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The problem of integrating multiple overlapping models and data
is pervasive in engineering, though often implicit. We consider this
issue of model management in the context of the electrical power
grid, as it transitions from centralized generation with unidirectional
power �ow towards a more decentralized ‘Smart Grid.’ Consider-
ing the problem of distributing power on the grid, we show how to
connect a generic problem speci�cation with implementation spe-
ci�c numerical solvers using the paradigm of categorical databases.
Zooming in to the device level, we de�ne a symmetric monoidal cat-
egory of distributed energy resources (DERs), i.e. entities which pro-
duce, consume, or store power. The tensor product in this category
gives a way of aggregating such devices and their feasible operating
regimes.

1 Introduction

Themodeling of complex systems, engineered or natural, entails certain generic
challenges: the existence and interaction of multiple models, multiple al-
gorithms, and multiple implementations. This paper presents a methodol-
ogy rooted in category theory to manage this complexity. We concretize this
methodology within amodel-driven engineering approach to designing amod-
ern electrical grid, dubbed the ‘Smart Grid.’
The existing electrical grid architecture is often decomposed into genera-

tion, transmission, distribution, and consumption layers. Spatially, these lay-
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ers span from neighborhood to nation, temporally frommicrosecond to month.
The relevant physical and mathematical models vary across scales as do the
tools available to specify, analyze, and implement them. Distribution net-
works or feeders tend to be tree-structured. Historically, you are connected
to the service transformer in your backyard, but not to your neighbor’s house.
High-voltage transmission systems have more cycles as is depicted in Figure
1. In addition to scale (number of nodes etc.), such structural properties of the
network impact the e�ciency and applicability of algorithms or analyses one
wishes to perform. For this paper we ignore the transmission layer, focusing
on distribution and device-level modeling.

Transmission

Distribution

Device

Figure 1: A schematic of a multiscale grid architecture.

In Section 2, we introduce a schema for a basic power �ow or distribution
problem. A database schema is a �nitely presented category (i.e. directed, re-
�exive multi-graph) and a database instance is a functor from this schema
category to Set [11, 13, 20]. Section 2.1 illustrates how to relate di�erent nu-
merical solvers in this setting.If models are schemas regarded as a categories,
then model mappings are functors between schemas. Such a functor naturally
induces several translations between instances conforming to the source and
target schemas [22]. Such mappings provide the basis for a methodology for
connecting multiple models and tools, outlined in Section 2.2. These models
and methodologies were implemented in the Categorical Query Languge (CQL),
developed by Categorical Informatics, an MIT-based startup [19].
In Section 3 we consider a category of distributed energy resources (DERs).

The notion of DER is meant to provide a uniform abstraction or characteriza-
tion summarizing the essential properties of a wide array of di�erent energy
resources, e.g. photovoltaic (PV) systems, batteries, conventional loads. For
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operations at the distribution level, the essential information is the net power
demand of a collection of DERs. We present a category of models of DERs as
re�exive graphs equipped with power demand data, where morphisms can be
viewed as model transformations or inclusions. This category admits a natural
symmetric monoidal structure with DER aggregation as tensor product.

2 Power �ow problems

In this Section, we begin by describing the simplest ‘power �ow problem,’
namely the problem of distributing electricity through the grid so as to match
production and consumption in real time, while obeying various operational
constraints.

Definition 1. A power flow graph consists of a set of nodes (also called buses) N , a set
of edges (also called branches) E, connected by source and target functions s, t : E → N ,
together with functions g, b : E → R, assigning a conductance and susceptance to each
edge.

A power �ow graph is a directed multigraph whose edges are labelled by

two real-valued parameters, summarized by the diagram R E
g

oo

boo s //

t
// N .

Conductance and susceptance are the real and imaginary parts of the com-
plex admittance, a measure of how easily current �ows through a branch. The
resistance, reactance, and complex impedance of a branch can be calculated
from these .
Associated to each node in a power �ow graph are four variables which we

regard as partial functions P,Q, V, θ : N → R called respectively real power, re-
active power, voltagemagnitude, and voltage angle or phase1. These variables
are the real and imaginary parts of the complex power P + iQ and the magni-
tude and phase of the complex voltage V eiθ. For practical purposes, engineers
use both polar and rectangular representations of complex numbers.
Throughout the following we �x an indexing {Ni}i∈I of N and write Eij for

the edge from Nj to Ni when it exists. We also use subscripts to denote the
values of the (partial or total) functions above when they exist, e.g. Pi := P (Ni)
and gij := g(Eij). Typically, g and b are symmetric so that gij = gji. Using this
notation, imposing Ohm’s and Kirchho�’s laws gives the power �ow equations.

1In practical applications the voltage magnitude and voltage angle are given relative to those of a fixed
“slack bus,” although we will not concern ourselves with this.
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Definition 2. The power balance equations [16] for a power flow graph are the 2|N | equa-
tions

Pi = Vi
∑
j

Vj ( gij cos(θi − θj) + bij sin(θi − θj) )

Qi = Vi
∑
j

Vj ( gij sin(θi − θj)− bij cos(θi − θj) ) .
(1)

Each sum is taken over all buses adjacent to i.

Conventional power �ow problems require the buses to have �xed values
for two of the four P,Q, V, θ for each bus. Typically, three types of buses are
considered: PQ buses, PV buses, and V θ (or slack) buses, at each of which the
corresponding variables are �xed. A PQ bus represents a typical load, whose
real and reactive power demands are known and �xed, at any moment of time.
Generators are regarded as types of PV buses, producing constant power at
a speci�c voltage. A single slack bus or V θ bus is chosen which provides the
reference angle with respect to which the other phases are measured. Once the
�xed variables are speci�ed, the power balance equations can be solved using
methods, e.g. Newton-Raphson or Gauss-Seidel.
Solving for the free variables attached to a network satisfying the power

balance equations is known as the power �ow problem. The optimal power �ow
problem is a related constrained optimization problem in which the power bal-
ance equations are viewed as constraints for the maximization or minimization
of some objective function, such a line losses or overall cost. This static typ-
ing of buses as loads, generators, etc. is incompatible with modern distributed
energy resources which switch between consuming and producing power.

2.1 Connecting to a tool

Due in part to their non-linearity, solving the power �ow equations is typically
done numerically either using freely available software, commercial tools, or
customized code. Such tools usually require speci�c input �le formats, speci�c
solver parameters, and use their own internal data structures.
To interface with these speci�cations we use the functorial data model ad-

vocated in [19, 20, 22] as well as its computational implementation in the CQL
tool. In the functorial data model, database schemas are interpreted as �-
nite presentations of categories. Instances of a database schema correspond
to Set-valued functors out of the associated category. Some subtleties arise
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when working with computational data such as strings and integers, though
we will not concern ourselves with these di�culties; see [20] for a thorough
treatment.
MATPOWER is a commonly used power systems toolbox, implemented in

Matlab. The MATPOWER input/output data format speci�cations are organized
into tables in Appendix B of the MATPOWER manual [24]. We translate these
speci�cations into a MATPOWER-speci�c schema in CQL. Each table becomes
an entity and each column becomes an attribute. This process is summarized in
Figure 2 where we have omitted some of the attributes. In a similar fashion, we
implemented schemas representing the parameters required to run a speci�c
solver, in this case an iterative Newton-Raphson solver.

PQ Bus
BUS : Int

PD : Float
QD : Float

Branch
F_BUS :Int
T_BUS : Int

Generator
BUS : Int

PG : Float
VM : Float

Bus
BUS_I : Int

BUS_TYPE : Int

PV Bus
BUS : Int

PD : Float
VM : Float

−→

Figure 2: Creating a MATPOWER power flow schema. Entities correspond to tables and attributes
corespond to columns in each table. For simplicity we only show a few attributes for each entity.
The arrows from branch assign source and target buses, giving the graph structure. The other arrows
represent the typing of buses as PQ, PV, or generator buses.

CQL allows for the enforcement of constraints in the form of path equations.
For example, in MATPOWER, buses come equipped with an integer ID, BUS_I

and branches come equipped with integer variables F_BUS, T_BUS, specifying the
values of BUS_I for the source and target of each branch. Considering the chunk
of our schema on the left, the equations on the right enforce this constraint on
instances:
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Branch
s //

t
//

F_BUS

��

T_BUS

��

Bus

BUS_I

{{
Int

s.BUS_I = F_BUS

t.BUS_I = T_BUS

This provides the input data for a power �ow problem. Solving such a prob-
lem would constitute assigning (P,Q, V, θ) values which satisfy the power bal-
ance equations. One such method for �nding a solution is an iterative Netwon-
Raphson solver. Such a solver requires initialization as well as certain parame-
ters such as derivative approximation method, tolerance, etc. We can similarly
encode such information in a schema, as well as information the solver might
provide beyond the solution such as elapsed time or number of iterations to
convergence. This enables both systematic experimentation, i.e. varying in-
puts, parameters, initialization, while providing �exible and traceable docu-
mentation, i.e. storing just solutions or including the solver settings used in
each run.

2.2 Connecting tools

For any common problem in systems engineering one can expect a wide range
of tools to have been developed. Engineers may create di�erent tools to handle
di�erent variations on the same problem or to allow for the use of di�erent
methods in solving such a problem. The power �ow and optimal power �ow
problems are no exception to this rule. Numerical solvers for these problems
exist within tools such asMATPOWER [24], GridLAB-D [6, 7], andmany others.
The transformation of an abstract solver model into a model for a speci�c

solver can be interpreted as a mapping (i.e. a functor) between the associ-
ated schemas. This functor typically takes the form of an inclusion sending
entities and attributes of the generic model to the corresponding entities and
attributes in the speci�c model, leaving some attributes of the speci�c model
uninitialized.
In [22] it is shown that functors F : S → T between database schemas give

rise to adjoint triples of functors ΣF ,∆F ,ΠF between the associated categories
of instances. Here∆F : T -Inst→ S-Inst and ΣF ,ΠF : S-Inst→ T -Inst. These functors
can be used to construct queries between databases [19]; a query Q between
schemas S and T is written Q : S → T , although it is not a functor between
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the categories in question. As in the relational data model (implemented, for
example, by SQL), these queries can be evaluated to yield a result, i.e. there
exists a functor eval(Q) : S-Inst→ T -Inst. However, the functorial data model also
allows for a dual operation of “coevaluation” of queries, i.e. another functor
coeval(Q) : T -Inst→ S-Inst. Using data migration functors and queries, along with
CQL’s built-in ability to compute colimits in categories of instances, o�ers a
useful way to translate between the data associated to di�erent solvers.
We present a general description of this translation process. Suppose we

want to translate instances for a speci�c solver schema S into instances for an-
other speci�c solver schema S′ using the generic solver schema G. We de�ne a
query Q : S → G and a query Q′ : S′ → G. Then eval(Q) ◦ coeval(Q′) : S-Inst→ S′-Inst

translates all the “generic” data from an initial instance of S to the resulting
instance of S′. However, this translation loses the “non-generic” data associ-
ated to that instance. To resolve this di�culty, we de�ne an auxiliary schema
A for data which does not appear in the generic solver schema but which we
would like to preserve in the translation process. We de�ne functors F : A→ S

and F ′ : A → S′ inserting the data of A into both speci�c solver schemas. The
composite functor ∆F ◦ ΣF ′ : S-Inst→ S′-Inst projects data from an instance of S
to an instance of A and then includes data of A as an instance of S′. In this way,
for every instance I of S, we obtain two instances of S′: coeval(Q′)(eval(Q)(I)),
which contains the data of I that appears in G, and ΣF ′(∆F (I)), which contains
the data of I that appears in A. These can be combined using a suitable colimit
(in S′-Inst) to get a single instance of S′ containing all the data it was possible
to translate over from S.

3 Distributed Energy Resources

In this Section we describe the modeling of distributed energy resources using
directed graphs, with physical states (On, O�, High, Low, Charging, Discharg-
ing, etc.) as nodes and transitions among the states as edges. To each state,
we associate a region representing the feasible real and reactive power con-
sumption/generation in that state. Morphisms in the category of such DERs
correspond to adjusting the level of granularity of the state space. We describe
a product of DERs which aggregates collections of DERs, thereby enabling one
to reason about net power demand/generation from collections of connected
devices.
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Definition 3. A distributed energy resource (abbreviated DER) D = (S, T, s, t, a, d) con-
sists of a pair of finite sets S, T of states and transitions, a pair of functions s, t : T → S

specifying the source and target states of each transition, a function a : S → T , satisfying
s◦a = t◦a = idS , picking out identity transitions from each state to itself, and a function
d : S → 2C assigning to each state σ ∈ S a power demand region d(σ) ⊆ C. For each state
σ ∈ S we write 1σ = a(σ) and call 1σ the identity transition of σ.

In particularly simple models, operating regions are just single points and
the data of d is equivalent to that of a function from S to C. Our syntax is
patterned on that in [23].

T S 2C
s t d

a

Figure 3: The underlying data for a DER model.

This de�nition can be summarized by the diagram in Figure 3. In reality,
muchmore information is required to characterize a DER depending on its type,
such as state of charge, energy characteristics of transitions, location, and so on
[5, 18]. Here we maintain a simpli�ed approach in which we only consider the
net power generated or consumed by a DER as that is the information required
to solve the power �ow problem in the distribution network of DERs.

Definition 4. A morphism of DERs φ : D → D′ consists of a pair of functions (φS , φT ),
where φS : S → S′ and φT : T → T ′, such that:

• For all τ ∈ T , φS(s(τ)) = s′(φT (τ)) and φS(t(τ)) = t′(φT (τ))

• For all σ ∈ S, φ(1σ) = 1φ(σ) and d(σ) ⊆ d′(φ(σ))

Together with these morphisms (and the obvious identity morphisms and composition
law), DERs form a category which we denote DER.

In short, a morphism of DERs is a homomorphism of the underlying graphs
that acts as an inclusion of subsets on the demand regions for each state.
Morphisms in DER can be used to translate between models of a given DER.

For an example, consider a device with two parts (labeled A, B) that are prone
to breaking. This device can be represented by the DER instance outlined on
the left of Figure 4. A simpler representation of this device, in which only the
question of whether or not the device is working is considered, is presented on
the right of Figure 4. These can be connected by way of a morphism sending
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Working
d = S ⊆ C

Part A

Broken
d = {(0, 0)} ⊆ C

Part B

Broken
d = {(0, 0)} ⊆ C

Both Parts
Broken

d = {(0, 0)} ⊆ C

Working
d = S ⊆ C

Broken
d = {0, 0} ⊆ C

=⇒

Figure 4: A morphism of DERs. Dark arrows indicate transitions within a DER, and thin arrow indicates
DER morphism.

the working state in the former representation to the working state in the latter
model and the broken states in the former representation to the broken state
in the latter representation.

3.1 Aggregation

In this subsection we describe a method of aggregating DERs into larger con-
structs to enable reasoning about DERs on di�erent scales. This aggregation
procedure, based on the category theoretic product of re�exive graphs as de-
scribed explicitly in [23], serves as a symmetric monoidal product on DER. As
a result, string diagrams can be used to reason about DERs and aggregation
[14, 21].
Viewing aggregation in this way is especially useful because it enables the

aggregation of morphisms of DERs. Consider again the device instances in Fig-
ure 4. Aggregates of several copies of the instance on the left would represent
a collection of devices together with information on which part (if any) on
each device is broken, while aggregates of several copies of the instance on the
right would represent the same devices but would only include information
on whether each device was working or broken. Aggregation of morphisms
allows us to translate between these representations of aggregates using the
same “forgetful” morphism described earlier.
Demands can be aggregated using Minkowski sums; see [10] for more de-

tails as well as [15] for an application to modeling the �exibility of DERs.

Definition 5. Given two subsets X,Y ⊆ C, the Minkowski sum of X and Y is the set

X + Y = {x+ y : (x, y) ∈ X × Y } ⊆ C. (2)

Under this operation, 2C is a commutative monoid with unit {0}.
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Now we are in a position to present a formal de�nition of aggregation.

Definition 6. Define a bifunctor ⊗ : DER× DER→ DER as follows.

• For objects D and D′ in DER, define D⊗D′ = (S×S′, T×T ′, s×s′, t×t′, a×a, d+d′),
where d + d′ : S × S′ → 2C is defined by (d + d′)(σ, σ′) = d(σ) + d′(σ′) ⊂ C for any
(σ, σ′) ∈ S × S′.

• For morphisms φ : D1 → D2 and φ′ : D′1 → D′2 in DER define φ ⊗ φ′ : D1 ⊗ D′1 →

D2 ⊗D′2 by (φ⊗ φ′)S = φS × φ′S and (φ⊗ φ′)T = φT × φ′T .

It is easy to see that this satisfies the axioms of a (bi)functor. Given DERs D and D′, the
DER D ⊗D′ is called the aggregate of D and D′.

In short, the aggregate of two DERs is the categorical product of the un-
derlying graphs [23], where each product state is equipped with demand equal
to the Minkowski sum of its factors. Observe that the individual DERs within
an aggregate DER can transition “independently:” if τ is a transition between
states σ1 and σ2 in D, then for any state σ′ in D′ there exists a transition (τ, 1σ′)
between (σ1, σ

′) and (σ2, σ
′).

Theorem 7. Let I denote the DER with one state σ, a single transition 1σ, and power
demand d(σ) = {0} ⊆ C. Then ⊗ makes DER into a symmetric monoidal category with
unit I.

Proof. Let Gph denote the category of graphs and graph homomorphisms. This category
has finite products and is therefore symmetric monoidal under ×, with the terminal object,
the underlying graph of I, as unit [17]. We can define the associator, braiding, and
unitors of DER via the corresponding natural transformations of Gph. These all give valid
DER morphisms between aggregates of DERs: the associator because Minkowski sums
are associative, the braiding because Minkowski sums are commutative, and the unitors
because Minkowski sums are unital with unit {0} (which is the demand of the single state
of I).

It remains to check commutativity of the required diagrams: naturality, triangle equa-
tions, et cetera. There exists a faithful forgetful functor U : DER → Gph sending a DER
to its underlying graph and a morphism of DERs to its underlying graph homomorphism.
In particular U sends the associator, braiding, and unitor to the corresponding natural
transformations in Gph. Because U is faithful, a diagram is commutative in DER if and
only if its image under U in Gph is commutative. By our choice of associator, braiding,
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and unitor for DER, we see that the images under U of the required diagrams are all
commutative. Therefore the required diagrams all commute in DER.

When aggregating DERs the state space grows rapidly. For operations at
the distribution level, all that is relevant is the net power demand. Thus it is
natural to mod out by an equivalence relation whereby states with identical
power demand are identi�ed. The following de�nition formalizes this notion.

Definition 8. Let D be a DER. Consider the equivalence relation ∼ on the states S of D
where σ ∼ σ′ if and only if d(σ) = d(σ′). This induces an equivalence relation ≈ on the
edges T of D where τ ≈ τ ′ if and only if s(τ) ∼ s(τ ′) and t(τ) ∼ t(τ ′). We can define the
net demand DER D of D by D = (S/∼, T/≈, s, t, a, d), where s, t, a, and d are defined by
s([τ ]) = [s(τ)], t([τ ]) = [t(τ)], a([σ]) = [a(σ)], and d([σ]) = d(σ). (It is easy to see that
s, t, and d are well-defined.)

The equivalence relation above gives rise to a DER morphism ( ) : D → D
which identi�es states with equal power demand and transitions among them.
Composing this morphism with aggregation applied to a pair of DERs D and D′

gives a DER D ⊗D′ which summarizes the information relevant to operations
in the distribution layer, namely the net power demand.
Any path in D will give a set of paths in D traveling among DER states. We

can then consider methods for selecting the ‘best’ or ‘least-costly’ sequence
of DER transitions which accomplish some desired transition in net demand.
This allows for dynamic tasking of DERs to accommodate demand �uctuations
without requiring distribution level operators to have full knowledge of the
details of a collection of DERs.
One such method of path selection proceeds by applying a breadth-�rst

search [8] from the initial state until a state meeting speci�ed constraints on
the complex power is found. More sophisticated methods of path selection are
possible; for example, one could label the edges in the aggregate graph with
nonnegative weights giving the virtual cost of each transition, and then apply
Dijkstra’s algorithm [8].
We implemented a version of the above DER speci�cation in CQL. With this,

we can consider a hybrid framework where the net demand at each PQ bus in a
power �ow problem is speci�ed by an aggregate collection of DERs. One could
then investigate the dependence of the power �ow solution on the properties,
dynamics, and mixes of DERs at the device level.

Accepted in Compositionality on . Click on the title to verify. 11



ISSN 2631-4444

4 Conclusions and Future Work

This paper provides a window into our e�orts to concretize the potential util-
ity of a category theoretic viewpoint for problems dealing with multiple mod-
els, tools, and scales in the context of power systems engineering. We en-
gaged with only the simplest relevant models from power systems ignoring
costs, constraints, control, and so on. Of particular relevance for Smart Grid
technologies are aspects of control and communication enabled by new de-
vices such as Smart Meters and increased deployment of phasor measurement
units (PMUs), devices which measure current, voltage, or phase across the
grid. Managing this coupling of an information network with a physical power
network presents ample opportunities for applied category theorists.
We also made no mention of functorial semantics. Each layer of the grid can

be described using certain types of network or graph-based syntax, equipped
with additional data. Di�erent layers may admit di�erent semantic categories,
e.g. the category of relations. It would be natural to apply the recent work done
by Baez, Fong, and collaborators on open network or hypergraph categories in
this setting [1, 2, 4, 12].
In this work, we considered a category whose objects are DERs and whose

morphisms were transformations betweenmore and less �ne-grained descrip-
tions of the DER. It would be sensible to level-shift and consider a category
whose morphisms are DERs, so that composition corresponds to building up
more complex systems of DERs. Di�erent levels of detail could then be con-
trolled at the 2-morphism level of a suitable bi or 2-category, [9]. Of particular
relevance for the modelling of DERs would be the related work on open Petri
Nets [3, 4].
Further work is required to extend this category-theoretic modeling paradigm

to other engineering domains as well as to other areas of power systems en-
gineering. What is really desired is not a modelling framework which captures
the full complexity of the today’s grid, but rather a framework which enables
the expedient exploration and evaluation of various possible future architec-
tures and pathways to those. The need for such an modeling ecosystem is not
unique to power systems. It would be interesting to analyze other attempts
to evolve ecosystems for systems modelling, in order to make progress to-
wards a general theory. Of particular importance is the development of tools
for specifying and modeling systems using category theory, e.g. CQL. In terms
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of engagement with domains, being able to point practitioners to a system
they can get their hands on and play with goes a long way towards arriving at
a useful common understanding.

O�cial contribution of the National Institute of Standards and Technology; not
subject to copyright in the United States. Certain commercial equipment, instruments,
or materials are identi�ed in this paper in order to specify the experimental procedure
adequately. Such identi�cation is not intended to imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor is it intended to
imply that the materials or equipment identi�ed are necessarily the best available for
the purpose.
Parts of this paper may have been presented in technical seminars and included

in government publications. Recorded versions of those seminars and copyright free
versions of publications are available through the National Institute of Standards and
Technology.
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