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Strongly long-range interacting quantum systems—those with interactions decaying as a power law 1/rα

in the distance r on a D-dimensional lattice for α � D—have received significant interest in recent years.
They are present in leading experimental platforms for quantum computation and simulation, as well as in
theoretical models of quantum-information scrambling and fast entanglement creation. Since no notion of
locality is expected in such systems, a general understanding of their dynamics is lacking. In a step towards
rectifying this problem, we prove two Lieb-Robinson-type bounds that constrain the time for signaling and
scrambling in strongly long-range interacting systems, for which no tight bounds were previously known. Our
first bound applies to systems mappable to free-particle Hamiltonians with long-range hopping, and is saturable
for α � D/2. Our second bound pertains to generic long-range interacting spin Hamiltonians and gives a tight
lower bound for the signaling time to extensive subsets of the system for all α < D. This many-site signaling
time lower bounds the scrambling time in strongly long-range interacting systems.

DOI: 10.1103/PhysRevA.102.010401

Introduction. In nonrelativistic quantum mechanics, Lieb-
Robinson bounds provide a notion of causality [1], limiting
the speed of information propagation (or signaling) to a finite
value in lattice systems with short-range interactions. This
bounded signaling speed has strong implications for quan-
tum information and condensed matter physics, leading to
entanglement area laws [2] and the existence of topological
order [3]. However, it remains an open question whether the
signaling speed must be finite if interactions are long-ranged
and decay as an inverse power law 1/rα in the interparticle
distance r. Such power-law interacting systems arise in ex-
perimental platforms for quantum computation and quantum
simulation, including Rydberg atoms [4], trapped ions [5],
polar molecules [6], defect centers in solids [7], and atoms
trapped along photonic crystals [8]. The lack of a bounded
signaling speed in these systems makes it challenging to
understand and predict their dynamics.

For power-law interacting systems with α greater than the
lattice dimension D, a finite signaling speed has been shown
to persist to some intermediate distance and time [9]. At
long distances (or times), recent developments show that the
signaling speed will diverge at most polynomially in time
for α > 2D [10,11], ruling out the exponential divergence
suggested by earlier results [12]. For α � 2D, which is the
case for most experimental long-range interacting systems, an
exponentially growing signaling speed has yet to be ruled out,
making the fate of causality far from settled.

In this work, we focus on the regime of strongly long-
range interacting systems, where interaction energy per site
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diverges, thus implying α � D [13–16]. Note that even if one
normalizes the interaction strength to make energy extensive
(i.e., proportional to the number of lattice sites), these systems
are still fundamentally different from those with α > D (as
energy is in general no longer additive for subsystems [17]).
To avoid confusion, we will not perform any normalization of
interaction strength throughout this Rapid Communication, as
such normalization can be performed later by rescaling time
without changing the physics implied by our results [15].

Apart from their existence in experimental platforms
[5,6,18–20], strongly long-range interacting systems have
received much theoretical interest due to their applications
in spin squeezing [21], novel behavior in dynamical critical
scaling [22,23], divergent equilibration time [13], and close
relation to fast quantum-information scrambling [24–30]. The
phenomenology of these systems differs from that of their
short-range counterparts at a fundamental level, and thus re-
quire new theoretical understandings. Two fundamental ques-
tions about these systems are (1) what is the shortest time
tsi needed to send a signal from one site to a site located an
extensive distance away, and (2) what is the shortest time tsc

needed to scramble the information stored in the system [31]?
There have been a number of attempts to answer the above

two questions, with limited success. For the first question,
Refs. [32–34] show that in certain strongly long-range inter-
acting systems with α � D, information and correlations can
spread across the entire system in a finite time that is inde-
pendent of the number of sites, N . (For certain systems not
engineered for fast signaling or scrambling, information prop-
agation may even be suppressed [35].) The Lieb-Robinson-
type bound derived in Ref. [15], however, suggests that the
signaling time can vanish in the N → ∞ limit, and does not
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rule out the possibility of tsi scaling as log(N )N2α/D/N2 for
α < D. No protocol that we know of comes close to achieving
such fast signaling. As for scrambling, Ref. [36] shows that
the scrambling time can be lower-bounded by tsc � 1/N for
α = 0, whereas the fastest-known scramblers are conjectured
to be able to scramble in time tsc ∝ log(N )/

√
N [28].

While the definitive answers to these two questions re-
main to be found, we present several advances in this Rapid
Communication. First, we prove a new bound for systems
that can be mapped to free bosons or fermions with 1/rα

hopping strength, which leads to a signaling-time bound of
tsi � Nα/D/

√
N . While no previous bound has been given

specifically for free-particle systems, the best existing result
for interacting systems yields a significantly looser bound
of tsi � log(N )N2α/D/N2 [15,37]. Notably, our free-particle
bound is tight for α � D/2, as we show that it can be saturated
by a new quantum state transfer protocol.

We also prove a bound of tsi � log(N )Nα/D/N for general
interacting spin systems, which—while improving signifi-
cantly over the previous best bound mentioned above [15]—is
still not known to be tight. Building on this second result, we
prove a tight bound for “many-site signaling” (from one site
to an extensive part of the system). This many-site signaling
bound leads to a scrambling-time bound of tsc � Nα/D/N ,
which generalizes the result in Ref. [36] of tsc � 1/N to all
α < D.

Tight bound for free particles. We first prove a Lieb-
Robinson-type bound for noninteracting bosons/fermions on
a lattice. Consider the following free-particle Hamiltonian
H (t ) defined on a D-dimensional lattice � with N sites:

H (t ) =
∑

i, j ∈ �

i < j

[Ji j (t )c†
i c j + H.c.] +

∑
i∈�

Bi(t )c†
i ci, (1)

where c†
i (ci) represents the creation (annihilation) operator.

The hopping strength Ji j (t ) and chemical potential Bi(t ) can
depend on time and we do not impose any constraint on them
for now. We denote an operator A at time t in the Heisenberg
picture as A(t ) = U †(t )AU (t ), where U (t ) ≡ T e−i/h̄

∫ t
0 H (t ′ ) dt ′

is the time evolution operator (h̄ = 1). The operator norm of
A will be denoted by ‖A‖.

Theorem 1. For the Hamiltonian defined in Eq. (1) and any
pair of distinct sites X,Y ∈ �,

‖[cX (t ), c†
Y ]‖ �

∫ t

0
dτ

√∑
i∈�

|JiX (τ )|2. (2)

We use [·, ·] to denote the commutator for bosons and the
anticommutator for fermions.

Roughly speaking, the quantity ‖[cX (t ), c†
Y ]‖ measures the

overlap between the support of the operator cX (t ) (which
expands from site X due to hopping terms) and the site Y . As
a result, it also quantifies the amount of information that can
be sent between X and Y in a given time t . Indeed, we define
the signaling time tsi as the minimal time required to achieve
‖[cX (t ), c†

Y ]‖ > δ for some positive constant δ. Note that we
do not expect the chemical potential strength Bi(t ) to show up
in the bound, as on-site Hamiltonian terms do not change the
support of cX (t ).

If the hopping terms in the Hamiltonian are short-ranged
(e.g., nearest-neighbor), one might expect ‖[cX (t ), c†

Y ]‖ to
decay exponentially in the distance rXY between X and Y , due
to the strong notion of causality that follows from the Lieb-
Robinson bound [1]. Additionally, if the hopping strength
decays as a power law (|Ji j (t )| � 1/rα) with α > D, intuition
would suggest that ‖[cX (t ), c†

Y ]‖ decays algebraically in rXY

[9,12], indicating a weak notion of causality. However, the
right-hand side of Eq. (2) has no dependence on rXY . This is
because the bound is tailored to strongly long-range hoppings
with α < D, which makes it loose for shorter-ranged long-
range hoppings.

Assuming that |Ji j (t )| � 1/rα , we can simplify Eq. (2) to

‖[cX (t ), c†
Y (0)]‖ � t ×

{
O(1), α > D/2

O(N1/2−α/D), 0 � α � D/2,

(3)
where N is the number of lattice sites and O is the asymptotic
“big-O” notation [38]. Therefore, for α � D/2, it takes a
time tsi = �(Nα/D/

√
N ) [38] to signal from site X to site Y ,

independent of the distance between X and Y .
In the next section, we show that for α � D/2, the bound

in Eq. (2) can be saturated (up to a factor of 2) by engineered
free-particle Hamiltonians. This leads to the conclusion that
causality can completely vanish—in the sense that signals
can be sent arbitrarily fast given large enough N—for a
strongly long-range hopping system with α < D/2. It remains
an open question whether such a statement can be generalized
to systems with D/2 � α < D for either free or interacting
particles.

Proof of Theorem 1. Let us first go into the interaction
picture of

∑
i Bi(t )c†

i ci to eliminate the on-site terms from
the Hamiltonian in Eq. (1). [This imparts a time-dependent
phase eiφ jk (t ) onto the hopping term Jjk (t ) for some φ jk (t ) ∈
[0, 2π ) and j 
= k, which, since it does not change the
value of |Jjk (t )|, does not affect the overall bound.] We now
have a pure hopping Hamiltonian HI (t ) = ∑

i j J̃i j (t )c†
i c j with

|J̃i j (t )| ≡ |Ji j (t )|. Because HI (t ) is a quadratic Hamiltonian,
cX (t ) is a time-dependent linear combination of annihila-
tion operators on every site, and we can write [cX (t ), c†

Y ] ≡
fXY (t )1, where fXY (t ) is a number and 1 represents the
identity operator. Given that UI (t )|0〉 = |0〉, where UI (t )
is the time-evolution operator corresponding to HI (t ), and
cX (t )|0〉 = 0, we have

fXY (t ) = 〈0|[cX (t ), c†
Y ]|0〉 = 〈0|cX (0)UI (t )c†

Y |0〉. (4)

For convenience, we define the (normalized) states |ψX 〉 ≡
c†

X (0)|0〉 and |ψY (t )〉 ≡ UI (t )c†
Y |0〉. Taking the time derivative

of Eq. (4) gives

dfXY

dt
= −i〈ψX |HI (t )|ψY (t )〉. (5)

By the Cauchy-Schwarz inequality,∥∥∥∥dfXY

dt

∥∥∥∥ � ‖HI (t )|ψX 〉‖‖|ψY (t )〉‖ (6)

= ‖HI (t )|ψX 〉‖ =
√∑

i∈�

|J̃iX (t )|2. (7)
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(a)

(b)

FIG. 1. A fast quantum-state transfer protocol for a long-range
Hamiltonian acting on a lattice of dimension D = 1 with N = 7 sites.
The strengths of the hopping terms are bounded by a power law
1/rα in the distance r. The active interactions in each time step are
depicted as directed edges with uniform weights. (a) The site X is
initially in the state |ψ〉 (gray circle), with the other (unoccupied)
sites in state |0〉. Time-evolving by the Hamiltonian H1 for time
O(Nα/D−1/2) (indicated by gray arrows) yields a superposition of
the |0〉⊗N state and a symmetric |W 〉 state over the remaining N − 2
sites. (b) Applying the Hamiltonian H2 for the same duration of time
completes the state transfer of |ψ〉 to the target site Y .

The last equality follows from |ψX 〉 being a single excitation
localized on site X and HI (t ) consisting only of hopping terms
J̃i j (t )c†

i c j . Applying the fundamental theorem of calculus
yields the bound on fXY (t ) and hence Theroem 1.

Saturating the free-particle bound. We now show that
the bound in Theroem 1 can be saturated by engineered
Hamiltonians that can also be used to perform fast quantum-
state transfer. In particular, the protocol presented here has a
state transfer time of T = O(Nα/D/

√
N ), which, for α � D/2,

improves over the fastest-known state transfer protocol using
long-range interactions [34].

Our setup for the state transfer task is depicted in Fig. 1.
We initialize a lattice with N sites in a tensor product
of unoccupied states |0〉 and some unknown normalized
bosonic/fermionic state |ψ〉 = a|0〉 + b|1〉 on a single site X .
The goal of state transfer is to move |ψ〉 to the target site
Y after the system time-evolves by a |ψ〉-independent (but
possibly time-dependent) Hamiltonian H (t ) [39,40].

The unitary time-evolution operator U (T ) can be said to
implement state transfer in time T if it satisfies the following
condition:

|〈0|X 〈0|⊗N−2〈ψ |Y U (T )|ψ〉X |0〉⊗N−2|0〉Y | = 1. (8)

We refer to the left-hand side of Eq. (8) as the fidelity of
the state transfer, which can be bounded directly by a Lieb-
Robinson-type bound on H (t ) such as Eq. (2) [40].

We label the sites that are not X or Y by 1, . . . , N − 2 and
denote the furthest distance between any pair of sites by L =
O(N1/D). Our state transfer protocol is given by the following
piecewise time-independent Hamiltonian:

H (t ) =
{

H1 = 1
Lα

∑N−2
i=1 c†

X ci + H.c., 0 < t < T
2 ,

H2 = 1
Lα

∑N−2
i=1 c†

i cY + H.c., T
2 < t < T,

(9)

where T = πLα/
√

N − 2 is the total time for the protocol.
Note that while H (t ) satisfies the constraint |Ji j (t )| � 1/rα

i j
assumed in Eq. (3), the corresponding Ji j (t ) terms do not
actually vary with the distances between sites.

Evolving the initial state |
〉 ≡ |ψ〉X |0〉⊗N−2|0〉Y by H1 for
time T/2 yields the intermediate state

e−iH1T/2|
〉 = a|0〉⊗N + b|0〉X |W 〉|0〉Y . (10)

Here, |W 〉 = 1√
N−2

∑N−2
i=1 c†

i |0〉⊗N−2 is the W state over the
N − 2 remaining sites. Further evolving the state by H2 for
time T/2 yields the final state:

e−iH2T/2e−iH1T/2|
〉 = |0〉X |0〉⊗N−2(a|0〉Y + b|1〉Y ). (11)

Thus we have achieved perfect quantum-state transfer in time
T = O(Nα/D/

√
N ). Note that the distance between X and Y

on the lattice does not appear in the state transfer time. Setting
b = 1 in the above protocol leads to

〈
|[c†
X (T ), cY ]|〉
 = 1

2

∫ T

0
dτ

√∑
i∈�

|JiX (τ )|2. (12)

Thus, the bound in Eq. (2) is saturated up to a factor of 2.
It should be pointed out that, for α > D/2, the above

protocol requires a time that increases with N , which is slower
than for the previous result in Ref. [34]. While that protocol
has a state transfer time that is constant for α � D, it uses
an engineered Hamiltonian with interactions, and therefore
cannot be applied to systems of noninteracting particles. In
general, allowing interactions may increase the rate of infor-
mation propagation, and proving a Lieb-Robinson-type bound
in these situations requires a different approach.

Improved bound for general interacting systems. We now
derive bounds on the signaling time that extend beyond free-
particle Hamiltonians. Without loss of generality, we study
a generic interacting spin Hamiltonian H (t ) = ∑

i< j hi j (t )
where ‖hi j (t )‖ � 1/rα

i j and on-site interactions have been
eliminated by going into an interaction picture. We will bound
the quantity ‖[A(t ), B]‖, where A and B are arbitrary operators
supported on sets of sites X and Y , respectively, using the
following Lieb-Robinson series [12]:

‖[A(t ), B]‖ � 2‖A‖‖B‖|X ||Y |
∞∑

k=1

(2t )k

k!
J k (X,Y ), (13)

J k (X,Y ) ≡
∑

i1,...,ik−1

JXi1 Ji1i2 . . . Jik−1Y . (14)

Here, |X | stands for the number of sites X acts on. Each term
in Eq. (14) represents a sequence of k directed hops in the
lattice that originates at site X and ends at site Y . For distinct
sites i and j, Ji j = 1/rα

i j represents a directed hop from i to j.
For technical reasons, we set Jii = ∑

j 
=i Ji j [41].
Since Ji j decays slowly in ri j for α < D, our improved

bound on ‖[A(t ), B]‖ requires bounding each term in Eq. (14)
using a new summation technique [42] absent in previous
efforts [12,15]. This technique is particularly effective for
tightening existing Lieb-Robinson bounds for strongly long-
range interacting systems. The result (assuming α < D) is

‖[A(t ), B]‖ � 2‖A‖‖B‖|X ||Y |
(

e�(N1−α/D )t − 1

�(N1−α/D)rα
XY

)
. (15)

The factor �(N1−α/D) [38] comes from the total interaction
energy per site given by Jii.
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We consider now the case of signaling between subsystems
X and Y of a system � with |X |, |Y | = O(1). We formally
define tsi, the signaling time from X to Y , as the smallest time t
such that for a fixed constant δ = �(1), there exist unit-norm
operators A and B supported on X and Y , respectively, such
that ‖[A(t ), B]‖ > δ [36]. If we further assume that X and Y
are separated by an extensive distance rXY = �(N1/D), then
the following lower bound holds for the signaling time:

tsi = �

(
log(N )

N1−α/D

)
. (16)

This bound supersedes the naive signaling-time bound of
tsi = �(1/N1−α/D) one would obtain via normalization of
interaction energy per site. While we do not know of any
examples that saturate this bound, it is the tightest-known
signaling-time bound for strongly long-range interacting sys-
tems. Indeed, the bound is close to being saturated in the limit
of α → D−, as the state transfer protocol in Ref. [34] shows
that tsi = O(log N ) can be achieved at α = D. Unfortunately,
generalizing our bound in Eq. (15) to the case of α = D leads
to tsi = �(1) [42], which is not saturated by Ref. [34].

Many-site signaling and scrambling bounds. Of recent
interest in the fields of theoretical high-energy and condensed
matter physics has been the phenomenon of quantum informa-
tion scrambling [28,36,43–51]. Previous work on scrambling
in power-law interacting systems has focused primarily on
numerical analysis [52,53], whereas general mathematical re-
sults are lacking. Only in all-to-all interacting systems (which
can be treated as the limit α = 0) have Lieb-Robinson-type
bounds been used to bound the scrambling time [36]. Using
the bound derived in Eq. (15), we can prove a scrambling-time
bound for systems with 0 < α < D, a regime for which no
better result is known.

To derive a bound on the scrambling time, we first derive a
bound on the many-site signaling time. We define the “many-
site signaling time” tms to be the smallest t required to signal
from X to a Y that has extensive size. Lieb-Robinson-type
bounds such as Eq. (15) naturally limit the time for many-site
signaling. However, a direct application of Eq. (15) to many-
site signaling leads to a loose bound. Instead, a more refined
technique that sums over all sites within the subsets X and Y
yields a tighter bound [54]:

‖[A(t ), B]‖ � 2‖A‖‖B‖
∑

i∈X, j∈Y

e�(N1−α/D )t − 1

�(N1−α/D)rα
i j

. (17)

This bound reduces to Eq. (15) when |X |, |Y | = 1.
The scrambling time tsc corresponds to the minimal time

required for a system of N spins on a lattice � to evolve from
a product state to a state that is nearly maximally entangled on
all subsystems of size kN for some constant 0 < k < 1

2 [36].
From this definition, it can be shown that any information
initially contained in a finite-sized subsystem S ⊂ � is no
longer recoverable from measurements on S alone [36]. That
information is not lost, however, but can be recovered from the
complement S̄ = � \ S of S [44,55]. As a result, scrambling
implies the ability to signal from S to S̄ [36]. Thus, tsc is lower
bounded by the time it takes to signal from a subset S with size
�(1) to its complement with size �(N ), which corresponds to
the many-site signaling time.

Using Eq. (17), we obtain the following scrambling-time
bound for 0 � α < D:

tsc � tms = �

(
1

N1−α/D

)
. (18)

Note that this bound differs from Eq. (16) by a log(N ) factor.
Additionally, although the bound on tsi in Eq. (16) may allow
further tightening, the bound on tms in Eq. (18) cannot be
generically improved for 0 � α < D. To see this, we consider
a long-range Ising Hamiltonian H = ∑

i 
= j Ji jσ
z
i σ z

j , with Ji j =
1/rα

i j . For simplicity, we consider the subset S to be a single
site indexed by i and construct operators A = σ+

i and B =⊗
j 
=i σ

+
j that are supported on S and S̄, respectively. We can

analytically calculate the expectation value of [A(t ), B] in an
initial state |ψ〉 = 1√

2
[|0〉⊗N + |1〉⊗N ] [54]:

〈ψ |[A(t ), B]|ψ〉 = sin

⎛
⎝2t

∑
j 
=i

Ji j

⎞
⎠. (19)

Using Ji j = 1/rα
i j , we find that the signaling time of this

protocol is t = O(Nα/D−1) for 0 � α < D, which saturates the
many-site signaling-time bound in Eq. (18) [56]. This does
not, however, imply that the corresponding scrambling-time
bound is tight. In fact, previous work suggests that fast scram-
blers in all-to-all interacting systems (α = 0) can scramble in
time tsc = O(log(N )/

√
N ) [36,57]. This suggests that future

improvements to the scrambling-time bound may be possible.
Conclusions and outlook. In this Rapid Communication,

we make several advances in bounding the signaling and
scrambling times in strongly long-range interacting systems.
Our results suggest a number of possible future directions.
One is to find the optimal signaling-time bound for general
strongly long-range interacting systems. Previously, this has
been an outstanding challenge; we now know of a free-particle
bound that is tight for α ∈ [0, D/2] and a general bound that
is nearly tight as α → D−. The search for the optimal bound
for α ∈ [0, D] has thus been narrowed down significantly.
Another direction is to investigate how interactions can speed
up signaling. We expect weakly interacting systems to possess
a similar signaling-time bound to our free-particle bound,
as the dynamics in such systems can often be treated using
spin-wave analysis [58]. But for strongly interacting systems,
it remains unclear how much speedup one can obtain over
noninteracting systems.

Additionally, our bound for signaling to an extensive
number of sites hints at a strategy for achieving a better
scrambling bound. In particular, the protocol that saturates our
many-site signaling bound relies on an initial entangled state,
whereas the definition of scrambling assumes that the system
begins in a product state. It may be possible to improve the
scrambling-time bound by explicitly restricting our attention,
when bounding tms, to initial product states.

Finally, we expect that the improved Lieb-Robinson-type
bounds derived in this work may lead to a better understand-
ing of the spreading of out-of-time-order correlators [59],
the growth of entanglement entropy [54], and thermalization
timescales [60] in strongly long-range interacting systems.

In addition, there are connections between Lieb-Robinson-
type bounds and the critical scaling of the defects appearing
in a quantum system driven across its quantum critical point
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[the celebrated Kibble-Zurek (KZ) mechanism]. It remains an
open question whether the KZ hypothesis can be shown to
hold for strongly long-range systems.
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In Sec. S1 of this Supplemental Material, we provide a detailed proof of the general Lieb-Robinson-type bound for long-range
interactions with α ≤ D mentioned in Eq. (15) of the main text. The bound has a closed-form expression that can be used to
lower bound the signaling time [see Eq. (16)] for α ≤ D.

In Sec. S2, we derive a second general Lieb-Robinson-type bound that is the tightest one can get from the Lieb-Robinson
series mentioned in Eq. (13), although it lacks a closed-form analytic expression. We show numerically that the signaling time
obtained from this bound has the same scaling as a function of system size N as the bound in Eq. (15) of the main text when
N is sufficiently large. Therefore, the bound presented in the main text is—in a broad sense—the best one can obtain without
developing new techniques beyond those used in deriving the traditional Lieb-Robinson series.

S1. PROVING THE GENERAL LIEB-ROBINSON-TYPE BOUND FOR α ≤ D

Before we present the proof of the general Lieb-Robinson-type bound given in Eq. (15) of the main text, let us summarize in
Sec. S1 A some mathematical preliminaries useful for the proof.

A. Mathematical preliminaries

In this section, we elaborate on the scaling of the on-site hop parameter Jii defined after Eq. (14). We define the quantity
λ = maxi∈Λ Jii, which for power-law interactions has strength

λ = max
i∈Λ

∑
j∈Λ\i

Jij = max
i∈Λ

∑
j∈Λ\i

1

rαij
. (S1)

If the lattice Λ is a square lattice with unit spacings, then λ scales as

λ =


Θ
(
N1−α/D) for 0 ≤ α < D,

Θ (logN) for α = D,

Θ (1) for α > D.

(S2)

In general, the scaling of λ as a function of N in Eq. (S2) holds asymptotically for large regular lattices [S1].
For α ≤ D, we note that λ diverges in the thermodynamic limit. For some applications, it is preferred to apply a normalizing

factor of 1/λ (due to Kac [S2]) to the Hamiltonian to ensure the system energy is extensive. Since experimental systems
(such as those with dipolar interactions in 3D) do not necessarily have extensive energy, we would prefer not to apply the
Kac normalization. The light cone contours for Kac-normalized Hamiltonians follow straightforwardly from our results upon
rescaling the time by a factor of λ.

In the rest of this subsection, we justify the dependence of λ on N and α as shown in Eq. (S2). We assume that the lattice Λ
is D-dimensional with N = LD sites. Without loss of generality, let i be the site located at the origin and define rj ≡ rij ≥ 1.
For 0 ≤ α < D, we bound Eq. (S1) above by an integral:∑

j∈Λ

1

rαj
≤
∫
r∈RD

dDr

‖r‖α =
2π

D
2

Γ(D2 )

∫ L

0

dr

rα−D+1
=

ωD
D − αL

D−α, (S3)
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where ωD ≡ 2π
D
2

/
Γ(D2 ) is the hyper-surface area of a unit D-sphere and Γ(·) is the Gamma function. It follows that λ =

O
(
N1−α/D) for α < D. The asymptotic lower bound λ = Ω

(
N1−α/D) follows from setting ‖r‖ → ‖r‖ +

√
D and

integrating from r = 1 to r =∞.
For α = D, we perform the same calculation, taking care to avoid integrating over the origin:∑

j∈Λ

1

rαj
≤
∫
‖r‖≥1

dDr

‖r‖D +
∑
j∈Λ

θ
(

1 +
√
D − rj

)
(S4)

≤ ωD
∫ L

1

dr

r
+
ωD

(
1 +
√
D + 1

2

)D
ωD
(

1
2

)D (S5)

=
ωD
D

log(N) +
(

2
√
D + 3

)D
, (S6)

where θ(·) denotes the Heaviside step function. So, at the critical point α = D, we have λ = O (log(N)). The lower bound
λ = Ω (log(N)) holds in a similar fashion.

For α > D, the sum in Eq. (S1) converges, so λ can be bounded by a constant independent of N . Thus, we have verified the
asymptotic scaling of the on-site parameter λ for the three cases listed in Eq. (S2).

B. Proof of the bound in Eq. (15)

In this section, we provide a simple proof of Eq. (15) for long-range interactions. First, let us recall the Lieb-Robinson series
from Eq. (13) of the main text.

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
∞∑
k=1

(2t)k

k!
J k(X,Y ), (S7)

J k(X,Y ) ≡
∑

i1,...,ik−1

JXi1Ji1i2 . . . Jik−1Y . (S8)

We use the so-called reproducibility condition for finite systems with power-law decaying interactions [S3, 4]. Specifically, for
α > 0 and distinct i, j ∈ Λ, the second-order hopping term k = 2 in Eq. (S8) can be bounded by

J 2(i, j) =
∑
k

JikJkj ≤ pλJij , (S9)

where p = 2α+1 and λ is the on-site hop parameter defined in Eq. (S1). This inequality allows the power-law decay of Jij to be
reproduced across multiple hopping terms.

We reorder the summations on the right-hand side of Eq. (S8) by introducing a new index n to count the number of self-hops
in a particular sequence of hopping sites {i1, . . . , ik−1}. Specifically, n represents the number of indices j ∈ {0, . . . , k − 1}
such that ij = ij+1 (with i0 = X and ik = Y ). Now let us first assume that the n self-hops occur in the first n terms (JXi1 to
Jin−1in ). Then we may rewrite the right-hand side of Eq. (S8) as∑

i1,...,ik−1

JXi1 . . . Jik−1Y = λn
∑

in+1,...,ik−1

Jinin+1
. . . Jik−1Y , (S10)

using the fact that each self-hop term Jii is equal to λ. If, on the other hand, the n self-hops appear in arbitrary positions in the
sequence of hops, then accounting for these cases multiplies Eq. (S10) by the combinatorial factor of

(
k
n

)
. Inserting into Eq. (S8)

gives

J k(X,Y ) =

k∑
n=0

(
k

n

)
λn

 ∑
in+1,...,ik−1

JiX in+1 . . . Jik−1Y

 , (S11)

where we relabeled in as X . Now, using the fact that ij 6= ij+1 for j = n, . . . , k − 1 (where ik = Y ), we can apply the
reproducibility condition in Eq. (S9) a total of k − n times along with the normalization condition Jij = 1/rαij for i 6= j to get∑

in+1,...,ik−1

JXin+1
. . . Jik−1Y ≤ (λp)k−n−1JXY =

(λp)k−n−1

rαXY
. (S12)
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Finally, inserting this inequality into Eq. (S11) and applying the binomial theorem gives

J k(rXY ) ≤
k∑

n=0

(
k

n

)
λn
[

(λp)k−n−1

rαXY

]
=

(λ+ λp)k

λprαXY
. (S13)

Inserting this bound for J k(rXY ) into Eq. (S7) gives an exponential series bound for the commutator

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
∞∑
k=1

(2t)k

k!
J k(X,Y ) (S14)

≤ 2‖A‖‖B‖|X||Y |
∞∑
k=1

(2t)k

k!

(λ(1 + p))k

λprαXY
(S15)

= 2‖A‖‖B‖|X||Y |
(
e2λt(1+p) − 1

λprαXY

)
(S16)

= 2‖A‖‖B‖|X||Y |
(
eΘ(N1−α/D)t − 1

Θ(N1−α/D)rαXY

)
, (S17)

which reproduces Eq. (15) in the main text.

S2. SECOND GENERAL LIEB-ROBINSON-TYPE BOUND FOR α ≤ D

The above derivation of the bound in Eq. (S17) requires the use of the reproducibility condition [Eq. (S9)], which can make
the bound loose compared to the Lieb-Robinson series in Eq. (S7). In this section, we will exactly sum the series in Eq. (S7)
and compare the resulting bound to that of Eq. (S17). We will show by numerical analysis that—although the bound obtained
directly from the Lieb-Robinson series is tighter than the one Eq. (S17)—it largely shares the same scaling behavior when the
number of sites N is large.

A. Summing the Lieb-Robinson series exactly

We now exactly calculate the sum in Eq. (S7) without using the reproducibility condition. Since Eq. (S7) is an infinite series,
one cannot perform the sum directly. But using a discrete Fourier transform, the series can be summed numerically in a highly
efficient manner.

To use the discrete Fourier transform, we assume that Jij = 1/rαij is translationally invariant. Note that the physical interaction
strength between lattice sites does not need to be translationally invariant, as it just needs to be bounded by Jij . his additional
assumption does not greatly affect the generality of the following results.

For simplicity, we consider a 1D lattice Λ that consists of N spins on a ring; the following results generalize straightforwardly
to lattices in arbitrary dimensions. Let rij = min{|i− j|, |N − i + j|} be the (periodic) distance metric, which coincides with
the graph distance d(i, j) on Λ. Due to translational invariance, we denote Jij by J(rij) which satisfies J(r +N) = J(r).

We now perform a discrete Fourier transform from the position space parameterized by r = 0, 1, 2, · · · , N−1 to a momentum
space parameterized by p = 0, 1, 2, · · · , N − 1, denoted by Fp[f(r)] =

∑N−1
r=0 e−2πipr/Nf(r). We observe that the sum in the

definition of J k(X,Y ) in Eq. (S8) can be rewritten as the k-fold convolution of J(r) with itself. Thus, letting r ≡ rXY and
J k(r) ≡ Jk(X,Y ), the discrete Fourier transform of Eq. (S8) is given by

Fp[J k(r)] = ω(p)k, (S18)

where ω(p) = Fp[J(r)]. We now take the discrete Fourier transform of the entire series in Eq. (S7):

Fp [‖[A(t), B]‖] ≤
∞∑
k=1

(2t)k

k!
ω(p)k = e2ω(p)t − 1. (S19)

The series in Eq. (S7) can thus be evaluated exactly by taking the inverse Fourier transform of Eq. (S19):

‖[A(t), B]‖ ≤ F−1
r

[
e2ω(p)t − 1

]
. (S20)
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where F−1
r [g(p)] ≡ 1

N

∑N−1
p=0 e2πipr/Ng(p) defines the inverse discrete Fourier transform. For α = 0, the inverse Fourier

transform can be evaluated to yield the analytical expression

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
(
e4Nt − 1

N

)
, (S21)

which matches the bound in Eq. (S17) up to constant factors. For α > 0, it is difficult to obtain a simple analytical expression
for the bound in Eq. (S20). We will thus evaluate this bound numerically, as detailed in the next section.

B. Numerical comparison of the two bounds

In this section, we study the asymptotic scaling of the exact summation bound in Eq. (S20). Because the discrete Fourier
transform can be performed rather efficiently using the Fast Fourier Transform algorithm [S5] numerically, we can evaluate the
right-hand side of Eq. (S20) for system sizes up to the order of 106. This allows us to compare the bound in Eq. (S20) (referred
to below as the ”exact summation bound”) with the bound in Eq. (S17) (referred to below as the ”analytical bound”) for large
N .

Let us first focus on the large-r asymptotic behavior of the two bounds. As a typical example, we set N = 106 and t = 1/λ
and plot the right-hand side of the two bounds (with ‖A‖ = ‖B‖ = |X| = |Y | = 1) as a function of r for α = 0.5 in Fig. S1.
Unsurprisingly, the right-hand side of the analytic bound in Eq. (S17) decays as 1/rα for the entire range of r. The exact
summation bound leads to the same scaling for small r, but not for large r. While this comparison leaves room for potential
tightening of the bound in Eq. (S17) for large r, generic improvement of the bound for all r seems unlikely.

FIG. S1. A comparison between the exact summation bound [Eq. (S20)] and the analytical bound [Eq. (S17)] sites as a function of the distance
r between operators A and B. The specific plot assumes a 1D periodic lattice with N = 106, α = 0.5, t = 1/λ, and r = 1, 2, · · · , N/2.

Next, we compare the N -dependence of the two bounds. To get rid of the r-dependence, we will compare the signaling times
between two sites with either r = 1 (the smallest possible separation on a 1D ring) or r = N/2 (the largest possible separation).
If the two bounds agree with each other at both r = 1 and r = N/2 in the large N limit, it is reasonable to believe that they will
agree with each other at all values of r.

For α < 1, the analytical bound gives the following signaling time (upon setting ‖[A(t), B]‖ = 1) as function of r and N :

tsi(r,N) = Ω

(
log
(
N1−αrα

)
N1−α

)
. (S22)

Choosing either r = 1 or r = N leads to tsi = Ω(Nα−1 log(N)), consistent with Eq. (16) of the main text. For the exact
summation bound, we numerically compute tsi by finding the value of t that makes ‖[A(t), B]‖ = 1 over a range of N from 104

to 106 for both r = 1 and r = N/2. We then fit t as a function of N to the function aNγ log(N). In Fig. S2, we plot the fitted
exponent γ(α) as a function of α. We observe that γ(α) scales approximately as α − 1 as long as α is not close to 1 for both
r = 1 and r = N , showing that both bounds lead to approximately the same scaling of signaling time in N .
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FIG. S2. The fitted exponent γ in the signaling time scaling obtained from the exact summation bound in Eq. (S20) at r = 1 (a) and r = N/2
(b) for a ∈ [0, 1]. The error bars reflect the 95% confidence intervals for the fit.

When α→ 1, γ(α) deviates from α−1 noticeably. We attribute such deviation to finite-N effects in our numerical evaluation
of the exact summation bound. In particular, we notice that as α → 1, λ (which plays an important role in both bounds) is not
well-approximated by Nα−1 for insufficiently large enough N . For such values of N , λ is better approximated by log(N).

To give further clarification, we perform a comparison of the two bounds exactly at α = 1, where we can exactly use log(N)
in place of Nα−1. The signaling time given by the analytical bound now scales as

tsi(r,N) = Ω

(
log(r logN)

logN

)
. (S23)

We then fit the signaling time obtained from the exact summation bound at α = 1 using the above scaling function and find very
good agreement between the two bounds. For example, at r = 1 the signaling time from the exact summation bound can be
fitted by the function a log(N)

b
log log(N)

c with b = −1.0 and c = 0.95, which agrees with the scaling of log log(N)/ log(N)
provided by Eq. (S23). As a result, we expect the signaling time bounds given by both bounds to have the same scaling in N
when the system size is large enough for all α ≤ D.
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