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Abstract
Accurate pose of a robot end effector is required in many applications. Typically, this is achieved by robot calibration and 
then, registration of the robot frame to the world frame. In this paper, the registration of a poorly calibrated robot to a 
world frame was performed using many local hand-eye registrations and using one global registration. Both approaches 
were evaluated using a set of target poses. The use of the properly chosen local transformation applied to each target 
led to a tenfold reduction in the orientation and position error in comparison with a use of one global transformation. 
The median orientation error was reduced to 0.029° and the median position error was reduced to 0.221 mm which is 
approximately four times larger than robot specified position repeatability.

Keywords  Robot localization error · Error compensation · Forward kinematic · Hand-eye calibration · Accuracy · 
Repeatability

1  Introduction

Robot manipulators are characterized by very good 
repeatability. For example, the unidirectional position 
repeatability of the non-calibrated industrial robot was 
found to be better than ± 37  μm and the orientation 
repeatability was at worst ± 87 μrad [1]. Unfortunately, 
the accuracy of robots is frequently larger than the repeat-
ability by about two orders of magnitude. This negatively 
impacts the ability of these robots to perform manufactur-
ing tasks which require accurate knowledge of the pose of 
the end effector. For example, in the aerospace industry, 
tasks such as automated drilling require errors less than 
0.25 mm [2].

The localization error of industrial robots can be traced 
back to two root causes: (1) kinematic error caused by 
incorrect values of the Denavit–Hartenberg (DH) param-
eters in the kinematic model of the serial manipulator; (2) 
non-kinematic errors such as elastic deformation under 
gravity, thermal effects, backlash, joint compliance, 

encoder resolution, or wear and tear of motors [3]. Out 
of four DH parameters characterizing each revolute joint, 
incorrect values of the joint angle zero offsets are respon-
sible for the largest component of the total kinematic 
error [4]. This type of error can be substantially reduced 
by remastering the robot and many different calibration 
techniques using different sensors have been developed 
[5–11]. The remaining residual part of the total localization 
error is usually attributed to non-kinematic errors. These 
errors are difficult to reduce [12], and they degrade robot 
performance.

Different approaches have been used to compensate for 
the localization error and to improve robot performance. 
Whenever conditions allow (e.g., space and visibility) vis-
ual servoing offers great improvement in robot accuracy 
[13, 14]. This type of technique is practically limited only 
by the accuracy of the vision system used to guide the 
robot. However, it requires constant tracking of the end 
effector relative to the final destination point, which may 
be problematic in some applications, e.g., robotic surgery 
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[15]. Active compliance control based on feedback from 
force/torque (F/T) sensors is another technique commonly 
used in part assembly [16–18]. Active control based on 
external sensors was also used for automated welding of 
aerospace components [19]. Localization error in accurate 
robotic drilling was reduced to 0.1 mm and 0.2° using an 
external sensor and compliance compensation [20]. Even 
as these active control techniques (as well as other pas-
sive or hybrid compliance strategies [21–23]) enable the 
completion of tasks requiring high accuracy, they could 
still benefit from reduced localization error. For example, 
a larger uncertainty of the starting point for the search of 
the hole center using F/T sensors led to increased search 
time [24]. Inspection of large parts (e.g., airplane compo-
nents [25]) performed by a line-of-sight sensor mounted 
on a robot arm, requires very accurate tracking of the sen-
sor pose. In such scenarios, feedback from a F/T sensor is 
not available and other solutions have to be developed, 
e.g., Volumetric Error Compensation (VEC) techniques [26].

The method introduced in this paper also aims at reduc-
ing robot localization error so that the robot can perform 
manufacturing tasks requiring high accuracy. However, 
unlike other procedures mentioned earlier, our approach 
requires no error modeling nor dynamic tracking of the 
robot end effector. It requires the determination of loca-
tions in the work volume where higher accuracy is desired; 
the acquisition of a group of end-effector poses, by a pose 
measuring sensor, at those locations; and the correspond-
ing robot joint angles for each pose measurement. Then, 
for each group of pose measurements, a separate hand-
eye calibration is calculated and stored in a look-up table. 
During regular robot operations, commanded poses in the 
world frame are transformed to the robot frame using the 
transformation from the hand-eye calibration group that 
is closest to the commanded pose. A schematic diagram 
illustrating typical cyclic operations using global calibra-
tion and a modified cycle using local calibration is shown 
in Fig. 1.

The modification does not require changes inside robot 
controller as it merely updates the commanded pose. This 
strategy enables substantial reduction of both the orienta-
tion and position components of the robot error.

2 � Related work

Many techniques that reduce localization error require 
constant tracking of the robot end effector, calculation 
of small corrections, and using them to update the com-
manded pose. For example, with the use of an optical 
coordinate measuring machine (CMM), the errors for two 
different FANUC robot models were reduced to 0.05 mm 
and 0.05° [27]. The use of an iGPS to control robot pose 

allowed a tenfold reduction (when compared with no con-
trol tests) of robot error, up to approximately 0.15 mm and 
0.02° [28].

Other techniques do not require constant tracking of 
the robot end effector. Corrections to the robot pose are 
initially calculated for many poses throughout the robot 
work volume. The calculations are based on data acquired 
with an external sensor and a robot. Then, during regu-
lar robot operations, corrections to the target points (i.e., 
points which are known only in the sensor/world coor-
dinate frame, but which are needed in the robot frame) 
are interpolated from previously calculated corrections. 
Different interpolation methods have been used. Trilin-
ear, cubic, and fuzzy interpolation were tested in com-
puter simulations [29]. The kriging procedure, another 
interpolation technique frequently used in geostatistics 
[30], was applied to reduce position error of a drilling 
end effector mounted on a KUKA KR-210 robot arm. A 
spherically mounted retro-reflector (SMR) was installed 
on the end effector and its position was measured with a 
Leica AT-901 laser tracker. The average position error was 
reduced to 0.106 mm (robot repeatability was ± 0.06 mm) 
[31]. A similar procedure was applied to reduce the posi-
tion error of a drilling and riveting system implemented 
on a KUKA KR 500-3 robot arm, which has a repeatability 
of ± 0.08 mm. The reported maximum absolute position 
error was reduced to 0.32 mm [32]. In both studies, the 
compensation was based on an error similarity concept 
(similar robot arm configurations should yield similar robot 

Fig. 1   Schematic diagram showing a regular automated cycle 
(marked in light gray) and the modified part of a cycle (marked in 
dark gray) which replaces global H-E with local H-E
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localization errors) and experimentally determined semi-
variograms [33]. No attempt to reduce orientation error 
was made in either study.

3 � Methodology

Performance of local or global calibrations was gauged by 
the metrics defined in this section. In fixtureless applica-
tions where there is a constant offset X̂  between the last 
link frame (LLF) of the robot’s kinematic chain and the end 
effector frame (EEF), registration between the robot base 
frame (RBF) and the world or sensor frame (SF) requires 
hand-eye (robot-sensor) calibration [34]. This requires the 
collection of Six Degree of Freedom (6DOF) data Ŝj with an 
external sensor so the offset X̂  and Ŷ  transformation from 
SF to BRF can be obtained by minimizing the differences 
between the poses perceived by the sensor and poses R̂j 
derived from the robot forward kinematic model

where j = 1,… , J ≥ 3 and the homogenous matrix X̂ con-
sists of rotation matrix X  and translation vector x

and similarly for Ŷ  , Ŝj , and R̂j . The relationship between the 
coordinate frames are shown in Fig. 2. Equation (1) can be 
written for the orientation and position parts as

The quality of the registration is usually evaluated using 
a separate set of K  poses, different from the J poses used 
to perform the hand-eye calibration. The orientation tar-
get error �k and the corresponding position error pk are 
calculated as

where k = 1,… , K  , R
(
�k ,uk

)
 is the rotation in angle �k 

and axis uk representation, (… )−1 is the matrix inverse, 
and ‖… ‖ is the Euclidean norm. To check the degree of 
misalignment between the sensor and robot 6DOF data, 
relative rotations (i, j) in the sensor and robot coordinate 
frames are calculated and the difference �i,j between the 
respective angles of rotation �i,j and �i,j is obtained

(1)R̂jX̂ ≈ Ŷ Ŝj

(2)X̂ =

[
X3×3 x3×1

01×3 1

]

(3a)RjX ≈ YSj

(3b)Rjx + r j ≈ Ysj + y

(4a)R
(
�k ,uk

)
= YSk

(
RkX

)−1

(4b)pk = ‖Rkx + rk −
�
Ysk + y

�
‖

where in Eq. (5b) we used the fact that

and that the angle of rotation � of the rotation matrix R 
is given by

Note that to use angles � in Eq. (5c) to gauge the mis-
alignment between the sensor and robot 6DOF data, no 
hand-eye calibration is needed, unlike for target errors in 
Eq. (4). Angles � were used to evaluate the robot perfor-
mance in different regions of its work volume while the 
performance of local and global hand-eye calibrations was 
gauged by target errors �k and pk defined in Eq. (4).

(5a)R
(
�i,j ,ui,j

)
= RiX

(
RjX

)−1
= RiR

−1
j

(5b)R
(
�i,j ,w i,j

)
= SiS

−1
j

(5c)�i,j = �i,j − �i,j

(6)trace
(
SiS

−1
j

)
= trace

(
YSiS

−1
j
Y−1

)

(7)cos(�) = [trace(R) − 1]∕2

Fig. 2   Experimental setup for measuring robot pose with a laser 
tracker. The relationship between the four coordinate systems in 
the hand-eye calibration are shown
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4 � Experiment

4.1 � Data collection

A KUKA LWR 4+ collaborative, open-chain manipulator 
robot was used in a series of experiments. The robot was 
lightly used in a lab environment and not calibrated in 
the last three years. This 7DOF robot arm has a specified 
repeatability ± 0.05 mm. To ensure high accuracy in Carte-
sian space, the stiffness of the robot was set to high.

Three 12.7 mm (0.5 inch) holders were glued to a plate 
mounted on the robot last link as shown in Fig. 3. For each 
robot pose, a SMR was placed in each of the three holders, 
and measurements were taken with an API T3 laser tracker, 
where each recorded point was the average of 50 meas-
urements. In the output file, all three SMR locations and 
seven joint angles of the commanded KUKA pose were 
stored. Then, the robot arm was moved to another pose 
and the data collection repeated.

The robot was commanded to 50 different target poses 
within its work volume. In Fig. 4, the position components 
rk of the 6DOF target poses are plotted. In Fig. 5, the angles 
�k and axes uk of the orientation part Rk

(
�k ,uk

)
 are shown. 

Since a laser tracker was used, we had to ensure that all 
three SMRs could be seen by the sensor. Thus, the orien-
tation of the plate mounted on the robot arm (shown in 
Fig. 3) could not be in a completely arbitrary orientation. 

Therefore, the directions of axes of rotation in Fig. 5a are 
correlated.

At each target pose, the robot was commanded to 
move to 16 additional nearby fiducial poses, and the 
corresponding measurements were taken with the 
laser tracker. Fiducial poses close to each k-th target 
were obtained by changing the six joint angles of the 

Fig. 3   Experimental setup for measuring robot pose with a laser 
tracker: zoom in of a plate mounted on robot arm with three hold-
ers glued to a plate and two inserted SMRs

Fig. 4   Locations of 50 target poses in robot work volume

Fig. 5   Orientations of 50 target poses in robot work volume: a 
directions of the axes of rotation (unit vectors uk ); b angle of rota-
tions �k
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target pose 
[
�1,�2,�4,�5,�6,�7

]
k
 by a small amount 

[2◦,−2◦,±2◦,±3◦,±3◦,±4◦] ( �3 was set to zero for all 
poses). Thus, there were 50 × 16 fiducial poses which were 
later used for hand-eye calibration. The seven robot joint 
angles for all J = 850 poses (targets and fiducials) were first 
specified and then, using a forward kinematic model, the 
corresponding poses in Cartesian space were calculated. 
These Cartesian poses were then fed to the robot control-
ler to execute the move.

4.2 � Data post‑processing

From the triplet of 3D points measured with the laser 
tracker at each robot pose, a corresponding homogenous 
matrix Ŝj was determined. The quality of the 6DOF sen-
sor data depends on the stability of the configuration of 
the three measured SMRs. To gauge this quality, all three 
distances between the SMRs were calculated for all meas-
ured poses, and the corresponding histograms, as well as 
the standard deviations, were obtained. Next, all triplets 
were transformed to one common coordinate frame (cor-
responding to the first triplet) using point-based registra-
tion, and the orientation matrix C j was calculated for each 
transformed triplet. Finally, the average orientation Cavg 
was evaluated as in [35] and then, the deviation matrix 
ΔC j in angle-axis 

(
�j , cj

)
 representation was determined

Angles �j of relative rotations were used to characterize 
how well the sensor data preserve rigid-body condition: in 
the extreme case when the condition is perfectly obeyed, 
all angles �j should be zero.

Misalignment between the robot and the sensor 6DOF 
data was investigated by calculating the angle differences 
�i,j using Eq. (5c). Two different calculation strategies were 
applied. In the first, all J(J − 1)∕2 unique pairs of fiducial 
orientations (i, j) were considered where 1 ≤ i < j ≤ J . For 
J = 800 , this corresponds to approximately 3 × 105 pairs. 
In the second strategy, a pair of orientations (k, j) consisted 
of one k-th target orientation and one of its 16 nearby fidu-
cial orientations. The total number of such pairs was J . For 
each k-th target, the standard deviation �k of angles �k,j 
processed in the second strategy was calculated.

Hand-eye calibration was calculated using two similar 
strategies. In the first approach, one global transformation (
X̂0, Ŷ0

)
 was obtained using all J = 800 pairs of fiducial 

poses 
(
R̂j , Ŝj

)
 in Eq. (1). In the second strategy, K = 50 local 

transformations 
(
X̂ k , Ŷ k

)
 were calculated from the group 

of 16 fiducial poses around each k-th target pose. Then, for 
both strategies, target registration errors �k and pk were 
calculated from Eq. (4) using either global 

(
X̂0, Ŷ0

)
 or local 

(8)ΔC j

(
�j , cj

)
= C jC

−1
avg

(
X̂ k , Ŷ k

)
 transformation for each k-th target. All hand-eye 

transformations were calculated using the Kronecker prod-
uct [36].

Deviations of the local transformations from the global 
one were investigated by calculating

where �X (k) is the angle of rotation gauging the difference 
between the global X0 and k-th local offset rotation X k . 
Similarly, angle �Y (k) was used to gauge the difference 
between the global Y0 and k-th local rotation Y k . For the 
translation components, the following metrics were used 
for the offset and sensor to robot base transformations, 
respectively

4.3 � Simulation

For a few targets and their associated 16 fiducial poses in 
Cartesian space, the inverse kinematic problem was solved 
and all joint angles corresponding to each pose were cal-
culated. To get unambiguous solutions, the third joint 
angle �3 was set to zero; thus, reducing the number of 
joints from seven to six. Then, a small constant offset 
o =

[
o1, o2, 0,… , o7

]
 was added at each pose to all joint 

angles � =
[
�1,�2, 0,… ,�7

]
 yielding a new set of per-

turbed joint angles �p = o + � . Local hand-eye registra-
tions 

(
X̂ k , Ŷ k

)
 were determined as described in Sect. 4.2 

where the Cartesian poses calculated from �p using for-
ward kinematic served as surrogate for the uncalibrated 
robot poses R̂j and poses calculated from � served as poses 
Ŝj derived from sensor measurements, as required for 
determination of the hand-eye transformation in Eq. (1). 
Once the local registrations based on fiducials were calcu-
lated, the target orientation and position errors 

(
�k , pk

)
 

were calculated from Eq. (4) for each k-th target.
Since each Cartesian pose had up to eight possible dif-

ferent inverse solutions (i.e., different sets of joint angles), 
two different scenarios were tested: (1) the target and 
some or all fiducials were in different robot arm configu-
rations; (2) the target and all its surrounding fiducials were 
in similar arm configurations (i.e., for each revolute joint, all 
16 fiducial angles and target were similar to each other). To 
gauge the distance between the joint angles of the fidu-
cials and target, the following parameter was calculated

(9a)R
(
�X (k), vk

)
= XkX

−1
0

(9b)R
(
�Y (k),ak

)
= Y kY

−1
0

(10a)Δxk = ‖xk − x0‖

(10b)Δyk = ‖yk − y0‖
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where �k(n) is the n-th joint angle for the k-th target config-
uration and �k,j(n) is the n-th joint angle of the j-th fiducial 
associated with k-th target. For the second scenario where 
fiducials differ from target by [2◦,−2◦,±2◦,±3◦,±3◦,±4◦] , 
Δ�k = 16◦ . Larger values of Δ�k indicate the first scenario.

5 � Results

In Fig. 6, histograms of the distances between the three 
SMRs as measured by the laser tracker in 850 poses of the 
robot arm are shown. The standard deviations of the three 

(10)Δ�k =
1

16

7∑

n=1

16∑

j=1

|||�k(n) − �k,j(n)
|||

distances are 14 μm, 25 μm, and 17 μm, and the corre-
sponding ratios std/mean are 0.03%, 0.04%, and 0.02%. 
These ratios provide estimates about the preservation 
of the rigid body condition based on the measurements 
obtained by the laser tracker in different robot poses. Fig-
ure 6 indicates that the rigid body assumption does not 
perfectly hold. Therefore, the orientation matrices yield 
a non-zero spread of angles �j as shown in Fig. 7; their 
median value is equal to 0.0027°. For better visualization, 
two outliers of �j (0.047° and 0.12°) are not included in the 
histogram.

In Fig. 8, histograms of angles �i,j from Eq. (5c) are cal-
culated using the two different strategies as described 
earlier. The standard deviation of � was 0.326° for strategy 
a), i.e., for all (i, j) pairs of fiducial poses, and 0.044° for strat-
egy b), i.e., for all (k, j) pairs consisting of k-th target and 

Fig. 6   Histograms of distances 
between the three SMRs meas-
ured in different robot poses: a 
shortest distance; b medium; c 
longest distance
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j-th fiducial. In Fig. 9, the target orientation errors �k and 
position errors pk are shown for two strategies: (1) using 
one, global hand-eye calibration and (2) using different 
local calibrations for each target. The median orientation 
error � was 0.329° for (1) and 0.029° for (2), and the median 
position error p was 6.13 mm for (1) and 0.22 mm for (2).

In Fig. 10, the angles �X and �Y , which gauge the differences 
between the local and global rotational parts of the hand-eye 
transformation, are displayed. Similarly, the differences for  
the positional parts Δxk and Δyk are shown in Fig. 11.

In Fig. 12, the relative orientation errors �k,j calculated 
using (5c) for strategy (2) are shown for two targets: k = 3 
and k = 48. In Fig. 13, standard deviations �k of errors �k,j 
are shown for all K = 50 targets.

All seven targets for which the orientation error 
�k  or position error pk  in Fig.  9 is conspicuously 
larger (or, �k in Fig.  13 is larger than 0.04°) were used 
as input to the simulations described in Sect.  4.3. 
The offset angles in vector o were set arbitrary to 
[0.02◦,−0.016◦, 0◦, 0.015◦, 0.012◦,−0.17◦, 0.018◦]  .  T h e 
results are shown in Fig. 14 where graphs plotted with 

Fig. 7   Histogram of angles of relative rotations between the mean 
and the instantaneous rotations as determined from SMR measure-
ments

Fig. 8   Histograms of differ-
ences between angles of 
rotations in robot and sensor 
frame for: a all pairs (i, j) of 
fiducial poses; b pairs (k, j) of 
k-th target pose and j-th close 
fiducial pose



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2020) 2:839  | https://doi.org/10.1007/s42452-020-2626-2

grey square symbols were obtained for the first scenario 
(large differences in arm configurations between target 
and surrounding fiducials) and graphs plotted with black 
dots correspond to the second scenario (small differences 
between target and fiducials).

6 � Discussion

The study results clearly show that the use of multiple 
locally calculated hand-eye transformations 

(
X̂ k , Ŷ k

)
 is 

advantageous over a use of one, global transformation (
X̂0, Ŷ0

)
 . Target registration errors, obtained with local 

transformations, were reduced by almost an order of mag-
nitude when compared with those where one global trans-
formation was used. It is important to stress that the 
reduction was observed in both orientation errors �k 
shown in Fig. 9a as well as in the position errors shown in 
Fig. 9b. A similar error reduction was reported in [20, 27, 
28], but it was achieved by using real-time feedback from 
external sensors. Other techniques based on interpolation 
do not need dynamic tracking of robot movement (similar 

to our approach), but they reduced only position error [31, 
32]. Equally important is to note that the reduction in both 
types of errors shown in Fig. 9 was achieved not only for 
the median values calculated from all K = 50 targets but 
for each individual k-th target except one target (#48). The 
reduced median position error (0.221 mm) is only four 
times larger than the robot specified repeatability 
(± 0.05 mm) per ISO 9283 standard [37]. No information for 
the orientation repeatability is provided in the robot’s 
specifications. Thus, the use of the local transformations 
can reduce the impact of kinematic and non-kinematic 
robot errors. This contrasts with the use of a global trans-
formation which requires accurate robot calibration to 
reduce the robot error (recall that the robot used in the 
experiment was not recently calibrated).

Comparison of the differences between the local (
X̂ k , Ŷ k

)
 and global 

(
X̂0, Ŷ0

)
 transformations reveals that 

for the transformations X̂  , the differences for both the 
rotation part gauged by �X  and for the translation part 
gauged by Δx do not change much for different target 
locations, as shown in Figs. 10a and 11a (except for loca-
tion #48). For the transformations Ŷ  , the differences are 

Fig. 9   Target registration 
errors: a orientation; b posi-
tion, using (1) one global 
registration and (2) locally 
adjusted transformation. Filled 
black dots correspond to k-th 
targets for which either �k or pk 
have high values
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much larger and they change a lot for different locations, 
as shown in Figs 10b and 11b. It is not quite clear why the 
local X̂k transformations behave differently from the local 
Ŷk transformations.

The results presented in this paper may seem to be 
intuitively obvious as the local transformations 

(
X̂ k , Ŷ k

)
 

are expected to yield smaller target errors than errors 
resulting from the global transformation 

(
X̂0, Ŷ0

)
 . This 

expectation is supported by the distribution of angles � 
calculated using Eq. (5c) which gauge the degree of mis-
alignment between robot and sensor orientations. The 
angles were obtained using two different processing strat-
egies. The histogram of � shown in Fig. 8a corresponds to 
the scenario when all pairs of fiducial orientations (i, j) 
were processed (strategy 1), yielding a standard deviation 
(0.326°) almost eight times larger than the standard devia-
tion (0.044°) when only pairs (k, j) of k-th target and its 
closest j-th fiducial were considered (strategy 2). Such a 
large difference between both strategies suggests that 
using local hand-eye calibrations 

(
X̂ k , Ŷ k

)
 instead of one 

global 
(
X̂0, Ŷ0

)
 may be advantageous. However, this intui-

tive reasoning may not always be valid as experiments 
with peg-in-hole show [38]. While the use of calculated 
corrections applied to the commanded robot locations 
(hole centers) greatly reduced the rate of failed peg inser-
tions, there was no substantial difference in insertion rates 
for hole centers transformed to the robot coordinate frame 
using one global registration or different local registrations 
for individual targets. This finding in [38] conflicts with the 
finding in this study, and the reason for the contradiction 
is not clear. A possible cause is the use of 6DOF data for the 
hand-eye calibration and 3D data for point-based, rigid-
body registration in [38].

The use of local transformations 
(
X̂ k , Ŷ k

)
 instead of one 

global 
(
X̂0, Ŷ0

)
 transformation was advantageous in all 

but one case where the orientation error �k was larger (for 
k = 48 ), as shown in Fig. 9a. A more detailed inspection of 
this case revealed that the relative orientation errors �k,j 
calculated using Eq. (5c) for strategy 2 had unusually large 

Fig. 10   Differences between 
local and global rotations for: 
a hand transformation; b eye 
transformation
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variations when compared to other targets. The typical 
level of variations is displayed in Fig.  12 for target #3 
together with the unusually large variations for target #48. 
This is a consequence of the fact that the commanded 

poses sent to the robot controller were in Cartesian space. 
For most target poses, 16 nearby fiducial poses were 
acquired in arm configurations similar to the target arm 
configuration. However, for some targets, even though the 

Fig. 11   Differences between 
local and global translations 
for: a hand transformation; b 
eye transformation

Fig. 12   Relative orientation errors of fiducials surrounding two tar-
gets: k = 3 and k = 48

Fig. 13   Standard deviations �k of angles �k,j (dashed line plotted at 
0.04°)
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surrounding fiducial poses were close to the target pose 
in Cartesian space, the resulting joint angles, as deter-
mined by the robot controller using inverse kinematics, 
were quite different from the target configuration. Since 
the robot was not calibrated, the resulting poses were dif-
ferent from the planned Cartesian poses and this led to 
large variations in �48,j displayed in Fig. 12 and ultimately, 
a larger target orientation error �48 calculated for the local 
transformation 

(
X̂48, Ŷ48

)
 . Similar situations also occurred 

for other target locations for which calculated standard 
deviations �k were above the threshold of 0.04° marked by 
the dashed line in Fig. 13. Note that these seven target 
locations correlate with locations where the target regis-
tration errors �k and/or pk (calculated using k-th local 
hand-eye transformation) had high values, as shown in 
Fig. 9. Simulation results shown in Fig. 14 confirm that 

indeed the large differences between target and nearby 
fiducials robot arm configurations (i.e., joint angles [
�1,… ,�7

]
 ) are responsible for the poor performance of 

local hand-eye registration. This conclusion is based on the 
observed trends as the orientation �k and position pk errors 
correlated clearly with Δ�k (compare grey square plots in 
Fig. 14a,b with grey square plot in Fig. 14c). When the tar-
get and nearby fiducials have similar arm configurations 
(small Δ�k ), local hand-eye registration performed very 
well (lines with black dots). Note that the same joint angles 
offset o was used to generate the data for simulation in the 
first (large Δ�k ) and the second (small Δ�k ) scenario. Thus, 
the elevated errors observed in the experimental data and 
shown in Fig. 9 could be avoided by more careful monitor-
ing of the joint angles to ensure that the target and all 
nearby fiducials have similar arm configurations. That 

Fig. 14   Simulations results: a 
target orientation error; b tar-
get position error; c difference 
between target and fiducial 
joint angles. Grey squares are 
for the target and fiducials 
with different arm configura-
tions and black dots are target 
and fiducials with similar arm 
configurations
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would require providing commanded poses to robot con-
troller not in Cartesian space but directly in joint angles.

The robot orientation is not only determined by joint 
angles and forward kinematic but also by residual error 
in the zero offsets and by non-kinematic error. Thus, the 
robot orientations Ri and Rj in Eq. (5a) should be replaced 
by RiGi and RjGj , where the rotation matrices Gi and Gj 
are unknown perturbations. For (k, j) pairs of rotations, the 
difference between joint angles of the k-th target and its 
nearby j-th fiducial is small and therefore, Gk ≈ Gj and such 
small difference can be mitigated by using locally calcu-
lated offset rotation X k in Eq. (5a) and Eq. (4a). The concept 
that similar arm configurations should yield similar robot 
localization errors is at the core of the kriging procedure 
used in [31, 32]. For arbitrary pairs of rotations (i, j) , both 
arm configurations are usually very different. Therefore, 
Gi ≠ Gj and the angle of rotation �i,j in Eq. (5a) derived 
from the kinematic model and the angle of rotation �i,j 
in Eq. (5b) derived from actual measurement of the end 
effector pose by an external sensor are different. Indeed, 
the histogram of angles � (which gauge the difference 
between � and � ) in Fig. 8a has a much larger spread than 
in Fig. 8b. That the two strategies will yield different out-
comes could be expected, but what was unknown prior 
to these experiments was the magnitude of the difference 
shown in Fig. 8.

Relative commanded robot poses were compared with 
corresponding poses determined by an external sensor. 
Any differences between them (as gauged by angles � 
shown in Fig. 8) were attributed to robot error only and 
no error was associated with the sensor. To justify this 
assumption, the quality of the sensor data must be evalu-
ated independently from the robot. The laser tracker in 
this study did not directly measure the 6DOF data. The 
pose was derived from raw measurements of three 3D 
points which supposedly stayed in fixed configuration 
(rigid-body assumption). Such determined relative poses 
served as ground truth for the end effector relative poses 
in Eq. (5). The uncertainty of the point measured by laser 
tracker is ± 25 μm which is close to standard deviations of 
the relative distances between three SMRs shown in Fig. 6. 
The spread in relative distances is a clear evidence that 
the rigid-body assumption is not strictly obeyed. Thus, it 
is important to check that the error of the derived ground 
truth orientation is sufficiently small. The median error 
(0.0027°) of angles � shown in Fig. 7 is an order of mag-
nitude smaller than the median of the target orientation 
error � (0.029° for strategy 2) displayed in Fig. 9a and robot 
relative orientation error � (0.044° for strategy 2) shown in 
Fig. 8b. This indicates that the orientations determined by 
the sensor can be used as ground truth in this study. How-
ever, some outliers of � in Fig. 7 are larger than 0.015° and, 
therefore, ground truth data should be used with caution. 

A possible remedy would be to use a larger plate mounted 
on the robot arm to increase the distances between the 
three SMRs shown in Fig. 3.

Data collection for this study was rather labor intensive 
due to the choice of the particular pose measuring system 
which required the manual placement of an SMR in three 
holders. However, there are commercially available sys-
tems which provide comparably accurate pose measure-
ment in a fully automated mode. In this study, the fiducial 
poses which were used to calculate the local 

(
X̂ k , Ŷ k

)
 

transformations had the joint angles deviating from the 
corresponding k-th target angles by 2° to 4°. The range of 
deviations roughly defines the domain of applicability for 
using local transformations. In practical applications, the 
center of the domain should be selected in the robot work-
space where higher accuracy is required to accomplish a 
specific task. Any target pose which falls into this domain 
(i.e., ranges of joint angles) should have its localization 
error reduced. At this time, it remains an open question 
(which requires further study) how large this domain can 
be and still benefit from the use of local transformation. 
Larger domains are more useful since they reduce the 
amount of data which need to be acquired. At the same 
time, larger domains yield less accurate results for points 
which are closer to domain boundaries. The trade-offs 
between both factors must be evaluated individually for 
each particular application.

Unlike other error compensation techniques which 
require either constant tracking of the robot’s end effec-
tor or can compensate only its position error, the strategy 
introduced in this paper can lead to reduction in both the 
position and orientation errors, and it does not require 
dynamic tracking and constant feedback from external 
sensor.

Disclaimer  Certain commercial equipments are mentioned in this 
paper to specify the experimental procedure adequately. Such iden-
tification is not intended to imply recommendation or endorsement 
by the National Institute of Standards and Technology, nor does it 
imply that the equipment is necessarily the best available for the 
purpose.
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