
0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

Reinforcement Learning-Based Control and
Networking Co-design for Industrial Internet of

Things
Hansong Xu∗, Xing Liu∗, Wei Yu∗, David Griffith†, and Nada Golmie†

∗Towson University, USA
Emails: {hxu2, xliu10}@students.towson.edu, wyu@towson.edu
†National Institute of Standards and Technology (NIST), USA

Emails:{david.griffith, nada.golmie}@nist.gov

Abstract—Industrial Internet-of-Things (IIoT), also known as
Industry 4.0, is the integration of Internet of Things (IoT)
technology into the industrial manufacturing system so that the
connectivity, efficiency, and intelligence of factories and plants
can be improved. From a cyber physical system (CPS) perspec-
tive, multiple systems (e.g., control, networking and computing
systems) are synthesized into IIoT systems interactively to achieve
the operator’s design goals. The interactions among different
systems is a non-negligible factor that affects the IIoT design
and requirements, such as automation, especially under dynamic
industrial operations. In this paper, we leverage reinforcement
learning techniques to automatically configure the control and
networking systems under a dynamic industrial environment. We
design three new policies based on the characteristics of indus-
trial systems so that the reinforcement learning can converge
rapidly. We implement and integrate the reinforcement learning-
based co-design approach on a realistic wireless cyber-physical
simulator to conduct extensive experiments. Our experimental
results demonstrate that our approach can effectively and quickly
reconfigure the control and networking systems automatically in
a dynamic industrial environment.

Index Terms—Industry 4.0, Internet of Things, Reinforcement
Learning, Control and Networking Co-design.

I. INTRODUCTION

INDUSTRY 4.0 envisions the integration of Internet of
Things (IoT) technology into industrial settings to achieve

the high connectivity, reliability, efficiency, and intelligence in
manufacturing facilities and plants. Two key components of an
Industrial IoT (IIoT) system (i.e., cyber system and physical
system) form a closed-loop architecture. The physical system
represents the manufacturing and automation components,
which carry out industrial production and process tasks. The
cyber system consists of control, networking, and computing
components for assisting operation, interconnection, and intel-
ligence of IIoT systems [1].

In IIoT systems, control and networking systems inter-
actively affect the performance of the physical system. For
example, the control system usually increases the sampling
rate to stabilize the controllability of the system when physical
disturbances occur. Nonetheless, the high-volume network
traffic caused by the increased sampling rate could degrade
the network performance, which in turn negatively affects
the performance of the control system. Moreover, from the

communication perspective, the network system usually uses a
more conservative modulation type, i.e., a signal constellation
with fewer bits per symbol, to improve the packet delivery
rate in a poor communication channel. Nonetheless, given
the limited network resources, a conservative modulation type
increases the amount of data to be transmitted. This could
burden the network and in turn degrade the packet delivery
rate and further affect the control performance.

As IIoT systems are highly coupled systems that synthe-
size control and networking systems, it is not feasible to
conduct separate design (i.e., configuring the control system
or the networking system independently). Thus, we propose
a control and networking co-design approach using machine
learning techniques such as reinforcement learning. Generally
speaking, reinforcement learning techniques can be classified
into model-based and model-free reinforcement learning [2]–
[4]. Due to the complex interdependence between control and
networking systems, it is impractical to derive or estimate
a complete and accurate model for the integrated control
and networking systems [5]–[7]. In contrast, the model-free
reinforcement learning technique is capable of configuring
the control and networking systems simultaneously while
accounting for the interactions of both systems. The benefit of
model-free reinforcement learning is that it does not require
a mathematical model of the environment, so that the con-
figurations under different circumstances can be carried out
automatically [8].

The challenges of leveraging reinforcement learning to
configure the control and networking systems automatically
are two-fold. First, in the IIoT system, physical disturbances
in control systems are difficult to predict, as well as the channel
noise level in the networking system in a dynamic industrial
environment. Second, the control system is designed to stabi-
lize the system quickly, which imposes further constraints on
the maximum convergence time of any reinforcement learning
algorithm. Thus, we shall design a reinforcement learning
approach to learn from the highly dynamic environment and
make decisions quickly. Our design goal is to leverage the
model-free reinforcement learning technique to enable self-
configuration under the dynamic environment of an IIoT
system with minimal convergence time at runtime.

To achieve our design goal, in this paper we leverage the

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

open source wireless cyber-physical simulator (WCPS) [9] to
set up an IIoT system, which consists of a physical plant,
a control center, and a network module. We use a fluid
temperature control system (i.e., classic continuous stirred tank
reactor (CSTR)), as the physical plant to demonstrate our idea.
In an IIoT system, sensors collect fluid temperature data and
send it to the control center through wireless communication
channels. The controller computes actuation commands and
sends them to actuators so that valves can be adjusted to
achieve the control goals (i.e., maintaining a targeted temper-
ature). We use the WCPS testbed to observe the performance
of different control network parameters (i.e., sampling rate
and modulation type) on the IIoT system under physical
disturbances and multi-level communication noise. We observe
that the high sampling rate of the control system fails to
stabilize the CSTR under heavy communication noise. Instead,
a lower sampling rate performs better under these conditions.
This conclusion is confirmed through our experimental results,
provided in Section VI-C.

Based on these observations, we implement and integrate
a reinforcement learning module into the system to achieve
a reinforcement learning-enabled IIoT system based on the
open source WCPS, as shown in Fig. 1 [9]1. The plant
(CSTR) generates data by sensors and transmits the data to
the Extended Kalman Filter (EKF) state observer through
wireless networks. The EKF estimates the system state based
on the sensed data received. Then, the model predictive control
(MPC)-based controller computes control commands based on
the system estimation and transmits the commands to actuators
through wireless networks to control the plant setpoints. The
commands are buffered before being sent to the actuators.
The reinforcement learning-enabled control module takes the
estimated system states as input and reconfigures control
system and networking system simultaneously.

Particularly, for the reinforcement learning-based scheme,
we consider the stability of the control system as a set of
states, which can be measured by the maximum absolute error
(MAE). In reinforcement learning, the scheme selects actions
from action sets for control and networking systems based on
a learning policy under the dynamic environment. After an
action is taken, the system state will change to a new state
and generate the reward for this action. At the same time,
the scheme will update the learning policy and select new
actions for current states. The goal of reinforcement learning
is to compute an optimal policy that assigns optimal actions
at given states.

To summarize, our contributions are as follows: (i) We use
the WCPS testbed to capture the interactions between control
and networking systems, as well as observe the control perfor-
mance under varying networking environments. We investigate
and evaluate the results of varying parameters (i.e., sampling
rate and modulation type) under dynamic environments in a

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

realistic CPS platform. (ii) We propose a new reinforcement
learning-based scheme to self-configure the control and net-
working systems in a dynamic environment. In our co-design
approach, the reinforcement learning-based scheme can tune
the sampling rate for the control system and the modulation
type of the networking system simultaneously so that near-
optimal control performance can be achieved automatically.
(iii) We propose several policies based on the characteristics
of the control system to improve the performance of our
reinforcement learning scheme. We also implement the rein-
forcement learning-enabled IIoT system, which automatically
assigns actions to both the control and networking systems
under a dynamic environment such that the performance of
the IIoT system can be improved, as demonstrated through
extensive experimental results derived from our real-world
testbed.

S
S

A A

Model
Predictive
Control

Extended
Kalman

Filter
Sensors

Buffer Actuators

Plant

Reinforcement Learning-
enabled

Control Module
!(#)

%&(#)

%&(#)

'(#)'&(#)

(&(#)
[(# , (# + 1 ,…, (# + - − 1]

Networking
System

Control
System

Wireless
Networks

Fig. 1. Reinforcement Learning-enabled IIoT System Archi-
tecture
The remainder of this paper is organized as follows: We

review research efforts on IIoT, wireless control systems, and
machine learning for IIoT in Section II. In Section III, we pro-
vide a preliminary review of control and networking systems
and reinforcement learning. In Section IV, we introduce our
approach in detail. In Section V, we present our algorithms
and the analysis of our approach. In Section VI, we present
the experimental methodology, system implementation, and
results. In Section VII, we discuss several future directions.
We conclude the paper in Section VIII.

II. RELATED WORK

As envisioned by Industry 4.0, industrial manufacturing
systems are facing new opportunities and challenges to achieve
highly flexible, efficient, and intelligent manufacturing produc-
tion via advances in the IoT. A number of research efforts have
been conducted on the applicability, efficiency, extensibility,
security, and privacy of leveraging IoT in the context of
industrial manufacturing systems, also called IIoT [1], [10]–
[12]. For example, Xu et al. [10] systematically investigated
the applicability of IoT technologies in the context of industry,
including the key enabling technologies (e.g., radio-frequency
identification (RFID)), architectures, and IIoT applications.
Likewise, Xu et al. [1] surveyed IIoT from a CPS perspec-
tive, which consists of physical plants and machinery on the
physical side and control, networking, and computing systems
on the cyber side.

In addition, there have been a number of research efforts
on wireless control systems, as one key component in an IIoT
system [5], [13]–[15]. For example, Li et al. [13] implemented

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

Symbols Descriptions
A Action set
a An action selected from A (i.e., a combination of a

sampling rate and a modulation type)
X System state set
x Current system state
x′ System state after an action
π Reinforcement learning policy
P (x, a, x′) State transition probability function
R(x, a, x′) Reward function
Q(x, a) Q-factor (denotes the value of action a at state x)
r(t) Discount factor
MAE Maximum absolute error
∆MAE Change of the system state
ItLeMAX Maximum iterations in learning phase
αk Learning rate
η A scaling constant close to 1 (i.e., 0.99)
pk Exploration rate
ThSTAB Stability threshold for system state (i.e., a MAE

value)
ThLexp Threshold for a low exploration
ThHexp Threshold for a high exploration
Ωk Average reward received with the optimal policy
ItFrMAX Maximum iterations in frozen phase
REWTOT Total reward received in system runtime
TIMTOT Length of system runtime

TABLE I. Reinforcement Learning Parameters

an open source WCPS testbed to observe the interactions of
control and networking systems. Ma et al. [14] proposed a
cyber-physical management framework with a holistic con-
troller to generate actuation signals sent to the physical plant
and the reconfiguration and coordination of wireless sensor
and actuator network (WSAN) at system runtime.

Adopting machine learning technology to address various
challenges in IIoT (spectrum resource allocation, energy ef-
ficiency, data analytics, and prediction, among others) has
attracted significant research attention [16]–[20]. For example,
Oyewobi et al. [16] adopted a reinforcement learning tech-
nique to assess scarce spectrum resources dynamically in an
IIoT environment. Also, research efforts have leveraged rein-
forcement learning techniques to conduct resource allocation
in IIoT with consideration for high reliability and low latency
requirements, such as Q-learning for channel allocation [17],
Q-learning for computation offloading [18], and multi-armed
bandit algorithms for channel hopping [20]. To overcome the
high cost of Q-learning with a large state space, deep neural
networks have been adopted to reduce the complexity and
improve the convergence via approximating values for state-
action pairs [17], [18].

To the best of our knowledge, no existing research ef-
forts have leveraged state-of-the-art reinforcement learning
techniques to address the control and networking co-design
problem in highly coupled IIoT systems.

III. PRELIMINARY

In this section, we briefly introduce the background and
interactions of control and networking systems and provide
an overview of reinforcement learning.

Control and Networking Systems: Industrial factories and
plants typically employ a closed-loop system architecture,
which consists of sensing and actuation phases to control

objects to achieve certain goals. In the sensing phase, the
industrial sensors collect measurement data (e.g., the fluid
temperature in the fluid temperature control system), and send
their measurements to the controller. In the actuation phase,
the controller computes the actuation commands and sends
them to actuators (e.g., valves), as shown in Fig. 1.

Control Systems: We use a linear time-invariant (LTI)
system to model industrial plants to demonstrate the feasibility
of our approach. Given an arbitrary input, the LTI system will
produce an output (the observation) by convolving the input
signal with the impulse response of the LTI system. Based on
the observation, the controller computes a control or feedback
signal (i.e., control commands) to stabilize the LTI system
around a setpoint. We leverage the EKF as the state observer
to estimate the system states. Specifically, the state observer
first predicts the current system states based on its knowledge
of previous states. Then, the EKF updates its prediction by
comparing newly received sensing data (i.e., actual system
states) to its predicted state values. Note that, when the sensing
data is not received (perhaps due to packet loss), the observer
outputs only the predicted state values [13].

We use the model predictive control (MPC) based controller
to solve the optimal control problem on a given set of
actuation values u (as a vector) in a finite horizon time. The
MPC controller computes a sequence of control commands,
where the length is determined by the finite horizon. These
commands drive the system towards the setpoint (i.e., control
goal) based on the current system state. Then, the MPC
controller applies the first control action in the sequence u,
to the LTI system, and reads the new system state. With the
update of the system state, the MPC controller recomputes a
new sequence of control commands for the next time interval.
We also leverage a buffer for the MPC controller to store
the subsequent control commands in the sequence, up to the
buffer length, N . When no new control command sequence is
generated due to loss of observations (sensing data), the stored
control commands will be applied to the system, one at a time,
until new a control command sequence is generated.

Networking Systems: Networking systems transmit sensing
measurements and actuation commands in packets transmitted
through the closed-loop system from sensors to controller and
from the controller to actuators. IIoT networking systems must
satisfy the real-time requirement and high-reliability require-
ment before widespread deployment [1]. Networking systems
for IIoT can be wireless sensor actuator networks (WSANs),
which interconnect components (sensors, controllers and actu-
ators) and satisfy real-time requirements in industrial automa-
tion [5]. Note that the real-time requirement means that every
packet needs to be delivered before its latency requirement
deadline expires.

The WSAN in WCPS uses WirelessHART2 as an open
standard designed to satisfy the requirements of industrial
applications [15]. Particularly, WirelessHART specifies multi-
channel time division multiple access (TDMA) in the MAC
layer and IEEE 802.15.4 in the PHY layer. A centralized

2WirelessHART is based on the Highway Addressable Remote Transducer
Protocol (HART) protocol.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

real-time scheduler assigns channel resources to sender and
receiver pairs per time slot of 10 ms. Note that the time slot
can be shared and dedicated for transmission. The shared time
slot allows multiple senders to compete for the time slot while
the dedicated time slot is reserved by a single sender. One time
slot is sufficient to accommodate both data transmission and
acknowledgment. In the PHY layer, WirelessHART utilizes
the 2.4 GHz band with up to 16 channels. Also, channel-
hopping technology is leveraged to avoid channel interference.
Furthermore, the network layer provides source routing and
graph routing schemes. The source routing creates a signal
path from the sender to the destination, while the graph routing
creates an additional backup path to improve the resilience of
transmitting critical data.

Interactions Between Control and Networking Systems:
In IIoT systems, the interactions of the control and networking
systems affect the overall system performance. On one hand,
the MPC controller can increase the sampling rate to improve
the frequency of system state observations, which leads to finer
control. Furthermore, the MPC controller with a low sampling
rate can directly degrade the control performance, regardless
of the communication performance [5]. On the other hand,
due to the fact that the network resources in WSANs are
limited, a higher sampling rate could increase the amount of
data that needs to be delivered to the MPC controller during
the sensing phase, increasing resource contention and real-time
performance in the networking system. Thus, a sampling rate
that is too high would, in turn, degrade control performance
too. Thus, the dynamics of interactions between control and
networking systems call for the co-design approach, which
considers both control and networking systems simultaneously.
The detail of our approach will be presented in Section IV.

Reinforcement Learning: The intelligent operation and
automation of manufacturing factories and plants is a key
objective of IIoT, which consists of autonomous sensing, learn-
ing, operations, control, and decision-making, among others,
without human intervention in the IIoT system life cycle [1],
[21], [22]. Specifically, in IIoT systems, decision-making (e.g.,
setting the sampling rate for the control system and choosing
the modulation type for the networking system) needs to occur
automatically according to the dynamics and interactions of
the control and networking systems. In this way, IIoT systems
are capable of adapting to the dynamic industrial environment
quickly, efficiently, and automatically.

Generally speaking, the relationship of control commands
to IIoT system states can be modeled as a Markov decision
process (MDP). In our study, we use the observation signals as
the system states to describe the LTI system. The system states
are quantified by how close the current measurements are to
the setpoints, measured by MAE. We use a set of actions (e.g.,
changing the sampling rate) to control the system in an optimal
manner. Due to the network dynamics, an action (e.g., higher
sampling rate) does not always lead to better states (closer to
the setpoint).

The reinforcement learning model receives the observation
signals from the LTI system as the input and selects an action
(i.e., sampling rate and modulation type) as the output. After
each action per time step, the LTI system will transit to a

new state. We can observe the state transition by collecting
the system observation signals. Accordingly, reinforcement
learning will receive the immediate reward for each action
taken based on the state transition, such as a positive reward
for a good transition (closer to the setpoints) and a negative
reward for a bad transition (farther from the setpoints). During
runtime, our reinforcement learning model will choose actions
that increase the overall rewards based on the sum of the
rewards over time. By interacting with the dynamic industrial
environment, reinforcement learning can achieve near-optimal
results automatically by systematic trial and error.

Algorithms Existing
Research

Pros Cons

Q-Learning Li et al. [23],
Wang et al. [24]

Q-Learning is an off-policy algo-
rithm;
Q-learning can find an optimal pol-
icy for any MDPs to maximize the
total reward

High computing
complexity when
state or action
spaces are large;
Unable to deal with
unseen states

SARSA Arvind et
al. [25],
Zou et al. [26]

SARSA is an on-policy algorithm Slower convergence
than Q-learning

DQN Zeng et al. [27],
Qiu et al. [28],
Liu et al. [29]

Good for high dimensional state or
action space;
Generalization to unseen states
End-to-end training

Unstable
performance

TABLE II. A Comparison of Model-free Reinforcement Learn-
ing Algorithms

We discuss and compare the pros and cons of key model-
free reinforcement learning algorithms in Table II, including
Q-learning, State-Action-Reward-State-Action (SARSA), and
Deep Q Networks (DQN). The Q-learning algorithm uses a
Q-table to store the state, action, and Q-value, and updates
the Q-table through a trial and error process with the envi-
ronment [23], [24]. Via systematic trial and error, Q-learning
learns an optimal policy to maximize the total reward. The
main issue of Q-learning is the high computing cost when the
state or action space is large. DQN can reduce the cost by
using a neural network to approximate the Q-value function
in place of the Q-table. The DQN is a function approximation
method that can effectively reduce the number of states and
generalize to unseen states [27]–[29]. Similar to Q-learning,
SARSA uses a Q-table to store data and updates the Q-table
through trial and error. The main difference of SARSA is the
updating process, where SARSA updates the Q-value based on
the current policy (i.e., on-policy) instead of the greedy policy
(i.e., off-policy) [25], [26]. Overall, for the sake of simplicity,
we select Q-learning instead of other model-free reinforcement
learning algorithms.

We summarize the key components of reinforcement
learning-enabled IIoT systems and their relationships as fol-
lows: (i) the CSTR module models the physical phenomena in
a classic continuous stirred tank reactor, (ii) the WSAN trans-
mits timely sensing and actuation data, (iii) the EKF conducts
state estimation with the received sensing data, (iv) the MPC
controller computes a new control command sequence based
on the state estimation results, (v) the reinforcement learning
technique (in this case Q-Learning) conducts automatic re-
configuration on both the control system and the networking
system. We present the detailed design of our reinforcement
learning scheme in the next section.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

IV. OUR APPROACH

In this section, we present our approach in detail. We first
introduce the design rationale and problem formalization. We
then detail our Q-learning scheme and three learning policies.

A. Design Rationale

It is complicated and costly to obtain closed-loop formulae
to model the control and networking co-design and derive
mathematical solutions [5]–[7]. This is because there are a
number of dynamic factors from both the control system
(e.g., control policy, sensor accuracy, and disturbance) and
the networking system (e.g., network configuration, channel
conditions, and noise) as well. When integrating one factor
from the networking system with the control system, a number
of other factors in the control system will be impacted directly
or indirectly. For example, when we integrate the channel noise
into the control system, the control command transmission will
be impacted. In this way, the current control model, which
did not consider the added impacts, has become infeasible and
needs to be modified. In addition, a number of control systems
are modeled as time-invariant systems to which control laws
are applied [30], [31]. When the networking system parameters
are introduced (e.g., delay and packet loss) to the control
system, the control system model could be no longer time
invariant. In short, the co-design approach is very complex to
achieve from a strictly analytical perspective.

Thus, in this paper we propose to leverage machine learning
techniques to automate IIoT systems, as they have been
demonstrated as feasible for the transformation of complex
datasets into accurate knowledge as output [32]–[34]. Machine
learning techniques have proven effective and been utilized in
the context of IIoT in several ways [35]–[37]. Particularly,
model-free reinforcement learning interacting with unknown
environments through systematic trial and error has proven
effective for decision-making tasks [8], [16]. Nonetheless,
the standard model-free reinforcement learning usually needs
a sufficient number of samples and learning processes to
achieve a near-optimal policy [4]. Thus, it is challenging to
apply model-free reinforcement learning in control systems,
as the convergence time is generally intolerable in real control
systems. To address this issue, we introduce several new
policies in Section IV-D to improve the convergence time of
reinforcement learning schemes that are tailored for control
systems.

B. Problem Formalization

We model the co-design problem (i.e., selecting control and
networking parameters with regards to the system dynam-
ics) as an MDP problem. At each time step, reinforcement
learning selects actions to move the system between different
states. The reinforcement learning scheme will assign each
state transition a positive or negative reward depending on
whether the system state is changed towards or away from the
setpoints. The objective is to find policy π that maximizes the
cumulative reward to ensure the quick stabilization of control
systems. The MDP is defined with a tuple as (A,X,P,R).

Here, A is the set of actions, including the sampling rate
and modulation type as control and networking parameters.
The reinforcement learning selects an action a, including a
sampling rate and a modulation type combination from the
action set {A = a1, a2, a3, . . . , am}.

The state of the system is defined as a set of variables to
describe the different levels of stability of the system. System
state is represented by {X = (x1, x2, x3, . . . , xn)} with n
states in total. At each time step, the current system state
is denoted as x, where x ∈ X . The transition probability is
denoted by function P (x, a, x′), which represents the proba-
bility of taking action a at state x and transiting to state x′.
R(x, a, x′) denotes the reward function that determines the
reward value for the state change from x to x′ under action
a. The objective is to find an optimal policy that maximizes
the cumulative reward

∑∞
t=0 r(t)∗R(x(t), π(x(t)), x′(t+1)),

where r(t) is the discount factor and satisfies 0 ≤ r(t) < 1.
Note that we use discount factor r(t) to discount the time

value of rewards. Instead of a constant discount factor, we
set the discount factor function to be computed by r(t) =
1 − 0.5(t), t ≥ 0. This is because we care less about future
rewards towards computing an optimal policy in the first few
time steps of reinforcement learning. We use the change of
MAE (i.e., system state) to formalize the reward function. The
change of system state in the starting phase is not important in
comparison to the change of system state in later time steps of
reinforcement learning (i.e., stable phase). Thus, we set a small
initial discount factor to reduce the value of future rewards in
initial time steps, and increase the discount factor to increase
the value of future rewards in later time steps.

In our setting, the reward is derived by

R(x(t), a, x′(t+ 1)) = f(∆MAE, t), (1)

where δMAE is used to measure the change of the system
state. As the transition probability P (x, a, x′) is unknown, we
chose a Q-learning scheme rather than using a model-based
reinforcement learning.

C. Q-learning Scheme

We leverage Q-learning to find the optimal policy, which
consists of two phases: a learning phase followed by a frozen
phase. The Q-learning scheme generally assigns a value to
each state-action pair in the system, denoted by the Q-factor.
The Q-factor is represented by Q(x, a), indicating the value of
action a at state x. There are a total of |X| × |A| Q-factors if
there are |X| system states and |A| action sets in the designated
system. The Q-factors are first given small values, equal or
close to 0.

In the learning phase, the Q-learning scheme will con-
tinuously update the Q-factors. Particularly, the immediate
reward R(x, a, x′) of each state transition will be used to
update the Q-factors at each time step. For example, if the
reward is positive (i.e., good state transition) after one action
is selected at a given state, the reinforcement learning scheme
will increase the Q-factor for the state-action pair. Otherwise,
the reinforcement learning scheme will decrease the Q-factor
to reduce the chance of selecting that action at the given

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

state. This Q-factor updating process will continue for a
predetermined number of time steps. Finally, at the end of
the learning phase, the Q-learning scheme will produce a set
of actions with the highest valued Q-factor as the optimal
actions at corresponding states. In the frozen phase, the Q-
learning scheme will no longer update the Q-factors. The set
of action and state pairs will be considered as the optimal
policy. By adopting the optimal policy, we can compute the
average reward in the frozen phase to estimate the performance
of reinforcement learning.

D. Learning Policies

To achieve fast convergence of the learning process as
required for control systems, we design the following three
new policies to regulate and improve reinforcement learning
performance for the IIoT system. Particularly, we design
Policy I to reduce the action space, Policy II to reduce the
explorations, and Policy III to stabilize the system quickly, as
follows.

Policy I. Reducing Action Space: We assign actions
(e.g., sampling rate and modulation type) into pairs and rank
the actions following IEEE 802.15.4 bit error rate (BER)
performance. We can directly map the BER to packet loss due
to the low latency and high reliability requirements of the IIoT
setting. Intuitively, the higher sampling rate increases resource
contention, which increases the BER and packet loss. Thus,
the action sets, such as a higher sampling rate with a low noise
resistant modulation type (e.g., quadrature phase shift keying
(QPSK)) will be eliminated from the action sets, preventing
the potential for bad control performance. Since the data rate
of some modulation types cannot satisfy the delay requirement
of the high sampling rate, we can reduce the action space by
removing unmatched action pairs.

Policy II. Reducing Explorations: We assign the explo-
ration thresholds and MAE threshold to ensure that rein-
forcement learning can minimize the exploration rate when
the stable state action has been identified or a stable state
action has not been found after a number of iterations. This is
because, once the current system state is stable, the control
system should prefer to stay in a stable state rather than
explore other potentially unstable states. We also assign a low
exploration rate to ensure convergence when the system state
is unstable after a number of iterations.

Specifically, we choose MAE threshold and exploration
thresholds (determining a low exploration or a high explo-
ration) based on the system stability and the number of
iterations. For example, we can set the MAE threshold to be 1,
indicating that a system state measured by MAE that is smaller
than 1 is considered is a stable state, and a system state greater
than 1 is considered as an unstable state. In addition, based on
the number of iterations, we set a low exploration threshold to
be 0.4926 (i.e., 30 iterations) and a high exploration threshold
to be 0.4854 (i.e., 60 iterations). Note that the exploration rate
decreases gradually during iterations.

Then, when the system is in a stable state (i.e., system state
satisfies the MAE threshold) and the exploration is insufficient
(i.e., exploration rate satisfies low exploration threshold) or the

system is in an unstable state and the exploration is sufficient
(i.e., exploration rate satisfies high exploration threshold),
the system selects the action with the maximum Q-value.
Otherwise, the system selects another action. We demonstrate
the implementation in the next section.

Policy III. Stabilizing System Quickly: Due to the fact
that the physical system’s stability is not restricted to a single
point in the state space, we set blurry boundaries on the
states around setpoints. In more detail, the physical system
can be considered stable when the system state fluctuates
around the setpoint within a certain threshold. To do so,
we first define system states with certain values. Then, we
add a condition (i.e., deviation) to further make decision
on the system states. In this way, when the current system
state satisfies the threshold for stable states, the reinforcement
learning will consider the current system as stable.

V. ALGORITHM DESIGN AND ANALYSIS

To implement our scheme illustrated in Section IV, we detail
the algorithm design and analysis based on the new policies
designed for reinforcement learning-enabled IIoT systems.

A. Algorithms

We implement Algorithm 1 for the learning phase and
Algorithm 2 for the frozen phase of the Q-learning algorithm,
as described in Section IV-C. In Algorithm 1, we introduce
the procedures for updating the Q-factors. The first step is
the initialization (line 1), which initializes some key setting
parameters for the reinforcement learning module, including
the maximum iterations ItLeMAX, learning rate αk, a scaling
constant η close to 1, exploration rate pk determined by G1
and G2 and state threshold ThSTAB, low exploration threshold
ThLexp, and high exploration threshold ThHexp. Here, G1 and
G2 can be positive values, such as 1000 and 2000. Then, as the
iteration progresses, k increases, and the exploration rate pk

decreases gradually. The output of Algorithm 1 is the optimal
policy Q(x, a).

Before the maximum number of iterations is reached, when
the current state is stable (MAE < ThSTAB) and the explo-
ration rate satisfies the threshold for the low exploration rate
(pk < ThLexp), the reinforcement learning will assign an action
with the highest Q-value. Otherwise, when the current state
is stable, but the exploration is not sufficient, reinforcement
learning will assign an action based on a ranking distribution.

In addition, when the current state is unstable and the
exploration rate satisfies the threshold for the high explo-
ration rate (pk < ThHexp) (i.e., sufficient exploration), the
reinforcement learning will assign an action with the highest
Q-value. Otherwise, when the current state is unstable, but the
exploration is not sufficient, the reinforcement learning scheme
will assign an action based on a ranking distribution.

Thus, we conclude that our reinforcement learning scheme
assigns the highest Q-valued action when the system is stable
after only a few iterations, as well as when the system is
unstable after a number of iterations. Otherwise, the rein-
forcement learning scheme explores other actions. Generally
speaking, the time complexity is O((|A| − c1)(|X| − c2)

2
) for

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

each iteration, where |A|− c1 is the size of the reduced action
sets after the designed policies are applied and |X|− c2 is the
size of the reduced states after the policies are applied.

Algorithm 1: Q-learning for Reinforcement Learning-
enabled WCPS

Result: Q(x, a)
1 initialization: Q(x, a)← 0, k = 1, αk , η, pk , G1, G2, ItLeMAX,

ThSTAB, ThLexp, ThHexp;
2 while k < ItLeMAX do
3 pk = G1/(G2 + k);
4 if MAE < ThSTAB then
5 if pk < ThLexp then
6 select arg max

a∈A(x)
(Q(x, a));

7 else
8 select action a based on ranking distribution;
9 end

10 else
11 if pk < ThHexp then
12 select arg max

a∈A(x)
(Q(x, a));

13 else
14 select action a based on ranking distribution;
15 end
16 end
17 update Q(x, a): Q(x, a)←

(1− αk)Q(x, a) + αk[R(x, a, x′) + η max
a′∈A(x′)

(Q(x′, a′))];

18 k = k + 1;
19 end
20 STOP

Algorithm 2: Average Reward Ωk of the Optimal
Policy

Result: Ωk = REWTOT
TIMTOT

1 initialization: π, k, REWTOT, TIMTOT, ItFrMAX;
2 while k < ItFrMAX do
3 select π(x(k));
4 REWTOT ← REWTOT + r(t) ∗R(x, π(x(k)), x′);
5 TIMTOT ← TIMTOT + t(x, π(x(k)), x′);
6 k = k + 1 ;
7 set x← x′;
8 end

stirrer

Stream supply

Valve

Inflow

Outflow

Tank
Temperature

Valve
Opening

Reinforcement Learning-
enabled Controller

Fig. 2. CSTR System Overview

In Algorithm 2, we show the procedure of the frozen phase,
which estimates the average reward of the optimal policy cal-
culated as Ωk. In the initialization step, reinforcement learning
initializes the learned optimal policy Q(x, a), k, REWTOT,
TIMTOT, and maximum iterations ItFrMAX. Then, the algorithm

selects actions based on the optimal policy and updates the
transition reward denoted by R(x, π(x(k)), x′) in Equation (1)
and transition time denoted by t(x, π(x(k)), x′). The transition
time is computed by t(x, π(x(k)), x′) = Cycle Time

Sampling Rate . Here,
Cycle Time is a constant value that refers to the time of closed-
loop sensing and actuation process per sampling cycle. Finally,
it returns the average reward Ωk. The time complexity for
Algorithm 2 is O(n).

B. Algorithm Analysis

Without Policy I, there are |X| × |A| number of Q-
factors, and the reinforcement learning exploration space is
|X| × |A|. In each iteration, the time complexity of the
reinforcement learning model is O(|A×X|2), where |A| is
the number of action sets and |X| is number of states. In
contrast, when Policy I is used, the number of Q-factors is
reduced to |X| × (|A| − c1), where c1 is the number of
eliminated action sets. The exploration space is then reduced
to |X| × (|A| − c1). The time complexity of each iteration is
reduced to O((|A| − c1)|X|2).

With Policy II in place, the number of iterations to achieve
the optimal policy is reduced. This is because, once the system
is in stable state and the exploration rate is minimized, the
reinforcement learning does not need to further iterate for
better actions. Thus, the number of iterations is reduced after
Policy II is used. As demonstrated by the experimental results
in Fig. 13, the total reduction on the number of iterations is
maximally 37.5 % when our policies are applied.

Without Policy III, the time complexity of each itera-
tion is O((|A| − c1)|X|2). Nonetheless, when Policy III is
used, in each iteration, the time complexity is reduced to
O((|A| − c1)(|X| − c2)

2
), where c2 indicates the eliminated

number of states. This is because the total iterations needed
to obtain the optimal result is a polynomial of the number of
states. Thus, the number of iterations is further reduced with
Policy III applied.

VI. PERFORMANCE EVALUATION

We have conducted a thorough performance evaluation to
validate the feasibility of our approach in IIoT systems. We
carry out extensive experiments using Matlab/Simulink with
implementation of reinforcement learning module, physical
plant, observer and controller, and wireless network, as shown
in Fig. 3. In the following, we first present our experimental
methodology and system implementation, and then detail the
experimental results.

A. Methodology

We carried out our experiments in the following three
phases: Phase I: System Observation Phase observes the
interactions of control and networking systems, Phase II:
Performance Validation Phase validates the effectiveness of
integrating the reinforcement learning scheme into IIoT system
by collecting state observer results as inputs to the reinforce-
ment learning module and providing control and networking
parameters as inputs to the IIoT system, and Phase III: Perfor-
mance Improvement Phase optimizes reinforcement learning

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

performance in terms of reducing state space and improving
system stability by incorporating the new policies introduced
in Section IV-D.

We use the MAE to measure the control results of our rein-
forcement learning-enabled IIoT system. The MAE measures
the absolute error between two continuous variables, such
as the absolute error between step response under sufficient
network resources (e.g., wired network) and insufficient net-
work resources that leads to packet loss. We use three noise
level (-80 dBm, -78 dBm, and -76 dBm) to simulate the light,
moderate, and heavy channel noise, which leads to link failures
of 15 % to 98 % [13] and affects the packet delivery rate
(PDR). Note that 1 dB is relative to 1 mW (dBm). A high PDR
indicates that a high ratio of packets has been successfully
delivered.

We use the number of iterations to measure the performance
of the reinforcement learning module. The number of iterations
required to achieve a stable state indicates the time used by
the reinforcement learning to converge. Our goal is to reduce
the number of iterations, as a smaller number of iterations
indicates faster convergence. We also use error bars to denote
the 95 % confidence estimates of our reinforcement learning
model. We run the reinforcement learning ten times and
compute the average iterations, as well as the maximum and
the minimum iterations under different noise levels (i.e., light,
moderate, and heavy) individually.

B. System Implementation
Recall that, our IIoT testbed consists of four key elements,

including physical plant, networking system, control system,
and reinforcement learning module.

Physical System: In our study, we consider a temperature
control system, which is a representative example for numer-
ous industrial process systems (oil refineries, chemical plants,
etc.) [13], [38]. For many chemical plants, the fluid temper-
ature is a single setpoint, because a particular temperature
is required for the desired chemical reactions. We use the
CSTR as our physical system [39] to demonstrate our design.
As shown in Fig. 2, CSTR has one main tank for chemical
reactions, one inflow for product input, and one outflow for
effluent output. The stream supply provides heat exchange.
A stirrer is used to fully mix the products. The controller
sends control commands to the stream valve to control the
stream rate so that the tank temperature can be adjusted. To
maintain the required temperature in the main tank, an MPC
controller can transmit control signals to the valve to adjust
the stream rate based on the sensed temperature (system state)
from the outflow. The key parameters used in CSTR are shown
in Table III.

To model the CSTR, we use the reactor mass balance and
reactor energy balance as the foundation of the state space
function. The reactor mass balance is used to describe the
change rate of material mass while the reactor energy balance
is used to describe the change rate of energy (i.e., heat). Then,
we linearize the nonlinear balance equations into a state space
function for our control system.

According to the model of CSTR [39], we first present
the reactor mass balance as V dCA

dt = q(CAi − CA) − V rA,

where V is the volume of the CSTR main tank, q is the
inflow rate, CAi is the product concentration of inflow, CA
is the product concentration in the main tank, and rA is the
reaction rate per unit volume. We have rA = k0CA exp (−ERT),
where k0, E, and R are constant values for reaction rate,
activation energy and ideal gas constant, and T denotes
the reactor temperature. Then, the reactor energy balance
is denoted as V ρCp

dT
dt = qρCp(Ti − T) − (−δH)V rA +

ρCpsqs

[
1− exp

(
−hA

qsρsCps

)]
(Tis − T), where −δH , hA, Ti,

Tis, and ρ are constant values for reaction heat, heat transfer
coefficient, inflow temperature, stream supply temperature, and
product density, respectively. Also, Cp and Cps denote the
specific heats of the inflow and stream fluids, and qs and ρs
are the stream flow rate and stream density, respectively [39].

Then, we linearize above Equations and cast them into the
state space function as Equations (2) and (3), listed below.

˙̃x = Ax̃+Bũ, (2)

where ũ is vector of the control signals for the valve, x̃ is
the vector of state variables, and A and B are the Jacobian
matrices for the nominal value of ũ and x̃. The output is related
to the state vector by

ỹ = Cx̃, (3)

where C and ỹ are the output matrix and system output (i.e.,
tank temperature).

Finally, the state space function in Equation (2) can be
written as Equations (4) [39].

Particularly, Ks = k0 exp
(
−E
RTSs

)
, where k0 is the

constant value of reaction rate [39]. Also, Ks
′ =

k0 exp
(
−E
RTSs

)(
−E
RTSs

2

)
, and ỹ =

[
CA − CASs
T − TSs

]
.

EKF State Observer and MPC Controller: The EKF state
observer for sensing can robustly estimate the system state
under packet loss [13], [14], predicting the current system state
based on the previous system state and recursively updating
the prediction accuracy with the actual system output. In
addition, it receives the control command computed by the
MPC controller to improve prediction accuracy. The state
observation results from EKF will be used as inputs to the
reinforcement module.

We use a standard MPC controller that solves a fundamental
finite horizon linear-quadratic regulator (LQR) optimal control
problem. We leverage the Gurobi Optimizer to solve the LQR
optimal control problem in Matlab/Simulink [40]. The MPC
controller computes finite horizon predictions by linearizing
the system around the prior control signal u(k − 1).

Buffer for Actuation: The buffer for actuation stores a
sequence of actuation commands per time step. When new
actuation commands are not received, the system directly uses
the stored actuation commands from the buffer.

Wireless Network: We adopt the topology setting, deploy-
ment, and noise traces from the open source WCPS testbed [9],
as it integrates a mature wireless network environment follow-
ing the WirelessHART network protocol. The wireless network
simulates a WSAN in WCPS with a 16-node topology and
an average 4-hop distance between sensor, controller, and
actuators. We additionally use TOSSIM, a standard simulator

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

˙̃x =

[− q
V
−Ks −CASsK′s

−(δH
ρCp

)Ks (− q
V

) + (
(−δH)CASs

ρCp
)K′s + (

−ρCps

ρCpV
)qs + (

ρsCps

ρCpV
)qs exp(−hA

qsρCp
)

][
CA − CASs
T − TSs

]
+(CAi−CASs

V
) 0

Ti−TSs
V

ρsCps

ρCpV
(Tis − TSs){qs[(− exp(−hA

qsρCps
))((hA

qs2ρCps
))] + [1− exp(−hA

qsρCps
)]}

[q − qSs
qs − qsSs

] (4)

Fig. 3. System Implementation in Matlab/Simulink

Symbols Descriptions
x̃ Vector of state variables
ũ Vector of control signals for the valve
ỹ System output (i.e., tank temperature)
A and B Jacobian matrices for the nominal value of ũ and x̃
C Output matrix
V Volume of the CSTR main tank (e.g., 100 L)
CA Product concentration in the main tank (e.g., 0.0882

mol/L)
CAi Product concentration of inflow (e.g., 1 mol/L)
Cp, Cps Specific heat of inflow and stream fluids (e.g., 1 cal/(g

K))
q Inflow rate (e.g., 100 L/min)
qs Stream flow rate (e.g., 100 L/min)
ρ, ρs Inflow and Stream density (e.g., 1× 103 g/L)
T Reactor temperature (e.g., 300.15 K (27 C))
Ti Inflow temperature (e.g., 273.15 K)
Tis Stream supply temperature (e.g., 350 K)
hA Heat transfer coefficient (e.g., 7× 105 cal/(min K))
δH Reaction heat (e.g., 2× 105 cal/mol)
k0 Reaction rate (e.g., 7.2× 1010 min−1)
E
R

Activation energy term (e.g., 1× 104 K)
qSs, qsSs, Stable state values of effluent concentration
TSs, CASs

TABLE III. IIoT System Parameters

for TinyOS [41], to simulate the WSAN with received signal
strength, realistic channel noise, and link model. In addition,
the noise level can be adjusted by varying the noise offset
for light, moderate, and heavy noise levels (i.e., -80 dBm, -
78 dBm, and -76 dBm), which leads to link failures of 15 % to
98 % [13]. The output of the reinforcement learning module
will be given to the wireless network so that the network
performance can be adapted to different noise conditions by
applying proper modulation types.

Testbed Implementation: We implemented our reinforce-
ment learning-enabled IIoT system in Matlab/Simulink, as

shown in Fig. 3. This figure contains modules that we
implemented ourselves, along with modules from the open
source WCPS. To be specific, we implemented the CSTR
system in Simulink as illustrated in Section VI-B with key
parameters described in Table III. We also implemented
and integrated our reinforcement learning module (i.e., Re-
inforcement_Learning_Module) with the open source WCPS.
Our reinforcement learning module takes a system state
from the EKF as input and computes a control parame-
ter (i.e., delta_t_global) and a networking parameter (i.e.,
to_network_global) at each iteration. Note that the reinforce-
ment learning module injects the parameters to the data store
memory as global variables to be used by the other Simulink
blocks (i.e., CSTR plant and Tossim_block).

C. Evaluation Results

Results in System Observation Phase: In the system
observation phase, we can see from Fig. 4 that the high
sampling rate will achieve the best control performance in
the network with sufficient resources (left). At the same time,
in the wireless network with insufficient resources (right), the
high sampling rate will lead to the poor control performance,
with considerable fluctuations around 30 C, which is 10 %
above the desired temperature, as it produces strong network
resource contention (e.g., severe packet loss).

Fig. 5 shows the control performance with respect to dif-
ferent sampling rates, which yields different levels of corre-
sponding resource contention. As expected, both the highest
sampling rate and the lowest sampling rate lead to poor control
performance, because the highest sampling rate causes strong
resource contention and the lowest sampling rate takes too
long to stabilize the system. Thus, we chose a sampling rate
(e.g., 7 Hz) that achieves the best control performance under
a reasonable level of network resource contention. Then, we

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

0 5 10 15 20

Time (s)
High Sampling Rate

(Unlimited Network Resource)

0

5

10

15

20

25

30

35

40
Phy

sica
l St

ate
s (°

C)

0 5 10 15 20

Time (s)
High Sampling Rate

(Limited Network Resource)

0

5

10

15

20

25

30

35

40

Phy
sica

l St
ate

s (°
C)

Fig. 4. Control Performance vs. Network Resource

Fig. 5. Control Performance vs. Sampling Rate & Modulation
Type

0 5 10 15 20 25 30
Time (s)

0

10

20

30

40

Ph
ys

ica
l S

tat
es

 (°
C)

Fig. 6. Control Performance of Benchmark Control Parameter
(i.e., 7Hz)

use this sampling rate (i.e., 7 Hz) as our benchmark control
parameter. We apply the benchmark control parameter to the
system and observe the control results from Fig. 6.

We can conclude that the benchmark outperforms the others
in a constrained resource wireless network, as shown in
Fig. 6. Nonetheless, the performance of benchmark changes
under a dynamic communication environment (i.e., different
communication noise levels), as shown in Figs. 7, 8, and 9.
Particularly, as seen in Fig. 7, the sampling rate 7 Hz (red box)
can stabilize the control system and remain stable quickly in
comparison to other sampling rates under light communication
noise. Nonetheless, as shown in Fig. 8, the sampling rate
5 Hz (red box) outperforms the other rates under moderate
communication noise. The reason for this is that a lower
sampling rate can reduce the resource contention, improving
the packet (e.g., control command) delivery. Thus, a lower
sampling rate leads to a better control performance. When
the communication noise is high (severe packet loss), an even

Fig. 7. Control Performance vs. Sampling Rate & Modulation
Type under Light Communication Noise

Fig. 8. Control Performance vs. Sampling Rate & Modulation
Type under Moderate Communication Noise

lower sampling rate 4 Hz (red box) outperforms the others, as
shown in Fig. 9. This is because the low sampling rate results
in a higher packet delivery rate under high communication
noise due to reduced resource contention.

From the experimental results above, we can conclude
when the communication resources are insufficient, we should
reduce the sampling rate to avoid severe packet losses. In
addition, in a varying communication environment (i.e., vari-
able noise level), we should dynamically select the sampling
rate to achieve the best communication performance. Further,
when the communication noise level varies, we should assign
different modulation types to the network, which improves
the packet delivery rate of a severely noisy communication
channel. For example, when the control performance decreases
due to a noisy communication channel, we should assign a
more noise-resistant modulation type, such as Binary Phase
Shift Keying (BPSK) instead of Quadrature Phase Shift Key-
ing (QPSK).

Results in Performance Validation Phase: In the per-
formance validation phase, Figs. 10, 11, and 12 illustrate
the performance of the reinforcement learning under different
noise levels. In Fig. 10, we can observe that the reinforcement
learning-based control performance improves with increasing
rounds of iteration (left to right and top to bottom). Note that
we reset the system state to repeatedly learn the environment.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

Fig. 9. Control Performance vs. Sampling Rate & Modulation
Type under Heavy Communication Noise

0 20 40 60 80 100 120 140 160
0

10

20

30

40

160 180 200 220 240 260 280 300 320
0

10

20

30

40

Phy
sica

l St
ate

s (°
C)

320 340 360 380 400 420 440 460 480

Time (s)

0

10

20

30

40

Fig. 10. Reinforcement Learning Performance under Light
Communication Noise, each curve shows performance after
one additional iteration of the learning algorithm

This is because once the system is stable, reinforcement learn-
ing can no longer explore the environment sufficiently. From
all three figures, we observe that the control system is unstable
in the first five rounds (top row) of iteration, but gradually
becomes stable between rounds six and ten (middle row).
Once the system becomes stable, the reinforcement learning
no longer explores new actions and continues with the optimal
actions. Note also that the reinforcement learning converges
more quickly in Fig. 10 in comparison to Figs. 11 and 12.
These results show that the policies designed in Section IV-D
are more effective at reducing unnecessary explorations when
the communication noise is light, as less randomness is
introduced to the reinforcement learning process. Note that
each round contains 8 learning iterations.

In addition, as shown in Figs. 11 and 12, the reinforcement
learning quickly adapts to the different communication condi-
tions and computes optimal actions after only a few rounds of
learning. As shown in Fig. 11, the control system is unstable
in the first seven rounds (second peak of the middle row),
becoming stable after few more rounds. Similarly, as shown
in Fig. 12, the reinforcement learning stabilizes the control
system after about ten rounds.

Results in Performance Improvement Phase: In the
performance improvement phase, Fig. 13 illustrates the confi-

0 20 40 60 80 100 120 140 160
0

10

20

30

40

160 180 200 220 240 260 280 300 320
0

10

20

30

40

Phy
sica

l St
ate

s (°
C)

320 340 360 380 400 420 440 460 480

Time (s)
0

10

20

30

40

Fig. 11. Reinforcement Learning Performance under Moderate
Communication Noise, each curve shows performance after one
additional iteration of the learning algorithm

0 20 40 60 80 100 120 140 160
0

10

20

30

40

160 180 200 220 240 260 280 300 320
0

10

20

30

40

Ph
ysi

cal
 St

ate
s (°

C)

320 340 360 380 400 420 440 460 480

Time (s)
0

10

20

30

40

Fig. 12. Reinforcement Learning Performance under Heavy
Communication Noise, each curve shows performance after one
additional iteration of the learning algorithm

dence estimates of our reinforcement learning module in the
evaluated IIoT system. From the figure, the left two bars (blue)
show the performance of the reinforcement learning under
light communication noise.

Note that the left-most bar of each pair shows the number
of iterations for reinforcement learning without the policies
we designed in Section IV-D, which are always higher. The
number of iterations is calculated by the number of rounds
multiplied by the number of iterations per round. Thus, in
the right bar of each pair, we can see that the number
of iterations declines when our designed policies are used.
As we can see from the figure, our designed policies are
capable of reducing the number of iterations in every setting.
In addition, we observe that the error is smaller when our
policies were used (right bar) in the light communication noise
scenario, as the light noise marginally affects the performance
of reinforcement learning compared to moderate and heavy
communication noises. The middle two bars (yellow) show
the performance of the reinforcement learning under moderate
communication noise. Without the policies applied (yellow,
left), the number of iterations is higher than the right bar
(yellow, right) in which the policies are in place. Similarly, the
right two bars (red) show the performance of the reinforcement

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

learning under heavy communication noise.

1 2

RL Performance Comparison

0

20

40

60

80

100

120

Nu
m

be
r o

f I
te

ra
tio

ns

Light Noise Moderate Noise Heavy Noise

With
Policies

Without
Policies

With
Policies

Without
Policies

With
Policies

Without
Policies

Fig. 13. Effectiveness of Policies Applied under Different Noise
Levels. Left bars: Section IV-E policies not implemented, right
bars: Section IV-E policies in use. 95 % confidence intervals are
shown

As the result, our policies improve the reinforcement learn-
ing performance at most by 46.57 % (light communication
noise) and 22.99 % on average. In addition, our reinforcement
learning (with policies) can obtain the optimal policy in a little
as 40 iterations and in 61 iterations on average. In compar-
ison, reinforcement learning without the policies achieves a
minimum of 64 iterations and 82.3 iterations on average.

From the figures, we can conclude that the performance
improvement (iteration reduction) of the policies designed is
the highest under light communication noise (left), followed
by moderate communication noise, and lastly heavy com-
munication noise. This is because the heavy noise affects
the performance of reinforcement learning the most, as it
raises additional randomness in the system. Under the light
communication noise, the policies can be the most effective,
as the system has less uncertainty from the communication
errors. Thus, the experience from systematic trial and error
can be utilized, which contributes to the best performance.

VII. DISCUSSION

In the following, we outline several future research direc-
tions.

Applying Co-design Methodology to Other IIoT System
Parameters: Recall that in this study, our co-design approach
enables a learning module to interact with both networking and
control components. We generalize the co-design methodology
approach via four steps that can be adopted to conduct
configurations in other IIoT system parameters: (i) identifying
the tight interactions between IIoT system parameters, (ii)
specifying the key parameters that describe the interactions,
(iii) adopting appropriate techniques to conduct configurations
on the key parameters, and (iv) leveraging realistic IIoT
testbeds to test and verify the effectiveness of the approach.

For example, we can leverage the co-design approach in
IIoT control and networking systems, such as sampling and
network resource scheduling co-design. Specifically, we first
identify the tight interactions between sampling and network
resources (e.g., a higher sampling rate requires more network
resources to transmit data). We then specify the key parameters

such as sampling rate, superframe duration, and scheduling in
CSMA/CA (a MAC layer parameter). We further adopt the
reinforcement learning techniques to conduct configurations
on the sampling rate, superframe duration, and scheduling.
Note that a longer superframe duration and adaptive schedul-
ing can improve network throughput, which accommodates the
network resource demands raised by a higher sampling rate.
Finally, we implement the reinforcement learning algorithm
that automatically configures the sampling rate, superframe
duration, and scheduler to test and verify the performance of
WCPS.

Applying Reinforcement Learning to Other IoT Ap-
plications: As reinforcement learning is effective in making
decisions under unknown environments via systematic trial
and error, we shall apply reinforcement learning to other IoT
applications, including smart transportation, smart home, and
connected health, among others [42]. Reinforcement learning
can help smart-world systems to conduct decision-making to
adapt to dynamic environments.

Nonetheless, diverse requirements are raised from the dis-
tinct characteristics inherent to smart-world systems (e.g.,
ultra-high reliability and ultra-low latency) and must be taken
into consideration when applying reinforcement learning into
the system. We shall improve the performance of reinforce-
ment learning algorithms (e.g., convergence) to meet the strict
requirements via exploring the tradeoff between exploration
and exploitation. It is known that the sufficient exploration
of the algorithm usually computes an optimal solution (e.g.,
policy) with the cost of slow convergence. At the same time,
lower exploration and higher exploitation (e.g., greedy algo-
rithm) may converge to a sub-optimal solution quickly. Thus,
to adopt the reinforcement learning, we shall study the tradeoff
between exploration and exploitation and conduct fine-tuning
on the hyperparameters via sufficient experimentation.

VIII. FINAL REMARK

In this paper, we have proposed the control and networking
co-design approach to improve the system performance for
a highly coupled IIoT system. In order to achieve the co-
design, we have proposed a reinforcement learning mod-
ule to reconfigure both the control and networking systems
dynamically and automatically. We have also implemented
the reinforcement learning-based co-design approach into a
simulated IIoT system with realistic wireless cyber-physical
components. In our reinforcement learning-enabled IIoT sys-
tem, the reinforcement learning module can automatically
configure the networking and control parameters under a
dynamic environment.

To further improve the performance of reinforcement learn-
ing for IIoT, we have designed three new policies with regard
to the characteristics of industrial systems, including the as-
signing of action pairs, the minimization of exploration under
stable states, and the design of blurry state boundaries. Finally,
we have conducted extensive experiments to demonstrate that
our designed approach can stabilize the highly-coupled IIoT
system quickly under a dynamic industrial environment. Last,
but not least, with the designed policies applied, our reinforce-
ment learning approach significantly outperforms standard

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.2980909, IEEE Journal
on Selected Areas in Communications

reinforcement learning all levels of dynamic disruption in
industrial environments.

REFERENCES

[1] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
Internet of things: A cyber-physical systems perspective,” IEEE Access,
vol. 6, pp. 78 238–78 259, 2018.

[2] J. Gläscher, N. Daw, P. Dayan, and J. P. O’Doherty, “States versus
rewards: dissociable neural prediction error signals underlying model-
based and model-free reinforcement learning,” Neuron, vol. 66, no. 4,
pp. 585–595, 2010.

[3] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal,
and S. Levine, “Combining model-based and model-free updates for
trajectory-centric reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 703–711.

[4] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 7559–7566.

[5] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-time wireless sensor-actuator networks for
industrial cyber-physical systems,” Proceedings of the IEEE, vol. 104,
no. 5, pp. 1013–1024, 2016.

[6] G. Zhao, M. A. Imran, Z. Pang, Z. Chen, and L. Li, “Toward real-time
control in future wireless networks: communication-control co-design,”
IEEE Communications Magazine, vol. 57, no. 2, pp. 138–144, 2019.

[7] H. Xu and L. R. G. Carrillo, “Near optimal control and network co-
design for uncertain networked control system with constraints,” in 2017
American Control Conference (ACC). IEEE, 2017, pp. 2339–2344.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[9] “Wcps: Wireless cyber-physical simulator,” http://wsn.cse.wustl.edu/
index.php/WCPS:_Wireless_Cyber-Physical_Simulator, accessed: 2019-
04-13.

[10] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–
2243, 2014.

[11] S. Jeschke, C. Brecher, H. Song, and D. B. Rawat, Industrial Internet
of Things: Cybermanufacturing Systems. Springer, 2017.

[12] Y. Lu, “Industry 4.0: A survey on technologies, applications and open
research issues,” Journal of Industrial Information Integration, vol. 6,
pp. 1–10, 2017.

[13] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu,
“Wireless routing and control: A cyber-physical case study,” in 2016
ACM/IEEE 7th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2016, pp. 1–10.

[14] Y. Ma, D. Gunatilaka, B. Li, H. Gonzalez, and C. Lu, “Holistic cyber-
physical management for dependable wireless control systems,” ACM
Transactions on Cyber-Physical Systems, vol. 3, no. 1, p. 3, 2018.

[15] M. Sha, D. Gunatilaka, C. Wu, and C. Lu, “Empirical study and
enhancements of industrial wireless sensor–actuator network protocols,”
IEEE Internet of Things Journal, vol. 4, no. 3, pp. 696–704, 2017.

[16] S. S. Oyewobi, G. P. Hancke, A. M. Abu-Mahfouz, and A. J. Onumanyi,
“An effective spectrum handoff based on reinforcement learning for
target channel selection in the industrial internet of things,” Sensors,
vol. 19, no. 6, p. 1395, 2019.

[17] H. Yang, A. Alphones, W.-D. Zhong, C. Chen, and X. Xie, “Learning-
based energy-efficient resource management by heterogeneous RF/VLC
for ultra-reliable low-latency industrial iot networks,” IEEE Transactions
on Industrial Informatics, 2019.

[18] H. He, H. Shan, A. Huang, Q. Ye, and W. Zhuang, “Reinforce-
ment learning-based computing and transmission scheduling for LTE-
U-Enabled IoT,” in 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2018, pp. 1–6.

[19] G. Dartmann, H. Song, and A. Schmeink, Big Data Analytics for
Cyber-Physical Systems: Machine Learning for the Internet of Things.
Elsevier, 2019.

[20] H. Dakdouk, E. Tarazona, R. Alami, R. Féraud, G. Z. Papadopoulos,
and P. Maillé, “Reinforcement learning techniques for optimized channel
hopping in ieee 802.15. 4-TSCH networks,” in Proceedings of the 21st
ACM International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems. ACM, 2018, pp. 99–107.

[21] A. Kusiak, “Smart manufacturing,” International Journal of Production
Research, vol. 56, no. 1-2, pp. 508–517, 2018.

[22] B.-h. Li, B.-c. Hou, W.-t. Yu, X.-b. Lu, and C.-w. Yang, “Applications of
artificial intelligence in intelligent manufacturing: a review,” Frontiers
of Information Technology & Electronic Engineering, vol. 18, no. 1, pp.
86–96, 2017.

[23] F. Li, K.-Y. Lam, Z. Sheng, X. Zhang, K. Zhao, and L. Wang, “Q-
learning-based dynamic spectrum access in cognitive industrial internet
of things,” Mobile Networks and Applications, vol. 23, no. 6, pp. 1636–
1644, 2018.

[24] J. Wang, C. Jiang, K. Zhang, X. Hou, Y. Ren, and Y. Qian, “Distributed
Q-learning aided heterogeneous network association for energy-efficient
IIoT,” IEEE Transactions on Industrial Informatics, 2019.

[25] C. Arvind and J. Senthilnath, “Autonomous RL: Autonomous vehicle
obstacle avoidance in a dynamic environment using MLP-SARSA
reinforcement learning,” in 2019 IEEE 5th International Conference on
Mechatronics System and Robots (ICMSR). IEEE, 2019, pp. 120–124.

[26] J. X. Zou, L. Li, T. Zhang et al., “Time-optimal path tracking for
industrial robot: A model-free reinforcement approach,” arXiv preprint
arXiv:1907.01348, 2019.

[27] L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand
cooperative deep neural network inference for edge intelligence on the
industrial internet of things,” IEEE Network, vol. 33, no. 5, pp. 96–103,
2019.

[28] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 8050–8062, 2019.

[29] C. H. Liu, Q. Lin, and S. Wen, “Blockchain-enabled data collection
and sharing for industrial IoT with deep reinforcement learning,” IEEE
Transactions on Industrial Informatics, 2018.

[30] V. Léchappé, E. Moulay, F. Plestan, A. Glumineau, and A. Chriette,
“New predictive scheme for the control of lti systems with input delay
and unknown disturbances,” Automatica, vol. 52, pp. 179–184, 2015.

[31] J. Holaza, M. Klaučo, J. Drgoňa, J. Oravec, M. Kvasnica, and M. Fikar,
“MPC-based reference governor control of a continuous stirred-tank
reactor,” Computers & Chemical Engineering, vol. 108, pp. 289–299,
2018.

[32] W. Yu, D. An, D. Griffith, Q. Yang, and G. Xu, “Towards statistical
modeling and machine learning based energy usage forecasting in smart
grid,” ACM SIGAPP Applied Computing Review, vol. 15, no. 1, pp.
6–16, 2015.

[33] W. G. Hatcher and W. Yu, “A survey of deep learning: platforms,
applications and emerging research trends,” IEEE Access, vol. 6, pp.
24 411–24 432, 2018.

[34] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: deep learning for
the Internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[35] Q. Zhang, L. T. Yang, Z. Chen, P. Li, and F. Bu, “An adaptive droupout
deep computation model for industrial IoT big data learning with
crowdsourcing to cloud computing,” IEEE Transactions on Industrial
Informatics, 2018.

[36] M. Lavassani, S. Forsström, U. Jennehag, and T. Zhang, “Combining
fog computing with sensor mote machine learning for industrial IoT,”
Sensors, vol. 18, no. 5, p. 1532, 2018.

[37] N. Gronau, A. Ullrich, and M. Teichmann, “Development of the indus-
trial IoT competences in the areas of organization, process, and inter-
action based on the learning factory concept,” Procedia Manufacturing,
vol. 9, pp. 254–261, 2017.

[38] J.-S. Ko, J.-H. Huh, and J.-C. Kim, “Improvement of temperature control
performance of thermoelectric dehumidifier used industry 4.0 by the SF-
PI controller,” Processes, vol. 7, no. 2, p. 98, 2019.

[39] N. Kamala, “Studies in modeling and design of controllers for a nonideal
continuous stirred tank reactor,” 2013.

[40] “gurobi optimization,” https://www.gurobi.com, accessed: 2019-04-13.
[41] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and

scalable simulation of entire TinyOS applications,” in Proceedings of the
1st International Conference on Embedded Networked Sensor Systems,
ser. SenSys ’03. New York, NY, USA: ACM, 2003, pp. 126–137.
[Online]. Available: http://doi.acm.org/10.1145/958491.958506

[42] H. Song, D. Rawat, S. Jeschke, and C. Brecher, Cyber-Physical Systems:
Foundations, Principles and Applications. MA: Academic Press, 2016.

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on April 01,2020 at 20:01:44 UTC from IEEE Xplore. Restrictions apply.

