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Abstract 

The temporal evolution of ordered γ´(L12)-precipitates and the compositional trajectories 

during phase-separation of the γ(face-centered-cubic (f.c.c.))- and γ′(L12)-phases are studied in a 

Ni–0.10Al-0.085Cr-0.02Re (mole-fraction) superalloy, utilizing atom-probe tomography, 

transmission electron microscopy, and the Philippe-Voorhees (PV) coarsening model. As the 

γ′(L12)-precipitates grow, the excesses of Ni, Cr and Re, and depletion of Al in the γ(f.c.c.)-matrix 

develop as a result of diffusional fluxes crossing γ(f.c.c.)/γ′(L12) heterophase interfaces. The 

coupling effects on diffusional fluxes was introduced (PV coarsening model) in terms of the 

diffusion tensor, D, and the second-derivative tensor of the molar Gibbs free energies, ′′G , 

obtained employing Thermo-Calc and DICTRA calculations. The Gibbs interfacial free energies, 
/ 'γ γσ , are (16.9±3.4) mJ/m2 with all terms in D and ′′G , which changes to (46.3±5.1) mJ/m2, 

(92.3±7.9) mJ/m2, and (-18.5±2.6) mJ/m2 without including the off-diagonal terms in D, ′′G , and 

both D and ′′G , respectively. The experimental APT compositional trajectories are displayed and 

compared with the PV model in a partial quaternary phase-diagram, employing a tetrahedron. The 

compositional trajectories measured by APT exhibit curvilinear behavior in the nucleation and 

growth regimes, t < 16 h, which become vectors, moving simultaneously toward the γ(f.c.c.) and 

γ′(L12) conjugate solvus-surfaces, for the quasi-stationary coarsening regime, t ≥ 16 h. The 
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compositional trajectories for t ≥ 16 h are compared to the PV model with and without the off-

diagonal terms in D and ′′G . The directions including the off-diagonal terms in D and ′′G tensors 

are consistent with the APT experimental data. 

 

Keywords: Ni-based superalloys; Rhenium; Atom-probe tomography; Coarsening; Diffusion 

tensor; Philippe-Voorhees (PV) model; transmission electron microscopy 

 

Nomenclature 

aγ lattice parameter of the γ(f.c.c.)-matrix 
aγ′ lattice parameter of the γ′(L12)-precipitate 
Ci

 concentration of component i 
iCγ  concentration of component  in the γ(f.c.c.)-phase 

'
iCγ  concentration of component  in the γ′(L12)-phase 
ff

iC  far-field (ff) matrix concentration of component i 
eq

iC   equilibrium concentration of component i 
eq

iC γ ,  ( )eq
iC  ∞ in the γ(f.c.c.)-phase 

' eq
iC γ ,  ( )eq

iC  ∞ in the γ′(L12)-phase 
Cv concentration of monovacancies 
D  diffusion tensor 

γD  diffusion tensor for the γ(f.c.c.)-matrix 

,i jD  element of D, for a diffusing species, i, with respect to a 
concentration gradient of species, j 

,
N
i jD  ,i jD  in the number-fixed frame (N) 

,
V
i jD  ,i jD  in the volume-fixed frame (V) 

,i jDγ  ,i jD in the γ(f.c.c.)-matrix 
f  fraction of γ′(L12)-precipitates interconnected by necks 
′′G  second-derivative (Hessian) of the molar Gibbs free energy tensor 
′′
γG  ′′G  in the γ(f.c.c.)-matrix 

'
′′
γG  ′′G  in the γ′(L12)-phase 

,i jG′′  element of ′′G , for i with respect to a concentration gradient of 
component j 

K rate constant for the coarsening of ( )R t  

ki rate constant of the supersaturation, iC∆ , for component i  

i
i
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nat total number of atoms enclosed within an iso-concentration surface 

n one chosen element as the dependent concentration variable in the nth 
component alloy system.  

N number-fixed frame of reference 
NA Avogadro’s number 
Nppt effective number of the γ′(L12)-precipitates measured 

( )vN t  number density per unit volume of γ’(L12)-precipitates 
M mobility tensor 

γM  M tensor in the γ(f.c.c.)-matrix 
Mk,i elements of M, for a species k with respect to the gradient species i 

 temporal exponent for iC∆  according to the PV models 
t aging time 
to time at which quasi-stationary coarsening commences in an alloy 
R radius of a γ′(L12)-precipitate 
( )R t  mean radius of γ’(L12)-precipitates 

( )oR t  mean radius at the onset of quasi-stationary coarsening at to 

𝑅𝑅𝑝𝑝𝑝𝑝 radius of a γ′(L12)-precipitate in a projected planar section (PS) 
p temporal exponent for  according to the PV model 

q temporal exponent for  according to the PV model 
V volume fixed frame of reference 

'
mV γ  molar volume of the γ’(L12)- phase 

γ(f.c.c.) Face-centered cubic gamma phase 
γ′(L12) L12 ordered gamma prime phase 

ε lattice parameter misfit between the γ(f.c.c.)- and γ’(L12)-phases 

δ compositional interfacial width between the γ(f.c.c.)- and γ’(L12)- 
phases 

γ-γ'ΔC  difference between the equilibrium concentrations of the γ(f.c.c.)- and 
γ’(L12)-phases 

T( )γ-γ'ΔC  transpose (T) of 'γ γ−∆C  

iC∆  solute supersaturations for solute component i 
/id C dt∆  first derivative of the solute supersaturation with respect to time, t 

∆V  partial molar volume change 
i

jC
µ∂

∂
 partial derivative of the chemical potential of species i, iμ , with 

respect to the mole-fraction of species j 
2

i j

G
C C

γ∂
∂ ∂

 
second-derivative of the molar Gibbs free energy for species i with 
respect to the concentration gradient of species, j, in the γ(f.c.c.)-
matrix 

2
'

i j

G
C C

γ∂
∂ ∂

 second-derivative of the molar Gibbs free energy for species i with 
respect to the concentration gradient of species, j, in the γ′(L12)-phase 

r

( )R t

( )vN t
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( )tλ  mean edge-to-edge distance between neighboring γ′(L12)-precipitates 

iμ  chemical potential of the component, i. 

vμ  chemical potential of a monovacancy. 
η detection efficiency of the 2-D microchannel plate (MCP), 80% 
ρ atomic number density of the γ′(L12)-phase, 86.22 atoms nm-3 

2σ two standard deviations from the mean 
/ 'γ γσ  interfacial Gibbs free energy between the γ(f.c.c.)- and γ’(L12)-phases 

' ( )tγφ  volume fraction of γ’(L12)-precipitates 

'
eq

γφ  equilibrium volume fraction of γ′(L12)-precipitates 
APS advanced photon source at Argonne National Laboratory 
APT atom-probe tomography 

BF TEM bright-field transmission electron microscopy 
DF TEM dark-field transmission electron microscopy 

DTA differential thermal analysis 
EDM electrical discharge machining 
KV Kuehmann and Voorhees 

LSW Lifshitz-Slyozov (LS) diffusion-controlled model and the Wagner 
(W) interface-controlled model, which is either one or the other 

MCP microchannel plate with a detection efficiency of ~80% 
NLMR method nonlinear multivariate regression method 

proxigram proximity histogram  
NN Nearest-neighbor distance 
PV Philippe-Voorhees 
RM refractory metal 

SADP selected area diffraction pattern 
TEM transmission electron microscopy 
XRD X-ray diffraction 
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1. Introduction 

Nickel-based superalloys are widely used for aircraft jet engines and land-based natural 

gas combustion turbines for generating electricity because of their superior mechanical properties, 

and creep and oxidation resistance at elevated temperatures [1-5]. Their excellent mechanical 

properties at elevated temperatures are derived from the presence of a high-volume fraction of 

coherent γ′(L12)-precipitates dispersed in a disordered Ni-rich γ(f.c.c.)-matrix. During the last 

three decades, the mechanical properties of Ni-based superalloys operating at elevated 

temperatures have improved significantly, mainly due to the use of high melting-point refractory 

metal (RM) elements [1, 6]. The superalloys containing RM additions have been the subject of 

numerous microstructural investigations [7-15]. It is common to use RM elements to decelerate 

the coarsening kinetics of γ'(L12)-precipitates, while preserving the γ(f.c.c.) plus γ'(L12) 

microstructure, thereby obtaining potentially longer service times at elevated temperatures. 

Rhenium, specifically, is of great interest because a small Re-addition improves the creep 

resistance considerably by increasing the solid-solution strengthening of the γ(f.c.c.)-matrix and 

impeding the coarsening kinetics of γ′(L12)-precipitates at elevated temperatures [16-19]. The 

addition of 0.03 mass fraction Re almost doubles the creep lifetime of single-crystal Ni-based 

superalloys by decreasing the minimum creep rate and increasing the creep-to-rupture ratio for a 

wide operating temperature range [16, 20]. Rhenium is enriched at partial dislocations and thereby 

creates a drag effect on dislocations that reduces the creep strain rate [21]. It also partitions to the 

γ(f.c.c.)-matrix and reduces the lattice parameter mismatch between the coherent γ′(L12)-

precipitates and the γ(f.c.c.)-matrix, which can decrease diffusional coarsening of γ′(L12) 

precipitates [22, 23].  

The degradation of the stress rupture lifetime in service is dominated by the coarsening 

behavior of γ′(L12)-precipitates in Ni-based superalloys, which is predicted by different diffusion-

controlled coarsening kinetics models. In a dilute binary alloy, the coarsening of precipitates 

(Ostwald ripening) is described by the mean-field diffusion-controlled Lifshitz-Slyozov (LS) 

model [24] or the interface-controlled Wagner model [25]. The diffusion-limited LS model is, 

however, valid only for a near zero-volume fraction of the second phase because the diffusional 

interactions, among precipitates aren’t accounted for. Kuehmann and Voorhees (KV) [26] 

developed a mean-field model for Ostwald ripening of a ternary alloy by including both kinetic 

and thermodynamic actors. The development of atom-probe tomography (APT) [27-30] enables 
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us to compare and understand the nucleation, growth, and coarsening behavior quantitively by 

measuring the compositional trajectories of all the elements, and the temporal development of 

concentration profiles associated with γ(f.c.c.)/γ′(L12) heterophase interfaces [13, 31-36]. The KV 

model, however, fails to reproduce the compositional trajectories of the γ′(L12)-precipitates 

because it does not include coupling terms among the diffusional fluxes, which are responsible for 

many complex phenomena in multi-component alloys [26, 37]. Later, the Philippe-Voorhees (PV) 

coarsening model [38] was developed, which is a general coarsening model for a non-dilute multi-

component alloy, which accounts for the off-diagonal terms in the diffusion tensor.  

In diffusion theory, D  is defined by the product of kinetic and thermodynamic factors 

employing the following equation [39-41],  

n
i

kj ki
i 1 j

D M
C
µ

=

∂
=

∂∑       (1) 

where the kjD  is an element of the diffusion tensor, D , for a diffusing species, k, with respect to 

the concentration gradient species, j. The kiM  are elements of the mobility tensor, M, and the 

quantity i

jC
µ∂

∂
 is a thermodynamic factor, which is defined by the partial derivatives of the 

chemical potential of species i, iμ , with respect to the mole-fraction of species j, Cj. This partial 

derivative of iμ  is also referred to as second derivatives (Hessian) of the molar Gibbs free energy, 

,i jG′′ . Whereas kiM  is the kinetic factor, which is commonly called the Onsager tensor in the 

archival literature [42, 43]. Eqn. (1) is expressed in tensorial form by ′′D = MG . These tensors are 

nondiagonal for multi-component alloys because the diffusional fluxes are a linear combination of 

the chemical gradients of each species. The off-diagonal terms are also related to the frame of 

reference; zero in the lattice fixed frame of reference and non-zero in the volume-fixed frame of 

reference due to the existence of the Kirkendall effect [44-46].   

The thermodynamic tensor, ′′G , and mobility tensor, M, for calculating the diffusion 

tensor, D , are both symmetric and can be obtained employing Thermo-Calc and DICTRA * 

 
* Certain commercial entities, equipment, or materials may be identified in this document to describe an 

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 
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simulation programs [41, 47, 48]. The diffusion model for Ni-Al-Cr-Re alloys is specified by the 

concentrations of four atomic species, CNi, CAl, CCr, CRe, and the concentration of monovacancies, 

Cv; these five concentrations sum to unity. The γ′(L12)-precipitates are coherent with the γ(f.c.c.)-

matrix, and the lattice sites are conserved locally during phase separation. For these crystalline 

phases, diffusion occurs by a vacancy-exchange mechanism; that is, atoms are continuously 

exchanging places with nearest-neighbor (NN) vacant lattice sites. DICTRA simulations assume, 

however, that the vacancy concentration is in local equilibrium, and therefore the gradient of vµ is 

zero, which is not necessarily the case. The number-fixed frame of reference (N) is also adopted 

with respect to one of the substitutional elements [39, 40, 49]. Assuming that the atomic volumes 

of the elements are constants, the inter-diffusion matrix in the number-fixed frame of reference is 

then represented by eliminating the concentration gradient of one chosen component n, 

, , ,
N V V
i j i j i nD D D= − , where ,

V
i jD  is the diffusivity of component i with respect to Cj in the volume fixed-

frame of reference (V) [39, 40]. Henceforth, the diffusivity in the number-fixed frame of reference, 

,
N
i jD ,  will be denoted by ,i jD  without including the frame of reference notation. Using this 

diffusivity expression, the diffusivity of element n is eliminated, which results in a (n -1) x (n -1) 

diffusion matrix, and where the diffusion tensor, D , in the number-fixed frame of reference is 

asymmetrical. For Ni-Al-Cr-Re alloys, where Ni is treated as an independent component, and the 

inter-diffusivity tensor is given by: 

             
AlAl AlCr AlRe

CrAl CrCr CrRe

ReAl ReCr ReRe

D D D

D D D

D D D

=

 
 
  
 

D       (2) 

where the diagonal terms, DAlAl, DCrCr, and DReRe denote the direct coefficients, which represent 

the influence of the concentration gradient of one component on the diffusion rate of the same 

component. In contrast, the off-diagonal terms are called coupling coefficients, which are 

responsible for the cross-diffusional effects of each solute element. The off-diagonal terms of the 

diffusion matrix introduce kinetic couplings among the diffusional fluxes in multi-component 

alloys [37]. Recently, the off-diagonal terms were shown to affect significantly the evolution of 

 
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, 
materials, or equipment are necessarily the best available for the purpose. 
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the mean concentrations and the overall precipitation kinetics [50]; coupling effects for generalized 

coarsening kinetics have not yet been studied. 

Herein, we present the effects of diffusional coupling on the compositional trajectories of 

the γ(f.c.c.)- and γ′(L12)-phases during phase-separation and the interfacial free energies, for a 

quaternary Ni-Al-Cr-Re alloy employing APT, transmission electron microscopy (TEM), and the 

PV coarsening model. The roles of the off-diagonal diffusion coefficients, D , are utilized in the 

PV model, which is fully coupled with thermodynamic quantities, ′′G , and kinetic parameters, M, 

obtained by employing Thermo-Cal and DICTRA simulations. Finally, the effect of diffusional 

coupling in a diffusion matrix on the temporal evolution of the compositional trajectories is 

represented utilizing a tetrahedron for a partial quaternary phase-diagram for the very first time. 

 

2. Experimental procedures 

The alloy was prepared by induction-melting of relatively high purity elemental 

constituents under a partial Ar atmosphere and chill-cast in a copper mold to form a polycrystalline 

master ingot with a target composition of Ni-0.10Al-0.085Cr-0.02Re (mole-fraction†). Samples 

from the master ingot underwent a three-stage heat treatment process: (1) homogenization; (2) a 

solution treatment and vacancy anneal; and (3) an aging anneal. The cast ingot was fully 

homogenized in the γ(f.c.c.)-phase field at 1300 oC for 20 h in vacuum and then furnace cooled.  

The ingot was then sectioned into 1 cm thick slices, which were re-solutionized at 980 oC for 4 h 

in a drop-quench furnace and immediately water quenched without exposure to the atmosphere. 

The vacancy annealing step, just above the γ′(L12) solvus temperature, was used to reduce the 

concentration of quenched-in vacancies and to suppress γ′(L12)-precipitate formation during the 

subsequent water-quench. The vacancy annealing temperature is based on differential thermal 

analyses (DTA) of the solvus temperature, ≈ 922 oC, which was performed on a homogenized 

sample, at a rate of 10 K min-1 in a helium atmosphere, cycled twice through the temperature range 

of the reaction. Finally, as-quenched samples were aged in the [γ(f.c.c.) plus γ′(L12)]-phase-field 

at 700 oC, for times ranging from 0.25 h to 1024 h, followed immediately by a quench into ice-

 
† All other compositions are in mole fraction unless noted 
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brine water. All aging heat treatments were performed in a flowing argon atmosphere to reduce 

external oxidation.  

Lattice parameter measurements at ambient and annealing temperatures were performed 

using synchrotron X-ray diffraction (XRD) (λ = 0.620422 Å) at the Advanced Photon Source (APS) 

at Argonne National Laboratory, Lemont, Illinois. A beam size of (3.5 × 0.5) mm2 was employed, 

and at least one family of peaks was detected, e.g., (003) and (004), for the γ(f.c.c.)-γ′(L12) peak 

deconvolution procedure and for lattice parameter misfit calculations employing the Bragg-

Brentano geometry with a moving sample-stage and point detector at room temperature and 700 °C. 

Samples aged at 700 °C for 1024 h were mounted in an Anton Paar DHS 1100 hot stage with a 

graphite dome to minimize X-ray absorption in a vacuum of < 3.8 × 10-2 Pa prior to heating. A 

heating rate of 100 °C·min-1 was utilized to increase the temperature to 600 °C, and 50 °C·min-1 

to 700 °C and then held for at least 20 min before scanning. A pseudo-Voigt function [51] was 

employed to fit the detected peaks with two peaks for the γ(f.c.c.)-and γ′(L12)-phases employing 

the computer program Origin. 

The TEM samples were mounted, ground, and polished to a 1 μm finish, and cut using a 

rotary disc cutter with a 3 mm diameter. The polished disks were further thinned to TEM 

transparency using an electrolyte of 10 % by volume of perchloric acid in an ethanol bath at -30 
oC. Conventional bright-field (BF), dark-field (DF)-TEM, and selected area diffraction patterns 

(SADPs) were obtained employing a JEOL ARM 200 TEM operating at 200 kV, utilizing a 

double-tilt sample holder. The ordered γ′(L12)-precipitates were imaged employing a centered 

dark-field condition utilizing a (1�10) superlattice reflection of the ordered L12-structure of the 

γ′(L12)-phase. The precipitate radii and areal fractions were determined from TEM micrographs 

utilizing the program Image-J [52]. 

APT nanotip specimens were cut using electrical discharge machining (EDM) from each of the 

aged samples and sharpened by a two-step electro-polishing procedure; 10 % by volume perchloric 

acid in acetic acid and 2 % by volume perchloric acid in butoxyethanol at (5 to 21) Vdc [53]. The 

3-D APT experiments were performed utilizing a local-electrode atom-probe tomograph, 

LEAP5000XS, which has an 80 % detection efficiency [54]: Cameca Instruments, Inc., Madison, 

WI. To obtain accurate compositional measurements the experiments were performed using 

voltage pulses at a pulse-fraction [(pulse-voltage)/(stationary DC voltage)] of 15 %, a pulse 
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repetition rate of 250 kHz, a target detection rate of 0.02 ions pulse-1, a specimen temperature of 

(30.0 ± 0.2) K, and an ambient gauge pressure of < 4.2 x 10-9 Pa to obtain accurate compositional 

measurements [55-57]. The recorded 3-D data were analyzed using the program IVAS3.8.2 

(Cameca Instruments [58]). The γ(f.c.c.)/γ′(L12) heterophase interfaces were delineated with Al 

iso-concentration surfaces utilizing the inflection-point technique [59, 60], and compositional 

information was obtained using the proximity histogram (or proxigram for short) methodology 

[61]. The standard errors (two-sigma) for all quantities are calculated based on counting statistics 

in the 3D volumes and represent two standard deviations from the mean value [62]. 

3. Results 

3.1. Atom-probe tomography measurements for the microstructural evolution of γ′(L12)-

precipitates  

The 3-D APT measurements of the γ′(L12)-precipitate morphology in the quaternary Ni-

0.10Al-0.085Cr-0.02Re alloy aged at 700 oC for times ranging from 0 h through 1024 h are 

displayed in Fig. 1. Each subset, (40 x 20 x 100) nm3 is part of an analyzed volume that has at least 

40 million atoms for counting statistics of the γ′ (L12)-precipitate. With Ni atoms displayed as 

green dots, the Ni-rich γ (f.c.c.)-matrix appears greenish with the presence of the other elements. 

The red 0.14 mole-fr. Al iso-concentration surfaces [59] yield a visual comparison of the γ′(L12)-

precipitates as a function of aging time. Very small Al-rich γ′ (L12)-precipitates, R = (1.06 ± 

0.25) nm, are detected after drop-quenching into ice-brine water after a solution treatment at 980 
oC. This temperature is above the solvus temperature based on DTA measurements at 922 oC and 

a Thermo-Calc assessment at 928 oC using the TCNi8 database [41]. The presence of γ′ (L12)-

precipitates is attributed to the large solute supersaturation in the γ (f.c.c.)-matrix, which forms 

during quenching from the solution temperature.  
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Fig. 1. Temporal evolution of γ′(L12)-precipitates (red surfaces) in the quaternary Ni-0.10Al-

0.085Cr-0.02Re alloy aged at 700 oC for times ranging from 0 h through 1024 h. Only a fraction 

(0.2%) of the Ni (green), Al (red), Cr (blue), and Re (dark yellow) atoms are displayed, for the 

sake of clarity, and the γ(f.c.c.)/γ′(L12)-heterophase interfaces are delineated by red 0.14 mole-fr. 

Al iso-concentration surfaces. Full 3D reconstructions are provided in the Supplemental Materials 

A section. 

For the aging times investigated, the nanoscale γ′(L12)-precipitates remain approximately 

spheroidal during coarsening, indicating a small lattice parameter misfit between the two-phases 

with a small interfacial free energy between the γ(f.c.c.)- and γ′(L12)-phases [63-66]. The 

interfacial free energy, / 'γ γσ , for the current Ni-Al-Cr-Re alloy at 700 oC is calculated to be (16.9 

± 3.4) mJ/m2 using the PV model: see section 4.2 for all the details. This value is significantly 

smaller than the value reported for our studies of binary Ni–Al alloys, (28.6 ± 1.6) mJ/m2 [67], and 

ternary Ni–Cr–Al alloys, (23 ± 7) mJ/m2 at 600 oC [34]. The lattice-parameter misfit, δ, between 
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the γ(f.c.c.)-matrix and the γ′(L12)-precipitates of the Ni-0.10Al-0.085Cr-0.02Re alloys is also 

small, ~0.11%, at 700 oC employing the synchrotron XRD measurements at 700 oC, Fig. 5. 

 

Fig. 2. Temporal evolution of the γ′(L12)-precipitate: (a) mean radius, ( )R t ; (b) number density, 

( )vN t , number per unit volume; and (c) volume fraction, ' ( )tγφ , of the quaternary Ni-0.10Al-

0.085Cr-0.02Re alloy aged at 700 oC for aging times from 0 h through 1024 h. The TEM 

measurements of the mean radius, ( )R t , are represented by green-colored symbols in (a) and are 

in good agreement with the 3D APT values, within experimental error. The zero point (0 h) is 

added as a reference value on the left-hand side of the abscissa, and all values are tabulated in 

Table 1. The temporal exponents for ( )R t and ( )vN t  are calculated to be -0.32 ± 0.03 and -0.87 

± 0.12, respectively, by employing the nonlinear multivariate regression (NLMR) methodology 
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[68] to fit the experimental APT and TEM data; the log-log plots are only used for displaying the 

data but not for calculating the temporal exponents. The goodness of fit is represented by the 

minimization of Chi-squared (χ2), with the details described in the Supplemental Materials B 

section. 

 

The temporal evolution of the γ′(L12)-precipitates is represented by the mean radius, ( )R t , 

number density, ( )vN t , and volume fraction, ' ( )tγφ , as a function of aging time, t, in Fig. 2. Their 

numerical values of are listed in Table 1. The value of the radius of individual γ′(L12)-precipitates, 

R, is determined utilizing the spherical volume equivalent radius method in conjunction with the 

APT data and the so-called cluster analysis algorithm [69]in IVAS,  

  
1/3

3
4

atnR
πρη

 
=  

 
          (3) 

where nat is the number of atoms enclosed within an iso-concentration surface; ρ is the atomic 

number density of the γ′(L12)-phase, 86.22 atoms nm-3; and η is the detection efficiency of the 2-

D microchannel plate (MCP), 80%, for the LEAP5000XS tomograph. The number density of 

γ′(L12)-precipitates, ( )vN t , is determined by the number of γ′(L12)-precipitates contained in the 

APT reconstructed volumes utilizing a direct counting method [33]. The volume fraction of 

γ′(L12)-precipitates, ' ( )tγφ , is defined by the lever rule from the overall composition of the alloy 

and the measured compositions of the γ(f.c.c.)-matrix and γ′(L12)-precipitates at each aging time. 

Spheroidal γ′(L12)-precipitates appear in the as-quenched state, with a mean radius ( 0)R t =  = 

(1.06 ± 0.25) nm, which then grow and coarsen temporally to ( 1024 )R t h=   = (27.17 ± 6.54) nm, 

which is a factor of 25.6 increase in <R(t)>. The ( )vN t  values of the γ′(L12)-precipitates for the 

aging times investigated is a maximum at 0.25 h [ ( 0.25 )vN t h=  = (83.2 ± 18.0) x 1022 m-3] and it 

then decreases continuously with increasing aging time [ ( 1024 )vN t h=  = (0.21 ± 0.06) x 1022 m-

3]. The precipitate volume fraction, ' ( )tγφ , measured by APT is close to zero at 0 h, [  = 

(0.38  ± 0.05) %],  which is asymptotically approaching a constant value after 16 h, [ ' ( 16 )t hγφ =
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= (36.71 ± 3.6) %]: this is the beginning of the quasi-stationary coarsening regime, where the 

volume fraction of the γ′(L12)-precipitates is approximately a constant with aging time; i.e., it is 

changing slowly with increasing time (t) but it has yet to achieve its thermodynamic equilibrium 

value. The power-law temporal dependencies for ( )R t and ( )vN t  are determined to be -0.32 ± 

0.03 and -0.87 ± 0.12, by employing the NLMR methodology [68]) to fit the experimental APT 

and TEM data. The data for t ≥ 4 h are included in the NLMR fitting analysis and the goodness of 

fit is represented by the minimization of Chi-square (χ2). The details for these calculations are 

described in the Supplemental Materials B section.  

 

Fig. 3. Temporal evolution of the fraction of γ′(L12)-precipitates interconnected by necks, ( )f t  in 

percent (%), and the mean minimum edge-to-edge distance between neighboring γ′(L12)-

precipitates, ( )tλ , in nm. A zero point value is added as a reference on the left-hand side of the 

abscissa and numerical values for both quantities are listed in Table 1. This figure demonstrates 

clearly that coarsening does not occur through the evaporation-condensation mechanism, which is 

implicit in the Lifshitz-Slyozov (LS) mean-field model of coarsening.  
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It is clear from the 3-D APT reconstructions that a significant fraction of the γ′(L12)-

precipitates are interconnected to one another by necks, which is a direct signature of a 

coagulation-coalescence mechanism for coarsening [70]: it occurs abundantly in the early stages 

of phase separation but gradually decreases in the growth and coarsening regimes. Fig. 3 displays 

the temporal evolution of the fraction of γ′(L12)-precipitates interconnected by necks, ( )f t , and 

the mean edge-to-edge distances, ( )tλ , between neighboring γ′(L12)-precipitates. The numerical 

values are listed in Table 1. The mean edge-to-edge distances, ( )tλ , were measured directly from 

the x-y-z locations of each γ′(L12)-precipitate in the 3-D APT data, using the Karnesky et al. 

approach [71], which subtracts the radii of the participating γ′(L12)-precipitates from the distances 

between the center of each γ′(L12)-precipitate based on the Delaunay triangulation methodology 

[72]. The value of ( )tλ is nearly constant between 0.25 h and 1 h with values of (8.74 ± 3.11) nm 

and (9.19 ± 4.32) nm, respectively, and it then increases to (32.84 ± 12.03) nm at 1024 h, as the 

value of ( )vN t  decreases at an approximately constant precipitate volume fraction, ' ( )tγφ . 

Whereas the value of ( )f t  in the 3-D APT measurements display a maximum at 1 h, (45.83 ± 

6.12) %, and then it decreases continuously with increasing aging time to (3.57 ± 1.15) % at 1024 

h. The decrease in ( )tλ  corresponds to an increase in ( )f t  and vice versa, as the γ′(L12)-

precipitates are close enough to one another for coalescence and coagulation to occur. For aging 

times greater than 16 h, the evaporation-condensation mechanism (“the big eat the small” 

mechanism) dominates over the coagulation-coalescence mechanism, as ( )tλ  is > 16 nm and 

( )f t is < 20% because the large values of  ( )tλ  for the γ′(L12)-precipitates limits the formation 

of ordered necks interconnecting the γ′(L12)-precipitates, by escaping from their overlapping 

diffusion fields. Traditionally, it was believed that coarsening of precipitate in dilute solid-solution 

alloys is accomplished by only the evaporation-condensation mechanism, which is basis of many 

mean-field coarsening theories [24, 25, 73, 74]. Our APT results in this study and several prior 

investigations [31-36] demonstrate that coarsening of γ′(L12)-precipitates, in a concentrated alloy, 

involves a significant fraction of the γ′(L12)-precipitates undergoing the coagulation-coalescence 

mechanism, while at longer aging times the evaporation-condensation mechanism dominates 
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where ( )f t  is approaching zero: at 1024 h  is 3.57 ± 1.15 % and decreasing, while ( )tλ  is  

32.84 ± 12.03 nm and increasing. 

Table 1. The temporal evolution of the mean radius, ( )R t , number density, ( )vN t , volume 

fraction, ' ( )tγφ , fraction of γ′(L12)-precipitates interconnected by necks, ( )f t , and the edge-to-

edge distances between γ′(L12)-precipitates, ( )tλ , in the Ni-0.1Al-0.085Cr-0.02Re alloy aged at 

700 oC for times ranging from 0 h to 1024 h.  

Time (h) ( )R t (nm) ( )vN t  (1022 m-3) ' ( )tγφ  (%) ( )f t (%) ( )tλ (nm) 

0 1.06 ± 0.25 20.5 ± 7.48 0.38 ± 0.05 ~0 16.93 ± 5.35 

0.25 1.96 ± 0.34 83.2 ± 18.0 9.38 ± 0.71 47.92 ± 6.32 8.74 ± 3.11 

1 3.15 ± 0.84 59.2 ± 9.37 21.33 ± 2.44 45.83 ± 6.12 9.19 ± 4.32 

4 4.56 ± 1.63 27.3 ± 4.72 30.21 ± 2.68 35.29 ± 4.72 12.39 ± 5.09 

16 7.13 ± 1.98 7.82 ± 0.83 36.71 ± 3.60 25.47 ± 4.87 15.57 ± 6.29 

64 10.73 ± 3.27 2.25 ± 0.67 38.39 ± 5.21 19.15 ± 2.56 21.31 ± 7.83 

256 16.22 ± 5.13 0.84 ± 0.15 39.31 ± 5.69 7.89 ± 1.47 27.24 ± 10.23 

1024 27.17± 6.54 0.21 ± 0.06 40.73 ± 4.11 3.57 ± 1.15 32.84 ± 12.03 
 

3.2. Transmission electron microscopy and synchrotron x-ray diffraction measurements  

The 3-D APT results are compared to TEM measurements, especially for the coarsening 

regime with a nearly constant volume fraction of the γ′(L12)-precipitates. Fig. 4 displays: (a) a 

selected area diffraction pattern (SADP); (b-f) dark-field (DF) TEM micrographs of the temporal 

evolution of the γ′(L12)-precipitates of the Ni-0.10Al-0.085Cr-0.02Re alloy aged at 700 oC for 

aging times ranging from 4 h to 1024 h. The SADP was obtained along a [001] zone-axis, and the 

superlattice reflections are from the γ′(L12) ordered-phase within the γ(f.c.c.)-matrix. The dark-

field (DF) TEM micrographs were recorded near the [001] zone-axis orientation utilizing two-

beam conditions, 𝒈𝒈1�10. The γ′(L12)-precipitates are clearly visible with bright-contrast within the 

black γ(f.c.c.)-matrix background. The γ′(L12)-precipitates have spheroidal, ellipsoidal or lozenge 

shaped morphologies, and there isn’t a preferential alignment of the γ′(L12)-precipitates along a 

crystallographic direction. The radii of the γ′(L12)-precipitates were determined from the projected 
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areas of the γ′(L12)-precipitates measured from the micrographs, assuming them to be circular 

precipitates on a projected planar section (PS), that is, 𝑅𝑅𝑝𝑝𝑝𝑝 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝜋𝜋 . The mean radius of the 

γ′(L12)-precipitates is (5.41 ± 1.72) nm at 4 h and they coarsen temporally to (28.76 ± 7.59) nm at 

1024 h, Table 1. These TEM calculated values are represented as green-open symbols in Fig. 2(a), 

and they are in excellent agreement with the 3D APT values within experimental uncertainty.  

 

 

Fig. 4. TEM analyses of γ′(L12)-precipitates in the Ni-0.10Al-0.085Cr-0.02Re alloy: (a) SADP 

along [100] zone axis (the presence of superlattice reflections in the diffraction patterns are from 

the γ′(L12)-precipitates, which reside between the strong reflections from the γ(f.c.c.)-matrix). (b-

f). Dark-field (DF) images of the γ′(L12)-precipitates employing the two-beam condition, 𝒈𝒈1�10; (b) 

aged for 4 h; (c) 16 h; (d) 64 h; (e) 256 h; and (f) 1024 h. The lozenge-shaped precipitates are 

further direct visual evidence for the coagulation-coalescence mechanism of coarsening. 

 

Fig. 5  displays high-temperature synchrotron x-ray diffraction (Advanced Photon Source 

at Argonne National Laboratory) measurements of the Ni-0.10Al-0.085Cr-0.02Re alloy at 700 oC 
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for an aging time of 1024 h. The lattice parameter of the γ′(L12)-precipitate, aγ′, is 0.3587 nm at 

700 oC, based on the (003) superlattice reflection of the γ′(L12)-phase, Fig. 5(a). Whereas the 

lattice parameter of the γ(f.c.c.)-matrix, aγ, is determined by employing a deconvolution of the 

(004) diffraction peaks of the γ′(L12) and γ(f.c.c.) phases. The deconvolution fitting procedure of 

the data, which is represented as a red curve in Fig 5(b), is well characterized by the green curve 

for the γ(f.c.c.)-phase and the blue curve for the γ′(L12)-phase. The lattice parameter of the γ(f.c.c.)-

matrix, aγ, at 700 oC is 0.3591 nm, and the lattice parameter misfit, δ, is then calculated from the 

following equation: 

 '

'

2( )a a
a a

γ γ

γ γ

δ
 −

=   + 
            (4) 

The extracted values from the synchrotron XRD measurements at 700 oC are 0.3591 nm and 

0.3587 nm for the γ(f.c.c.) and γ′(L12) phases, respectively, resulting in a lattice-parameter misfit, 

δ, of -0.11%. This negative mismatch means that the γ′(L12)-precipitate has a smaller lattice 

parameter than the matrix, which is due to the large Re atoms partitioning to the γ(f.c.c.)-matrix 

[66]. Vegard’s rule coefficients for Re were reported to be 0.441 and 0.262 for the γ(f.c.c.) Ni and 

γ′(L12) phases [75], respectively. The large partitioning coefficient of Re to the γ(f.c.c.) matrix (~ 

2.63) results in a negative value for the lattice-parameter misfit. The lattice parameter misfit, δ, 

has positive values for Ni-A1 and Ni-Al-Cr alloys: + 0.57 % for the Ni-A1 binary system [76] and 

0.06 ± 0.07, and 0.22 ± 0.07% for Ni-0.052 Al-0.142 Cr mole-fr. and for Ni-0.098 Al-0.083 Cr 

mole-fr. ternary alloys, respectively [33, 35]. The elastic energy is proportional to the square of 

the lattice parameter misfit, δ, and its magnitude governs the elastic energy interactions among the 

γ′(L12) precipitates, which potentially influences the entire coarsening behavior. And the small 

negative value of δ obtained by adding Re to Ni-based superalloys retards the coarsening kinetics 

of γ′(L12)-precipitate, which yields longer creep-rupture lifetimes [16]. 
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Fig. 5.  High-temperature synchrotron XRD patterns at 700 oC of: (a) (003) peak; and (b) (004) 

peak of the Ni-0.85Cr-0.1Al-0.02Re alloy for an aging time of 1024 h. The lattice parameter of 

the γ′(L12)-phase, aγ′, is measured from the (003) superlattice reflection, and the lattice parameter 

of the γ(f.c.c.)-matrix, aγ, is determined by deconvoluting the cumulative (004) diffraction peaks 

of the γ′(L12) and γ(f.c.c.) phases: the blue curve is for the γ′(L12)-phase and the green curve is for 

γ(f.c.c.)-matrix. The lattice parameters of the γ(f.c.c.)- and γ′(L12)-phases, aγ and aγ′, at 700 oC are 

0.3591 nm and 0.3587 nm, respectively, resulting in a lattice-parameter misfit, δ, of -0.11%. 
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3.3. Compositional trajectories during phase-separation of the γ(f.c.c.)- and γ′(L12)-phases 

The concentration profiles across the γ(f.c.c.)/γ′(L12)-heterophase interfaces, for all aging 

times in the Ni-0.85Cr-0.1Al-0.02Re alloy, are displayed in Fig. 6. The compositions of the 

γ(f.c.c.)-matrix and the γ′(L12)-precipitates evolve temporally as the γ′(L12)-precipitates become 

enriched in Al and depleted in Ni, Cr, and Re with increasing aging time. Each concentration 

profile was constructed employing a 0.2 nm bin size with respect to 0.14 mole-fraction of an Al 

iso-concentration surface, utilizing the proximity histogram methodology [61]. A negative 

distance is defined as into the γ(f.c.c.)-matrix, while a positive distance is into the γ′(L12)-

precipitates. The standard error in the 3-D volumes was calculated from the statistical variance 

(2σ) [62]. For the as-quenched state from the solution temperature, the proximity histograms 

display a plateau region in the γ(f.c.c.)-matrix with continuous decreases or increases of each 

element across the γ(f.c.c.)/γ′(L12)-heterophase interface, spanning the length of the concentration 

profiles up to ~2 nm into the γ′(L12)-precipitates. The composition of the γ(f.c.c.)-matrix after a 

solution treatment is 0.7819Ni-0.1051Al-0.0921Cr-0.021Re mole-fr., while the γ′(L12)-nuclei 

have a solute-supersaturated composition of 0.768Ni-0.1944Al-0.0625Cr-0.0163Re mole-fr. at 

<R(t = 0 h)> = (1.06 ± 0.25) nm.  

As the γ′(L12)-precipitates grow, the excesses of Ni, Cr and Re, and depletion of Al in the 

γ(f.c.c.)-matrix develop as a result of diffusional fluxes crossing the γ(f.c.c.)/γ′(L12)-heterophase 

interfaces. The values of the solute excesses and depletions are represented by solute 

supersaturations, iC∆ , which is the difference between the peak value of the solute excess and the 

far-field equilibrium composition of each species. The large initial Al-depletion in the γ(f.c.c.)-

matrix is because Al is the fastest-diffusing species, which plays an important role in the nucleation 

and growth of γ′(L12)-precipitates. Rhenium, which has the smallest diffusivity in Ni, is 

supersaturated in the γ(f.c.c.)- and γ′(L12)-phases, where it approaches approximately half of its 

equilibrium concentration when the Al concentration is close to its equilibrium value. The Ni 

supersaturation is balanced with respect to the fast-forming Al-depletion and the slow-growing Cr 

and Re excesses at the γ(f.c.c.)/γ′(L12)-interface. A gradual decrease in the Re concentration 

toward the core region of the γ′(L12)-precipitates is associated with kinetically trapped Re in the 

nucleating and growing γ′(L12)-precipitates [77]. After aging for 4 h, the change in the solute 

supersaturations of all the elements is small ( /id C dt∆  0), implying the system is in a quasi-
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stationary coarsening regime as it is approaching its equilibrium volume fraction slowly: quasi-

stationary implies that a concentration is asymptotically approaching its equilibrium value but has 

not yet achieved it. The volume-fractions of the γ′(L12)-precipitates, ' ( )tγφ , determined by APT 

measurements, are (30.21 ± 2.68) % at 4 h and (36.71 ± 3.60) % at 16 h, which are smaller than 

the equilibrium volume fraction, (40.73 ± 4.11) %, which was determined by extrapolating ' ( )tγφ  

to its equilibrium value, from 4 h to infinite time. 

 

 

Fig. 6. The concentration profiles on either side of the γ(f.c.c.)/γ′(L12) heterophase interface of the 

Ni-Al-Cr-Re alloy aged at 700 oC for aging times from 0 h through 1024 h. The compositions of 

the two-phases evolve temporally, as the γ(f.c.c.)-matrix becomes enriched in Ni, Cr, and Re, and 

depleted concomitantly in Al. The dotted-vertical lines are placed at the inflection points of the Ni 

concentration-profiles indicating, by definition, the location of the γ(f.c.c.)/γ′(L12)-heterophase-

interfaces. Note the indicated solute supersaturations, iC∆ , of the elements Ni, Al, Cr, Re in the 

γ(f.c.c.)- and γ′(L12)-precipitate phases. 
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Fig. 7. The temporal evolution of (a, b, c) Al, Cr, and Re concentrations in the γ(f.c.c.)-matrix, 

, and (d, e, f) Al, Cr, and Re concentrations in the γ′(L12)-precipitates, ' ( )iC tγ . The 

supersaturations, iC∆ , are indicated by the heavy black arrows, representing the difference 

between the measured concentrations and the equilibrium concentrations determined by 

extrapolating the experimental data from 4 h to infinite time (black-dashed horizontal lines with 

their values). A zero-point value is added as a reference on the left-hand side of the abscissa and 

numerical values are listed in Table 2. With increasing aging times, the values of iC∆  are 

continuously decreasing to their equilibrium concentrations, which agrees with the PV model (red, 

blue, and orange dotted curves). The temporal exponents (r) are determined using the NLMR 

methodology and represented as its reciprocal value (1/r). The goodness of fit is represented by 

the minimization of Chi-squared (χ2), whose details are described in the Supplemental Materials 

C. 

  The temporal evolution of the equilibrium concentration of each element in the γ(f.c.c.) 

and γ′(L12) phases was derived from proximity histograms across the γ(f.c.c)/γ′(L12) heterophase 

interface, Fig. 7: Numerical values are listed in Table 2. The supersaturations, iC∆ , are indicated 

by vertical black heavy arrows, and the equilibrium concentrations, eq
iC  , are represented by 
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horizontal black dashed lines, which were determined by extrapolating the data from 4 h to infinite 

time. The values of iC∆  are obtained from the difference between the measured concentrations 

and the equilibrium concentrations, eq
iC γ ,  and ' eq

iC γ ,  for the γ(f.c.c.)-matrix and γ′(L12)-

precipitates, respectively. As phase separation progresses, the magnitudes of iC∆  decrease toward 

a value of zero as the equilibrium concentrations in both phases are asymptotically approached. 

The absolute values of iC∆  were calculated by employing the minimization of Chi-squared (χ2) 

values employing the nonlinear multivariate regression (NLMR) method, which is described in the 

Supplemental Materials C. The reciprocal of the temporal exponents (1/r) of the Al, Cr, and Re 

supersaturations are 0.34 ± 0.04, 0.35 ± 0.06, 0.36 ± 0.06 for the γ(f.c.c.)-matrix, and 0.33 ± 0.04, 

0.36 ± 0.04, 0.32 ± 0.05 for the γ′(L12)-precipitate, respectively. All the temporal exponents agree 

reasonably well with the PV model value of 3 (1/r = 1/3), within experimental errors (the red, blue, 

and orange dotted curves). For aging times, t ≤1 h, iC∆  is different from the prediction of the PV 

model due to the disparate diffusivities of each element in the early stages of the nucleation and 

growth regimes, which we regard as transients. During the early aging times the supersaturations 

of Cr and Re in the γ′(L12) phases have opposite behaviors, Fig. 7 (e, f). This implies that the 

γ′(L12)-precipitates are initially nucleated by the supersaturated Al atoms, while the Cr and Re 

atoms are in transient stages with kinetic trapping in the γ′(L12)-precipitate phase occurring. After 

the 4 h aging time, the values of iC∆  of the γ′(L12)-precipitate phase evolve slowly toward their 

equilibrium values. The equilibrium γ(f.c.c.)-matrix and γ ′ (L12)-precipitate compositions at 

infinite time, eq
iC γ ,  and ' eq

iC γ , , respectively, were obtained by extrapolating the measured 

compositions from 4 h to infinite time, which are estimated to be 0.8015Ni-0.0524Al-0.1173Cr-

0.0288Re (mole-fr.) for the γ(f.c.c.)-matrix, and 0.7588Ni-0.1762Al-0.0543Cr-0.0107 (mole-fr.) 

for the γ ′(L12)-precipitates.   
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Table 2. Temporal evolution of the concentrations in the γ(f.c.c)-matrix and the γʹ(L12)-precipitate 

phase extrapolated to t = ∞ to obtain the equilibrium concentrations at 700 oC (973 K). The large 

scatter in the values of the concentrations for aging times, t ≤1 h, are due to the disparate 

diffusivities of each element in the early stages of the nucleation and growth regimes, which is the 

transient regime.  

973 K 
Time (h) 

γ(f.c.c)-Matrix composition (mole-fr.) 
𝐶𝐶𝑁𝑁𝑁𝑁
𝛾𝛾  𝐶𝐶𝐴𝐴𝐴𝐴

𝛾𝛾  𝐶𝐶𝐶𝐶𝑎𝑎
𝛾𝛾  𝐶𝐶𝑅𝑅𝑎𝑎

𝛾𝛾  
0 0.7819 ± 0.0019 0.1051 ± 0.0014 0.0921 ± 0.0013 0.0210 ± 0.0006 

0.25 0.7893 ± 0.0010 0.0941 ± 0.0008 0.0946 ± 0.0008 0.0220 ± 0.0004 
1 0.7952 ± 0.0006 0.0806 ± 0.0004 0.1015 ± 0.0004 0.0227 ± 0.0002 
4 0.7983 ± 0.0008 0.0668 ± 0.0005 0.1099 ± 0.0006 0.0249 ± 0.0003 

16 0.7998 ± 0.0006 0.0594 ± 0.0003 0.1143 ± 0.0005 0.0265 ± 0.0002 
64 0.8002 ± 0.0004 0.0576 ± 0.0002 0.1144 ± 0.0003 0.0277 ± 0.0002 

256 0.8008 ± 0.0003 0.0559 ± 0.0002 0.1155 ± 0.0003 0.0278 ± 0.0001 
1024 0.8013 ± 0.0005 0.0544 ± 0.0003 0.1164 ± 0.0004 0.0280 ± 0.0002 

eq. comp 0.8015 ± 0.0010 0.0524 ± 0.0008 0.1173 ± 0.0009 0.0288 ± 0.0007  

Time (h) 
γ’(L12)-precipitate composition (mole-fr.) 

𝐶𝐶𝑁𝑁𝑁𝑁
𝛾𝛾′  𝐶𝐶𝐴𝐴𝐴𝐴

𝛾𝛾′  𝐶𝐶𝐶𝐶𝑎𝑎
𝛾𝛾′  𝐶𝐶𝑅𝑅𝑎𝑎

𝛾𝛾′  
0 0.7268 ± 0.0085 0.1944 ±0.0100 0.0625 ± 0.0059 0.0163 ± 0.0030 

0.25 0.7359 ± 0.0122 0.1908 ±0.0109 0.0574 ± 0.0064 0.0158 ± 0.0037 
1 0.7460 ± 0.0048 0.1863± 0.0043 0.0513 ± 0.0024 0.0165 ± 0.0014 
4 0.7497 ± 0.0037 0.1848± 0.0033 0.0512 ± 0.0019 0.0143 ± 0.0011 

16 0.7517 ± 0.0025 0.1809 ± 0.0022 0.0528 ± 0.0013 0.0146 ± 0.0007 
64 0.7529 ± 0.0011 0.1806 ± 0.0009 0.0534 ± 0.0006 0.0131 ± 0.0003 

256 0.7562 ± 0.0006 0.1782 ± 0.0004 0.0537 ± 0.0002 0.0119 ± 0.0001 
1024 0.7571 ± 0.0009 0.1777 ± 0.0006 0.0538 ± 0.0004 0.0114 ± 0.0002 

eq. comp 0.7588 ± 0.0006 0.1762 ± 0.0005 0.0543 ± 0.0003 0.0107 ± 0.0001 
 

 

4. Discussion  

4.1. The temporal evolution of γ′(L12)-precipitates 

An explanation of phase separation in the quaternary Ni-Al-Cr-Re alloy is discussed based 

mainly on our APT and TEM experiments and the Philipp-Voorhees (PV) coarsening model, 

which includes both kinetic and thermodynamic components. The temporal evolution of γ′(L12)-
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precipitates from a supersaturated solid-solution is treated to first order as three distinct processes: 

nucleation, growth, and coarsening. They appear concomitantly and are overlapping with one 

another [78, 79]. From the observed correlations among the quantities ( )R t , Nv(t), and 'γφ , four 

regimes are identified experimentally: (i) nucleation (t  ≤  0.25 h); (ii) concomitant nucleation and 

growth (0.25 h < t  < 4 h); (iii) concomitant growth and coarsening (4 h ≤ t  < 16 h ); and (iv) quasi-

stationary coarsening (t ≥ 16 h ) [34, 67].   

After drop-quenching a specimen from the solutionizing temperature, 980 oC, the 3D APT 

reconstructions in Fig. 1 demonstrate that the quenched alloy contains small Al-rich γ′(L12)-

precipitates, resulting from phase separation of a supersaturated solid-solution during quenching. 

The small γ′(L12)-precipitates at 0 h have  equal to (1.06 ± 0.25) nm and  

equal to (2.05 ± 0.75)·1023 m-3, with a small value of the volume fraction, [  = (0.38 ± 

0.05) %]. In the nucleation regime, supersaturated Al-atoms in solid-solution substitute for 

kinetically trapped Ni, Cr, and Re atoms in the γ′(L12)-precipitates. For the alloy aged at 700 oC, 

the temporal evolution of the γ′(L12)-phase is preceded by successive nucleation and growth 

regimes, with a sharp increase in ( )vN t  equal to (8.32 ± 1.80)·1023 m-3 at 0.25 h. The sharp 

increase of ( )vN t  is indicative of nucleation. For the aging times employed it is difficult to further 

investigate the details of the nucleation behavior of γ′(L12)-precipitates.  

Following the sharp increase in Nv(t) at 0.25 h, its value commences decreasing slowly 

between 0.25 h and 4 h to a value of (2.73 ± 0.47) ·1023 m-3. Even though new nuclei are formed, 

the nucleation current (number per unit volume per unit time) diminishes during this time period, 

while stable nuclei grow because ( )R t is continuously increasing. The volume fraction of γ′(L12)-

precipitates, ' ( )tγφ , also increases significantly to (30.21 ± 2.68) % at 4 h, which is asymptotically 

approaching its equilibrium volume fraction, (40.73 ± 4.11) %. The major temporal evolutions of 

the supersaturations in the γ(f.c.c)-phase are observed between 0.25 h and 4 h by the growth of 

γ′(L12)-precipitates, Table 2. After nucleation, the stable nuclei grow by consuming solute atoms 

from the supersaturated matrix resulting in concentration gradients, providing the driving force for 

solute diffusion [80, 81]. The small γ′(L12)-precipitates are surrounded by regions of Al-depletions 

and Cr- and Re-excesses that evolve temporally with aging time, Fig. 7, and Table 2. These solute 
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depletions and excesses are represented by solute supersaturations, iC∆ , which do not appear 

uniformly during the growth stage as they are extremely sensitive to each species's diffusivity in 

the γ(f.c.c.)-matrix.   

The large initial Al-depletions and small Re-excesses in the γ(f.c.c.)-matrix demonstrate 

that the diffusivities of the different elements are important for the nucleation and growth of 

γ′(L12)-precipitates. From the diffusional behavior of solute atoms in the γ(f.c.c.)-matrix, the 

prediction of a temporal dependence of ( )R t ∝ t1/2 for diffusion-limited growth [78, 80, 81] is 

not observed. These classical models are for binary alloys and hence are too simple to explain our 

results for a quaternary alloy. The solute supersaturations are continuously approaching their 

equilibrium concentrations at 4 h, while the volume fraction of the γ′(L12)-precipitates has not yet 

achieved its equilibrium value. We refer to this as a quasi-stationary state, which means that the 

equilibrium values are asymptotically approaching their final values extremely slowly. Table 2 

demonstrates clearly how slowly the different concentrations are approaching their equilibrium 

values.  

The other important physical result is the high fraction of γ′(L12)-precipitates undergoing 

coagulation and coalescence during the nucleation and growth stage of phase separation. From the 

APT analyses, the fraction of γ′(L12)-precipitates undergoing coagulation and coalescence, ( )f t , 

is large, (41.67 ± 6.32) % and (45.83 ± 6.12) %, while the mean edge-to-edge distance between 

γ′(L12)-precipitates, ( )tλ , has a minimum value between 0.25 h and 1 h,  (8.74 ± 3.11) and (9.19 

± 4.32) nm, respectively, Fig. 5. This result is due to the overlapping behavior of the 

nonequilibrium concentration profiles surrounding γ′(L12)-precipitates, which gives rise to diffuse 

interfaces because of the large value of ( )vN t  and concomitantly the small value of ( )tλ . This 

is also explained by the diffusional flux-couplings effect among the constituent species toward and 

away from γ′(L12)-precipitates [37, 70].  

When the γ′(L12)-precipitate phase approaches asymptotically its equilibrium volume 

fraction (t ≥ 16 h), the alloys enter the diffusion-limited coarsening regime, which is characterized 

by a steady diminution of ( )vN t  and concomitantly increasing values of ( )R t . Additonally, the 

slope of the ( )vN t  versus time (t) curve is continuously increasing. Based on the PV model, the 
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rate constants and the temporal exponents of ( )R t and ( )vN t  of the γ′(L12)-precipitates for multi-

component alloys are given by the following nonlinear equations: 

( ) ( ) ( )p p
o oR t R t K t t− = −         (5) 

'( ) 0.21
eq

q
vN t t

K
γφ −≅                                                          (6) 

where K is the rate constant for coarsening of ( )R t , and '
eq

γφ  is the equilibrium volume fraction 

of the γ′(L12)-precipitate phase, ( )oR t  is the mean radius at the onset of quasi-stationary 

coarsening at time to. The temporal exponents, p and q, are determined employing the NLMR 

methodology [68] to fit the experimental APT data for t ≥ 4 h because the volume fraction of γ′(L12) 

is approaching asymptotically an equilibrium value after 4 h. An NLMR analysis of ( )R t  yields 

a coarsening rate constant (K) of (6.20 ± 2.4)x10-30 m3s-1.  The temporal exponent for <R(t)> is 

1/p = 0.32 ± 0.03; the error in 1/p was calculated using an error propagation analysis employing 

the NLMR methodology; the details are presented in Supplemental Materials B. This value 

matches, within the error, the value p = 3, as predicted by the diffusion-limited PV model for multi-

component alloys [38]. The temporal exponent, q, of Nv(t) for t ≥  4 h yields -0.87 ± 0.12, which 

is significantly smaller than -1, which is expected for long aging times or higher aging temperatures 

as described by the PV model [38]. The discrepancy is associated with the high fraction of 

interconnected necks between adjacent γ′(L12)-precipitates, which is a result of the coagulation-

coalescence coarsening mechanism. The value of the pre-factor, '0.21 /eq Kγφ× , is (1.16 ± 0.71) x 

1028 s/m3 for K = (6.20 ± 2.4) x 10-30 m3s-1, which is three orders of magnitude larger than the 

experimental value (1.49 ± 0.43) x 1025 s/m3. To obtain the correct value of K the value of -q must 

be equal to -1: that is, the evaporation-condensation mechanism (“the big eats the small”) must be 

operative. If this is not the case then the dimensions of the pre-factor, '0.21 /eq Kγφ× , are incorrect. 

To obtain -q equal to -1 requires a significantly longer aging time at 700 oC and/or a higher aging 

temperature. In Fig. 3 at 1024 h the value of f(t) is (3.57 ± 1.15) %, which implies that the system 

is not yet in a pure evaporation-condensation coarsening mechanism regime and hence q is less 

than -1. 
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In the stationary coarsening regime, the magnitude of the supersaturation in both the γ(f.c.c) 

and γ′(L12) phases, iC∆ , decreases toward a value of zero, whose behavior can be fit to the 

following nonlinear equation: 

1/( ) ( )ff eq r
i i i iC t C t C k t−∆ = − =                      (7) 

where ( )iC t∆  is the difference between the far-field (ff) matrix concentration of component i, 

( )ff
iC t , and the equilibrium concentration of component i, eq

iC  at t = ∞ ; ki is the rate constant 

describing the temporal evolution of the supersaturation, r is the temporal exponent which is 

calculated to be three (1/r = 1/3) in the PV model [74]. The rate constants for the supersaturations, 

ki, for Al, Cr, and Re are fitted to Eq. (7) employing the NLMR methodology yielding 0.361 ± 

0.16, -0.181 ± 0.13, and -0.115 ± 0.07 mole-fr.s1/r in the γ(f.c.c)-matrix, and  0.209 ± 0.122, -0.086 

± 0.046 and 0.098 ±0.074 mole-fr.s1/r in the γ′(L12)-precipitates, respectively.  For these measured 

values, the six different supersaturations decay to zero with different amplitudes of the rate 

constants (ki). The direction of the supersaturation is represented by a positive or negative values 

associated with the rate constants: a positive value of ki for Al in the γ(f.c.c)-matrix; and also for 

Al and Re in the γ′(L12)-precipitates, implies that the measured concentration is greater than the 

equilibrium concentration. A negative value means the concentration is approaching its 

equilibrium from below the equilibrium concentration, Fig 7. These signs are related to the 

thermodynamic factors, ′′G , in the PV coarsening model (Eqns. 11 and 12 below), which govern 

the directions of the compositional trajectories in the quaternary phase diagram, Fig. 8.  

4.2. The diffusional coupling effects on the interfacial free energies, / 'γ γσ . 

The interfacial Gibbs free energy, / 'γ γσ , for γ(f.c.c.)/γ′(L12) heterophase interfaces is 

related to the microstructural stability of many precipitation-strengthened alloys and is utilized to 

predict and also improve the reliability of existing superalloys. The driving force for coarsening is 

the minimization of the overall Gibbs interfacial free energy of a system subject to the condition 

that the volume fraction of the precipitating phase has achieved its equilibrium value [24-26, 74, 

82]. The interfacial Gibbs free energies were obtained employing experimental coarsening data 

based on the PV coarsening models [38, 83].  
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The coarsening rate constant, K, for the temporal evolution of the mean precipitate radius, 

<R(t)>, measured utilizing APT and TEM experimental results is employed to calculate the 

interfacial Gibbs free energy ( / 'γ γσ ) of the γ(f.c.c.)/γ′(L12) heterophase interfaces. The PV model 

assumes non-ideal and non-dilute solid-solutions including the off-diagonal terms in the diffusivity 

and mobility tensors. The interfacial Gibbs free energy, / 'γ γσ , is determined from [38, 84]: 

/ '
'

9 ( )
8

T

m

K
V

γ γ
γσ =

γ-γ' -1 γ-γ'
γΔC M ΔC

       (8) 

where '
mV γ  is the molar volume of the γ′(L12)-phase, γ-γ'ΔC is the difference in the equilibrium 

compositions between the γ(f.c.c.)- and γ′(L12)-phases, and the superscript letter T indicates its 

transpose. The quantity '
mV γ  is defined to be NA(aγ′)3/4, where NA is Avogadro’s number, and aγ′ is 

the lattice parameter of the γ′(L12)-phase. The lattice parameter was measured using a synchrotron 

XRD pattern at 700 oC, Fig 5: its value is 0.3591 nm, which yields '
mV γ  = 6.948 x 10-6 m3/mol. As 

embodied in Eq. (1), the mobility tensor in the γ(f.c.c.)-matrix, γM , combined with a 

thermodynamic factor yields diffusivities though the relationship, , where ′′γG  is the 

Hessian: that is, the second-derivatives of the Gibbs free energies in the γ(f.c.c.)-phase at its 

equilibrium concentrations, eq
iC γ , .  

The nominal composition of the alloy measured by the APT, 0.785Ni-0.103Al-0.091Cr-

0.021Re mole-fr., is taken as a reference state for the Thermo-Calc and DICTRA computations. 

Thermodynamic equilibrium, given by the common tangent line to the Gibbs free energies of the 

two phases [γ(f.c.c.) and γ′(L12)], yields 0.806Ni-0.052Al-0.110Cr-0.032Re mole-fr. for the 

γ(f.c.c.)-phase and 0.761Ni-0.152Al-0.076Cr-0.011Re mole-fr. for the γ′(L12)-phase. The 

thermodynamic calculations predict partitioning of Al to the γ′(L12)-phase and partitioning of Ni, 

Cr, and Re to the γ(f.c.c.)-phase, which is in good agreement with our APT experiments, Fig.4. 

Using Ni as the reference component for the ′′γG  and γD  tensors, of the γ(f.c.c.)-phase, they were 

computed utilizing the thermodynamic database TCNI8 and the Ni-mobility database [41, 85]:  
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× × ×  ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ 

"
γG





 


 J·mol-1      

(9) 

and  

18 19 19

19 19 21

20 20 21

1.17 10 4.68 10 5.31 10
1.35 10 2.65 10 9.38 10
2.84 10 1.54 10 4.49 10

AlAl AlCr AlRe

CrAl CrCr CrRe

ReAl ReCr ReRe

D D D
D D D
D D D

γ γ γ

γ γ γ

γ γ γ

− − −

− − −

− − −

   × × ×
   

= = × × − ×   
   − × − × − ×   

γD   m2s-1 

 (10) 

The reduction of the number of equations from n to n-1 is obtained from the definition of the 

second derivatives of the Gibbs free energies, ′′γG , and the diffusivities γD , with one chosen 

element (Ni) as the reference component utilizing a number-fixed frame of reference (N) [39, 40, 

49]. The positive values of the inter-diffusivities in γD  indicate that diffusional flux is causing 

phase separation, whereas the negative values indicate that the diffusional flux is from the γ′(L12)-

precipitates to the disordered γ(f.c.c.)-phase.  

Based on the PV coarsening model, the rate constant, K, was calculated using our 

experimental APT data, Fig. 2, to be 6.20 x 10-30 m3s-1, for our quaternary Ni-Al-Cr-Re alloy. 

Employing the above value, the interfacial free energy, / 'γ γσ , is calculated, using Eq. (8), to be: (i) 

(16.9 ± 3.4) mJ/m2 at 700 oC. The calculated value of / 'γ γσ is strongly influenced by the off-

diagonal terms in the D  and ′′G  tensors, which are included in the PV model. The Gibbs 

interfacial free energy, / 'γ γσ , changes to: (ii) (46.3 ± 5.1) mJ/m2  when not including the off-

diagonal terms in D ;  (iii) (92.3 ± 7.9) mJ/m2 without the off-diagonal terms in ′′G ; and (iv)  (-

18.5 ± 2.6) mJ/m2 without the off-diagonal terms in both the D  and ′′G  tensors. These differences 

are important because it demonstrates how the coupling behavior of solute elements affects 

ultimately the coarsening behavior of precipitates in alloys. In general, a higher Gibbs interfacial 

free energy induces a faster coarsening rate. The negative value of the Gibbs interfacial free energy 
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is nonphysical because it causes the overall free energy of a system to decrease continuously. J. 

W. Gibbs (1876) stated that a system would continue making interfaces in a system with a negative 

interfacial free energy until classical thermodynamics is no longer pertained [86]. This point was 

also made by Cahn and Hilliard with respect to segregation at grain boundaries [87].  

4.3 The diffusional coupling effects on compositional trajectories  

The Gibbs-Thompson effect describes the compositional change of a precipitate or matrix 

due to a change of the bulk free energy caused by the curvature of an interfacial surface under 

tension, which yields the solute supersaturation at a matrix/precipitate heterophase-interface as a 

function of the mean curvature of a precipitate [82, 84, 88]. Next the compositional trajectories of 

the γ(f.c.c.)- and γ′(L12)-phases during stationary coarsening are compared with the predictions of 

the PV model in a partial quaternary phase diagram [38] utilizing a tetrahedron.   

The concentration profiles and the supersaturations of each element in the Ni-Al-Cr-Re 

quaternary alloy, Figs. (6, 7), demonstrate that the compositions of the γ(f.c.c.)- and γ′(L12) -phases 

are initially highly supersaturated and evolve temporally toward equilibrium compositions with 

increasing aging time. By employing the concentrations of the four elements, the compositional 

trajectories of the γ(f.c.c.)-matrix and γ′(L12)-precipitate phases can be represented employing a 

partial Ni-Al-Cr-Re quaternary phase diagram, Fig. 8, using a partial tetrahedron. The light-blue- 

and light-red-colored surfaces represent the calculated conjugate solvus surfaces of the γ(f.c.c.)- 

and γ′(L12)-phases, respectively, calculated utilizing CompuTherm with the Pandat-Nickel 

database [89]. The initial composition of the alloy is the as-quenched composition at t = 0, which 

lies in the [γ(f.c.c.) plus γ′(L12)] phase-field between the two conjugate solvus surfaces. The APT 

experimental data points denoted by blue- and red-circles represent the compositional trajectories 

of the γ(f.c.c.)- and γ′(L12)-phases, respectively. The highly magnified regions to the left- and 

right-hand sides of the partial tetrahedron display the compositional trajectories of both phases in 

detail. The compositional trajectory of the γ(f.c.c.)-phase is initially curvilinear because the 

volume fractions have not yet achieved their quasi-stationary values; the nucleation and growth 

regimes are dominant between 0 h and 4 h aging times, and the compositions are most affected by 

the elements with the largest diffusivities, particularly Al. The APT experimental trajectories are 

represented as open-blue-circles to distinguish them from the quasi-stationary coarsening regime 

for t ≥ 16 h, which are represented by solid-blue circles. The compositional trajectories in the 

https://arxiv.org/abs/2108.05438


arXiv identifier 2108.05438 

 | P a g e  
 

32 

coarsening regime become linear, a vector, terminating on the light-blue conjugate solvus surface, 

whose final composition is the equilibrium concentration of the γ(f.c.c.)-phase.  The γ′(L12)-

compositional trajectory, on the right-hand side of the γ′(L12)-conjugate solvus surface (light-red 

color), commences at 0 h deep inside the γ′(L12)-phase-field. At t = 0 h, the γ′(L12)-phase has 

already been nucleated with ( 0)R t =  equal to (1.06 ± 0.25) nm, and ' ( )tγφ  equal to (0.38 ± 

0.05) %, which is due to the large solute supersaturation in the γ(f.c.c.)-matrix during drop-

quenching after the solutionizing treatment at 980 oC.  This compositional trajectory is initially 

curvilinear, and it becomes a vector as it moves toward the light-red conjugate solvus surface.   

 

Fig. 8. A graphical representation of the composition trajectories for the quaternary Ni-Al-Cr-Re 

alloy, employing a partial tetrahedron, to display the experimental (APT) data and calculated 

values employing the PV coarsening model. The equilibrium tie-line connecting the equilibrium 

compositions between the γ(f.c.c.)- and γ′(L12)-phases, at infinite time, is indicated by a black 

dashed-line, which is a vector. All the experimental data points (APT) are indicated by the blue- 

and red-circles for the γ(f.c.c.)- and γ′(L12)-phases, respectively, which commence with their initial 

compositions at t = 0 h and terminate at their final equilibrium compositions on the two conjugate 
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solvus surfaces. The open-blue- and open-red-circles are for t ≤ 4 h, whereas the solid-blue and 

solid-red-circles are for APT data in the quasi-stationary coarsening regime, t ≥ 16 h. The 

compositions calculated from the PV model are represented by solid-green squares. The behaviors 

of the supersaturations in the γ(f.c.c.)-matrix and γ′(L12)-precipitates are magnified on the left- and 

right-hand-sides of the partial tetrahedron, respectively, for clarity. 

 The curvilinear behavior of the compositional trajectories is due to the different 

diffusivities of solute elements during the initial stages of phase separation; Al diffuses 

significantly faster than Cr and Re. The diagonal diffusivity of Al in the γ(f.c.c.)-matrix, 
181.17 10AlAlDγ −= × m2 sec-1, is one or two orders of magnitude larger than the diffusivities of Cr 

and Re, 192.65 10CrCrDγ −= ×  m2 sec-1 and 21
ReRe 4.49 10Dγ −= ×  m2 sec-1, respectively. These 

diffusivity differences are also represented by the the observed solute supersaturations, iC∆ , Fig. 

6. The large initial Al-depletion in the γ(f.c.c.)-matrix reflects the fact that Al is the fastest-

diffusing species, which is important for the nucleation and growth of γ′(L12)-precipitates. 

Rhenium, which has the smallest diffusivity in nickel, is supersaturated in both the γ(f.c.c.)- and 

γ′(L12)-phases, when it is approaching approximately one-half its equilibrium concentration the 

Al concentration is close to its equilibrium value. The different diffusivities of each element for 

the nucleation and growth kinetics make the compositional trajectories complex, leading to 

compositional variations within the γ′(L12)-precipitates; for example, a concentration gradient 

within the γ′(L12)-precipitate in a Ni-Al-Cr-Ta alloy [90], hierarchical precipitate structures [91-

93],  and metastable core-shell nano-precipitates in the Al-Sc-Zr system [94-97]. Detailed studies 

of the nucleation and growth kinetics are needed at significantly shorter initial time intervals: 

herein, we focus, however, mainly on the coupling effects of the compositional trajectories in the 

quasi-stationary coarsening regime.   

For times greater than 16 h, in the quasi-stationary coarsening regime, the supersaturations, 

iC∆ , are very small, /id C dt∆  0, in both phases, and the compositional trajectories are close to 

being vectors, which agrees with quasi-stationary diffusional behavior. We use the term quasi-

stationary because all the concentrations are changing very slowly with time, Table 2, and to obtain 

the equilibrium concentrations we extrapolated them from 4 h to infinite time. Next the 

compositional trajectories in local equilibrium across the γ(f.c.c.)/γ′(L12) interfaces in the 
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coarsening regime are compared with the PV coarsening model [38]. The compositional trajectory 

as a function of aging time in the γ(f.c.c.)-matrix, Fig. 8, is fitted employing the PV model: 
1/( ) r

i iC t k t−∆ =  in Eq. (6), where the rate constant for the supersaturation of the γ(f.c.c.)-matrix 

is given by:  

   
1/3

/ ' ' 2/3 [( ) ]
(3 )

( )

T

i m Tk Vγ γ γ γσ=
′′

γ-γ' -1 γ-γ'
γ γ-γ'

γ-γ' γ-γ'
γ

ΔC M ΔC
ΔC

ΔC G ΔC
    (11) 

 The matrix supersaturations are on the tie-line, connecting the equilibrium compositions 

between the γ(f.c.c.)- and γ′(L12)-phases, because the rate constant for a supersaturation, ik γ , is a 

product of a time-independent scalar and the compositional vector in equilibrium, γ-γ'ΔC . The 

mobility tensor and the Hessian of the Gibbs free energy, γM  and ′′γG , respectively, affect the 

magnitude of the supersaturations of the γ(f.c.c.)-matrix from their equilibrium values, but not the 

direction of the vector. Therefore, the predicted compositions of the γ(f.c.c.)-matrix in the PV 

model changes along the compositional vector in equilibrium, γ-γ'ΔC , which is the direction of the 

equilibrium tie line. The time-dependent compositions of the γ′(L12)-precipitates do not, however, 

coincide with the equilibrium tie-line. The rate constants for the supersaturations of the γ′(L12)-

precipitates, '
ik γ , are given by: 

' / ' ' 2/3 1 1/3
'

( )
(3 ) [( ) ]

( )
T

i m T
m

k V
V

γ γ γ γ
γσ −

 ∆
=  ×  −  ′′ 

'' -1 '' γ-γ' '' -1
γ' γ γ'γ-γ' γ-γ'
γ-γ' γ-γ'

γ

G G ΔC G V
ΔC M ΔC

ΔC G ΔC
     (12) 

where ∆V  is the partial molar volume change, '′′γG  is the second derivative of the Gibbs free 

energies with respect to the Ni concentrations in the γ′(L12)-phase. The value of ∆V  is set equal 

to zero by assuming equal partial molar volumes, and the second derivatives of the Gibbs free 

energies of the γ′(L12)-phase, '′′γG  , are obtained using the TCNi8 database employing Thermo-

Calc [85]:  
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The composition trajectories are calculated from the PV model utilizing Eqs. (9-13) and 

are represented by small green solid-squares, Fig 8. In the PV model, the compositional trajectories 

of the γ(f.c.c.)-matrix lie on the straight dashed tie-line (a vector) connecting the equilibrium 

compositions of the γ(f.c.c.)- and γ′(L12)-phases at infinite time. The supersaturation of the γ′(L12)-

phase is also represented as a vector. It does not, however, coincide with the equilibrium tie-line 

because the operator 1
'
−′′ ′′γ γG G  is applied to γ-γ'ΔC , which rotates the direction of the vector.   

The diffusional coupling effects on the directions of the compositional trajectories in the 

coarsening regimes (t ≥ 16 h) are represented in Fig. 9. The detailed compositional trajectories 

with or without the off-diagonal terms of the ′′G  and D  tensors are represented in high- 

magnification images, Fig. 9(a) and Fig. 9(b) for the γ(f.c.c.)- and γ′(L12)-phases, respectively. 

The light-blue- and light-red-colored surfaces represent the calculated conjugate solvus surfaces 

for the γ(f.c.c.)- and γ′(L12)-phases, respectively. The equilibrium concentrations of the γ(f.c.c.)- 

and γ′(L12)-phases at infinite time are indicated by two solid-black circles in Fig. 9(a) and Fig. 

9(b), and the experimental data points (APT) in the coarsening regime (t ≥ 16 h) are indicated by 

solid-blue- and solid-red-circles for the γ(f.c.c.)- and γ′(L12)-phases, respectively. The 

compositional trajectories calculated from the PV model, commencing at an aging time >16 h are 

represented by solid-green squares (with all the terms in ′′G and D  included), yellow-triangles 

(without including the off-diagonal terms in D), cyan-diamonds (without including the off-

diagonal terms in ′′G ), and orange-pentagons (without including the off-diagonal terms in both 

′′G and D ). The compositional trajectories of the γ(f.c.c.)-matrix in the PV model with and without 

the coupling terms of ′′G  and D  tensors, Fig. 9(a), lie on a straight black dashed tie-line  

connecting the equilibrium compositions of the γ(f.c.c.)- and γ′(L12)-phases, eq
iC γ , and ' eq

iC γ , , 

respectively.  
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Fig. 9. A graphical representation of the compositional trajectories in the coarsening regime (t ≥ 

16 h) with and without the coupling terms of the ′′G  and D  tensors. The equilibrium tie-line, 
γ-γ'ΔC , is indicated by a black dashed-line. The APT experimental data points are represented by 

the solid-blue- and solid-red-circles for: (a) the γ(f.c.c.)- and (b) γ′(L12)-phases, respectively. The 

compositional trajectories calculated from the PV model commencing at an aging time of 16 h are 

represented by solid-green-squares (all terms in ′′G and D  are included), yellow colored-triangles 

(without the off-diagonal terms in D ), cyan colored-diamonds (without the off-diagonal terms in 

′′G ), and orange-colored pentagons (without the off-diagonal terms in ′′G  and D ).  
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The magnitudes of the solute supersaturations, iC∆ , also change with or without the off-diagonal 

terms in both ′′G and D. The compositional trajectories of the γ(f.c.c.)-matrix without the off-

diagonal terms in ′′G  [cyan-colored-diamonds in Fig. 9(a)] has the largest value of iC∆  and is 

compatible with the APT results (solid blue-circles) after 256 h. The calculated supersaturations 

without the off-diagonal terms in both 𝐆𝐆" and D tensors [orange-colored-pentagons in Fig. 9(a)] 

are located in the opposite direction along the tie-line around the origin, which is related to the 

negative value of the interfacial energy, -18.5 mJ/m2. A negative value of the interfacial free energy 

is, however, impossible physically as discussed above.  

The supersaturations of the γ′(L12)-phase in the PV model is also a vector in Fig 9(b), 

solid-green colored squares. Albeit the direction deviates from the equilibrium tie-line due to 

applying the operator 1−'' ''
γ' γG G  to the compositional vector in equilibrium, 'γ γ−∆C . The direction 

of the compositional trajectories of the γ′(L12)-phase in the PV model without the off-diagonal 

terms in both ′′G  and D (orange-colored pentagons in Fig. 9b) are far from the equilibrium tie-

line vector as well as the direction of the APT experimental data. The directions without the off-

diagonal terms in ′′G  [yellow-colored triangles in Fig. 9(b)] and in D [cyan colored-diamonds in 

Fig. 9(b)] are close to the equilibrium tie-line vector: they are, however, far away from the 

direction of the APT data. As indicated by the solid-green squares, the direction of the 

compositional trajectories with all off-diagonal terms in both the ′′G  and D tensors are close to the 

APT experimental data, which is extremely reassuring, Fig. 9(b).  

The compositional paths of the γ(f.c.c.)- and γ′(L12)-phases for the APT results and PV 

coarsening model are successfully captured and compared. Including the coupling (off-diagonal 

terms) in the Hessian of the Gibbs free energies, ′′G , and the diffusion tensor, D. The interfacial 

free energies and the compositional trajectories in the quasi-stationary coarsening regime are 

correctly predicted and in agreement with our APT data. These ′′G  and D  values do not, however, 

include the role of vacancies on diffusion phenomena because vacancies are assumed to be in 

thermodynamic equilibrium in the Ni-mobility database in Thermo-Calc and DICTRA: that is, the 

chemical potential of the vacancies are identically equal to zero [37, 70]. Vacancy-mediated lattice-

kinetic Monte Carlo (LKMC) simulations with parameters deduced from first-principles 

calculations can account correctly for the vacancy diffusion mechanism in nickel-based binary Ni-

Al [36] and ternary Ni-Al-Cr alloys [37]. The role of vacancy-solute binding energies and their 
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effects on flux coupling utilizing vacancy-mediated LKMC simulations and first-principles 

calculations are suggested for future studies of the present quaternary alloy, Ni-Al-Cr-Re.  

 

5. Summary and conclusions 

The effects of diffusional coupling on the compositional trajectories and the interfacial 

Gibbs free energies of γ(f.c.c.)/γ’(L12) heterophase interfaces during phase separation 

(precipitation) in a quaternary Ni–0.1Al-0.85Cr-0.02Re (mole-fraction) alloy aged at 700 oC from 

0 h to 1024 h, were studied by atom-probe tomography (APT), transmission electron microscopy 

(TEM), and the Philippe-Voorhees (PV) phase-field coarsening (Ostwald ripening) model. The 

temporal evolution of the microstructures and the compositional trajectories are measured 

employing APT and TEM experiments, and the roles of the off-diagonal diffusion terms in the ′′G  

(the Hessian of the second derivatives of the molar Gibbs free energies) and D (diffusivity) tensors 

with respect to the PV phase-field model are compared to the experimental data, leading to the 

following results and conclusions:  

1. The mean precipitate radius, ( )R t , number density, Nv(t), and precipitate volume fraction, 

'γφ , during temporal evolution of γ´(L12)-precipitates, Fig. 1, permit us to identify 

approximately four regimes of phase-separation experimentally: (i) nucleation (t  ≤  0.25 h); 

(ii) concomitant nucleation and growth (0.25 h < t  < 4 h); (iii) concomitant growth and 

coarsening (4 h ≤ t  < 16 h ); and (iv) quasi-stationary coarsening (t ≥ 16 h ). The peak number 

density of the γ´(L12)-precipitates, (8.3 ± 0.8)·1023 m⁻³, occurs at 0.25 h, and this first-order 

phase transformation enters a concomitant growth and coarsening regime between 4 h and 16 

h. During the quasi-stationary coarsening regime, evaluated at t ≥ 16 h, the temporal power-

law exponent for ( )R t  is 0.32 ± 0.03, and for Nv(t) it is -0.87 ± 0.12, Fig. 2. It is quasi-

stationary because even at 1024 h the equilibrium compositions are not achieved, Table 2. To 

determine the equilibrium compositions of both phases we extrapolated all quantities to infinite 

time.  

2. The APT results demonstrate that a high fraction of the γ′(L12)-precipitates is interconnected 

by necks, ( )f t  = (45.83 ± 6.12) %, with small mean edge-to-edge distances between γ´(L12)-
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precipitates, ( )tλ = (9.19 ± 4.32) nm, at early aging times for 1 h, Fig. 3. Large fractional 

values of ( )f t  and small values of ( )tλ  are consistent with the coagulation-coalescence 

coarsening mechanism as opposed to the evaporation-condensation (“the big eat the small”) 

mechanism, which is implicit in all coarsening mechanism articles starting with the Lifshitz-

Slyozov (LS) diffusion-controlled model, 1961. For aging times greater than 16 h, the 

evaporation-condensation mechanism dominates over the coagulation-coalescence mechanism, 

as ( )tλ  is > 16 nm when ( )f t is < 20 %. At early aging times, the high fraction of the γ′(L12)-

precipitates interconnected by necks, ( )f t , is explained by diffusional flux-couplings among 

the constituent species toward and away from γ′(L12)-precipitates. The coagulation-

coalescence mechanism also provides a plausible reason for the observed experimental 

deviations of Nv(t) from the PV coarsening model: that is, the temporal exponent is < -1. To 

obtain -1 it is necessary to employ longer aging times and/or higher aging temperatures, which 

yield an evaporation-condensation mechanism for coarsening as opposed to the coagulation-

coalescence mechanism. 

3. For the aging times investigated, to 1024 h, the nanoscale γ′(L12)-precipitates remain 

approximately spheroidal to lozenge-shaped during coarsening, indicating a small lattice 

parameter misfit between the γ(f.c.c.) and γ′(L12)-phases, Figs. 1 and 4. The lattice parameters 

of the γ(f.c.c.)-matrix, aγ, and the γ′(L12)-precipitates, aγ′, are measured by high-temperature 

synchrotron x-ray diffraction (XRD) measurements at 700 oC, which are 0.3591 nm and 0.3587 

nm, respectively, resulting in a negative lattice-parameter misfit, δ, of -0.11%, Fig. 5. This 

negative mismatch is due to a large Re partitioning coefficient to the γ(f.c.c.)-matrix (~ 2.63), 

which decelerates the coarsening kinetics of the γ′(L12)-precipitates, thereby, imparting very 

good creep behavior at elevated temperatures.  

4. The compositions of the γ(f.c.c.)-matrix and the γ′(L12)-precipitates evolve temporally as the 

γ′(L12)-precipitates become enriched in Al and depleted in Ni, Cr, and Re with increasing aging 

time, Figs. 6 and 7. The composition of the γ(f.c.c.)-matrix after solution annealing and 

quenching is a solute-supersaturated composition of 0.7819Ni-0.1051Al-0.0921Cr-0.021Re 

mole-fr., while the γ′(L12)-nuclei have the composition 0.768Ni-0.1944Al-0.0625Cr-0.0163Re 

https://arxiv.org/abs/2108.05438


arXiv identifier 2108.05438 

 | P a g e  
 

40 

mole-fr. at ( )oR t  = (1.06 ± 0.25) nm. As the γ′(L12)-precipitates grow, excesses of Ni, Cr 

and Re, and the depletion of Al in the γ(f.c.c.)-matrix develop as a result of the diffusional 

fluxes crossing the γ(f.c.c.)/γ′(L12)-heterophase interface. The equilibrium γ(f.c.c.)-matrix and 

γ′(L12)-precipitate compositions at infinite time were estimated to be 0.8015Ni-0.0524Al-

0.1173Cr-0.0288Re mole-fr. for the γ(f.c.c.)-matrix, and 0.7588Ni-0.1762Al-0.0543Cr-

0.0107e mole-fr. for the γ′(L12)-precipitates, which were obtained by extrapolating the 

measured compositions at 1024 h to infinite time. 

5. The coarsening kinetics of the γ´(L12)-precipitates, mean precipitate radius, ( )R t , number 

density, Nv(t), and solute supersaturations ( iC∆ ), are compared with a diffusion-limited phase-

field coarsening model developed by Philippe and Voorhees (PV), which is applicable for non-

ideal and non-dilute solid-solutions for multi-component alloys. The mobility tensor, M, in the 

PV model in combination with a thermodynamic factor yields diffusivities through the 

relationship, 𝐃𝐃 = 𝐌𝐌𝐆𝐆", where ′′G  is the second derivative (Hessian) of the Gibbs free molar 

energies of the γ(f.c.c.)-phase. Using Ni as the reference component, the 𝐆𝐆" and D tensors for 

both phases were computed utilizing the thermodynamic database TCNi8 and the Ni-mobility 

database from Thermo-Calc at their equilibrium compositions at 700 oC [41, 85].  

6. The calculated value of the Gibbs interfacial free energy, / 'γ γσ , is strongly influenced by the 

off-diagonal terms in the D  and ′′G  tensors, which are included in the PV model. The value 

of / 'γ γσ , based on the APT experiments and the PV model calculations at 700 oC are: (i) (16.9 

± 3.4) mJ/m2 including the off-diagonal terms in the D  and ′′G tensors; (ii)  (46.3 ± 5.1) mJ/m2  

without the off-diagonal terms in the D tensor;  (iii) (92.3 ± 7.9) mJ/m2  without the off-diagonal 

terms in  the ′′G  tensor;  and (iv) (-18. 5 ± 2.6) mJ/m2 without the off-diagonal terms in the D  

and ′′G  tensors. A negative value of / 'γ γσ  is nonphysical because the system will continuously 

make interfaces until classical thermodynamics is no longer applicable [86]. 

7. The compositional trajectories of the γ(f.c.c.)-matrix and γ′(L12)-precipitate phases are 

represented on a partial Ni-Al-Cr-Re quaternary phase diagram employing a partial tetrahedron, 

Fig. 8. In the nucleation and growth regimes of the nanoprecipitates, t ≤ 4 h, the small 

diffusivities of Cr and Re compared to Al’s large diffusivity, results in a curvilinear trajectory, 

which deviates from the equilibrium γ(f.c.c.)-γ′(L12) tie-line between the γ(f.c.c.)-matrix- and 
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the γ′(L12)-precipitate phases. In the quasi-stationary coarsening regime, t ≥16 h, the 

supersaturations, iC∆ , are small in both phases, and the compositional trajectories are close to 

being a vector, which agrees with the quasi-stationary diffusional behaviors described by the 

diffusion-limited PV model for both the γ(f.c.c.)-matrix and γ′(L12)-precipitate-phases.  

8. The compositional trajectories measured from our APT experiments are compared with the PV 

coarsening model in the quasi-stationary coarsening regime (t ≥ 16 h) with and without the off-

diagonal terms of the ′′G and D  tensors, Fig. 9. The calculated compositional trajectories of 

the γ(f.c.c.)-matrix in the PV model (pure coarsening) with and without the coupling terms of 

the ′′G  and D  tensors lie on a vector connecting the equilibrium compositions of the γ(f.c.c.)- 

and γ′(L12)-phases on the two calculated conjugate solvus surfaces. The compositional 

trajectory of the γ′(L12)-phase in the PV model is a vector; its direction, however, does not 

coincide with the equilibrium tie-line. The direction of the compositional trajectory of the 

γ′(L12)-phase in the PV model with the off-diagonal terms in both the ′′G  and D tensors agrees 

with the direction of the compositional trajectory measured by our APT experiments after 16 

h of aging. 

9. In the Supplemental Materials sections, we compare nonlinear multivariate regression (NLMR) 

analyses with linear multivariate regression (LMR) analyses to obtain accurate values of the 

temporal exponents for the mean radius, p, and the temporal exponent for the supersaturations, 

r. In the trans-interface diffusion controlled (TIDC) model [98-102], the optimized exponent 

values were obtained for the maximum coefficient of determination using LMR analyses, 

which is incorrect for the nonlinear temporal evolution of the mean precipitate radius and the 

supersaturations. The optimized value of p using the LMR analyses for the current APT and 

TEM data is smaller than in the NLMR analyses (2.64 vs. 3.06) due to the strong dependency 

on the largest value with the temporal factor of p for linearization. It is the same for the 

evaluation of the exponents for the supersaturations, r. The smaller exponent value in the LMR 

analyses than that in the diffusion-limited LS and PV models was used to claim the correctness 

of the TIDC model; it is, however, a misleading approach for analyzing experimental data and 

is also a poor predictor of the coarsening mechanism.  
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10. The TDIC model also posits that the interfacial width, δ(t), increases with increasing <R(t)>.  

Our APT measurements are inconsistent with the TDIC model’s ansatz. That is, we observe 

that with an increasing mean radius, ( )R t , the normalized interfacial width, 
( )
( )
t

R t
δ

, 

decreases with increasing aging time through 1024 h: this ratio is the relevant physical quantity. 

And this ratio is proportional, to first order, to 1( )R t −
.  The decrease of δ(t) with increasing 

<R(t)> is also consistent with decreases in the interfacial widths in binary Ni-Al alloy systems 

[103], ternary [104], and multi-component alloys [105, 106].  
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Supplement A: Full 3D APT reconstructions for the microstructural evolution of γ′(L12)-
precipitates 

 
Fig. S1. The 3-D APT reconstructions of the γ(f.c.c.)-matrix and γ′(L12)-precipitate in the 
quaternary Ni-0.10Al-0.085Cr-0.02Re alloy aged for: (a) 0 h; (b) 0.25 h; (c) 1 h; (d) 4; (e) 16 h; 
(f) 64 h; (g) 256 h; and (h) 1024 h at 973 K (700 oC). Only a fraction (0.2%) of the Ni (green), Al 
(red), Cr (blue), and Re (dark yellow) atoms are displayed, for the sake of clarity, and the 
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γ(f.c.c.)/γ′(L12)-heterophase interfaces are delineated by red 0.14 mole-fr. Al iso-concentration 
surfaces. The lozenge-shaped precipitates are further evidence for the coagulation-coalescence 
mechanism of coarsening (Ostwald ripening) as opposed to the evaporation-condensation 
coarsening (“the large eat the small”) mechanism, which is implicit in the LS model for coarsening 
(Ostwald ripening). Note how the γ′(L12)-precipitates become more lozenge-shaped with 
increasing aging time, (f), (g), (h). 
 

Supplement B: Calculating Temporal Exponents from Experimental APT Data 

 B1. Comparison of linear and nonlinear analyses of the temporal exponents of the mean 
radius, , for the quaternary Ni–0.10Al-0.085Cr-0.02Re alloy aged at 700 oC (973 K) 

We calculated the temporal exponent, p, of the mean radius, <R(t)>, employing Eq. (5), 
( ) ( ) ( )p p

o oR t R t K t t− = − , using the nonlinear multivariate regression (NLMR) methodology 

[2], and plotted <R(t)> vs. aging time on linear scales, Fig. S2. We emphasize strongly that this 
basic equation is nonlinear. This 
plot is presented using a log-log 
format in the main text, Fig. 2, 
which we don’t use, however, to 
calculate the temporal exponent, 
p.  Again, K is the rate constant 
for coarsening of the mean 
radius, ( )R t , to is the time for 

the onset of stationary or at least 
quasi-stationary coarsening, and 

( )oR t  is the mean radius at a 

time to. The temporal exponent,
, is calculated using a NLMR 

analysis of the basic relationship 
for , with no assumptions 

being made about the four 
variables: , K, to, and ( )oR t

. Although p and K are the most 
important parameters in Eq. (5), 
the to and ( )oR t  values are 

significant to determine the 
correct values of p and K. Moreover, these parameters tell us when the coarsening regime model 

( )R t

p

( )R t

p

 

Fig. S2. Nonlinear multivariate regression (NLMR) 

analysis of the temporal exponent, p, in   versus 

time, t, in hours plot.  The data is plotted for all the aging 
times utilized; only the data for t ≥ 4 h are included in the 
analysis because after 4 h the volume fraction of γ′(L12) is 
asymptotically approaching its equilibrium value. The 
goodness of fit is represented by the minimization of Chi-
squared (χ2). 

( ) p
R t
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works and what is the <R(t)> value. The SciPy library in the Python module [3] is utilized to solve 
a nonlinear least-squares problem with bounds on the variables. The goodness of fit of the curved 
feature is represented by Chi-squared (χ2), which is defined by:  

2
2

2

( )i i

i i

y fχ
σ
−

= ∑            (S1) 

where  is the measured quantity, in this case, at a given aging time, and  is the 

associated modeled value from a nonlinear fit: the σ𝑖𝑖2 are the squared standard deviations for each 
data point. The reason for dividing by the squared standard deviations is to reduce the influence of 
large residuals, which contribute to the robustness of the solution. Sometimes it is also weighted 
by model values, : t-test, and by the degrees of freedom, the number of observed variables 

minus the number of fitted parameters: i.e., reduced Chi-squared (𝜒𝜒𝑟𝑟𝑟𝑟𝑟𝑟2 ). Herein, only the data for 
t ≥ 4 h are included in the fitting analysis because the volume fraction of γ′(L12) is asymptotically 
approaching its equilibrium value. A NLMR analysis yields K = 6.20 ± 2.4) x10-30 m3s-1 and a 
temporal exponent for <R(t)> of p = 0.32 ± 0.03; This value agrees, within error, with the value p 
= 3, predicted by the diffusion-limited Lifshitz-Slyozov (LS) model for binary alloys and the 
Philippe-Voorhees (PV) model for multi-component non-dilute alloys. The quantity to is 10,525 
seconds (2.92 h) and ( )oR t is 4.23 nm, which are in reasonable in agreement when the coarsening 

regime commences.  

 In contrast, the linear plots are derived by plotting  versus time (h) for different 

assumed temporal exponents, p = 2, 2.6, 3, and 4, Fig. S3. The goodness of fit to a linear model 
is obtained from the coefficients of determination, ξ2, which is based on linearizing Eq. 5. It is 
invalid, however, for nonlinear models and most statistical software programs can’t calculate it. 
Linear plots were used by Ardell [4, 5] to obtain optimized values of the rate constant, K, and the 
temporal exponent, p. We also calculated them in the same fashion for comparative purposes. A 
coefficient of determination for a linear fit is commonly denoted as an “R_squared (R2) value,” 
and are represented herein as  to distinguish it from the mean radius, . The quantity  

is calculated using two different sums of squares, the total sum of squares, , and the sum of 

square residuals, :  

        (S2) 

        (S3) 

         (S4)  

iy ( )R t if

if

( ) p
R t

2ξ ( )R t 2ξ

totSS

resSS

( )2
tot i

i
SS y y= −∑

( )2
res i i

i
SS f y= −∑

2 1 res

tot

SS
SS

ξ = −
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where  is the mean of all measured 

-values, and  is by definition a 
number between 0 and 1, which 
measures how much better is a given 
model than a control model. The better 
the linear regression fits the data, the 
closer the value of is to 1.  The linear 

plots of   versus time (h) plots 

for  values of 2, 2.6, 3, and 4, have the 

largest values of with 0.9996 at p = 

2.6. A large value of the quantity  is 
not indicative of a good fit in curve 

fitting because linear plots of   

versus time (h) have a strong dependence 
on the largest  due to the power 

factor of p. For example, the largest 
value of  with 0.9996 is obtained for p 
= 2.6, the deviations from a linear fit at 4 
and 64 h are clearly visible in the inset 
graph, Fig. S3(b). This trend is also 
found in Fig. S3(a) and (d) for linear 
fitting at p = 2 and 4; it is, however, 
minimized at p = 3. However, the linear 

fits of   versus time (h) for p = 3 

produce negative values when the time 
equals zero; for example, the linear 
equations for p = 3 and 4, Fig. S3(c) and 
(d), are 3( ) 0.0054 2.528R t t= − and 

4( ) 0.140 20 88 2 .19R t t= −

,respectively, implying that the y-
intercepts of the linear fits have negative 
values at time zero, which is nonphysical. These deviations at the initial time are underestimated 
through the power of p for the ( )R t values in the linear fitting model. 

y

iy 2ξ

2ξ

( ) p
R t

p
2ξ

2ξ

( ) p
R t

( )R t

2ξ

( ) p
R t

 

Fig. S3.  versus time plots for  values of: 

(a)  = 2; (b)  = 2.6; (c)  = 3; and (d)  = 4, for 
their associated linear fits. The coefficient of 
determination, , is given for each linear fit to the 
data.  

 

( ) p
R t p

p p p p

2ξ
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The other issue for the linear fitting 
model is that the optimized exponent p-
values are much smaller than the nonlinear 
fitting value. Fig. S4 displays the chi-
squared, χ2, and the coefficients of 
determination, , as a function of the 
temporal exponent p. Due to the 
characteristics of equations S1-S4, Chi-
squared (χ2) employs the minimum value, 
while the coefficients of determination,  
utilizes the maximum value close to 1. The 
minimum and maximum values of χ2 and 

are p = 3.06 and 2.64, respectively. 
These values are obtained when all the 
variables, p, K, to and ( )oR t  are included. 

Without the to and ( )oR t values for fitting 

(red curves), which Ardell performed [4, 
5], the minimum and maximum values of χ2 
and are at p = 3.13 and 2.78, 
respectively, which are slightly larger than 
the values of fitting with all variables. The 
χ2- and -curves with respect to p have 
smaller curvatures without the to and 

( )oR t  because the remaining constant for 

the linear fitting of is the rate 

constant K, which limits the goodness of 
fitting. In the coarsening experiments of the γ´(L12)-precipitates in a Ni-based alloy, it is clear that 
there is a point at which stationary coarsening occurs, which is when the volume fraction is closest 
to its equilibrium value. Moreover, to and ( )oR t  obtained from the NLMR method coincide with 

the experimental values of when stationary coarsening commences, therefore they need to be 
included for accurate fitting of the experimental APT data.  

The difference in the best fitting value of the exponent, p, between nonlinear and linear 
analyses is due to the difference of the weighting values in the χ2- and -tests. In the linear fit of 

, the largest value of <R(t)> occurs at the longest times and it has the most impact on the 

goodness of fit , whereas in the nonlinear fit, the effect of the largest  value is reduced 

2ξ

2ξ

2ξ

2ξ

2ξ

( ) p
R t

2ξ

( ) p
R t

( )R t

 

Fig. S4.  The Chi-squared, χ2, and the coefficient 
of determination, , as a function of the 
temporal exponent p derived from: (a) a 
nonlinear multivariate regression (NLMR) 
analysis; and (b) linear regression analysis, 
respectively, with (black-dashed curve) and 
without (red-solid line) the variables, to and 

( )oR t . 

2ξ
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because the square of the residuals, 2( )i iy f− , is weighted by the squared deviations for each data 

point, σ𝑖𝑖2 , Eq. S1. For this reason, although the linear regression and the coefficients of 
determination, , are easier and simpler to calculate, it does not, however, represent the goodness 

of fit for curve fitting. The quantity is clearly not increasing linearly with time; therefore, 

the linear fit of versus time is a misleading approach for analyzing experimental data and 

it is also a poor predictor of how the data actually behave. 

To summarize, determining the  value using a nonlinear multivariate regression 

(MNLR) analysis by including the values of to and ( )oR t  is the most appropriate and accurate 

way of analyzing nonlinear data as opposed to choosing a value of  and then plotting  

versus time and calculating the coefficients of determination, which has serious problems 
associated with it. 
 

  

2ξ

( )R t

( ) p
R t

p

p ( ) p
R t
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B2. Determination of the temporal exponents of the supersaturations, ' ( )iC tγ∆ . 

The Chi-squared (χ2) approach used for <R(t)> is also applicable for determining the 
temporal exponents for the supersaturations, ( )iC t∆ . The nonlinear multivariate regression 
(NLMR) methodology  is performed by plotting the Al, Cr, and Re supersaturations versus aging 
time, t, which yields the optimized exponents, r, with the smallest values of Chi-squared, χ2.  Fig. 
S5 displays plots of χ2 versus the temporal exponent, r, for the solute elements, Al, Cr, and Re, in 
the γ(f.c.c.)-matrix and γ′(L12)-precipitates, respectively. The optimized exponents, r, of the Al, 
Cr, and Re supersaturations, iC∆ , associated with the minimum values of χ2, are 2.90 ± 0.16, 2.89 
± 0.19, 2.80 ± 0.15 for the γ(f.c.c.)-matrix and 3.02 ± 0.13, 2.79 ± 0.17, 0.32 ± 0.18 for the γ′(L12)-
precipitate, respectively. All values of the temporal exponents (r) from these plots match, within 
error to r = 3, as predicted for the diffusion-limited LS model for binary alloys and the PV model 
for multi-component alloys.  The temporal exponents, r, have values that are about 0.1-0.2 less 
than the ideal value (r = 3) in γ(f.c.c.)-matrix, and they are a little higher in the γ′(L12)-precipitates, 
which is most likely due to the fact that the solutes’s diffusivities in γ(f.c.c.) are about three to four 
times faster than in the γ′(L12)-precipitates, which are ordered.  

 

Fig. S5. Chi-squared, χ2, plots as a function of the temporal exponent, r, derived from a nonlinear 
multivariate nonlinear regression (NLMR) analysis for the Al, Cr, Re supersaturations: (a, b, c) in the 
γ(f.c.c.)-matrix; and (d, e, f) in the γ′(L12)-precipitate. The minimum-χ2 and temporal exponent, r, are 
given for each fit. 
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The temporal evolution of the supersaturations of Al, Cr, and Re are displayed in the Fig. S6, and 

their numerical values are listed in Table S1. The absolute values of iC∆  for t ≥ 4 h were fitted 

using the NLMR methodology, employing the minimization of Chi-squared (χ2), Fig. S5, and 

represented by its reciprocal value (1/r), Fig. S6. The opposite direction for the relief of the Cr 

supersaturation for t ≤ 0.25 h in γ′(L12)-precipitates Fig. S6(e) is represented by a negative value. 

The temporal exponents are represented as the reciprocal value (1/r). With increasing aging times, 

the values of iC∆  are decreasing continuously to their equilibrium concentrations, which agrees 

with the PV model (red-, blue- and orange-dotted curves).  

 
 

 

 

 
Fig. S6. The temporal evolution of (a, b, c) the Al, Cr, and Re supersaturations in the γ(f.c.c.)-matrix, 

( )iC tγ∆ , and (d, e, f) Al, Cr, and Re supersaturations in the γ′(L12)-precipitates, ' ( )iC tγ∆ . The absolute 

values of iC∆  for t ≥ 4 h were fitted using the NLMR methodology employing the minimization of 

Chi-squared (χ2). The opposite direction of the Cr supersaturation for t ≤0.25 h in γ′(L12)-precipitates 
(e) is represented as a negative value. The temporal exponents are represented by the reciprocal value 
(1/r).    
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Table S1. Temporal evolution of the supersaturations, ( )iC t∆ , in the γ(f.c.c)-matrix and the 

γ´(L12)-precipitate phase. The opposite direction for the relief of the Cr supersaturation for t ≤ 

0.25 h in γ′(L12)-precipitates is represented by a negative value. For aging times, t ≤1 h, the large 

scatter in the values of the supersaturation is due to the disparate diffusivities of each element in 

the transient regime. 

973K 
Time (h) 

γ(f.c.c)-Matrix Supersaturations (mole-fr.) 
|∆𝐶𝐶𝑁𝑁𝑖𝑖

𝛾𝛾 | |∆𝐶𝐶𝐴𝐴𝐴𝐴
𝛾𝛾 | |∆𝐶𝐶𝐶𝐶𝑟𝑟

𝛾𝛾 | |∆𝐶𝐶𝑅𝑅𝑟𝑟
𝛾𝛾 | 

 
0 0.0197 ± 0.0021 0.0527 ± 0.0016  0.0251 ± 0.0015 0.0078 ± 0.0009 

0.25 0.0124 ± 0.0014 0.0417 ± 0.0010 0.0227 ± 0.0011 0.0068 ± 0.0008 
1 0.0063 ± 0.0011 0.0282 ± 0.0008 0.0157 ± 0.0009 0.0061 ± 0.0007 
4 0.0032 ± 0.0012 0.0145 ± 0.0009 0.0074 ± 0.0010 0.0039 ± 0.0007 
16 0.0017 ± 0.0011 0.0070 ± 0.0008 0.0029 ± 0.0010 0.0023 ± 0.0006 
64 0.0013 ± 0.0010 0.0052 ± 0.0008 0.0028 ± 0.0009 0.0011 ± 0.0006 

256 0.0008 ± 0.0010 0.0035 ± 0.0007 0.0017 ± 0.0009 0.0010 ± 0.0005 
1024 0.0003 ± 0.0011 0.0020 ± 0.0008 0.0009 ± 0.0006 0.0008 ± 0.0004 

 

Time (h) 

γ’(L12)-precipitate Supersaturations (mole-fr.) 

|∆𝐶𝐶𝑁𝑁𝑖𝑖
𝛾𝛾′| |∆𝐶𝐶𝐴𝐴𝐴𝐴

𝛾𝛾′| |∆𝐶𝐶𝐶𝐶𝑟𝑟
𝛾𝛾′| |∆𝐶𝐶𝑅𝑅𝑟𝑟

𝛾𝛾′ | 
 

0 0.0320 ± 0.0084 0.0182 ± 0.0100 -0.0082 ± 0.0059 0.0056 ± 0.0030 
0.25 0.0229 ± 0.0122 0.0146 ± 0.0109 -0.0031 ± 0.0063 0.0051 ± 0.0036 

1 0.0128 ± 0.0052 0.0101 ± 0.0046 0.0030 ± 0.0019 0.0058 ± 0.0010 
4 0.0091 ± 0.0028 0.0086 ±0.0025 0.0031 ± 0.0014 0.0036 ± 0.0008 
16 0.0071 ± 0.0025 0.0047 ± 0.0022 0.0014 ± 0.0013 0.0038 ± 0.0007 
64 0.0059 ± 0.0012 0.0044 ± 0.0010 0.0009 ± 0.0006 0.0024 ± 0.0003 

256 0.0026 ± 0.0008 0.0020 ± 0.0006 0.0006 ± 0.0003 0.0012 ± 0.0002 
1024 0.0017 ± 0.0010 0.0015 ± 0.0007 0.0005 ± 0.0004 0.0007 ± 0.0002 

 

 
The linear plots of Al, Cr, Re, for comparison, are derived by fitting the supersaturations,

( )iC t∆ , versus time to the power of -1/r (s-1/r), Fig. S7. The data for t ≥ 4 h are utilized, which is 
the same as for the NLMR analyses. The goodness of fit using a linear model is evaluated using 
the coefficients of determination, . The linear plots of ( )iC t∆  versus time, t, to the power of -

1/r (s-1/r), for the highest value of the coefficient of determination, , are reasonable (see insert). 
These linear plots have a strong dependency on the largest value of the supersaturation at a time 
to the power of -1/r (s-1/r).  Most of the linear regression fitting lines pass through the data point at 

2ξ
2ξ
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t = 4 h (5th point from the left-hand side (green circles)). The optimized values for the least- squared 
values of  are 2.62, 2.53, 2.68 for the γ(f.c.c.)-matrix, and 3.18, 2.58, 3.58 for the γ′(L12)-
precipitate; these values display, however,  more scatter than the values obtained from the smallest 
Chi-squared, χ2, values in Figs. S5 and S6, which is due to the sensitivity of  on the largest 
supersaturation at t = 4 h. Whereas, the nonlinear plots of the Al, Cr, and Re concentrations has an 
even distribution on time from 4 h - 1024 h, Fig. S5. As noted, the effect of the large 
supersaturations is weighted by the squared deviations for each data point, σ𝑖𝑖2, utilizing the Chi-
squared, χ2, plots. Therefore, the data plotted linearly cannot be used to identify the correct value 
of the temporal exponent of the supersaturations, r, accurately. Again, the most appropriate and 
accurate way of plotting the data is to plot ( )iC tγ∆  and ' ( )iC tγ∆  versus time, t, and determine the 
temporal exponent using a nonlinear multivariate regression (NLMR) analysis.  

2ξ

2ξ
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Supplement C: Temporal evolution of the γ(f.c.c.)/ γ′(L12)-interfacial width in a quaternary 
Ni-Al-Cr-Re model superalloy 

Fig. S8 displays the concentration profiles of Ni, Al, Cr, and Re across the γ(f.c.c.)/ γ′(L12) 
heterophase interface for the quaternary Ni-Al-Cr-Re model superalloy after 1 h of aging. The 
interfacial widths, δ(t), were measured by fitting the concentration profiles to Richards’ 
asymmetric sigmoid function [1]: 

 

Fig. S7. The supersaturation, ( )iC t∆ , plotted versus aging time to the power of -1/r (s-1/r), for Al, Cr, 

Re (a, b, c) in the γ(f.c.c.)-matrix and (d, e, f) in the γ′(L12)-precipitates. The maximum coefficient of 
determination, , is given for each linear fit. It is emphasized strongly that this linear fit is not the best 
method for determining a temporal exponent for a supersaturation. 

 

2ξ
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   (S5) 

where cmin is the lower asymptote, cmax is the upper asymptote, θ is the growth rate, xo is the shifting 
value of the center of a concentration profile, and v is the skewness parameter. The ideal sigmoidal 
function is symmetric around xo with a value of v  = 1, which is called the logistic function. 
Whereas when v converges to zero the curve becomes the Gompertz function [6], which describes 
the extreme case of asymmetric growth. The diffusivities of the elements are different in the 

γ(f.c.c.)- and γ′(L12)-phases; that is, diffusion in the ordered γ′(L12)-phase is two to three orders 
of magnititude slower than in the disordered γ(f.c.c.)-phase. Therefore, the concentration profiles 
across the γ(f.c.c.)/γ′(L12) heterophase can be asymmetric. Ardell [7] used a symmetric sigmoid 
function to measure the interfacial width; an asymmetric concentration profile cannot, however, 
be fitted accurately with this function. The concentration profiles are initially asymmetric. This 
problem can be corrected by employing a skewness parameter, v, in Eqn. S5. The interfacial 
widths, δ(t), are measured from the horizontal distances between the 10th and 90th percentile values 

 
Fig. S8. The concentration profiles of Ni, Al, Cr, and Re across the γ(f.c.c.)/γ′(L12) heterophase 
interface for the quaternary Ni-Al-Cr-Re model superalloy after 1 h at 973 K. Positive distances are 
into the γ′(L12) precipitates, while negative distances are into the γ(f.c.c.) matrix. The interfacial widths, 
δ(t), were measured by fitting the concentration profiles to Richards’ asymmetric sigmoid function [1] 
using the horizontal distances between the 10th and 90th percentiles of the concentration differences 
between the γ(f.c.c.) and γ′(L12) phases. The parameter, v , represents the skewness of the sigmoid 
function, see eq. (S5).   
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of the concentration differences between the γ(f.c.c.)- and γ′(L12)-phases. The five parameter 
Richards’s function produces a more accurate fit to the experimental data with smaller Chi-
Squared, χ2 -values. This asymmetric tendency is more noticeable at earlier aging times. At a t =1 
h, all the concentrations at the γ(f.c.c.)/γ′(L12) heterophase interface are skewed toward the left-
hand side of the γ(f.c.c.) phase with v being <1. The Re concentration profile has the smallest 
skewness value, v = 0.01. This skewness disappears at longer aging times, and the concentration 
profiles become symmetrical with v = 1. The width of each interface is represented by two dashed 
vertical green lines at x-positions that coincide with the 10th and 90th percentiles of the 
concentration difference between the γ(f.c.c.)- and γ′(L12)-phases. The shifting value of  the center, 
xo, is located close to the left-hand side of the interfacial region because of the smaller value of the 
skewness parameter, which is < 1. Another important feature is that each element has a different 
interfacial width. For example at an aging time of 1 h, Cr has the largest value, 1.88 ± 0.15 nm, 
whereas Re has the smallest value, 1.68 ± 0.17 nm, which is a reflection of their differerent 
diffusivities in Ni. At an earlier aging time, t ≤1 h, the partitioning of Re between the γ(f.c.c.)- and 
γ′(L12)-phases has the smallest value. Hence, the γ(f.c.c.)/ γ′(L12) heterophase interface for Re is 
in a transient state at t ≤1 h .  

The measured interfacial widths, δi(t), between the γ(f.c.c.) and γ′(L12) phases are 

normalized by the mean radius, , Fig. S9. The resulting normalized widths, 
( )
( )
t

R t
δ

, 

decrease unambiguously with increasing  by a factor of more than 10 as the time varies 

from 0.25 to 1024 h for all the elements. A NLMR analysis of the normalized interfacial widths 
was performed employing a decaying power-law function:  

( ) ( )
( )
t R t

R t
βδ α=        (S6)  

where α is the rate constant, and β is the temporal exponent. All the temporal exponents , β ,  are 
negative and dimensionless: -1.17 ± 0.02, -1.07 ± 0.01, -0.97 ± 0.01, and -0.82 ± 0.01 for Ni, Al, 

( )R t

( )R t
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Cr, and Re, respectively. The absolute values of the interfacial widths of Ni and Al decrease, 
whereas those of  Cr and Re increase with increasing time and mean radius.  All the the normalized 

widths,  
( )
( )
t

R t
δ

, decrease, however, with increasing time to first order as 1( )R t − . The trans-

interface-diffusion-controlled (TIDC) model [8-10] posits that the mean precipitate radius, ( )R t

, increases with aging time, t, according to the equation ( ) pR t Kt= , where p is an exponent (2 

≤ p ≤ 3) related to the width of the interface. Ardell [10] obtained the optimized p-value using the 

precipitate size distribution (PSD) and an optimized coefficient of determination,  , which is 

incorrect because of the nonlinear behavior of the temporal evolution of ( )R t , eqn. S2. The 

TIDC model also assumes that the fluxes through the interface are proportional to the differences 
between the concentrations or chemical potentials of each element in the interfacial profiles. Based 
on this assumption, Ardell and Ozolins [10] made the ansatz that the interfacial width, δi(t), 
increases with increasing aging time, t, as ( ) pR t Kt= , where p = m + 2: m is the exponent’s 

value for the temporal evolution of δi(t). Our APT measurements are, however, inconsistent with 
the TIDC model’s assumptions. That is, we observe an increasing mean radius, ( )R t , and 

2ξ

Fig. S9. Interfacial width, δi(t), between the γ(f.c.c.) and γ′(L12) phases normalized by the mean radius, 
, versus <R(t)>. The time scale (h) is indicated on the upper abscissa of the plots and the 

experimental data points have plus or minus two standard deviations (2σ).  It is clear from these 
experimental results that this ratio decreases with increasing <R(t)>. 

( )R t
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concomitantly decreasing normalized interfacial widths, 
( )
( )
t

R t
δ

, with increasing aging time for 

all the Ni-based alloys we have studied to date: binary, ternary, quaternary, quinary, and sexinary. 
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