
Knowledge Extraction for Cryptographic
Algorithm Validation Test Vectors by Means of

Combinatorial Coverage Measurement

Dimitris E. Simos1, Bernhard Garn1, Ludwig Kampel1 ,
D. Richard Kuhn2, and Raghu N. Kacker2

1 SBA Research, Vienna A-1040, Austria
{dsimos,bgarn,lkampel}@sba-research.org

2 National Institute of Standards & Technology, Gaithersburg, MD, USA
{kuhn,raghu.kacker}@nist.gov

Abstract. We present a combinatorial coverage measurement analysis
for test vectors provided by the NIST Cryptographic Algorithm Valida-
tion Program (CAVP), and in particular for test vectors targeting the
AES block ciphers for different key lengths and cryptographic modes of
operation. These test vectors are measured and analyzed using a combi-
natorial approach, which was made feasible via developing the necessary
input models. The combinatorial model for the test data in combination
with the coverage measurement allows to extract information about the
structure of the test vectors. Our analysis shows that some test vectors do
not achieve full combinatorial coverage. It is further discussed how this
retrieved knowledge could be used as a means of test quality analysis, by
incorporating residual risk estimation techniques based on combinatorial
methods, in order to assist the overall validation testing procedure.

Keywords: Combinatorial Measurement, Cryptographic Applications,
Data Analysis, Knowledge Extraction

1 Introduction

The implementation of cryptographic algorithms is a demanding task, involving
various fields of computer science and software engineering. As such the testing of
cryptographic applications is a complex task, while being of special importance,
as the requirements/needs/standards for security and privacy grow in modern
information society. Thorough testing of mission critical systems – such as medi-
cal, transportation or cryptographic systems – is of vital and crucial importance
as recent studies have shown [14], [23].

The Cryptographic Algorithm Validation Program (CAVP) [19], [18] by the
National Institute of Standards and Technology (NIST) provides validation test-
ing of FIPS-approved and NIST-recommended cryptographic algorithms and
their individual components. Cryptographic algorithm validation is a prereq-
uisite of cryptographic module validation, which is the subject of the Crypto-
graphic Module Validation Program (CMVP) [20] established at NIST in 1995.

mailto:kuhn,raghu.kacker}@nist.gov
mailto:dsimos,bgarn,lkampel}@sba-research.org

2 D. E. Simos et al.

The CMVP is a joint effort between NIST and the Canadian Centre for Cyber
Security, a branch of the Communications Security Establishment. FIPS 140-2
[17] precludes the use of unvalidated cryptography for the cryptographic protec-
tion of sensitive or valuable data within Federal systems in USA.

As of this writing, the CAVP tests block ciphers including the Advanced
Encryption Standard (AES) [15], among others. In The Advanced Encryption
Standard Algorithm Validation Suite (AESAVS) [1] the testing requirements for
different modes for the AES algorithm are specified.

Recently, the Secretary of Commerce approved Federal Information Pro-
cessing Standards Publication (FIPS) 140-3, Security Requirements for Cryp-
tographic Modules [22], which supersedes FIPS 140-2 and will come effective on
September 22, 2019. FIPS 140-3 aligns with ISO/IEC 19790:2012(E) [5] and
includes modifications of the Annexes that are allowed to the CMVP, as a vali-
dation authority. As of this writing, the corresponding documents have not been
released yet3. In [1] it is noted that the testing performed within the AESAVS
uses statistical sampling meaning that only a small number of the possible cases
are tested. Nevertheless, AESAVS states to provide testing of an Implementation
Under Test (IUT) to determine the correctness of the algorithm implementation.
In a branch of software testing called combinatorial testing (CT) [11] combina-
torial methods have been used to analyze test sets in term of combinatorial
coverage.

In this work, we analyze the test data used in the AESAVS in terms of
combinatorial coverage. To this end, we transformed the data into an appro-
priate combinatorial model which facilitated the combinatorial analysis of the
test vectors. The combinatorial measurement quantifies the parameter interac-
tions executed during testing and in doing so provides a structural analysis of
the test data. Within a software testing context, extracting the knowledge about
potentially left out combinations has been used to estimate the residual risk that
remains after testing [10]. Available tools not only can compute these measure-
ments, but also have the functionality to present the results in different ways
which are easily intelligible for the human eye.
Contribution. In this paper, we perform a study of the combinatorial coverage
of various test vectors used in the AES algorithm validation suite. A featured
model extraction made feasible via a transformation of the test vectors into
test sets which are then used as a basis for the analysis provided by combina-
torial coverage measurement tools. We used visualization techniques that arise
from the combinatorial coverage measurement results to interpret the extracted
knowledge as recommendation for future testing endeavors.

The paper is structured as follows. In Section 2 we give some preliminaries.
We present the derived combinatorial model for our analysis in Section 3 and
present our results in Section 4. We discuss implications of these findings in
Section 5 and conclude the paper in Section 6.

3 According to [21], NIST plans to release drafts for public comment in mid- 2019 and
final publication of those documents will occur by September 22, 2019 .

3 Knowledge Extraction for CAVP Tests using Combinatorial Coverage

2 Background Information

In this section, we provide some necessary preliminaries that will be used through-
out the paper. We summarize important properties about AES and how its test-
ing is specified in AESAVS in Section 2.1 and introduce CT including employed
combinatorial concepts in Section 2.2.

2.1 AES and AESAVS

AES. The AES algorithm is a symmetric block cipher that can encrypt and
decrypt data. The AES algorithm is capable of using cryptographic keys of
128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. NIST
has approved several modes of the approved block ciphers in a series of special
publications [16].

AESAVS. The Advanced Encryption Standard algorithm validation suite is
designed to test the following modes of operation [16]:

– ECB, which stands for electronic codebook mode
– CBC, which stands for cipher block chaining mode
– OFB, which stands for output feedback mode
– CFB, which stands for cipher feedback mode with the following variants:

• CFB1 (CFB where the length of the data segment is 1 bit, s=1)
• CFB8 (CFB where the length of the data segment is 8 bits, s=8)
• CFB128 (CFB where the length of the data segment is 128 bits, s=128)

– Counter (Counter mode is tested by selecting the ECB mode)

Note that it is not necessary for validation for every mode implemented to
support the same key sizes and ciphering directions [1]. To initiate a validation
process of the AESAVS, a vendor submits an application to an accredited labora-
tory requesting the validation of their implementation. The AESAVS is designed
for testing of an IUT at locations remote to the AESAVS using communications
via REQUEST and RESPONSE files. The test data is provided to an IUT in REQUEST
files. The IUT processes this data and creates a corresponding RESPONSE file,
which in turn will be verified.

AESAVS specifies three categories of tests: the Known Answer Test (KAT),
the Multi-block Message Test (MMT), and the Monte Carlo Test (MCT). The
KAT category is further split into four types: GFSbox, KeySbox, Variable Key,
Variable Text. The MMT is designed to test the ability of the implementation to
process multi-block messages, which may require chaining of information from
one block to the next. For each supported mode, ten messages are supplied with
lengths of i · blocklength, for 1 ≤ i ≤ 10. Each MCT ciphers 100 pseudorandom
texts, where these texts are generated using an algorithm depending on the mode
of operation being tested.

4 D. E. Simos et al.

2.2 CT and CCM

CT [11] is an efficient black-box software testing methodology for more effective
software testing at lower cost. It is based on an input parameter model (IPM) of
the system under test (SUT) that models the input space, by identifying finitely
many variables that can take finitely many values [4]. The defining property
of CT is the coverage of all t-way interactions of parameter-value assignments
for any combination of t parameters, for a specific value of t. Informally, a t-
way interaction can be described as a parameter value assignment for exactly
t parameters. The key insight underlying the empirically observed effectiveness
of CT results from a series of studies by NIST [6–9, 24, 2, 3, 26]. NIST research
showed that most software bugs and failures are caused by one or two parameter
interactions, with progressively fewer by three or more. These findings have
important implications for software testing because, it means that testing these
few parameter-value combinations can provide strong assurances. Based upon
that, a hypothesis has been formulated – which is referred to as the interaction
rule – stating that most failures are induced by single factor faults or by the
joint combinatorial effect (interaction) of two factors, with progressively fewer
failures induced by interactions between three or more factors [11].

CT methods can also be employed on top of a existing legacy test sets, where
an existing test set is used as a basis and analyzed in terms of combinatorial
coverage. Subsequently, should higher and/or complete t-way coverage be desired
than exhibited in the legacy test set, it is possible to create additional tests
specifically covering those missing interactions. The union of all test cases coming
from the legacy test set and the newly created ones then achieves the desired
coverage properties. This approach is an alternative to creating combinatorial
test sets newly from scratch.

Measuring the achieved level of combinatorial coverage can help in estimating
the degree of risk that remains after testing; meaning that if a high level of
coverage has been achieved (e.g., more than 90%), then presumably the risk is
small, but if the coverage is much lower, then the risk may be substantial [10].

To address the need for such measurements, NIST has developed suitable
methods and tools to quantify the achieved combinatorial overage of test sets
[10]. We briefly describe combinatorial coverage by means of an example and
refer the reader to [11] for further information. Consider given a system under
test (SUT) that is modelled by five binary parameters A,B,C,D,E that can take
the values 0 or 1. A 3-way interaction for this SUT is specified by a combination
of three of the five variables, together with a specification of a value for each
variable, e.g. (A = 0, B = 1, E = 1) is one 3-way interaction. In total, for such �

5 an SUT, there are 23 · = 80 different 3-way interactions. Given the following 3
four test vectors:

A B C D E
test 1: 1 1 1 1 0
test 2: 1 0 1 0 1
test 3: 0 0 0 1 1
test 4: 0 1 1 0 1

5 Knowledge Extraction for CAVP Tests using Combinatorial Coverage

we see that the 3-way interaction (A = 0, B = 1, E = 1) is covered by test 4,
i.e. the parameters A,B,E take the values 0,1,1 in this test vector. From the
overall 80 3-way interactions for this SUT, the four test vectors cover 39 different
3 way interaction, in other words, the the combinatorial coverage measurement
of these vectors yields a 3-way coverage (also called total 3-way coverage in [25])
of 48.75%. To summarize, to perform combinatorial coverage measurement, one
needs a test set together with an IPM against which we can measure the t-way
coverage of the test set. In this paper, we consider the terms SUT and IUT
interchangeably.

3 Modelling and Measuring Combinatorial Coverage of
AESAVS Test Data

Our analysis concerns, for given test set file of the AESAVS, the achieved com-
binatorial coverage of the binary-transformed extracted hex-values of the given
keys in the individual test vectors. We start with an example for the data extrac-
tion, before we detail how complete files containing test data are transformed
and analyzed.

The test data for provided configuration (category of test, mode of operation
and key size) are provided in REQUEST files. The RESPONSE files contain the same
data as the REQUEST files with the addition of the ciphertext for encryption
(or plaintext for decryption). The generic structure of a single test vector in a
RESPONSE file is as follows:

– an AES key of length 128, 192 or 256 bits, denoted by KEY, which is to be
used for encryption or decryption. The mode of operation is further encoded
into the filename of the test data;

– an initialization vector (if applicable to the mode of operation), denoted by
IV;

– a sample plaintext, denoted by PLAINTEXT;
– the corresponding ciphertext, denoted by CIPHERTEXT;
– where the order of plaintext/ciphertext or ciphertext/plaintext indicates the

ciphering direction.

To make our approach more tangible, consider the test data provided in the
file CBCMCT192.rsp, which specifies test vectors for CBC mode of operation with
a key size of 192 bits for the category of MCT:

COUNT = 51
KEY = 3461389779e6debf3e58d02175a33cd46663812b73b66082
IV = 88687bf1375300b8412cf10e35f6a0b1
PLAINTEXT = 03c1f719854c00e5a16c302e25621807
CIPHERTEXT = cf5d505c14e1e272634b4ad58b6ef3d9

The COUNT variable simply indicates the ordinal number of the test vector in
this file.

6 D. E. Simos et al.

For our analysis of the test data provided by the CAVP, we focused on the
combinatorial measurement of the keys used for testing. Hence, we extract the
hexadecimal value that instantiates the key used in the AES implementation.
This value is translated to a binary vector of length 128, 192 or 256, depending
on the chosen key size.

A test set consists of test vectors for both encryption and decryption. In our
analysis, we aggregated the binary vectors in two different files depending on
their origin, e.g. one for encryption and one for decryption. For each of these
two resulting sets of test vectors, we carry out a combinatorial analysis in two
steps:

1. Extraction of an IPM,
2. Combinatorial coverage measurement based on this IPM.

In the first step we determine for each parameter, that models the key, the set
of values it takes over the course of the whole test set being executed. Thus, we
extract an IPM for the AES key, from the test vectors. These extracted models
contain either 128, 192, or 256 parameters. Depending on the considered test
set, these parameters are unary or binary. In the second step, we measure the
combinatorial 2-, 3- and 4-way coverage, of the test vectors against the IPM
obtained in the first step. In our study we used the Combinatorial Coverage
Measurement Tool (CCMtool) [13], developed by NIST and the Centro Nacional
de Metrologia of Mexico, for both of the just described steps. Other combinatorial
coverage measurement tools include the CAmetrics tool [12] which provides for
additional visualization and combinatorial metrics.

We make this process more explicit by means of the following example where
we consider again the CBCVarKey192 AES validation test set. This set contains
192 test vectors for testing encryption, from which we extract the values of the
keys and transform them to binary vectors, which constitutes a test set of 192
binary vectors of length 192. From these vectors we extract an IPM consisting
of 192 parameters. In this specific case, the first parameter is unary, only taking
the value 1 and the remaining 191 parameters are binary, taking the values 0 or
1. Finally we measure the combinatorial coverage of the 192 test vectors with
regard to this IPM. The test set covers 54817 out of 72962 2-way interactions
and 4626975 out of 9217660 3-way interactions, i.e. it achieves 75.15% 2-way
coverage and 50.2% 3-way coverage.

4 Measurement results

For the AES KAT Vectors, AES MCT Sample Vectors and AES MMT Sam-
ple Vectors, we measured the total 2-way through 4-way coverage, separately
considering the keys for encryption of plaintext and decryption of ciphertext.

4.1 AES KAT

The vectors extracted from the AES KAT test sets are the same for the different
modes (ECB, CBC, OFB, CFB1, CFB8, CFB128) when considering AES ver-

7 Knowledge Extraction for CAVP Tests using Combinatorial Coverage

sions of the same size. Further, the keys for encryption and decryption are the
same. Thus, we do not specify the mode when we refer to a set of test vectors,
e.g. {Mode}GFSbox128 refers to CBCGFSbox128 as well as CFB1GFSbox128 and
further do not distinguish between encryption and decryption. The size of each
AES test set can be seen in Table 1, below.

128 192 256
{Mode}GFSbox 7 6 5
{Mode}KeySbox 21 24 16
{Mode}VarKey 128 192 256
{Mode}VarTxt 128 128 128

Table 1: AES KAT test set sizes (for encryption or decryption).

Now, from the AES test sets we extracted the following IPMs:

– IPM({Mode}GFSbox): 1128 (all unary)
– IPM({Mode}KeySbox): 11 , 2127 (first parameter unary, others binary)
– IPM({Mode}VarKey): 2128 (all binary)
– IPM({Mode}VarTxt): 1128 (all unary)

The results of our coverage measurement are depicted in Figure 1 to give an
comprehensive overview. Moreover, in Table 2 we detail the results of the 3-way
coverage measurement for the different test vectors of length 128.

extracted IPM # tuples # tuples covered coverage %
IPM({Mode}GFSbox128)
IPM({Mode}KeySbox128)
IPM({Mode}VarKey128)

1128

2128

11 , 2127

1128

341376
2731008
2699004
341376

341376
2575694
1357503
341376

100 %
94.3 %
50.3 %
100 % IPM({Mode}VarTxt128)

Table 2: 3-way coverage of vectors for 128 length against extracted IPM.

The results of the coverage measurement visualized in Figure 1 need to be
interpreted carefully. For the case of {Mode}VarTxt and {Mode}GFSbox, the cov-
erage is 100% because the IPM consists only of unary parameters. The vectors
of the test sets where the extracted IPMs are not trivial, achieve lower t-way
coverage.

4.2 AES MCT

The vectors extracted from the MCT test sets contained 200 vectors for each
mode (ECB, CBC, OFB, CFB1, CFB8, CFB128) which are split into two test
sets for encryption and decryption as previously. Again, we extract the values

8 D. E. Simos et al.

Fig. 1: 2-way, 3-way and 4-way coverage of AES KAT test sets.

for the keys from these vectors. For different modes the keys are instantiated
differently and also the keys in the test vectors for encryption differ from the
keys in the test vectors for decryption. For all modes and both test sets - for
encryption and decryption - the IPMs extracted from the sets of keys consist
of only binary parameters. Figures 2 and 3 show the results of our coverage
measurements for 2-way, 3-way, and 4-way coverage. On the x-axes we denote
the various AES modes with and the length and on the y-axes the percentage
of t-way coverage. The figures show that for both, encryption and decryption,
the AES keys achieve full 2-way coverage and almost full 3-way coverage (the
lowest percentage across all lengths and modes being 99.9994% for encryption,
and 99.9996% for decryption). The keys also have good 4-way coverage, staying
above 99.80%, except for the case of CFB128MCT128 achieving 99.77% 4-way
coverage.

4.3 AES MMT

The vectors extracted from the MMT test sets contain 20 vectors, where again
for each mode (ECB, CBC, OFB, CFB1, CFB8, CFB128) the test vectors are
split in two sets for encryption and description. As before, for different modes the
keys are instantiated differently and the keys for encryption differ from the keys
for decryption. When extracting the IPMs from these test sets, we retrieve IPMs
containing mostly binary parameters, but some IPMs extracted from sets of test

9 Knowledge Extraction for CAVP Tests using Combinatorial Coverage

Fig. 2: 2-way, 3-way and 4-way coverage of AES MCT test sets for encryption.

Fig. 3: 2-way, 3-way and 4-way coverage of AES MCT test sets for decryption.

10 D. E. Simos et al.

vectors also contain unary parameters. To be more specific, from the encryp-
tion test sets, the IPMs extracted from the vectors for the modes CFB1MMT192,
ECBMMT256, CBCMMT128, CBCMMT256 and CFB128MMT192 contain one unary pa-
rameter, while the remaining ones are binary; and for decryption the IPMs ex-
tracted from CFB1MMT192, ECBMMT128, CBCMMT128, CFB128MMT192 contain one
unary parameter and the one from CFB8MMT128 contains two unary parameters,
while the remaining parameters in all IPMs are binary.

Figures 4 and 5 depict the results of our t-way coverage measurements for
t ∈ {2, 3, 4}, showing that the MMT test sets achieve high 2-way coverage above
90%, but only medium to small 3-way and 4-way coverage below 80% respectively
50%.

Fig. 4: 2-way, 3-way and 4-way coverage of AES MMT test sets for encryption.

5 Discussion related to Testing

The combinatorial coverage measurement analysis in the previous section shows
that some of the extracted and transformed keys from the AESAVS test sets do
not exhibit full t-way combinatorial coverage for some values of t. This finding has
some implications for the currently specified testing requirements in AESAVS.

First, we already pointed out in the introduction that in the AESAVS doc-
ument ([1]), it is noted that the testing performed within the AESAVS uses

11 Knowledge Extraction for CAVP Tests using Combinatorial Coverage

Fig. 5: 2-way, 3-way and 4-way coverage of AES MMT test sets for decryption.

12 D. E. Simos et al.

statistical sampling to generate the test data. With our measurement approach
we are now able to quantify the test sets sampling properties in terms of the
achieved combinatorial t-way coverage.

Second, some works in the software testing literature have linked achieved
combinatorial t-way coverage to the residual risk that remains after testing [10],
[13]. An investigation whether similar conclusions could be drawn for validation
testing purposes could be of interest.

Third, the presented case study here could be extended to also take into
account not only the key space, but also simultaneously the key space, IV space
and ciphering direction space (i.e., plain- or ciphertext space).

6 Conclusion

The Cryptographic Algorithm Validation Program validates implementations
of various cryptographic algorithms, including AES and other popular crypto-
graphic algorithms. This is accomplished by designing and developing validation
test sets for every such recommended cryptographic algorithm, with the aim
to check whether the algorithm has been implemented correctly. In this work
we applied knowledge extraction and visualization techniques via combinatorial
coverage metrics to perform an analysis of the various CAVP test vectors. Our
coverage measurement results can be used as a complementary measure to assess
the quality of the AES algorithm validation suite.

Acknowledgments. The research presented in this paper was carried out in
the context of the Austrian COMET K1 program and partly publicly funded
by the Austrian Research Promotion Agency (FFG) and the Vienna Business
Agency (WAW).

Moreover, this work was performed partly under the following financial as-
sistance award 70NANB18H207 from U.S. Department of Commerce, National
Institute of Standards and Technology.

Disclaimer: Products may be identified in this document, but identification does not
imply recommendation or endorsement by NIST, nor that the products identified are
necessarily the best available for the purpose.

References

1. Bassham III, L.E.: The advanced encryption standard algorithm validation suite
(aesavs). NIST Information Technology Laboratory (2002)

2. Bell, K.Z., Vouk, M.A.: On effectiveness of pairwise methodology for testing
network-centric software. In: 2005 International Conference on Information and
Communication Technology. pp. 221–235 (Dec 2005)

3. Ghandehari, L.S.G., Lei, Y., Xie, T., Kuhn, R., Kacker, R.: Identifying failure-
inducing combinations in a combinatorial test set. In: 2012 IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation. pp. 370–379
(April 2012)

13 Knowledge Extraction for CAVP Tests using Combinatorial Coverage

4. Grindal, M., Offutt, J.: Input parameter modeling for combination strategies. In:
Proceedings of the 25th conference on IASTED International Multi-Conference:
Software Engineering. pp. 255–260. ACTA Press (2007)

5. ISO/IEC JTC 1/SC 27: Information technology – Security techniques – Security re-
quirements for cryptographic modules. https://www.iso.org/standard/52906.html
(2012), [Online; accessed 01-April-2019]

6. Kuhn, D.R., Kacker, R.N., Lei, Y.: Estimating t-way fault profile evolution during
testing. In: 2016 IEEE 40th Annual Computer Software and Applications Confer-
ence (COMPSAC). vol. 2, pp. 596–597 (June 2016)

7. Kuhn, D.R., Okum, V.: Pseudo-exhaustive testing for software. In: 2006 30th An-
nual IEEE/NASA Software Engineering Workshop. pp. 153–158 (April 2006)

8. Kuhn, D.R., Reilly, M.J.: An investigation of the applicability of design of ex-
periments to software testing. In: 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, 2002. Proceedings. pp. 91–95 (Dec 2002)

9. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and impli-
cations for software testing. IEEE Transactions on Software Engineering 30(6),
418–421 (June 2004)

10. Kuhn, D.R., Kacker, R.N., Lei, Y.: Combinatorial coverage as an aspect of test
quality. CrossTalk 28(2), 19–23 (2015)

11. Kuhn, D., Kacker, R., Lei, Y.: Introduction to Combinatorial Testing. Chapman &
Hall/CRC Innovations in Software Engineering and Software Development Series,
Taylor & Francis (2013)

12. Leithner, M., Kleine, K., Simos, D.E.: CAMETRICS: A tool for advanced combi-
natorial analysis and measurement of test sets. In: 2018 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops (ICSTW). pp.
318–327 (April 2018). https://doi.org/10.1109/ICSTW.2018.00067

13. Mendoza, I.D., Kuhn, D.R., Kacker, R.N., Lei, Y.: Ccm: A tool for measuring
combinatorial coverage of system state space. In: 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. pp. 291–291.
IEEE (2013)

14. Mouha, N., Raunak, M.S., Kuhn, D.R., Kacker, R.: Finding bugs in cryptographic
hash function implementations. IEEE Transactions on Reliability 67(3), 870–884
(2018)

15. National Institue of Standards and Technology: ADVANCED ENCRYPTION
STANDARD (AES). https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
(2001), [Online; accessed 01-April-2019]

16. National Institue of Standards and Technology: Recommendation
for Block Cipher Modes of Operation: Methods and Techniques.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
(2001), [Online; accessed 01-April-2019]

17. National Institue of Standards and Technology: SECU-
RITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES.
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf (2001), [Online;
accessed 01-April-2019]

18. National Institue of Standards and Technology: Nist special publication 800-
165 (2012), http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
165.pdf

19. National Institue of Standards and Technology: Cryptographic algorithm valida-
tion program. https://csrc.nist.gov/projects/cryptographic-algorithm-validation-
program (2019), [Online; accessed 01-April-2019]

https://csrc.nist.gov/projects/cryptographic-algorithm-validation
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://doi.org/10.1109/ICSTW.2018.00067
https://www.iso.org/standard/52906.html

14 D. E. Simos et al.

20. National Institue of Standards and Technology: Cryptographic module vali-
dation program. https://csrc.nist.gov/projects/cryptographic-module-validation-
program (2019), [Online; accessed 01-April-2019]

21. National Institue of Standards and Technology: FIPS 140-3 Development.
https://csrc.nist.gov/projects/fips-140-3-development#schedule (2019), [Online;
accessed 01-April-2019]

22. National Institue of Standards and Technology: SECU-
RITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES.
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf (2019), [Online;
accessed 01-April-2019]

23. Simos, D.E., Kuhn, R., Voyiatzis, A.G., Kacker, R.: Combinatorial methods in
security testing. Computer 49(10), 80–83 (2016)

24. WALLACE, D.R., KUHN, D.R.: Failure modes in medical device software: An
analysis of 15 years of recall data. International Journal of Reliability, Quality and
Safety Engineering 08(04), 351–371 (2001)

25. Yu, L., Duan, F., Lei, Y., Kacker, R.N., Kuhn, D.R.: Constraint handling in combi-
natorial test generation using forbidden tuples. In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
pp. 1–9 (April 2015)

26. Zeller, A.: Isolating failure-inducing input. In: IEEE Transactions on Software En-
gineering. Citeseer (2001)

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://csrc.nist.gov/projects/fips-140-3-development#schedule
https://csrc.nist.gov/projects/cryptographic-module-validation

