ri + r̂i. Without
loss of generality, we assume that the macroscopic separation r0 = |r1 − r2| is along the y direction. In this case, to
second order in the small quantum fluctuations we get

Ĥint ≈ Ĥx + Ĥy + Ĥz + Constants, (S13)

where

Ĥx = −3A (x̂1 − x̂2)2

r80[1 + (Rc/r0)6]
2 ,

Ĥy = −6A (ŷ1 − ŷ2)

r70[1 + (Rc/r0)6]
2 + 3A

(ŷ1 − ŷ2)2
[
7− 5(Rc/r0)6

]
r80[1 + (Rc/r0)6]

3 ,

Ĥz = −3A (ẑ1 − ẑ2)2

r80[1 + (Rc/r0)6]
2 .

(S14)

The full Hamiltonian of the motional degrees of freedom is

Ĥ =
∑

α=x,y,z

∑
i=1,2

(
P̂ 2
i,α

2M
+

1

2
Mω2

αα̂
2
i

)
+ Ĥα

. (S15)

The full Hamiltonian is therefore a sum of three independent, commuting Hamiltonians for the three directions, which
means we can analyze each direction separately. Note that Ĥx and Ĥz have the same form while Ĥy contains a linear
term. This linear term, which represents the force between the two atoms, is inherently larger than the quadratic
term which gives rise to the phonon-swap terms. This fact prevents an efficient cooling of the y direction. In Sec. III
we show how one can overcome this and nevertheless cool all three directions using an adiabatic protocol. Here we
assume that the confinement along y is sufficiently strong and hence focus on the x and z directions.

The Hamiltonian for the z direction in terms of bosonic creation and annihilation operators ẑ1 = 1√
2Mωz

(âz + â†z),

P̂1,z = −i
√
Mωz
2 (âz − â†z) and ẑ2 = 1√

2Mωz
(d̂z + d̂†z), P̂2,z = −i

√
Mωz
2 (d̂z − d̂†z) is given by (the Hamiltonian for x is

the same with z → x)

(S16)Ĥph,z = ωz(d̂
†
z d̂z + â†zâz)−

Gz
2

[
(d̂z + d̂†z)

2 + (âz + â†z)
2
]

+Gz(d̂z + d̂†z)(âz + â†z),

where the phonon-coupling Gz is

Gz =
3A

Mωzr80

1

[1 + (Rc/r0)6]2
. (S17)
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which is given under Eq. (1) of the main text, where we dropped the z label. Assuming that ωz � Gz and making
the rotating wave approximation we have

(S18)Ĥph,z ≈ ωz(d̂†z d̂z + â†zâz) +Gz(d̂zâ
†
z + d̂†zâz),

or in the rotating frame simply Gz(d̂zâ
†
z + d̂†zâz).

This Hamiltonian effectuates a state-transfer between the two modes âz, d̂z, which can be seen from the solution to

the Heisenberg equations of motion (
˙̂
dz(t) = i

[
Gz(d̂zâ

†
z + d̂†zâz), d̂z

]
, ˙̂az(t) = i

[
Gz(d̂zâ

†
z + d̂†zâz), âz

]
)

âz(t) = cos(Gzt)âz(0)− i sin(Gzt)d̂z(0),

d̂z(t) = −i sin(Gzt)âz(0) + cos(Gzt)d̂z(0).
(S19)

After a time of ts = π
2Gz

, the states of the two modes, and hence the phonon occupations, are swapped. If, in addition,
we have that ωz = ωx (and accordingly Gz = Gx) then the same swap process would cool both the x and z directions.

Finally, let us comment on the higher-order terms that we neglect in the Taylor expansion. Each term in the

expansion of Eq. (S12) is smaller than the precedent by the dimensionless factor ∼ 1
r0

√
1

Mωα
(α = x, y, z). For

Rubidium atoms separated by 3 µm in ωz/2π = 15 kHz traps (assuming ωz < ωx,y) this factor is ∼ 0.03. Moreover, if
we work in the regime where the rotating-wave approximation is valid, i.e ωz � Gz, all the terms that do not conserve
the total number of excitations, and in particular all the odd powers in the expansion, can be neglected. Thus, in

that regime, the leading order correction to Eq. (S16) is smaller by the factor ∼
(

1
r0

√
1

Mωz

)2
∼ 9× 10−4.

III. ADIABATIC PHONON-SWAP

In this section, we present an adiabatic protocol for performing the phonon-swap. As we have discussed in the
previous section, the repulsive force between a pair of atoms prevents the simple phonon-swap from taking place for
the trap component parallel to the inter-atomic axis. This manifests itself in the presence of the linear term in the
y component of Eq. (S14). We show here how this can be mitigated by implementing a smooth, slowly varying π/2
pulse.

This adiabatic protocol can be intuitively understood as follows: we imagine slowly turning on and off the inter-
actions [A → A(t)] such that the atoms adiabatically follow the new equilibrium positions, determined by the total
potential, which is the sum of the trap potentials and the interactions. During this time, the phonon-swap can take
place, swapping the phonon excitations while the displacements slowly change.

We assume the same setup as in the previous section, where the two atoms, data and auxiliary, are initially (at
time t = 0) separated by some distance r0 ≡ r(0) = yeq2 (0)−yeq1 (0) (determined by the trap separation). As we slowly
increase A(t), the equilibrium positions (which at t = 0 are yeq1 (0) = 0, yeq2 (0) = r0) slowly change as well. These
equilibrium positions are found by minimizing the full potential at each time t, and are given by the solutions to the
following equations

Mω2
yy
eq
1 (t)− 6A(t)[yeq1 (t)− yeq2 (t)]5

[R6
c + (yeq1 (t)− yeq2 (t))6]

2 = 0,

6A(t)[yeq1 (t)− yeq2 (t)]5

[R6
c + (yeq1 (t)− yeq2 (t))6]

2 +Mω2
y(yeq2 (t)− r0) = 0.

(S20)

Taylor expanding the potential about those equilibrium positions gives (up to constants)

(S21)Ĥph,y =
P̂ 2
1,y + P̂ 2

2,y

2M
+

1

2
Mω2

y(ŷ1 − yeq1 (t))2 +
1

2
Mω2

y(ŷ2 − yeq2 (t))2 −MωyGy(t)[ŷ1 − yeq1 (t)− (ŷ2 − yeq2 (t))]2,

where

Gy(t) = −3A(t)

Mωy

7− 5(Rb/r(t))
6

r(t)8[1 + (Rb/r(t))6]
3 , r(t) = yeq2 (t)− yeq1 (t). (S22)

The x and z Hamiltonians are still given by Eq. (S14) and Eq. (S16) with the only difference being that Gz, Gx are
now time-dependent. In the following we therefore first focus on the y component. Note that by expanding about
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the equilibrium positions, we have implicitly assumed that the process is adiabatic. This assumption can be justified
self-consistently, as we show later in this section.

We now transform to the bosonic creation and annihilation operators ŷ1 = 1√
2Mωy

(ây + â†y), ŷ2 = 1√
2Mωy

(d̂y + d̂†y),

P̂1,y = i
√

Mωy
2 (â†y − ây), P̂2,y = i

√
Mωy
2 (d̂†y − d̂y) which gives

(S23)Ĥph,y = ωy(â†yây + d̂†yd̂y)−ωyα1(t)(ây + â†y)−ωyα2(t)(d̂y + d̂†y)− Gy(t)

2
[ây + â†y−2α1(t)− (d̂y + d̂†y−2α2(t))]2,

where αi(t) =
√

Mωy
2 yeqi (t). Moving to the adiabatic frame with the displacement operator D̂(t) =

exp
[
−α1(t)(â†y − ây)− α2(t)(d̂†y − d̂y)

]
yields

Ĥph,y,ad = D̂(t)Ĥph,yD̂
†(t) + iḊ(t)D†(t)

= ωy(â†yây + d̂†yd̂y)− Gy(t)

2

[
(â†y + ây)2 + (d̂†y + d̂y)2

]
+Gy(t)(â†y + ây)(d̂†y + d̂y) + iα̇1(ây − â†y) + iα̇2(d̂y − d̂†y).

(S24)

From Eq. (S24) we can see that the adiabatic Hamiltonian for the y component has a similar structure as the x
and z Hamiltonians in the previous section in Eq. (S16), with additional non-adiabatic corrections proportional to α̇1

and α̇2. The adiabaticity condition is therefore ωy � α̇1, α̇2, which together with the condition ωy � Gy allows us to
make the rotating wave approximation, giving

(S25)Ĥph,y,ad ≈ ωy(â†yây + d̂†yd̂y) +Gy(t)(â†yd̂y + âyd̂
†
y).

If ωy � α̇1, α̇2, then the atoms follow adiabatically the equilibria of the total potential. This is in fact the justification
for the self-consistent assumption mentioned at the beginning of this section.

Equation (S25) effectuates a state-transfer between the two modes, exactly as the time-independent version in the
previous section [see Eq. (S18)]. The solution of the Heisenberg equations (in the rotating frame) are in this case
(with equivalent expressions for the x, z components)

ây(t) = cos

(∫
Gy(t)dt

)
ây(0)− i sin

(∫
Gy(t)dt

)
d̂y(0),

d̂y(t) = −i sin

(∫
Gy(t)dt

)
ây(0) + cos

(∫
Gy(t)dt

)
d̂y(0).

(S26)

For a full phonon-swap of the y phonons to take place we require
∫
Gy(t)dt = π

2 . However, since the phonon interaction
strength for the y direction is different than for the x and z directions [i.e., Gy(t) 6= Gx,z(t) as one can see in Fig. S1(a)]
a π/2 pulse for y is not necessarily a π/2 pulse for the other two directions. Nevertheless, in typical scenarios the
traps are not isotropic, and one can utilize this fact together with the different interaction curves to compensate and
optimize a pulse that is as close as possible to π/2 for all three directions.

As a simple example, we take a Gaussian pulse for A(t) = Amax
[
exp
(
− (t−t0)2

2σ2

)
− c
]

where c is a constant chosen

such that A(0) = 0. Using similar parameters as in the main text (see caption of Fig. S1), assuming ωx/2π = ωz/2π =
15 kHz and ωy/2π = 50 kHz we can find pulse parameters that yield

∫
Gy(t)dt/(π/2) ≈

∫
Gx,z(t)dt/(π/2) ≈ 1.

Furthermore, even if for a given parameter regime it is not possible to perform the 3D phonon-swap with a single
pulse, one can always perform the cooling in three steps: one can first apply a π/2 pulse to swap the phonons in the
x and z components. This would only partially swap the y phonons. One then has to cool the auxiliary atoms before
applying another π/2 pulse, this time designed to fully swap the y phonons.

Finally, in Fig. S1(b) we show the ratios of α̇1,2 to the trap frequency ωy for the Gaussian pulse described above.
As one can see, the adiabaticity constraint is satisfied well at all times.

IV. PHONON-SWAP FOR 1D CHAIN

Here we generalize the results of the previous sections to the more realistic case of an atomic register consisting of
many atoms. We derive Eq. (3) from the main text.
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FIG. S1. (a) Normalized phonon interactions as a function of distance. (b) Non-adiabatic corrections normalized to the trap
frequency ωy/2π = 50 kHz as a function of time for a Gaussian pulse with Amax/2π = 34.4MHz µm6, σ = 6.7 µs, t0 = 215.9µs
for a trap separation of r0 = 1.93µm.

For concreteness we consider the setup in Fig. 1(a) of the main text where a 1D chain of N auxiliary atoms (lattice
constant x0) is brought to a distance of y0 from an identical 1D chain of N data atoms. For simplicity we only consider
a single trap direction (z) and the time-independent swap protocol. The generalizations to two or three directions
and the adiabatic swap are straightforward. The Hamiltonian for the vibrational modes in the z direction is (we drop
the z labels from here on)

(S27)Ĥ =

N∑
i=1

ωz(â
†
i âi + d̂†i d̂i)−

1

2

N∑
i=1,j=1,i6=j

Gij
[
(ẑai − ẑaj )2 + (ẑdi − ẑdj )2

]
−

N∑
i=1,j=1

Fij(ẑ
a
i − ẑdj )2,

where by âi (d̂i) we denote the phonon-annihilation operator for an auxiliary (data) atom i and by zai = 1√
2
(â+â†)(zdi =

1√
2
(d̂+ d̂†)) the z coordinate of an auxiliary (data) atom (we have absorbed Mωz into the definition of Gij and Fij).

The 1
2 is to avoid double-counting and the coefficients are given by

Gij =
G

η8|i− j|8
,

Fij =
G

[η2(i− j)2 + 1]
4 ,

(S28)

where G is defined in Eq. (S17) with r = y0 and η ≡ x0

y0
. To be consistent with the two-atom case, we have defined G

with the nearest neighbor separation between data-auxiliary atoms (y0). We have also assumed that pairs of atoms
that are farther apart than the nearest-neighbor separation (i.e next nearest-neighbors and so on) experience power-
law interactions. In other words, we assumed that the separation between next-nearest neighbors is significantly larger
than the blockade radius. In terms of bosonic operators Eq. (S27) is

(S29)

Ĥ =

N∑
i=1

[
ω̃z,i(â

†
i âi + d̂†i d̂i)−

1

2
(G̃i + F̃i)(â

2
i + d̂2i + H.c.)

]
+

1

2

∑
i6=j

Gij(âiâj + â†i âj + d̂id̂j + d̂†i d̂j + H.c.) +
∑
ij

Fij(âid̂j + âid̂
†
j + H.c.),

where

ω̃z,i = ωz + G̃i + F̃i,

G̃i =
∑
j 6=i

Gij ,

F̃i =
∑
j

Fij .

(S30)



7

We now assume that the system is translationally invariant, i.e, ω̃z,i ≈ ω̃z, G̃i ≈ G̃, F̃i ≈ F̃ for all i. This is a good
approximation for the “bulk” of the atoms, away from the edges, in the limit where N → ∞, or for a system with
periodic boundary conditions. We also assume that ω̃z � G̃, F̃ which allows us to drop terms that do not conserve
the total number of excitations. With these assumptions, the Hamiltonian in the rotating frame is given by

Ĥ =
∑
i6=j

Gij(â
†
i âj + d̂†i d̂j) +

∑
ij

Fij(âid̂
†
j + â†i d̂j). (S31)

Taking the Fourier transform with

ân =
1√
N

∑
k

âke
iknx0 , âk =

1√
N

∑
n

âne
−iknx0 , (S32)

and using the fact that Gij and Fij are transitionally invariant, i.e depend on |i− j|, we get

Ĥ =
∑
k

[
Gk(â†kâk + d̂†kd̂k) + Fk(âkd̂

†
k + â†kd̂k)

]
, (S33)

where we used
∑
n e

i(k−k′)nx0 = Nδk,k′ and the following definitions

Gk =

N∑
n=−N,n6=0

Gne
−iknx0 = 2

N∑
n=1

Gn cos(knx0),

Fk =

N∑
n=−N

Gne
−iknx0 = Fn=0 + 2

N∑
n=1

Fn cos(knx0).

(S34)

Equation (S33) can be diagonalized with the transformation

ĉk =
âk + d̂k√

2
, b̂k =

âk − d̂k√
2

, (S35)

which gives

Ĥ =
∑
k

[
(Gk + Fk)ĉ†k ĉk + (Gk − Fk)b̂†k b̂k

]
. (S36)

Using this, we can now compute the average excitation number in the auxiliary and data atoms, given by

n̄a(t) =
1

N

∑
n

〈
â†n(t)ân(t)

〉
,

n̄d(t) =
1

N

∑
n

〈
d̂†n(t)d̂n(t)

〉
.

(S37)

Below, we first compute n̄a(t):

n̄a(t) =
1

N

∑
n

〈
â†n(t)ân(t)

〉
=

1

4N2

∑
k

∑
nm

eikx0(n−m)
〈

4 cos2(Fkt)â
†
nâm + 4 sin2(Fkt)d̂

†
nd̂m + 2i sin(2Fkt)â

†
nd̂m − 2i sin(2Fkt)d̂

†
nâm

〉
.

(S38)

For simplicity, we now assume that the initial state is a product state and also that 〈âi〉 =
〈
â2i
〉

= 〈d̂i〉 = 〈d̂2i 〉 = 0
for all i. This would be the case, for example, if every atom starts at a pure Fock state or a thermal state. With this
assumption, only the diagonal terms in Eq. (S38) contribute, yielding

n̄a(t) =
1

N

[∑
k

cos2(Fkt)

]
n̄a(0) +

1

N

[∑
k

sin2(Fkt)

]
n̄d(0). (S39)
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Taking the continuum limit 1
N

∑
k →

x0

2π

∫ π/x0

−π/x0
dk and changing variables kx0 → k gives

n̄a(t) = n̄a(0)

∫ π

−π

dk

2π
cos2(Fkt) + n̄d(0)

∫ π

−π

dk

2π
sin2(Fkt). (S40)

To obtain a closed form expression, we approximate the sum in Fk by the first term n = 1 which corresponds to
only keeping up to next nearest-neighbors interactions between auxiliary and data atoms. This gives rise to

n̄a(t) =
n̄a(0) + n̄d(0)

2
+
n̄a(0)− n̄d(0)

2
J0

[
4Gt

(1 + η2)4

]
cos(2Gt),

n̄d(t) =
n̄a(0) + n̄d(0)

2
− n̄a(0)− n̄d(0)

2
J0

[
4Gt

(1 + η2)4

]
cos(2Gt),

(S41)

where J0(z) is a Bessel function of the first kind.

V. LASER EXCITATION FROM GROUND STATES

In this section we give an example level structure and laser polarization choice for 87Rb atoms for some of the
schemes we presented in the main text. One choice for the spin-1/2 states of the data atoms are the following two
hyperfine ground states

|g−〉 ≡ |52S1/2, F = 1,mF = 1〉,
|g+〉 ≡ |52S1/2, F = 2,mF = 2〉.

(S42)

To excite to S1/2 states, we need to use an intermediate P state. Using σ+, σ−, and σ0 polarized light, one can for
example use the following ladder scheme

|g−〉
σ0−→
∣∣5P3/2, F = 1,mF = 1

〉 σ+−−→
∣∣nS1/2,mJ = + 1

2

〉
,

|g+〉
σ0−→
∣∣5P3/2, F = 2,mF = 2

〉 σ−−−→
∣∣nS1/2,mJ = − 1

2

〉
.

(S43)

For the auxiliary atoms, a single state out of the two is sufficient. For exciting to P1/2 states, one choice is the
following

|g−〉
σ+−−→ |nP1/2,mJ = + 1

2 〉,

|g+〉
σ−−−→ |nP1/2,mJ = − 1

2 〉.
(S44)

[S1] A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, and P. Zoller, Phys. Rev. Lett. 114, 173002 (2015).
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