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ABSTRACT
Complete structural characterization of colloidal nanocrystals is challenging due to rapid variation in the electronic, vibrational, and elemen-
tal properties across the nanocrystal surface. While electron microscopy and X-ray scattering techniques can provide detailed information
about the inorganic nanocrystal core, these techniques provide little information about the molecular ligands coating the nanocrystal sur-
face. Moreover, because most models for scattering data are parametrically nonlinear, uncertainty estimates for parameters are challenging
to formulate robustly. Here, using oleate-capped PbS quantum dots as a model system, we demonstrate the capability of small angle neutron
scattering (SANS) in resolving core, ligand-shell, and solvent structure for well-dispersed nanocrystals using a single technique. SANS scat-
tering data collected at eight separate solvent deuteration fractions were used to characterize the structure of the nanocrystals in reciprocal
space. Molecular dynamics simulations were used to develop a coarse-grained form factor describing the scattering length density profile of
ligand-stabilized nanocrystals in solution. We introduce an affine invariant Markov chain Monte Carlo method to efficiently perform non-
linear parameter estimation for the form factor describing such dilute solutions. This technique yields robust uncertainty estimates. This
experimental design is broadly applicable across colloidal nanocrystal material systems including emergent perovskite nanocrystals, and the
parameter estimation protocol significantly accelerates characterization and provides new insights into the atomic and molecular structure of
colloidal nanomaterials.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5108904

I. INTRODUCTION

Characterization techniques for colloidal semiconducting
quantum dots (QDs) such as PbS, CdSe, or InP are typically sensitive
to properties of the core. Common core-characterization techniques
such as small angle X-ray scattering (SAXS), transmission electron
microscopy (TEM), and UV-Vis spectroscopy1–3 are not sensitive
to the organic capping ligands, which are vital to impart colloidal
stability4 and engineered to tune inter-QD spacing in devices with
QD thin films.5 Although the QD core composition principally

determines the optoelectronic properties,6–11 recent work has high-
lighted the importance of the surface-bound ligands in determin-
ing the structural, optical, and electronic properties of QDs.12,13 For
instance, the core surface has been shown to have a strong effect on
electron-phonon coupling.14,15 Additionally, ligand choice and sur-
face coverage control superlattice morphology in thin films.5,16–24

However, to elucidate the manner in which ligand coverage affects
superlattice structure, the ligand coverage must be known. One
technique sensitive to the ligand environment is nuclear magnetic
resonance (NMR) spectroscopy. Quantitative NMR may measure
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a ligand coverage, but this data interpretation must be supple-
mented with other techniques sensitive to the core material.25–27

A single measurement capable of fully quantifying colloidal QDs’
structure remains absent from the experimental arsenal available to
researchers.

Small angle neutron scattering (SANS) can resolve organic
ligands separately from the inorganic core and surrounding sol-
vent due to the controllable contrast between hydrogen-bearing
materials and the solvent molecules. The scattering length density
(SLD) of a material, which is the total coherent scattering length
of a molecule normalized by its molecular volume, determines the
observed intensity profile. Contrast or resolution stems from the dif-
ference between the SLDs of each material in a nanocrystal and its
ligand-shell and the solvent. Moreover, the ability to tune solvent
contrast with mixtures of deuterated solvent allows SANS exper-
iments to resolve specific components. While model-independent
analysis yields descriptors of the probed system such as fractal
dimension or specific surface area, precise descriptions of mate-
rial structure can only be determined after fitting experimental data
to a parameterized form factor over the full range of scattering
vectors.

Typical nonlinear parameter estimation algorithms attempt to
minimize the sum of square residuals between the data and the
model predictions. Algorithms such as the Levenberg-Marquardt
method, which deploys trust-region methods, can be used to con-
verge quickly to a minimum.28,29 These least-squares methods
attempt to minimize the sum of squared residuals between the
data and model prediction. The solutions found may be only local
solutions, and uncertainty estimates are based on a quadratic
approximation of the objective function at the minimum. This
approximation of the local solution landscape may not reflect the
experimental uncertainty. Bayesian inference is a more principled
way of parameter estimation by formulating a statistical distribu-
tion for the parameters inherited from the experimental uncertainty.
Specifically, Markov chain Monte Carlo (MCMC) methods may be
used to sample from the underlying parameter distributions and
to measure quantities such as the mean and most likely parame-
ter values as well as generate samples of the parameters that are
representative of their uncertainty with no ad hoc approximations
required.

In the cosmology literature, MCMC methods have been used
successfully for parameter estimation of cosmic microwave back-
ground radiation of at least 10 parameters,30 with convergence of the
Markov chain verified by spectral methods.31 A particular MCMC
method, which leverages affine invariance to efficiently take steps
with multiple chains in parallel as opposed to one chain, was intro-
duced in 2010 by Goodman and Weare32 and implemented in a
Python package emcee by Foreman-Mackey et al. in 2012.33 This
new implementation has already been deployed for increased effi-
ciency of cosmological parameter estimation.34 We endeavor in this
work to similarly provide a more efficient data fitting method for the
neutron scattering community.

Though Bayesian inference methods are already available in
some SANS data fitting packages, their implementation is not effi-
cient or flexible enough for complicated form factors. The DREAM
algorithm available for SANS data fitting in the SasView software
adaptively reinitializes initial parameter samples to increase like-
lihood of finding a global minimum.35 However, when a custom

form factor is required, as is posed in this work, there is a high
barrier to efficient implementation. Another Monte Carlo based
small angle scattering software package McSAS is also available for
use with these material systems.3,36 However, the method is slow
for large numbers of parameters and does not permit incorpora-
tion of custom form factors. The affine invariant MCMC method
of Goodman and Weare functions well for the purposes of cus-
tom form factors with large numbers of parameters. The obtained
parameter distributions, or posteriors, allow propagation of experi-
mentally derived uncertainty in measured quantities derived from a
model fit.

We apply the Goodman and Weare method to neutron scatter-
ing. The form factor proposed in this study is directly inspired by
the relaxed structure of PbS QDs sampled from molecular dynam-
ics (MD) simulations. This core material is selected as a prototypi-
cal system useful to demonstrate the capability of the new method.
In this study, we fully quantify the QDs, including the QD sur-
face, with a single SANS solvent variation experiment. Data fitting
with the affine invariant MCMC method yields realistic estimates
of parameters characterizing the form factor and their uncertainties.
The fit QD structure corresponds well to MD simulation, justifying
the proposed form factor. The data and executable MATLAB code
used to perform the MCMC fit are included in the supplementary
material.

II. MATERIALS AND METHODS
To fit SANS data, a form factor describing particle shape is

needed. The form factor is used to calculate the expected scatter-
ing intensity profile. In this study, existing form factors available
in fitting software libraries were found insufficient. As such, a cus-
tom form factor was developed. To ensure the proposed form fac-
tor could capture any rational variation in a batch of QDs, the
analytical form was based on single-QD MD simulations in which
shape, size, and ligand coverage could be manipulated. Here, we
describe the details for MD simulation; QD synthesis and sam-
ple preparation; as well as SANS data collection, treatment, and
fitting.

A. MD simulation
PbS is a semiconducting material with the NaCl crystal lattice

in the bulk. As a QD, the material does not have the bulk cubic
shape but is polyhedral with exposed {100} and {111} crystal planes.
PbS model cores were constructed by cutting away the corners of a
rock-salt structure bulk crystal along the {111} planes to leave a spec-
ified number of Pb atoms along the edges of adjoining (111)/(111),
(111)/(100), and (100)/(100) facets. This allowed any size core in the
full truncation sequence of an octahedron, truncated octahedron,
cuboctahedron, truncated cube, and cube to be generated. (111)
facets are completely Pb-terminated, while (100) facets are stoichio-
metric. Ligands were grafted randomly onto (111) Pb atoms at a
specified coverage, in line with previous computational18 and exper-
imental37 findings that ligands bind preferentially to the (111) core
facets. Precise binding ratios are not known, but in this study we
affix ligands solely to the (111) facets. Charge is not included in
the simulations. The united atom (UA) representation was used to
coarse grain CHx groups for ligands on the surface38 and toluene
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solvent.39 Parameters describing interactions of the core with lig-
ands or solvent were modeled after simulations of PbSe QDs.40–42

The interaction energy and distance for lead were identical to those
works, while the parameters for sulfur were back-calculated using
Lorentz-Berthelot mixing rules from simulations of CdSe and CdS
QDs.43,44 Simulations were run in the NVT ensemble using the
HOOMD-blue software package45–47 using mass, length, and energy
scales of 1 u, 1 Å, and 1 kJ/mol, respectively. With these units, the
simulation inherent time scale was 0.1 ns. A time step of 5 fs was
used. Toluene was initialized on a simple cubic lattice at its room
temperature density. A single QD was added to the middle of the
simulation box. Overlapping toluene molecules were removed. The
simulation box was large enough so that the QD did not interact
with itself beyond the 10 Å cutoff distance. Each simulation was
equilibrated for 100 ns before a production run of 100 ns. Follow-
ing simulation, the bead distances from the QD center of mass were
calculated and averaged. Profiles of distance from the QD center
of mass for each material were constructed from histograms of bin
width 4 Å.

B. Synthesis, characterization, and sample
preparation

PbS QDs were synthesized using a modification of the hot-
injection protocols from Hines and Scholes48 and Colbert et al.49

450 mg (2.0 mmol) of PbO (Sigma-Aldrich, ≥99%), 14 g of
1-octadecene (Sigma-Aldrich, 90%), and 1.4 g (4.96 mmol) of oleic
acid (Sigma-Aldrich, 90%) were used for the lead precursor. The
mixture was stirred under vacuum at 120 ○C for 3 h, turning the
solution clear. The flask was placed under flowing nitrogen gas,
and the temperature was raised to 130 ○C. Meanwhile, the sulfur
precursor was prepared in a second three-neck flask with 4 g of
1-octadecene and 210 µl of hexamethyldisilathiane (HMDS) (Sigma-
Aldrich, synthesis grade). Following injection, the heating man-
tle was removed after 5 s, and the flask was cooled by a room-
temperature water bath. The QDs were isolated by precipitation with
acetone followed by centrifugation. The product was then cleaned
in ambient air by dissolving the precipitated QDs in ∼3 ml of hex-
anes and precipitating once with acetone and twice with methanol.
The precipitated QDs were then brought into the glovebox and
re-dispersed in anhydrous toluene.

QD size and solution concentration were calculated from UV-
Vis absorbance measurements.2,3 The measured size was 3.41 nm
(σd ≤ 4.5%).1 1H-NMR was performed on a three-channel Bruker
Avance Neo spectrometer operating at 500.34 MHz equipped with
a 5 mm liquid-nitrogen cooled Prodigy broadband observe (BBO)
cryoprobe. The instrument runs in full-automation off of a Sam-
pleXpress 60 sample charger. Known quantities of QDs, measured
by absorbance,1 were dissolved in 650 µl of deuterated toluene con-
taining a known quantity (2 µl) of dibromomethane as an internal
quantitative standard. Measurement temperature was 25 ○C. The
spectra were measured under conditions of full T1 relaxation (delay
of 45 s). The integrated area under the CH2Br2 resonance and the
ligand vinyl proton resonance were used to measure the number of
ligands per QD.50 Figure S1 shows the solvent, standard, and ligand
peaks in a typical spectrum.

SANS samples were prepared by evaporating off the sol-
vent from an aliquot of known concentration overnight in a

vacuum chamber before redispersion in a measured mixture of
hydrogen-bearing (ACS, ≥99.5%) and deuterated toluene (Sigma-
Aldrich, ≥99.6% C7D8) to an approximate total scatterer volume
fraction of 1.0 v/v% so that the solution may be considered dilute.
The concentration is the same for each sample. A ligand coverage
of 3 ligands/nm2 was assumed for this calculation. It is only nec-
essary to estimate the volume fraction as the true volume fraction
is fit from the data. Eight different deuteration fractions were used
ranging from 20% to 100% in 10% intervals, excluding 30% due to
beamtime limits.

C. SANS instrument and data reduction
SANS experiments were performed on the NGB30mSANS

instrument at the NIST Center for Neutron Research (NCNR).51

Three detector distances were used to cover the q range from
approximately 0.0055 Å−1 to about 0.445 Å−1. The neutron wave-
length for all detector configurations was 6 Å with a wavelength
spread of 12%. The samples were loaded into demountable titanium
cells with quartz windows provided by NCNR. The obtained data
were reduced using the SANS data reduction package of NCNR.52

D. Analysis of SANS data
1. Intensity profile

The observed intensity profile I(q) in a SANS experiment for
dilute, monodisperse solutions may be written as

I(q) =
�
Vp

F(q)F(q)∗ =
�
Vp

∣F(q)∣2. (1)

Here, � is the volume fraction of all scatterers, Vp is the volume of
the scattering particle, and F(q) is termed the shape factor describ-
ing the geometry of the particle. For a noncentrosymmetric object,
F(q) may have an imaginary part, but for a centrosymmetric scat-
terer F(q) may be assumed real. The commonly referred to form
factor is P(q) = |F(q)|2. An incoherent background term is absent
from this equation but would enter as an added q-independent con-
stant term. The shape factor is written as the Fourier transform of
the excess SLD profile ∆%(r),

F(q) = F(∆%(r)) = ∫
V
∆%(r)e−iq⋅rdr. (2)

The vector r covers 3D space. We change to spherical coordinates
and integrate the angular dependences to arrive at

F(q) = 4π∫
∞

0
∆%(r)r2j0(qr)dr. (3)

Here, j0 denotes the zeroth order spherical Bessel function of the first
kind. The excess SLD is fixed for any distance r measured from the
QD core center. For any model choice of ∆%(r), the integration can
be performed numerically or analytically to find the intensity profile
I(q),

I(q) =
�
Vp

(4π∫
∞

0
∆%(r)r2j0(qr)dr)

2
. (4)

This treatment approximates the anisotropic QD as an isotropic
object such that orientation does not matter. This is done because
of the high sphericity of QDs in the size range of interest and
the ensemble nature of the technique yielding an intensity profile
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already averaged over QD orientation. The choice of model SLD
profile is described in Sec. III A. We use a piecewise linear ∆%(r)
profile for which each linear section can be directly integrated. This
approximation requires a set of points {rk} and their correspond-
ing SLDs {∆%(rk)}. The total intensity is a sum of the integral in
each linear section. A linear profile connecting the points (rk, %k)
and (rk+1, %k+1) with the form

∆%lin(r) = (%k − %solv) + (
%k+1 − %k
rk+1 − rk

)(r − rk) (5)

will yield the scattering intensity

I(q) =
�
Vp

(
N−1
∑
k=1

4π∫
rk+1

rk
∆%lin(r)r

2j0(qr)dr)
2

. (6)

Because the integration may be done analytically, data fitting is accel-
erated and accuracy of the model is high. The derivation of and full
expression for I(q) when ∆%(r) is a piecewise linear function are
given in Appendix A.

2. Polydispersity and instrument smearing
Convolution integrals describing parameter polydispersity take

the form

Î(q) = ∫
∞

0
D(q; θ)I(q)dθ, (7)

where Î(q) denotes a transformed intensity profile and D(q; θ)
denotes an assumed distribution in some parameter θ. Typical dis-
tributions in scattering experiments are Gaussian or Schulz. The
integral sums each contribution to the observed intensity weighted
by the value of the assumed distribution at each point. These inte-
grals are rarely analytically computable and are expensive to com-
pute numerically, requiring recalculation at each iteration of a fitting
algorithm. Such a convolution is useful when performing nonlinear
least squares fitting but unnecessary for Bayesian methods of param-
eter estimation. For the Bayesian approach used here, distributions
of each parameter are obtained inherently by the MCMC data fitting
method sampling from the posterior. The supplementary material
discusses when omission of polydispersity convolution integrals is
acceptable. Section III C discusses the parameter distributions and
their analogy to polydispersity.

Accounting for instrument smearing is necessary due to the
finite size of detector pixels and pinhole collimation of the neutron
beam. The intensity from the 2D detector is azimuthally integrated.
We denote the list of wave vector magnitudes at which the intensity
was sampled q. For each sampled qi, a Gaussian function describing
the resolution is known through calibration and is parameterized
by a mean q̄i and standard deviation σi. The observed, smeared
intensity profile Ismear(qi) at each qi is given by

Ismear(qi) = ∫
∞

−∞
R(q′; q̄i,σi)I(q′)dq′. (8)

R(q′; q̄i,σi) is the Gaussian resolution function for each qi,

R(q′; q̄,σ) =
1

√
2πσ2

exp
⎛

⎝
−
(q′ − q̄)2

2σ2

⎞

⎠
. (9)

This integral is of a form suitable for efficient numerical evaluation
by Gauss-Hermite quadrature. The analytical form of the inten-
sity profile was smeared with this implementation to match the
experiment. This process is described in Appendix B.53

E. MCMC implementation
We estimate the model parameters using a Bayesian point of

view. To infer a set of model parameters θ after collecting data I, a
vector of scattering intensities, we utilize Bayes’ theorem,

p(θ∣I)∝ p(I∣θ)p(θ), (10)

where p(θ|I) is the posterior probability of the parameters given the
measured data, p(I|θ) is the probability of observing the data given a
set of parameters, and p(θ) represents prior knowledge of the param-
eters θ. When p(I|θ) is viewed as a function of I with the true param-
eters fixed, it is a probability density function. From the perspective
where p(I|θ) is a function of θ with the data having been collected,
it is a likelihood function L(θ∣I). The likelihood function L(θ∣I)
informs the posterior probability of the parameters p(θ|I) and is
modulated by any previous knowledge of the parameters contained
in p(θ).

We assume that the data, collected from the mean scattering
intensity, are normally distributed about the model. Then, for each
measurement I(qi),

p(I(qi)∣θ)∝ exp
⎛
⎜
⎝
−
(I(qi)exp

− I(qi; θ)model
)

2

ΣI,i

⎞
⎟
⎠

, (11)

where I(qi)exp is the measured intensity, I(qi; θ)model is calculated
from the smeared intensity profile previously described, and ΣI ,i
represents the variance of the data at qi. The joint probability of
observing the full set of data I given parameters θ is the product of
the individual p(I(qi)|θ) over all data points,

L(θ∣I) = p(I∣θ)∝
N
∏
i=1

p(I(qi)∣θ). (12)

This specifies the likelihood a set of parameters describes the exper-
iment given the data. By taking the logarithm of both sides, we find
that the log-likelihood may be given by the negative weighted sum
of squared error,

ln(L(θ∣I))∝ −
N
∑
i=1

⎛

⎝

I(qi)exp
− I(qi; θ)model

Σ1/2
I,i

⎞

⎠

2

. (13)

In general, an MCMC algorithm samples from the posterior dis-
tribution p(θ|I) by constructing a chain of positions in parameter
space with each subsequent position θt+1 being dependent solely on
the previous step θt . With steps taken appropriately, the distribu-
tion of the steps in this Markov chain will represent the underlying
parameter distribution, given the observed measurements.

We implement the MCMC method introduced by Good-
man and Weare,32 which leverages the property of affine invari-
ance to improve performance. We utilize the MATLAB algorithm
gwmcmc of Grinsted54 which is similar to the Python implemen-
tation, emcee, developed by Foreman-Mackey et al.33 This imple-
mentation exploits the ensemble nature of the method with parallel
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calculation over multiple Markov chains simultaneously. This study
uses 100 chains.

In each step, the chains are partitioned into two sets S(0) and
S(1). A proposed state θ(0)′t+1 for a walker in set S(0) is selected ran-
domly along a ray connecting its current position θ(0)t with the
position of a randomly selected walker of set S(1),

θ(0)′t+1 = θ(0)t + Z[θ(1)t − θ(0)t ]. (14)

The random variable Z is drawn from a probability distribution
g(Z = z). If g(z) satisfies g(z−1) = zg(z), then the proposal is sym-
metric. Goodman and Weare32 advocated for a particular form of
g(z),

g(z)∝
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
√
z

, if z ∈ [
1
a

, a],

0 otherwise,
(15)

where a is a tunable step size set to 1.25 in this study. To satisfy the
detailed balance condition, the proposed state is accepted according
to

θ(0)t+1 ←

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θ(0)′t+1 , if zd−1 L(θ(0)′t+1 ∣I)p(θ(0)′t+1 )

L(θ(0)t ∣I)p(θ(0)t )
≥ r,

θ(0)t , otherwise.
(16)

Here, r is a random number from 0 to 1 and d is the number of
parameters in the model. The step size a is chosen to obtain an
acceptance fraction between 25% and 50%, indicating the walkers
are efficiently traversing parameter space. It has been found that
the optimal acceptance rate for efficient sampling tends to 25% for
models of four or more parameters.31 In this work, we assume an
uninformative prior such that any parameter value within prescribed
bounds is equally likely.

The performance of this particular proposal scheme is inde-
pendent of the underlying posterior distribution.32 With enough
samples, it is guaranteed to recover the posterior. In practice, the
chains are run for a finite number of steps. Statistics must only be
computed on a stationary distribution when the chains are only
sampling the posterior locally. If not, then the computed statistics
will not represent the parameter distributions as predicted by the
data. Foreman-Mackey et al. suggested running the simulation for
at least 10 autocorrelation times to obtain independent samples from
the posterior.33 The autocorrelation times for this system across all
batches range from 4780 to 6340 iterations. Following Foreman-
Mackey et al., at least 63 400 total samples are needed. Using 100
Markov chains, it would be sufficient to run the simulation for at
least 634 iterations.

In generating production data, starting the chains in a tight
region around a solution would allow rapid convergence to the
posterior. Without knowing this solution a priori, a preliminary
run is first performed with walker initial positions sampled ran-
domly over an uninformative prior. The portion of the chain where
walkers have not yet converged is discarded as a “burn-in” period
because the distribution is not yet stationary. The first 1000 iter-
ations per chain are discarded. The next 2000 iterations serve to
sample from the posterior. It is possible that walkers sample local
solutions that do not predict the data by manual inspection. These
walkers are discarded, and a run is re-initialized in a tight ball around
the remaining walkers within 5% of the current walker with the high-
est likelihood.33 A subsequent 3000 iterations, more than enough to
produce independent samples, represent the production data. Addi-
tional discussion of practical considerations may be found in the
supplementary material.

III. RESULTS AND DISCUSSION
A. Proposed form factor from MD simulation

MD simulation was used to obtain the relaxed structure of an
isolated QD in solution as a model for the shape factor F(q) for fitting
SANS data. Following equilibration of the simulation, the angularly
integrated radial volume fraction profile '(r) of each material (PbS,
ligand, solvent) was calculated from histograms of coarse-grained
bead positions. This profile is equivalent to a number density profile
but is convenient in introducing constraints on the sum of volume
fractions. Bulk PbS has a cubic shape with a Pb:S ratio of 1:1. How-
ever, as the QDs nucleate and grow, competition between adding
atoms to (100) and (111) facets yields polyhedral core shapes. The
flexibility of the MD model allows initialization of any core shape in
the growth sequence of PbS from an octahedron, truncated octahe-
dron, cuboctahedron, and ultimately cube. Expected core shapes as
the QDs grow are illustrated in Fig. 1. For any Pb:S ratio and total
number of atoms, there is a uniquely shaped core. In the size range
of 3–8 nm typical for PbS QDs, the truncated octahedron is expected
to represent the core well. In this size range, Pb:S ratios are typically
1.1–1.3.50,55 The exact core shape is not known. In order to develop
a flexible form factor model capable of describing any batch of QDs,
core sizes and shapes spanning the expected growth path were simu-
lated and ligand coverage on the core surface was varied. Figure 2(a)
shows the volume fraction profiles for one truncated octahedron
shaped QD with three different ligand coverage specifications. From
the perspective of the radial volume fraction profile, there is an over-
lap of core material, ligand, and solvent in the vicinity of the QD

FIG. 1. Possible growth of PbS QD cores from an approximate 2.5 nm octahedron through a 4.7 nm truncated octahedron to a 6.9 nm cuboctahedron. Sizes are based on
equivalent spherical diameter. Exposed (111) Pb-terminated facets reduce in fraction of total surface area in favor of stoichiometric (100) facets.
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FIG. 2. Extraction of volume fraction and SLD profiles from MD simulation of a
7 nm truncated octahedral QD. (a) Volume fraction profiles with 3 separate ligand
coverages. Bin widths are 4 Å. As ligand coverage increases, solvent is excluded
from the shell. The inset shows the core and ligands’ MD structure from the mid-
dle ligand coverage of approximately 4.2 ligands/nm2. (b) Volume fraction profile
treating the ligand head (red, dashed) and tail (red, solid) groups separately. (c)
Corresponding SLD profile using deuterated toluene. Contributions to the total pro-
file are shown for the PbS core (blue), ligand tails (red, solid), ligand heads (red,
dashed), and solvent (magenta). The ligand tail contribution is multiplied by 5 to
show its shape. Almost all ligand contribution to the SLD profile at the surface
comes from the head groups.

surface due to the faceted shape of the QD and spherical integra-
tion. This is the first indication that a simple spherical description
of the QDs with sharp interfaces between materials as in a core-shell
model will not be sufficient. As ligand coverage is increased, solvent
is excluded from the ligand shell. However, a population of solvent
does remain near to the surface. Preferential attachment of ligands to
the (111) facets leaves void space over the (100) facets where solvent
can reside.18,37 Additionally, some solvent will penetrate the ligands
to solvate the QD. At higher ligand coverage, the transition between

ligand and solvent phases becomes sharper. Steric hindrance forces
solvent out of the ligand shell.

It is necessary to treat the ligand head group bound to the
nanocrystal surface separately from the solvated tails. The ligands
are bound as oleate molecules, with a CO−

2 group binding at surface
lead sites; oxygen is a more efficient neutron scatterer than carbon or
hydrogen in that it has a higher SLD. To probe the potential shape
of the ligand head group '(r) profile, the two closest ligand beads in
each molecule may be integrated separately as if they were a different
material. The actual distribution of the head groups is unknown, so
this treatment is done to visualize the shape of a possible'(r) profile.
Figure 2(b) shows the new '(r) profiles with the ligand head groups
plotted separately from the tail groups. We find that different core
shapes possess similar profiles. See the supplementary material for
different core shape volume fraction profiles.

To calculate an expected intensity profile from scattering, the
SLD profile %(r) is needed. The SLD is a unique property for each
material and is proportional to density. As such, the SLD profile is
proportional to the volume fraction profile. We convert the volume
fraction profiles to SLD profiles by multiplying by the bulk SLD of
each material, %bulk

i ,

%i(r) = %
bulk
i φ(r). (17)

Under the assumption of ideal mixing, the observed excess SLD
profile ∆%(r) at any radial distance will be a weighted sum of the
components in the system at that distance minus the solvent SLD,

∆%(r) =
⎛

⎝

Ncomp

∑
i=1

%bulk
i φi(r)

⎞

⎠
− %solvent . (18)

Figure 2(c) shows the expected SLD profile for the QD simulated in
Fig. 2(a) with fully deuterated toluene. The SLD of dry ice at a den-
sity of 1.56 g/cm3 is used to scale the ligand head group '(r) profile
corresponding to the upper limit on CO−

2 head group packing den-
sity. Using less deuterated toluene would decrease contrast with the
solvent and shift the SLD profile slightly where solvent penetrates the
ligand shell. The profile is reminiscent of a core-shell profile. How-
ever, a core-shell profile would have sharp steps at material interfaces
without capturing the material overlap. This overlap of the solvent
SLD profile with that of the QD core and shell is critical to suc-
cessfully predicting the data. The same parameters describing the
QD must predict the data across all solvent deuteration fractions.
The SLD profile calculated from MD simulation demonstrates the
smooth transitions in SLD between the core, shell, and solvent. Lig-
and tails do not contribute much directly to the SLD profile but
exclude solvent from the shell. Additionally, the ligand head groups
introduce a bump up in the SLD profile at the surface. High ligand
coverage will increase this bump at the core surface as well as exclude
more solvent from the shell.

The MD results are used to craft a flexible model capable of
capturing the volume fraction profiles of any core shape or ligand
coverage. This model is used to calculate the SLD profile which is
then Fourier transformed, squared, and smeared to obtain the model
SANS intensity profile for data fitting. Figure 3 shows the proposed
volume fraction profile and parameters to be fit to the data. Up to a
distance rmin, it is assumed that there is only PbS. The PbS core will
have a volume fraction of 0 once the distance of a vertex is reached
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FIG. 3. Schematic of volume fractions to be fit. Only PbS (blue) is present out to
a distance rmin before decaying over a distance tvertex to 0. Near the core surface,
there are contributions from PbS (f PbS, blue), ligand heads (f head , red), and solvent
(magenta). The value of f head is calculated such that the number of head groups
is equal to the number of full ligand molecules. Without the ability to resolve the
location of the peak, half of the PbS decay distance is used to discretize the surface
layer. The ligand profile is assumed to be constant at a value f OA for a distance
tplateau in the shell before decaying linearly over a distance tmax . Solvent values are
calculated by summing volume fractions to unity.

rmin + tvertex. Near the core surface, there may be scattering contri-
butions from PbS, ligand heads, and solvent. The surface layer is
discretized at a distance rmin+ 1

2 tvertex to fit parameters for the volume
fractions of PbS and ligand heads. In the ligand shell, the volume
fraction will be at a constant value f OA over a distance tplateau. The lig-
and shell then decays to 0 over a distance tmax. Each volume fraction
profile may be integrated to calculate a number of molecules, further
described in Sec. III C. The value of f head is calculated by requiring
the number of ligand head groups to equal the number of full ligand
molecules. The solvent volume fraction is calculated by summing
individual volume fractions to unity. This flexible model encom-
passes others such as a core-shell model. Solvent penetration was
elucidated by varying deuteration fraction across measurements. We
scale the core, ligand tail, and solvent volume fraction profiles by
the bulk SLD of each material. The SLD of dry ice is used to scale
the ligand head CO−

2 group. There are then 8 model parameters: 4
distances rmin, tvertex, tplateau, and tmax; 2 volume fractions f PbS and
f OA; 1 total volume fraction of scattering particles �; and 1 con-
stant incoherent scattering background term Iincoh. This model and
treatment enables quantification of the core size and ligand coverage
simultaneously.

B. SANS fitting with MCMC
SANS data were collected at 8 deuteration fractions rang-

ing from 20% to 100% deuteration in 10% increments, omitting a
30% sample. The first excitonic peak as measured by UV-Vis spec-
troscopy is at 1.31 eV or a wavelength of 945 nm with a half-width
at half-maximum of 58 nm. The nominal core sizes and polydisper-
sity as measured by UV-Vis spectroscopy are 3.41 nm (σd ≤ 4.5%)
according to the sizing curve reported by Maes et al.3 with polydis-
persity calculated analogous to that of Weidman et al.2 The full data
set for these QDs is shown in Fig. 4. Solvent blanks were used to sub-
tract background from each sample, which is mostly dominated by
the solvent incoherent background. The q-independent background
remaining comes from the QDs’ core and ligand-shell incoherent
background. As such, the remaining background should be the same

FIG. 4. Full SANS data set for nominally 3.41 nm PbS QDs in deuterated toluene.
Deuteration fractions vary from 20% to 100%. As more deuterated toluene is used,
the signal-to-noise ratio increases. All incoherent background from the solvent has
been subtracted off, but QD incoherent background remains. Error bars represent
standard deviations in intensity at each value of q.

across deuteration fractions since the same batch is used for each
sample. The small dispersity allows 2 clear peaks in intensity to be
captured in the neighborhood of 0.16 Å−1 and 0.26 Å−1. As solvent
deuteration fraction is increased, the first peak moves slightly toward
larger q values.

Using less deuterated toluene decreases the SLD of the sol-
vent and reduces contrast with the QDs, decreasing the measured
intensity. There is a monotonic decrease of I(q→ 0). When the sol-
vent SLD matches that of the core, all scattering intensity will be due
to contrast with the shell. Similarly, if the solvent SLD could match
that of the ligand tails, then all intensity would arise from contrast
with the core and ligand heads. The SLD of the oleic acid ligand tails
is below that of hydrogen-bearing toluene, so this is not achievable
in the experiment. We would expect that the minimum scattering
intensity for q → 0 would occur at the solvent match point. For a
simple core-shell model with sharp interfaces between core, shell,
and solvent using one SLD value of bulk oleic acid, this condition is
given by

Vc(%core − %solvent) + Vs(%shell − %solvent) = 0, (19)

where Vc is the volume of the core and V s is the volume based on
the distance from the QD center to the outside of the ligand shell.
Equation (19) predicts the solvent match SLD to lie between the
SLDs of the core and shell, with weighting toward one of the
extremes based on the volume of each material. This would predict
I(q→ 0) to decrease as solvent SLD is decreased to the match point.
If solvent SLD could be decreased more, then I(q → 0) would start
increasing again. For typical QD sizes and materials used, the match
condition, and thus minimum scattering intensity, will occur at a
solvent SLD below that achievable with toluene. The match condi-
tion is not as straight forward for the composite model with solvent
penetration. However, I(q → 0) remains monotonic with solvent
SLD, indicating the solvent match condition is outside the range of
deuteration fractions used.

J. Chem. Phys. 150, 244702 (2019); doi: 10.1063/1.5108904 150, 244702-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Core-only and core-shell models are incapable of describing the
data across all deuteration fractions. As demonstrated in Fig. S4 in
the supplementary material, a core-only model incorrectly estimates
the magnitude of scattering intensity at intermediate and low deuter-
ation fractions. A core-shell model does not capture the low-q region
at low deuteration fractions. These models are not sufficiently flexi-
ble enough to allow an unknown size and shape QD to be quantified
from SANS data.

Figure 5 gives the MCMC fit to the SANS data using the MD-
inspired model. In examining Fig. 5(b), a clear peak at the surface
from ligand head groups is evident. Varying solvent deuteration
fraction enables separation of the PbS and ligand contributions to
the scattering. The high ligand volume fraction in the shell mir-
rors the high ligand coverage samples from MD simulation. Notably,
despite this high ligand volume fraction, there is still a solvent
presence near the QD surface, though a solvent peak is absent. This
is consistent with facet-specific ligand binding leaving void space
over the (100) core facets. However, in this size range, the core
shapes have little exposed (100) surface area. This physical insight
has implications for nanocrystal self-assembly where ligand cover-
age affects QD interactions and may direct orientated alignment of
neighboring QDs.18 There is also a sharp dropoff in the ligand shell
when the extent of the ligand shell is reached and only solvent is
present. Physically, this is sensible as ligands become extended at
high ligand coverage, resulting in a largely spherical layer with a
sharp transition to the solvent phase. In Figs. 5(a) and 5(b), mul-
tiple parameter sets sampled from the Markov chains are plotted as
transparencies to give a sense of the spread in the parameter distribu-
tions. The dark saturation shows that many sampled models overlap
and demonstrate a high confidence in the parameters. The median
of each individual parameter distribution is used to plot the compos-
ite SLD profile in Fig. 5(b). Additionally, we separate the parameter
set that best predicts the data according to the likelihood function.
This parameter set is termed the most likely estimator (MLE). This
composite SLD profile is virtually indistinguishable from the set of
median parameter values. Figure 5(c) shows the fit of the SLD pro-
file to the experimental data. The SLD profile predicts the intensity
profiles well over the full q range and across all solvent deuteration
fractions. The shift in the first q peak is captured because the fit SLD
profile in the vicinity of the QD surface changes with deuteration
fraction.

Although the MCMC method performance is invariant of the
number of parameters included, caution must be exercised in choos-
ing the appropriate model. The composite model used includes 8
parameters. In fitting any scattering data, model complexity must
be considered to prevent overfitting. Statistical methods exist to
consider model complexity in performing the fit. These methods
penalize the fit according to the number of parameters. Two such
methods, the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC), are used in this study.56,57 The AIC is
given by

AIC(θMLE) = 2k − 2 ln(L(θMLE∣I)), (20)

where θMLE is the MLE parameter set, k is the number of parameters,
and L is the normalized likelihood function. A better performing
model will have a higher likelihood, but this is penalized by adding
twice the number of parameters. The preferred model from a set is
the one with the minimum AIC. The relative likelihood for each

FIG. 5. MCMC fit to the SANS data of the MD-inspired model. 100 transparent
walker samples are plotted for each series, demonstrating the credible region. (a)
Fit volume fraction profile. (b) Fit SLD profile for a fully deuterated sample using the
median (black) and MLE (red) of each parameter value. (c) Fit intensity profiles of
3 deuteration fractions chosen for clarity. The full fit is shown in the supplementary
material.

model exp(AICmin−AICi
2 ) is proportional to the probability that the

ith model best describes the data. These may be normalized across
all the models by dividing by the sum of relative likelihoods to find
the relative probability, or weight wi, that model i is the best model
of the set considered. The BIC penalizes the number of parameters
more strongly,

BIC(θMLE) = ln(n)k − 2 ln(L(θMLE∣I)), (21)
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TABLE I. Comparison of form factor models using the AIC and BIC to penalize model
complexity based on the number of parameters.

Model AICi wi BICi ∆BICi

Core-shell 51 172 0 51 199 54 915
Composite (k = 7) −3 754 0.7 −3 716 0
Composite (k = 8)a −3 753 0.3 −3 709 7

aForm factor described in the main text. See the supplementary material for a schematic
of the other composite model.

with n being the number of data points. The difference between
the minimum BIC and each individual BIC of a set may be used
to assess the strength of evidence against models with higher BIC
values. A difference of 2–6 is positive evidence, 6–10 is strong evi-
dence, and more than 10 is said to be very strong evidence.58 The
AIC, AIC weights, BIC, and differences of BIC are given in Table I
for the core-shell model and 2 separate composite models with vary-
ing degrees of complexity. The form factor presented in the main
text uses 8 parameters. The other composite model is less complex
with 7 parameters and does not allow a solvent peak at the surface. A
schematic is given in the supplementary material. Both the AIC and
BIC indicate that the 7 parameter model is the best descriptor of the
data. The AIC, which does not penalize complexity as strongly, gives
a probability of 0.7 that the 7 parameter model is optimal. The BIC
shows that the 7 parameter model is slightly preferable, with a dif-
ference in BIC of 7. This would be considered strong evidence that
the extra parameter is not necessary to describe the data. However,
the fit results for this individual QD batch had a high ligand cover-
age such that most of the solvent was excluded at the surface and the
solvent profile happened to be almost linear near the core surface.
It is reasonable to expect that a sample with lower ligand coverage
would have a larger solvent population at the surface as more sol-
vent would penetrate the shell. As such, the 8 parameter model is
selected to maintain flexibility across samples. The AIC concluded
there is still a probability of 0.3 that the 8 parameter model is the best
descriptor of the data. The 8 parameter model is a minimal model
needed to resolve solvent penetration in the region near the QD sur-
face separate from the ligand head groups. Any composite model
which accounts for solvent penetration outperforms the core-shell
model.

C. Analysis of parameter posteriors
1. Marginal and pairwise distributions

One of the advantages of the MCMC approach is the insight
gained by examining the posterior distributions of the parameters.
Figure 6 shows a corner plot of the parameters: the individual and
pairwise distributions of the samples from the Markov chains. Poly-
dispersity was not explicitly included in the model. In an ensemble
measurement such as SANS, all of the individual QDs’ intensity pro-
files are reflected in the integrated intensity profile. Populations with
different sizes have proportional weight in the observed total inten-
sity. A highly polydisperse sample is not suitable for fitting with
this method without explicit inclusion of a polydispersity function.
The omission of an explicit polydispersity function is permissible
because the dominant source of smearing in this experiment comes

from instrument resolution. If this were not the case, the accept-
able parameter samples would not reflect the relative populations
of those parameters in the experimental sample as the assumption
that the data are normally distributed about the model would break-
down. We expect core polydispersities below ∼5% to be suitable for
omission of a polydispersity function. Smearing from instrument
resolution dominates the total smearing of the model in this case.
The supplementary material contains a discussion of this. This
Bayesian method accounts for parameter polydispersity without
assuming an underlying form (Gaussian, Schultz, etc.). For example,
a bimodal distribution of core size may have resulted from the model
fit if both populations describe the data equally well. Moreover, we
obtain these distributions for all parameters, not only gross parame-
ters such as core and shell size. Figure 6 demonstrates that symmetric
distributions do describe some parameters such as f OA or �. How-
ever, the parameter rmin describing the distance to the closest facet of
the QD PbS core is asymmetric and perhaps shows a second solution
in the near vicinity. The marginal distribution is skewed to lower
values. The median and MLE parameters are similar for this data
set but are not identical. As these distributions describe how well
the parameter can explain the data, certainty estimates are essential.
The 95% credible region describes a range within which there is a
95% probability the parameter falls. This is the Bayesian equivalent
of a confidence interval. Because an uninformative prior was used
in this study, the resulting credible region gives the loosest bounds
on the likely value of a parameter. This is akin to assuming nothing
about the parameters ahead of time. If prior information is included
from a separate measurement such as UV-Vis spectroscopy, then the
resulting credible region may be tighter.

Aside from the marginal distributions of individual parameters,
this method also yields correlations between pairs of parameters.
Figure 6 shows correlation between the parameters tplateau, tmax, f OA,
and �. This can be interpreted as an exchange of one parameter
for the other. A smaller tplateau is acceptable if tmax is made larger.
The decay of the ligand profile acts as a pivot or lever about some
marginal value. Accordingly, if the total amount of ligand changes,
the total volume fraction scales accordingly to still fit the data. The
pairwise distributions are also useful in the model iteration proce-
dure. Strong correlations between parameters direct the researcher
to probe the model for ill-posed behavior and eliminate redundant
parameters.

2. Complete characterization
The combination of MD simulation and fitting via MCMC pro-

vides powerful resolution into each material separately. The shape
factor is posed as a sum of each material with the relatively larger
number of parameters needed to do so estimated with an efficient
algorithm. Each individual volume fraction profile '(r) may then be
analyzed. The total mass of each material is given by the integrated
mass density. This is obtained by radial integration of the volume
fraction profile and scaling by the bulk density,

mi = ∫
V
ρ(r)dV = ∫

∞

0
4πr2ρbulk

i φi(r)dr, (22)

with mi being the mass of each material, ρ(r) being the mass density
profile, ρbulki being the bulk density of material i, and 'i(r) being the
fit volume fraction profile of each material. The number of molecules
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FIG. 6. Corner plot of fit parameters. The
main diagonal shows the marginal dis-
tribution of each parameter integrating
out all others (blue), distribution median
(black, vertical), center 95% credible
region (black, horizontal), and most likely
estimator (red, dotted). Values above
each column specify the median and
credible region. Off diagonal plots show
the correlation between each pair of
parameters. Circular distributions show
no correlation, while diagonal distribu-
tions show strong correlations. Each
pairwise distribution is normalized by the
peak value.

of each material is then found using the molecular weight and Avo-
gadro’s number: Ni =

miNA
MWi

. This methodology is also applied dur-
ing fitting to ensure the number of ligand head groups equals the
number of full oleate molecules bound to the nanocrystal.

In the bulk, PbS has a stoichiometric ratio of 1:1. As nanocrys-
tals, we expect the Pb:S ratio to be in the range of 1.1–1.3 for a
truncated octahedron core. The number of paired lead and sulfur
atoms calculated from the mass density integration must equal half
the sum of the number of Pb and S atoms in the core. Additionally,
the core and ligands must be charge balanced. We assume that each
oleate ligand supplies a 1− charge and each excess lead atom supplies
a 2+ charge. Under these assumptions, the Pb:S ratio is shifted to a
value that satisfies mass and charge balance according to the fit '(r)
profiles. We solve for NPb ,core and NS ,core using

NPb,core + NS,core = 2NPbS, (23)
2(NPb,core −NS,core) −Nligand = 0. (24)

In addition to the atomic ratio, we calculate the equivalent
spherical volume diameter of the core. The equivalent spherical
diameter is found from a sphere with the density of PbS con-
taining the same mass of PbS as calculated from the posteriors.

Ligand coverage is computed by dividing the total number of lig-
and molecules by the surface area. The surface area used for this
calculation is based on the equivalent spherical diameter and divided
by 0.9212, the maximal sphericity of a truncated octahedron family
QD. Table II contains a summary of this complete characterization
including the nominal size as measured by UV-Vis spectroscopy.3
The values given represent the median of these computed descrip-
tors for 100 samples from the posteriors as well as the central 95%
confidence region. The measured core size is larger than the UV-
Vis sizing curve result. Maes et al. cite up to 10% errors in their
predicted core sizes at this size as opposed to smaller error for
larger cores.3 There is also systematic error resulting from the par-
ticular discretization of the core surface with one point at 1

2 tvertex.
The model cannot resolve a smoother shape of the ligand volume
fraction profile a few Angstroms outside of rmin. We could have
fixed the ligand head peak near the surface at 2

3 tvertex, and this
would reduce the core size to keep the peak location the same.
Attempts at using more parameters to resolve the peak location and
ligand profile did yield smaller core sizes of ∼3.6 nm, but this is
still larger than the 3.41 nm result from UV-Vis. Given these con-
siderations, we selected the minimal model described previously.
Increased model resolution is not justifiable within the framework
described.
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TABLE II. Summary of QD characterization. Values given represent the median of
the computed descriptors from 100 samples of the posterior. Bounds denote the
extents of the central 95% credible region.

UV-Vis nominal size (nm) 3.41

Equivalent volume diameter (nm) 3.953.97
3.93

Number of ligands per QD 199203
195

Ligand coverage (nm−2) 4.064.10
4.03

Pb (%) 54.454.4
54.3

S (%) 45.645.7
45.6

Core Pb:S 1.1921.194
1.190

The measured Pb/S ratio is within the expected range, albeit it
is slightly lower than a value of ∼1.3 reported previously for QDs
of this size.55 This is likely due to the manner of calculating the
atomic ratio from the ligand charge balance constraint. We have
measured the number of ligands per QD using quantitative NMR as
222 ± 3 based on the vinyl protons’ signal with a dibromomethane
standard.27 The error in this value is quoted from measurement
repetitions and does not account for error in the measured number
density of QDs from UV-Vis spectroscopy. As such, the uncertainty
is likely larger. This number is only slightly higher than the number
of ligands per QD measured with SANS, with an error of 10.4%. The
measured ligand coverage agrees well with previous experimental
measurements on PbS and PbSe in the range of 3–5 nm−2.18,50,59 This
is a self-consistent result that also matches literature results. The
largest source of error stems from the necessity of parsing the ligand
head and tail groups separately. With a single technique, we obtain a
complete structural characterization of the QDs with rigorous treat-
ment of the experimental uncertainty and resolution afforded by the
technique.

IV. EXTENSION TO OTHER NANOCRYSTALS
The same methodology presented in this study may be

extended to other colloidal nanocrystal systems. In designing a set
of experiments to completely characterize a batch of nanocrystals,
the SLDs of all relevant materials including the core, shell, ligand,
and solvent must be compared to ensure sufficient resolution. If the
core and ligands have similar scattering length densities, then it will
be difficult to resolve them separately. Table III contains the SLDs of
various nanocrystal materials, including cubic perovskite QDs,60–63

and some typical solvents. Toluene spans the SLD range from 0.94
to 5.66 × 10−6 Å−2, and mixed hexanes span the range from −0.57
to 6.14 × 10−6 Å−2 as deuteration fraction is increased. Solvent con-
trast with the nanocrystals can be maximized by using the largest
difference between nanocrystal SLD and solvent SLD. Binary com-
ponents may also be considered. Of the lead and cadmium chalco-
genides, all core-shell mixtures can be resolved separately except for
PbS and CdSe which have nearly identical SLDs. Cesium-based per-
ovskites have comparable SLDs, though methylammonium(MA)-
based perovskites have lower SLDs. In addition to solvent contrast,
the expected incoherent background scattering should be estimated
to ensure enough signal will be collected. Neglecting multiple scat-
tering events, a good estimate for the incoherent background term is

TABLE III. Relevant material specific quantities for SANS measurements of various
nanocrystals.

SLD
Material (10−6 Å−2) Σc (cm−1) Σi (cm−1) Σc/Σi

PbS 2.34 0.18 1.9 × 10−4 943
PbSe 2.96 0.32 0.055 58.5
CdS 1.54 0.074 0.070 1.06
CdSe 2.34 0.19 0.069 2.73
InP 1.83 0.11 0.011 9.80
Au 4.66 0.46 0.025 18.3
Ag 3.47 0.26 0.034 7.60
CsPbBr3 1.78 0.16 0.003 60.7
CsPbI3 2.72 0.095 0.005 20.7
MAPbBr3 0.22 0.005 0.46 0.012
MAPbI3 0.46 0.009 1.20 0.008
Toluene 0.94 0.013 3.6 3.6 × 10−3

d8-toluene 5.66 0.47 0.093 5.1
Hexanes −0.57 4.5 × 10−3 5.1 8.7 × 10−4

d8-hexanes 6.14 0.51 0.13 3.9
Oleic acid 0.078 7.4 × 10−5 5.2 1.4 × 10−5

the macroscopic incoherent scattering cross section Σi, given by

Σi =
4πb2

i ρNA

MW
, (25)

where bi is the incoherent scattering length, ρ is the density, NA is
Avogadro’s number, and MW is the molecular weight. When mul-
tiple materials are used, the total background term is the volume
fraction weighted sum of incoherent macroscopic scattering cross
sections of all the materials. This background term should be com-
pared to the macroscopic coherent scattering cross section Σc to
gauge the signal-to-noise ratio. Σc is defined analogously to Eq. (25)
with the coherent scattering length bc in place of bi. These values
for various nanocrystals and solvents are also given in Table III. It
should be noted that the total signal is not given by the coherent
macroscopic scattering cross section. A representative form factor
and volume fraction of scattering particles would need to be chosen
and calculated to estimate the observed signal. The example sys-
tem of PbS used in this study has the highest signal-to-noise ratio
(Σc/Σi). The lowest signal-to-noise ratio of traditional nanocrystal
materials is that of CdS. However, this methodology should still
work for CdS. For a ∼1.0 v/v% solution in toluene, i.e., dilute, the
incoherent background term after subtracting off the solvent blank
should be ∼0.03 cm−1 with most of this background coming from
the ligands. Comparing this to the experimental data of this study
in Fig. 4, the first peak will still be above the background. More-
over, CdS would experience more contrast with the solvent due
to a larger difference between SLDs. Similarly for the perovskites,
cesium-based perovskite QDs will be amenable to SANS characteri-
zation. Methylammonium-based perovskites are likely infeasible for
SANS characterization due to the low signal-to-noise ratio. Follow-
ing this analysis, all common nanocrystal solutions can be char-
acterized using this methodology except methylammonium-based
perovskite QDs.
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V. CONCLUSION
Here, we have demonstrated the power of SANS in fully charac-

terizing nanocrystal solutions. This study outlines the methodology
of using a single technique to extract size, shape, ligand coverage,
and concentration from SANS. The approach may be extended to
most nanocrystal systems. We project the utility of this work for
studying both core and ligand-shell structure in single or multi-
component systems. Resolution to each material arose from pos-
ing the shape factor as a composite of separate volume fraction
profiles. This model was inspired by examining the structure of
single-QD MD simulations. This is possible because the system is
well-understood and so can be simulated with high fidelity. Sol-
vent variation enhanced resolution in the fitting. By varying solvent
deuteration fraction, the environment near the QD surface may be
parsed separately from the local solvent population. It is necessary
to account for ligand head groups localized at the nanocrystal sur-
face. Although more parameters are needed in a model like this, the
MCMC approach efficiently fits the data. The algorithm itself takes
advantage of parallel implementation but is accelerated by having an
analytical expression for the intensity profile, implementing instru-
ment smearing with accurate numerical quadrature, and omitting
polydispersity convolution integrals. This study serves as validation
for the affine invariant MCMC method as an effective data fitting
tool for any Bayesian parameter estimation. In the neutron scat-
tering community, the method may be applied to other systems to
both accelerate form factor selection and elucidate minute structural
details, which have profound impact on material performance with
unprecedented fidelity.

SUPPLEMENTARY MATERIAL

See supplementary material for the following files.
supp_info.pdf—Contains NMR spectra used for ligand quantita-
tion, additional core shape MD volume fraction profiles, comparison
to core-only and core-shell models with and without polydisper-
sity, the full fit to the data, and an alternate composite form factor
model schematic. sans_data.csv—Spreadsheet of background cor-
rected SANS data including q resolution and scattering intensity
at eight deuteration fractions. fit_data_mcmc.m—MATLAB script
fitting the SANS data with the MCMC approach. External func-
tions and data structure used for fitting are included with the
script.
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APPENDIX A: DERIVATION OF INTENSITY PROFILE
FROM A PIECEWISE LINEAR SLD PROFILE

This study assumes a piecewise linear SLD profile, given by
Eq. (5) in Sec. II D 1. For computing the form factor from this
profile, it is useful to define the following variables, spherical Bessel
functions, and integral identities:

α1 =
r1

r2 − r1
, (A1)

α2 =
r2

r2 − r1
, (A2)

α2 − α1 = 1, (A3)

j0(x) =
sin(x)

x
, (A4)

j1(x) =
sin(x) − x cos(x)

x2 , (A5)

y0(x) = −
cos(x)

x
, (A6)

y1(x) = −
cos(x) + x sin(x)

x2 , (A7)

∫ r2j0(qr)dr = r3 j1(qr)
qr

+ C, (A8)

∫ r3j0(qr)dr = r4
(
j1(qr)
qr

−
y1(qr)
(qr)2 −

y0(qr)
(qr)3 ) + C. (A9)

The derivation begins from the definition of the form factor in
Eq. (3) with a linear SLD profile from Eq. (5) between two points
(r1, %1) and (r2, %2),

F(q)
4π

= ∫

r2

r1

(%1 − %solv)r
2j0(qr)dr + ∫

r2

r1

(
%2 − %1
r2 − r1

)r3j0(qr)dr

− ∫

r2

r1

(
%2 − %1
r2 − r1

)r1r2j0(qr)dr. (A10)

Each term is evaluated with the integral identities defined above and
expanded,

F(q)
4π

= (%1 − %solv)(r
3
2
j1(qr2)

qr2
− r3

1
j1(qr1)

qr1
)

+ (
%2 − %1
r2 − r1

)r4
2(−

y1(qr2)

(qr2)2 −
y0(qr2)

(qr2)3 )

− (
%2 − %1
r2 − r1

)r4
1(−

y1(qr1)

(qr1)2 −
y0(qr1)

(qr1)3 )

+ (
%2 − %1
r2 − r1

)(r4
2
j1(qr2)

qr2
− r4

1
j1(qr1)

qr1
)

− (
%2 − %1
r2 − r1

)r1r3
2
j1(qr2)

qr2
+ (

%2 − %1
r2 − r1

)r1r3
1
j1(qr1)

qr1
. (A11)

We apply the definitions of α1 and α2, simplify terms, and convert
radii to volumes to arrive at
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F(q) = 3(%2 − %solv)V2(
j1(qr2)

qr2
) − 3(%1 − %solv)V1(

j1(qr1)

qr1
)

+ 3(%2 − %1)α2V2(−
y1(qr2)

(qr2)2 −
y0(qr2)

(qr2)3 )

− 3(%2 − %1)α1V1(−
y1(qr1)

(qr1)2 −
y0(qr1)

(qr1)3 ). (A12)

This expression is not well-posed for the point r = 0 due to the spher-
ical Bessel functions of the first kind. In the model, we assume that
the PbS profile is flat in the first interval with r1 = 0 to r2 = rmin.
The expression for a spherical scatterer is applied in this region. The
expression is also undefined when r1 = r2. In this case, the expression
should reduce to the form factor of a core-shell model. By taking the
limit as r2 approaches r1, the core-shell model is recovered.

APPENDIX B: INSTRUMENT SMEARING
USING GAUSS-HERMITE QUADRATURE

Gauss-Hermite quadrature is suitable for approximating the
value of integrals of the form

g(x) = ∫
∞

−∞
exp(−x2

)f (x)dx ≈
n
∑
j=1

wj f (xj). (B1)

Here, xj are the roots of the Hermite polynomial Hn(xj) with the
associated weights,

wj =
2n−1n!√π

n2[Hn−1(xj)]2 . (B2)

The resolution function for each measured qi is Gaussian distributed
and known from calibration,

R(q; q̄,σ) =
1

√
2πσ2

exp(−
(q − q̄)2

2σ2 ). (B3)

The smeared intensity is calculated using

Ismear(qi) = ∫
∞

−∞
R(q′; q̄i,σi)I(q′)dq′. (B4)

The argument of the exponent in the resolution function is used to
define the x from Eq. (B1),

x =
q′ − q̄i
√

2σi
. (B5)

Using this, the change of variables is made to yield the integral

Ismear(qi) =
1

√π ∫
∞

−∞
exp(−x2

)I(
√

2σix + q̄i)dx. (B6)

Gauss-Hermite quadrature is applied such that we implement

Ismear(qi) ≈
1

√π

n
∑
j=1

wjI(
√

2σixj + q̄i). (B7)

It is found that 12 terms in the sum is sufficient for convergence.
In practice, the algebraic expression for I(q) is evaluated not at the
measured qi but at (

√
2σixj + q̄i) for each xj, weighted by wj and

summed up to find the observed, smeared value of I(qi) for each
measured qi.
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