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Abstract. We present a combinatorial coverage measurement analysis 
for test vectors provided by the NIST Cryptographic Algorithm Valida-
tion Program (CAVP), and in particular for test vectors targeting the 
AES block ciphers for different key lengths and cryptographic modes of 
operation. These test vectors are measured and analyzed using a combi-
natorial approach, which was made feasible via developing the necessary 
input models. The combinatorial model for the test data in combination 
with the coverage measurement allows to extract information about the 
structure of the test vectors. Our analysis shows that some test vectors do 
not achieve full combinatorial coverage. It is further discussed how this 
retrieved knowledge could be used as a means of test quality analysis, by 
incorporating residual risk estimation techniques based on combinatorial 
methods, in order to assist the overall validation testing procedure. 

Keywords: Combinatorial Measurement, Cryptographic Applications, 
Data Analysis, Knowledge Extraction 

1 Introduction 

The implementation of cryptographic algorithms is a demanding task, involving 
various fields of computer science and software engineering. As such the testing of 
cryptographic applications is a complex task, while being of special importance, 
as the requirements/needs/standards for security and privacy grow in modern 
information society. Thorough testing of mission critical systems – such as medi-
cal, transportation or cryptographic systems – is of vital and crucial importance 
as recent studies have shown [14], [23]. 

The Cryptographic Algorithm Validation Program (CAVP) [19], [18] by the 
National Institute of Standards and Technology (NIST) provides validation test-
ing of FIPS-approved and NIST-recommended cryptographic algorithms and 
their individual components. Cryptographic algorithm validation is a prereq-
uisite of cryptographic module validation, which is the subject of the Crypto-
graphic Module Validation Program (CMVP) [20] established at NIST in 1995. 
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The CMVP is a joint effort between NIST and the Canadian Centre for Cyber 
Security, a branch of the Communications Security Establishment. FIPS 140-2 
[17] precludes the use of unvalidated cryptography for the cryptographic protec-
tion of sensitive or valuable data within Federal systems in USA. 

As of this writing, the CAVP tests block ciphers including the Advanced 
Encryption Standard (AES) [15], among others. In The Advanced Encryption 
Standard Algorithm Validation Suite (AESAVS) [1] the testing requirements for 
different modes for the AES algorithm are specified. 

Recently, the Secretary of Commerce approved Federal Information Pro-
cessing Standards Publication (FIPS) 140-3, Security Requirements for Cryp-
tographic Modules [22], which supersedes FIPS 140-2 and will come effective on 
September 22, 2019. FIPS 140-3 aligns with ISO/IEC 19790:2012(E) [5] and 
includes modifications of the Annexes that are allowed to the CMVP, as a vali-
dation authority. As of this writing, the corresponding documents have not been 
released yet3. In [1] it is noted that the testing performed within the AESAVS 
uses statistical sampling meaning that only a small number of the possible cases 
are tested. Nevertheless, AESAVS states to provide testing of an Implementation 
Under Test (IUT) to determine the correctness of the algorithm implementation. 
In a branch of software testing called combinatorial testing (CT) [11] combina-
torial methods have been used to analyze test sets in term of combinatorial 
coverage. 

In this work, we analyze the test data used in the AESAVS in terms of 
combinatorial coverage. To this end, we transformed the data into an appro-
priate combinatorial model which facilitated the combinatorial analysis of the 
test vectors. The combinatorial measurement quantifies the parameter interac-
tions executed during testing and in doing so provides a structural analysis of 
the test data. Within a software testing context, extracting the knowledge about 
potentially left out combinations has been used to estimate the residual risk that 
remains after testing [10]. Available tools not only can compute these measure-
ments, but also have the functionality to present the results in different ways 
which are easily intelligible for the human eye. 
Contribution. In this paper, we perform a study of the combinatorial coverage 
of various test vectors used in the AES algorithm validation suite. A featured 
model extraction made feasible via a transformation of the test vectors into 
test sets which are then used as a basis for the analysis provided by combina-
torial coverage measurement tools. We used visualization techniques that arise 
from the combinatorial coverage measurement results to interpret the extracted 
knowledge as recommendation for future testing endeavors. 

The paper is structured as follows. In Section 2 we give some preliminaries. 
We present the derived combinatorial model for our analysis in Section 3 and 
present our results in Section 4. We discuss implications of these findings in 
Section 5 and conclude the paper in Section 6. 

3 According to [21], NIST plans to release drafts for public comment in mid- 2019 and 
final publication of those documents will occur by September 22, 2019 . 
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2 Background Information 

In this section, we provide some necessary preliminaries that will be used through-
out the paper. We summarize important properties about AES and how its test-
ing is specified in AESAVS in Section 2.1 and introduce CT including employed 
combinatorial concepts in Section 2.2. 

2.1 AES and AESAVS 

AES. The AES algorithm is a symmetric block cipher that can encrypt and 
decrypt data. The AES algorithm is capable of using cryptographic keys of 
128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. NIST 
has approved several modes of the approved block ciphers in a series of special 
publications [16]. 

AESAVS. The Advanced Encryption Standard algorithm validation suite is 
designed to test the following modes of operation [16]: 

– ECB, which stands for electronic codebook mode 
– CBC, which stands for cipher block chaining mode 
– OFB, which stands for output feedback mode 
– CFB, which stands for cipher feedback mode with the following variants: 

• CFB1 (CFB where the length of the data segment is 1 bit, s=1) 
• CFB8 (CFB where the length of the data segment is 8 bits, s=8) 
• CFB128 (CFB where the length of the data segment is 128 bits, s=128) 

– Counter (Counter mode is tested by selecting the ECB mode) 

Note that it is not necessary for validation for every mode implemented to 
support the same key sizes and ciphering directions [1]. To initiate a validation 
process of the AESAVS, a vendor submits an application to an accredited labora-
tory requesting the validation of their implementation. The AESAVS is designed 
for testing of an IUT at locations remote to the AESAVS using communications 
via REQUEST and RESPONSE files. The test data is provided to an IUT in REQUEST 
files. The IUT processes this data and creates a corresponding RESPONSE file, 
which in turn will be verified. 

AESAVS specifies three categories of tests: the Known Answer Test (KAT), 
the Multi-block Message Test (MMT), and the Monte Carlo Test (MCT). The 
KAT category is further split into four types: GFSbox, KeySbox, Variable Key, 
Variable Text. The MMT is designed to test the ability of the implementation to 
process multi-block messages, which may require chaining of information from 
one block to the next. For each supported mode, ten messages are supplied with 
lengths of i · blocklength, for 1 ≤ i ≤ 10. Each MCT ciphers 100 pseudorandom 
texts, where these texts are generated using an algorithm depending on the mode 
of operation being tested. 
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2.2 CT and CCM 

CT [11] is an efficient black-box software testing methodology for more effective 
software testing at lower cost. It is based on an input parameter model (IPM) of 
the system under test (SUT) that models the input space, by identifying finitely 
many variables that can take finitely many values [4]. The defining property 
of CT is the coverage of all t-way interactions of parameter-value assignments 
for any combination of t parameters, for a specific value of t. Informally, a t-
way interaction can be described as a parameter value assignment for exactly 
t parameters. The key insight underlying the empirically observed effectiveness 
of CT results from a series of studies by NIST [6–9, 24, 2, 3, 26]. NIST research 
showed that most software bugs and failures are caused by one or two parameter 
interactions, with progressively fewer by three or more. These findings have 
important implications for software testing because, it means that testing these 
few parameter-value combinations can provide strong assurances. Based upon 
that, a hypothesis has been formulated – which is referred to as the interaction 
rule – stating that most failures are induced by single factor faults or by the 
joint combinatorial effect (interaction) of two factors, with progressively fewer 
failures induced by interactions between three or more factors [11]. 

CT methods can also be employed on top of a existing legacy test sets, where 
an existing test set is used as a basis and analyzed in terms of combinatorial 
coverage. Subsequently, should higher and/or complete t-way coverage be desired 
than exhibited in the legacy test set, it is possible to create additional tests 
specifically covering those missing interactions. The union of all test cases coming 
from the legacy test set and the newly created ones then achieves the desired 
coverage properties. This approach is an alternative to creating combinatorial 
test sets newly from scratch. 

Measuring the achieved level of combinatorial coverage can help in estimating 
the degree of risk that remains after testing; meaning that if a high level of 
coverage has been achieved (e.g., more than 90%), then presumably the risk is 
small, but if the coverage is much lower, then the risk may be substantial [10]. 

To address the need for such measurements, NIST has developed suitable 
methods and tools to quantify the achieved combinatorial overage of test sets 
[10]. We briefly describe combinatorial coverage by means of an example and 
refer the reader to [11] for further information. Consider given a system under 
test (SUT) that is modelled by five binary parameters A,B,C,D,E that can take 
the values 0 or 1. A 3-way interaction for this SUT is specified by a combination 
of three of the five variables, together with a specification of a value for each 
variable, e.g. (A = 0, B = 1, E = 1) is one 3-way interaction. In total, for such  � 

5 an SUT, there are 23 · = 80 different 3-way interactions. Given the following 3 
four test vectors: 

A B C D E 
test 1: 1 1 1 1 0 
test 2: 1 0 1 0 1 
test 3: 0 0 0 1 1 
test 4: 0 1 1 0 1 
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we see that the 3-way interaction (A = 0, B = 1, E = 1) is covered by test 4, 
i.e. the parameters A,B,E take the values 0,1,1 in this test vector. From the 
overall 80 3-way interactions for this SUT, the four test vectors cover 39 different 
3 way interaction, in other words, the the combinatorial coverage measurement 
of these vectors yields a 3-way coverage (also called total 3-way coverage in [25]) 
of 48.75%. To summarize, to perform combinatorial coverage measurement, one 
needs a test set together with an IPM against which we can measure the t-way 
coverage of the test set. In this paper, we consider the terms SUT and IUT 
interchangeably. 

3 Modelling and Measuring Combinatorial Coverage of 
AESAVS Test Data 

Our analysis concerns, for given test set file of the AESAVS, the achieved com-
binatorial coverage of the binary-transformed extracted hex-values of the given 
keys in the individual test vectors. We start with an example for the data extrac-
tion, before we detail how complete files containing test data are transformed 
and analyzed. 

The test data for provided configuration (category of test, mode of operation 
and key size) are provided in REQUEST files. The RESPONSE files contain the same 
data as the REQUEST files with the addition of the ciphertext for encryption 
(or plaintext for decryption). The generic structure of a single test vector in a 
RESPONSE file is as follows: 

– an AES key of length 128, 192 or 256 bits, denoted by KEY, which is to be 
used for encryption or decryption. The mode of operation is further encoded 
into the filename of the test data; 

– an initialization vector (if applicable to the mode of operation), denoted by 
IV; 

– a sample plaintext, denoted by PLAINTEXT; 
– the corresponding ciphertext, denoted by CIPHERTEXT; 
– where the order of plaintext/ciphertext or ciphertext/plaintext indicates the 

ciphering direction. 

To make our approach more tangible, consider the test data provided in the 
file CBCMCT192.rsp, which specifies test vectors for CBC mode of operation with 
a key size of 192 bits for the category of MCT: 

COUNT = 51 
KEY = 3461389779e6debf3e58d02175a33cd46663812b73b66082 
IV = 88687bf1375300b8412cf10e35f6a0b1 
PLAINTEXT = 03c1f719854c00e5a16c302e25621807 
CIPHERTEXT = cf5d505c14e1e272634b4ad58b6ef3d9 

The COUNT variable simply indicates the ordinal number of the test vector in 
this file. 
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For our analysis of the test data provided by the CAVP, we focused on the 
combinatorial measurement of the keys used for testing. Hence, we extract the 
hexadecimal value that instantiates the key used in the AES implementation. 
This value is translated to a binary vector of length 128, 192 or 256, depending 
on the chosen key size. 

A test set consists of test vectors for both encryption and decryption. In our 
analysis, we aggregated the binary vectors in two different files depending on 
their origin, e.g. one for encryption and one for decryption. For each of these 
two resulting sets of test vectors, we carry out a combinatorial analysis in two 
steps: 

1. Extraction of an IPM, 
2. Combinatorial coverage measurement based on this IPM. 

In the first step we determine for each parameter, that models the key, the set 
of values it takes over the course of the whole test set being executed. Thus, we 
extract an IPM for the AES key, from the test vectors. These extracted models 
contain either 128, 192, or 256 parameters. Depending on the considered test 
set, these parameters are unary or binary. In the second step, we measure the 
combinatorial 2-, 3- and 4-way coverage, of the test vectors against the IPM 
obtained in the first step. In our study we used the Combinatorial Coverage 
Measurement Tool (CCMtool) [13], developed by NIST and the Centro Nacional 
de Metrologia of Mexico, for both of the just described steps. Other combinatorial 
coverage measurement tools include the CAmetrics tool [12] which provides for 
additional visualization and combinatorial metrics. 

We make this process more explicit by means of the following example where 
we consider again the CBCVarKey192 AES validation test set. This set contains 
192 test vectors for testing encryption, from which we extract the values of the 
keys and transform them to binary vectors, which constitutes a test set of 192 
binary vectors of length 192. From these vectors we extract an IPM consisting 
of 192 parameters. In this specific case, the first parameter is unary, only taking 
the value 1 and the remaining 191 parameters are binary, taking the values 0 or 
1. Finally we measure the combinatorial coverage of the 192 test vectors with 
regard to this IPM. The test set covers 54817 out of 72962 2-way interactions 
and 4626975 out of 9217660 3-way interactions, i.e. it achieves 75.15% 2-way 
coverage and 50.2% 3-way coverage. 

4 Measurement results 

For the AES KAT Vectors, AES MCT Sample Vectors and AES MMT Sam-
ple Vectors, we measured the total 2-way through 4-way coverage, separately 
considering the keys for encryption of plaintext and decryption of ciphertext. 

4.1 AES KAT 

The vectors extracted from the AES KAT test sets are the same for the different 
modes (ECB, CBC, OFB, CFB1, CFB8, CFB128) when considering AES ver-



7 Knowledge Extraction for CAVP Tests using Combinatorial Coverage 

sions of the same size. Further, the keys for encryption and decryption are the 
same. Thus, we do not specify the mode when we refer to a set of test vectors, 
e.g. {Mode}GFSbox128 refers to CBCGFSbox128 as well as CFB1GFSbox128 and 
further do not distinguish between encryption and decryption. The size of each 
AES test set can be seen in Table 1, below. 

128 192 256 
{Mode}GFSbox 7 6 5 
{Mode}KeySbox 21 24 16 
{Mode}VarKey 128 192 256 
{Mode}VarTxt 128 128 128 

Table 1: AES KAT test set sizes (for encryption or decryption). 

Now, from the AES test sets we extracted the following IPMs: 

– IPM({Mode}GFSbox): 1128 (all unary) 
– IPM({Mode}KeySbox): 11 , 2127 (first parameter unary, others binary) 
– IPM({Mode}VarKey): 2128 (all binary) 
– IPM({Mode}VarTxt): 1128 (all unary) 

The results of our coverage measurement are depicted in Figure 1 to give an 
comprehensive overview. Moreover, in Table 2 we detail the results of the 3-way 
coverage measurement for the different test vectors of length 128. 

extracted IPM # tuples # tuples covered coverage % 
IPM({Mode}GFSbox128) 
IPM({Mode}KeySbox128) 
IPM({Mode}VarKey128) 

1128 

2128 

11 , 2127 

1128 

341376 
2731008 
2699004 
341376 

341376 
2575694 
1357503 
341376 

100 % 
94.3 % 
50.3 % 
100 % IPM({Mode}VarTxt128) 

Table 2: 3-way coverage of vectors for 128 length against extracted IPM. 

The results of the coverage measurement visualized in Figure 1 need to be 
interpreted carefully. For the case of {Mode}VarTxt and {Mode}GFSbox, the cov-
erage is 100% because the IPM consists only of unary parameters. The vectors 
of the test sets where the extracted IPMs are not trivial, achieve lower t-way 
coverage. 

4.2 AES MCT 

The vectors extracted from the MCT test sets contained 200 vectors for each 
mode (ECB, CBC, OFB, CFB1, CFB8, CFB128) which are split into two test 
sets for encryption and decryption as previously. Again, we extract the values 
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Fig. 1: 2-way, 3-way and 4-way coverage of AES KAT test sets. 

for the keys from these vectors. For different modes the keys are instantiated 
differently and also the keys in the test vectors for encryption differ from the 
keys in the test vectors for decryption. For all modes and both test sets - for 
encryption and decryption - the IPMs extracted from the sets of keys consist 
of only binary parameters. Figures 2 and 3 show the results of our coverage 
measurements for 2-way, 3-way, and 4-way coverage. On the x-axes we denote 
the various AES modes with and the length and on the y-axes the percentage 
of t-way coverage. The figures show that for both, encryption and decryption, 
the AES keys achieve full 2-way coverage and almost full 3-way coverage (the 
lowest percentage across all lengths and modes being 99.9994% for encryption, 
and 99.9996% for decryption). The keys also have good 4-way coverage, staying 
above 99.80%, except for the case of CFB128MCT128 achieving 99.77% 4-way 
coverage. 

4.3 AES MMT 

The vectors extracted from the MMT test sets contain 20 vectors, where again 
for each mode (ECB, CBC, OFB, CFB1, CFB8, CFB128) the test vectors are 
split in two sets for encryption and description. As before, for different modes the 
keys are instantiated differently and the keys for encryption differ from the keys 
for decryption. When extracting the IPMs from these test sets, we retrieve IPMs 
containing mostly binary parameters, but some IPMs extracted from sets of test 
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Fig. 2: 2-way, 3-way and 4-way coverage of AES MCT test sets for encryption. 

Fig. 3: 2-way, 3-way and 4-way coverage of AES MCT test sets for decryption. 
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vectors also contain unary parameters. To be more specific, from the encryp-
tion test sets, the IPMs extracted from the vectors for the modes CFB1MMT192, 
ECBMMT256, CBCMMT128, CBCMMT256 and CFB128MMT192 contain one unary pa-
rameter, while the remaining ones are binary; and for decryption the IPMs ex-
tracted from CFB1MMT192, ECBMMT128, CBCMMT128, CFB128MMT192 contain one 
unary parameter and the one from CFB8MMT128 contains two unary parameters, 
while the remaining parameters in all IPMs are binary. 

Figures 4 and 5 depict the results of our t-way coverage measurements for 
t ∈ {2, 3, 4}, showing that the MMT test sets achieve high 2-way coverage above 
90%, but only medium to small 3-way and 4-way coverage below 80% respectively 
50%. 

Fig. 4: 2-way, 3-way and 4-way coverage of AES MMT test sets for encryption. 

5 Discussion related to Testing 

The combinatorial coverage measurement analysis in the previous section shows 
that some of the extracted and transformed keys from the AESAVS test sets do 
not exhibit full t-way combinatorial coverage for some values of t. This finding has 
some implications for the currently specified testing requirements in AESAVS. 

First, we already pointed out in the introduction that in the AESAVS doc-
ument ([1]), it is noted that the testing performed within the AESAVS uses 
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Fig. 5: 2-way, 3-way and 4-way coverage of AES MMT test sets for decryption. 
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statistical sampling to generate the test data. With our measurement approach 
we are now able to quantify the test sets sampling properties in terms of the 
achieved combinatorial t-way coverage. 

Second, some works in the software testing literature have linked achieved 
combinatorial t-way coverage to the residual risk that remains after testing [10], 
[13]. An investigation whether similar conclusions could be drawn for validation 
testing purposes could be of interest. 

Third, the presented case study here could be extended to also take into 
account not only the key space, but also simultaneously the key space, IV space 
and ciphering direction space (i.e., plain- or ciphertext space). 

6 Conclusion 

The Cryptographic Algorithm Validation Program validates implementations 
of various cryptographic algorithms, including AES and other popular crypto-
graphic algorithms. This is accomplished by designing and developing validation 
test sets for every such recommended cryptographic algorithm, with the aim 
to check whether the algorithm has been implemented correctly. In this work 
we applied knowledge extraction and visualization techniques via combinatorial 
coverage metrics to perform an analysis of the various CAVP test vectors. Our 
coverage measurement results can be used as a complementary measure to assess 
the quality of the AES algorithm validation suite. 
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