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Abstract2

Since greenhouse gas mitigation efforts are being mostly implemented in cities, the3

ability to quantify emission trends for urban environments is of paramount importance.4

However, previous aircraft work has indicated large daily variability in the results. Here5

we use measurements of CO2, CH4 and CO from aircraft over five days within an in-6

verse model to estimate emissions from the D.C./Baltimore region. Results show good7
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agreement with previous estimates in the area for all three gases. However, aliasing8

caused by irregular spatiotemporal sampling of emissions is shown to significantly im-9

pact both the emissions estimates and their variability. Extensive sensitivity tests allow10

us to quantify the contributions of different sources of variability and indicate that daily11

variability in posterior emissions estimates is larger than the uncertainty attributed to12

the method itself (i.e. 17% for CO2, 24% for CH4 and 13% for CO). Analysis of hourly13

reported emissions from power plants and traffic counts shows that 97% of the daily14

variability in posterior emissions estimates is explained by accounting for the sampling15

in time and space of sources that have large hourly variability and, thus, caution must16

be taken in properly interpreting variability that is caused by irregular spatiotemporal17

sampling conditions.18

Introduction19

As cities move toward mitigating their carbon footprints, estimating their emissions using20

atmospheric observations is a valuable way to assess the efficacy of mitigation policies. Recent21

work1–7 has already demonstrated the capability of top-down (atmospheric measurement-22

based) estimation methods to inform bottom-up inventory methods for some greenhouse23

gases (GHGs). On regional and urban scales, top-down methods have been shown to be24

effective at estimating emissions using either tower-based or aircraft-based concentration25

measurements.8–1226

Atmospheric trace gas concentration measurements from airborne platforms have been27

used extensively to estimate emissions from a region. Both oil and gas basins and urban28

regions have been studied using mass balance methods,13–17 including the Washington D.C./29

Baltimore metropolitan area.11,12 Researchers have also used aircraft observations with trans-30

port models in an inversion framework to estimate emissions at regional,18–21 urban22,23 and31

local scales.2432

Several studies have investigated the source of daily variability in aircraft-based top-down33
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emissions estimates for a given region. Variability in estimated emission rates has previously34

been attributed to uncertainty in the mass balance methodology, which would confound or35

obscure real emissions changes.25,26 More recent work using airborne measurements over oil36

and gas fields has shown that temporal variability in emissions must be considered when37

interpreting estimates from single-day flights, however. Lavoie et al.27 found significant38

temporal variability in single source emissions of methane (CH4) from the Eagle Ford oil and39

gas production basin in Texas, while Schwietzke et al.28 investigated the effect of episodic40

CH4 emissions from natural gas facilities on the regional mass balance estimates in the41

Fayetteville Shale.42

In this study, we use observations collected during five aircraft flights over a two-week43

period in February 2016 within a Bayesian inversion framework to: 1) estimate emissions44

of CO2, CH4 and CO from the cities of Washington D.C. and Baltimore, MD, (Fig. 1), 2)45

quantify the uncertainty, and its sources, in each day’s emissions estimate and, 3) explain46

the cause for the observed daily variability in the estimated emissions.47

To this end, we use an ensemble of inversions where prior emissions, transport model48

and observation dataset were varied. Ensemble spread and correlations between six trans-49

port models were used to construct the full model-data mismatch covariance matrix, and50

the background mole fraction was first estimated by using sensitivities to nearby outside51

sources and then further optimized within the inversion. Additionally, sensitivity tests were52

conducted investigating the impacts of background choice, omitting correlations in the trans-53

port error covariance matrix and changing the magnitude of the prior emission errors. We54

use the inversion ensemble and sensitivity tests to quantify the different sources of variabil-55

ity and, thus, understand the uncertainty inherent in the inverse methodology. We then56

investigate daily variability in estimated emissions and to what extent this variability can57

be explained by aliasing caused by irregular sampling of spatial and temporal variability in58

large sources within the study domain.59
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Figure 1: Computational domain (0.03° resolution) showing the inversion domain (black
rectangle) and the outer domain (entire map) used to account for nearby outside sources.
Flight tracks, Census-designated urban areas (gray shaded regions), the Marcellus, Devo-
nian (Ohio) and Utica shale plays in the Appalachian basin and locations of the geometric
center (centroid) of the oil and gas fields are also shown.29 Total emissions are reported
here within the accounting box (red polygon) defined by the corners: (39.80°N, 76.60°W),
(39.00°N,78.00°W), (38.25°N, 77.25°W) and (39.20°N, 76.00°W).

Methods60

Observations61

Trace gas observations from two airborne platforms were used in this study: Purdue Univer-62

sity’s Beechcraft Duchess, housing the Airborne Laboratory for Atmospheric Research, or63

ALAR, (Purdue) and the University of Maryland’s Cessna 402B research aircraft (UMD).64
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The two aircraft flew simultaneously for 5 days, mostly during afternoon hours, collecting65

trace gas mole fraction and meteorological data along transects at different altitudes that66

covered the full depth of the PBL (Fig. 1 and SI for further details). To determine the effect67

of withholding observations from the inversion system, we alternatively used CO2 and CH468

observations from both aircraft, the UMD aircraft alone, or the Purdue aircraft alone, as69

part of the ensemble of inversions. Purdue did not measure CO, thus the CO inversions used70

only UMD observations.71

Bayesian Inversion Framework72

We estimate trace gas emissions using a Bayesian inverse analysis30,31 as in Lopez-Coto et73

al.32 Optimum posterior estimates of fluxes are obtained by minimizing the cost function J :74

J (x) =
1

2

[
(x− xb)

T P−1
b (x− xb) + (Hx− y)T R−1 (Hx− y)

]
(1)

where xb is the first guess or a priori state vector, Pb the a priori error covariance75

matrix which represents the uncertainties in our a priori knowledge about the fluxes and R76

the error covariance matrix, which represents the uncertainties in the observation operator77

H and the observations y, also known as model-data mismatch. The observation operator78

H is constructed using the sensitivity of observations to surface fluxes, or footprints (units:79

ppm µmol-1 m2 s) generated with a transport model. Here we modify the formulation to80

include optimization of the background in the inversion (see SI for details).81

Transport Models82

In order to generate an ensemble of transport models and therefore better represent the83

uncertainties, NOAA’s Hybrid Single-Particle Lagrangian Integrated Trajectory dispersion84

model (HYSPLIT)33 was driven with 5 different meteorological products: the High Resolu-85

tion Rapid Refresh (HRRR) NOAA operational forecast product34 and 4 configurations of86
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the Weather Research and Forecasting model (WRF35) provided by the National Center for87

Atmospheric Research (NCAR) that included 4 different PBL parametrizations, 2 sources of88

initial and boundary conditions and the inclusion of the Building Energy Parameterization89

(BEP) urban canopy model in one of the configurations. In addition, the vertical mixing90

option in HYSPLIT also varied (Table S1 and SI for details).91

Emissions Inventories92

Nine CO2 emissions inventories were used in the inversion to investigate the resultant vari-93

ability in the posterior emissions (Table S2). Four of them (Vulcan (VU36), ODIAC (OD37),94

FFDAS (FF38) and ACES (AC39) are existing anthropogenic CO2 inventories but for a95

different year; one provided only on-road emissions (DARTE (DA40)); one is the mean of96

the previous five (EB); and the rest (flat (FL) and simple (SP32)) are constructed here to97

complement the ensemble of prior fluxes. In addition, we use the ACES mean for February98

between 12 - 19 EST (AC2). Since DARTE only provided on-road emissions, a simple calcu-99

lation of urban emissions was used to complement it. CH4 prior emissions were represented100

using EPA’s gridded inventory (EP) for 2012,41 EDGAR v4.3.242 for 2012 (EG), the mean101

of the previous two (EB), and a flat prior (FL). For CO we use EDGAR v4.3.2 (EG),43102

the National Emissions Inventory (NEI) for 2011 from EPA (NI,44), the annual mean ACES103

inventory (AC as in the CO2 case) scaled using the mean observed ∆CO:∆CO2 ratio (6.18104

ppb/ppm) and, again, a flat prior (FL).105

Background Determination106

Properly accounting for the background is critical for the inversion as the flux correction is107

based on the observed enhancements above the background value. The impact of upwind108

sources can be important especially in areas such as the one under study here, where multiple109

sources exist in the surroundings (Fig. 1). Thus, we estimated the contribution from outside110

the domain using a Lagrangian approach by convolving footprints from a reduced set of our111
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ensemble of transport models and prior fluxes. We extended the domain to the full extent112

shown in Fig. 1. The full background was then represented as the ensemble mean of the113

contribution from outside of the domain of interest (yoc, time-varying along the track) plus114

the long-range background (ylr, constant for a given flight). This methodology provided a115

time varying a priori background that included uncertainties that was then further optimized116

in the inversion (SI).117

Error Covariances118

i) Prior Flux Error Covariance119

The prior flux error covariance represents the uncertainties in the prior estimation of the120

fluxes. Although bottom-up CO2 emissions estimates are made on global and national scales121

with small uncertainties, considerable errors are introduced when the emissions are disaggre-122

gated to grid cells, due to the usage of proxies to spatially distribute emissions.45 Reported123

errors at grid cell levels range from 4% to more than 190%, averaging about 120%.46 For CH4124

and CO it is likely that the errors at grid cell levels are even larger than for CO2 because125

of the less well-known characteristics of these species’ sources. Given these reported uncer-126

tainties at grid cell levels, we use a value of 100% of the grid cell emissions as uncertainty in127

this work for all the prior inventories and gases with the exception of FFDAS where we use128

a scaled up version of the provided uncertainties and the EB case for CO2 where we use the129

standard deviation of the ensemble at each pixel to represent the uncertainties. In all cases,130

a covariance exponential model in space was assumed. (See SI for details)131

ii) Outside Contribution (background) Prior Error Covariance132

We consider a double exponential model, in space and time, to represent the error covari-133

ance of the outside contribution (yoc) along the track. The diagonal is populated with the134

uncertainty of the initial guess outside contribution based on the variance from the different135

transport models and prior fluxes (SI).136
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iii) Model Error137

The model-data mismatch error covariance was assumed to have three independent con-138

tributions: 1) uncertainty in the observations, 2) uncertainty in the long-range background139

concentration and 3) uncertainty in the transport model representation. The uncertainties in140

the observations have their origin in the measurement uncertainties and the representativity141

of the assigned mean to the averaging period (one minute in our case). This contribution is142

not correlated and thus the covariance was considered diagonal. The long-range background143

(ylr) determination also introduces uncertainty into the system. This contribution was also144

assumed to be uncorrelated. Lastly, the transport model uncertainty is complex with several145

previously published methods for its determination. Here we tested two methods, both based146

on the ensemble of transport models. First, we tested a diagonal covariance populated with147

the inter-model variance simulated using the same surface fluxes (the prior emissions in each148

inversion case) in all the transport models similar to Engelen et al.47 and Desroziers et al.48149

As stated in Engelen et al.,47 this estimate can be too large for some models and too small150

for other models, thus, in order to better represent the fidelity of each model and for each ob-151

servation, we weighted the inter-model standard deviation with the relative error computed152

by using the wind measurements from the aircraft. This definition of the transport model153

error covariance assumes there are no correlations in space and time which is unlikely to be154

true. Therefore, for the second method, which was used in the main ensemble of inversions,155

we computed the correlations between the different transport models and included them in156

the covariance matrix, leaving the first method as a sensitivity test (see SI for details).157

Sensitivity Analysis158

As described in the previous sections, the main inversion ensemble was composed by different159

prior emissions (9 for CO2, 4 for CH4 and 4 for CO), 6 transport models and 3 combinations of160

the observations for 5 flight days, totaling 1,290 inversions (810 + 360 + 120). This inversion161

ensemble was configured with the background and prior and transport error covariances162
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choices that are most reasonable for the analysis. However, in order to additionally test163

the sensitivity of the posterior estimates to inversion setup choices that might not be as164

appropriate, we also investigated the effects of changing the background determination, the165

transport error covariance, and the prior flux error covariance, separately from the main166

inversion ensemble. Specifically, for the background test, we performed the inversion 1)167

without optimizing the Lagrangian background, 2) scaling the Lagrangian background, and168

3) selecting a single constant value along the track as background defined by the 1st, 5th169

or 10th percentile, to compare with our base case of optimizing the background (OBC1).170

For the scaled background case, a single scaling factor for each flight was applied to the171

background time series. This scaling factor was the ratio of posterior to prior emissions for172

the inversion case where the background was not optimized or scaled. We also tested the173

impact of using only a diagonal transport error covariance as well as reducing and increasing174

the uncertainty in the prior fluxes (50%, 100% and 200%). This sensitivity test resulted in175

a total of 12 cases with 15,480 individual inversions, (Table S3).176

Both the main inversion ensemble and the sensitivity test were analyzed in the same177

fashion, grouping by cases (prior, transport, day, observation dataset or sensitivity case)178

and then computing the mean and quantiles as shown in Figs. 2, S7, S10, S13 and S16.179

The variability associated with each grouping was then computed as the standard deviation180

among each case’s mean value.181

Normalized Observed Emissions182

We construct an analysis to investigate whether the hourly variability of the energy gen-183

eration and traffic sectors’ emissions, combined with the specific flight pattern on a given184

day, can explain the daily variability in the posterior CO2 estimates. Both of these sources185

have publicly available data at the hourly level: Continuous Emissions Monitoring System186

(CEMS49) data for power plants and Travel Monitoring Analysis System (TMAS50) data187

for traffic counts. First, we sum all the power plant emissions and traffic counts within the188
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footprint (we use the ensemble mean footprint as a mask) of each observation used in the189

inversion and within the defined accounting box. We match the hourly power plant emissions190

and traffic counts with the observation time, accounting for transport time to the point of191

the observation at hourly temporal resolution. Then we average this value (the sum of all192

traffic counts or powerplant emissions within each footprint) over all observations in each193

flight for each of the five flights. Using an average allows us to account for the difference194

in the number of observations per flight. Because traffic counts and power plant emission195

rates are in different units, we define the normalized observed emissions (nOE), allowing for196

the combination of the two sectors. We normalize counts and power plant emissions each to197

their respective campaign mean so that the campaign mean is equal to one. Furthermore,198

we use the relative contribution of the different sectors in the ACES 2011 annual mean39
199

within the defined accounting box to construct the normalized observed emissions (nOE) for200

each flight as follows:201

nOEi = fe
CEMSi

〈CEMS〉 + fr
TMASi

〈TMAS〉 + 1− (fe + fr) (2)

In the above definition, i is the index indicating the flight, fe is the contribution of the202

electricity production sector (16%) and fr is the contribution of the traffic emissions (46%)203

in ACES. The last term of Eq. 2 represents the remainder of anthropogenic CO2 emission204

sectors. By this construction, the mean nOE for the campaign is also equal to 1.205

Results206

In the following subsections we present the main results of the analysis and discuss the207

variability and uncertainty of the emissions estimates. In this context, the terms variability208

and uncertainty are not used as synonyms. Rather, we use the term variability to describe209

how a property (posterior total emissions for the most part) changes (varies) with respect210

to different variables like time, space or model choices. The term uncertainty refers to the211
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ability of the inverse method to represent the measurand, and it combines all sources of212

variability for a single day’s estimate.213

Emissions Rates214

Our mean estimates for the defined accounting box are 87 ± 28 kmol s-1 for CO2, 0.42 ± 0.12215

kmol s-1 for CH4 and 0.59 ± 0.16 kmol s-1 for CO (mean ± 1-σ) where the bounds presented216

here represent the posteriors’ daily variability. Ren et al.11 using a mass balance method,217

estimated emission rates of 96 kmol s-1 for CO2, 0.57 ± 0.28 kmol s-1 for CH4 and 0.55 ±218

0.27 kmol s-1 for CO using the same flight observations as this study. In addition, Salmon et219

al.12 estimated a CO emission rate (also using a mass balance method) of 0.54 ± 0.47 kmol220

s-1 in February 2015. Our estimates are consistent with these within 1-σ uncertainties for221

both methods.222

The applied inversion methodology corrected the prior inventories (Fig. 2a,c,e) by quite223

different amounts leading to consistent results in the posterior emissions, with variability due224

to choice of prior of 11%, 13% and 6% (or 9.6, 0.055 and 0.035 kmol s-1) for CO2, CH4 and225

CO respectively (1-σ), significantly lower than the variability of the prior values themselves226

(flat prior included), 41%, 65% and 87% (or 20.8, 0.097 and 0.38 kmol s-1). The flat (FL)227

prior led to the largest range and IQR for all of the three gases due to the loose constraint it228

imposed on the inversion. For CO2, the FFDAS38 prior (FF) resulted in the lowest posterior229

estimates as well as the lowest range and IQR due to the low prior uncertainty assigned,230

making it hard for the inversion to deviate from the prior values. For CH4, the inversions231

using the 2012 EPA gridded inventory41 (EP) as a prior provided the lowest estimates,232

probably due to the lower prior emissions allocated into the urban areas and, therefore,233

lower prior uncertainties, making it harder to correct those areas. For CO, the scaled ACES234

inventory (AC) led to the lowest estimates. Variability due to transport model choice was235

15% for CO2, 13% for CH4 and 16% for CO (1-σ), (Figs. S7c, S10c and S13c). We note236

that HR and MY2 provided the highest and lowest estimates respectively, while MY and BL237
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had the most variable results. The observation dataset choice impacted the results the least,238

with only a 6 % standard deviation of the mean for CO2 and 10% for CH4 with very similar239

range and IQR for each of the three cases (Figs. S7d, S10d). In contrast to the relatively240

small effect of varying these three model choices (prior, transport model, and observation241

dataset), the daily variability of the estimates was 33% for CO2 and 28% for CH4 and CO242

(1-σ) (Figs. 2b,d,f). The mean estimates for each day do not overlap with the IQR of the243

other days and while the CO2 and CO estimates follow a very similar pattern (as they have244

similar sources), they differ from that of CH4. In addition, the coefficient of determination245

between the daily emission estimates for the three gases is r2=0.90 for CO vs CO2, r2=0.40246

for CO2 vs CH4 and r2=0.19 for CO vs CH4. This suggests that the inversion is actually247

providing different estimates for each day, and that the posterior differences between days248

are not only the result of choices in the model set up.249

The spatial distribution of the averaged CO2 posterior emissions for each prior case250

shows that most of the emissions are coming from the urban areas, even in the flat prior251

case (Fig. S8). The results show that the roads (traffic emissions) and fine spatial scale252

features are only resolved in modeling results when high resolution inventories are used as253

the prior emissions. The inversion was able to spatially differentiate between the cities of254

Baltimore and Washington DC, correcting their emissions differently (Fig. S9): emissions255

from Washington, DC were adjusted upward in all cases while those from Baltimore were256

corrected downward in the cases of AC, AC2 and VU and only slightly upward for the rest.257

The spatial distribution of the averaged CH4 posterior emissions (Fig. S11) indicates that258

while some emissions are from urban areas, significant emissions occur NNE and NNW of the259

Washington - Baltimore metropolitan area as well, which is different than for CO2. All the260

CH4 priors were corrected upwards indicating an overall underestimation of emissions in the261

existing inventories (Fig. S12), with the strongest corrections applied to point sources outside262

urban areas. However, the urban areas were also corrected upward, with this correction being263

larger for EP than for EG or EB cases. Our posterior mean ratio to the 2012 EPA gridded264
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Figure 2: Boxplots of the total CO2, CH4 and CO estimated emission rate within the ac-
counting box grouped by: (a,c,e) the different inventories used as priors and (b,d,f) the
different research flights. The grey bar in panels (a,b) are the values provided by ACES,
scaled to totals of 2016, for February between 12 - 19 EST (referred as REF). Blue bars
indicate the 25th to 75th range, whiskers the range up to 1.5 times the IQR, x’s the outliers
(> 1.5 x IQR), red line the median, square markers the mean and the dotted line the pos-
terior mean. The circled pluses in panel (a,c,e) represent each prior’s total emissions. (See
methods section and Tables S1 and S2 for abbreviations)
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inventory (EP),41 2.73 ± 0.76, is in very good agreement with Ren et al.’s11 estimate of 2.8265

times the EPA values for the same region.266

The spatial distribution of the mean posterior CO fluxes (Fig. S14) indicates that the267

CO emissions largely originate in the urban areas, as they do for CO2. In addition, the268

correction (Fig. S15) is mostly applied in the urban cores, increasing the fluxes for AC, FL269

and EG while strongly decreasing the emissions for NI case. Due to the construction of AC270

for CO (using the ACES CO2 inventory scaled by mean observed ∆CO:∆CO2 ratio), power271

plant emissions were present in the prior, while we expect the power plants ratio to be small272

compared to other sources. The inversion was able to correct down at least a few of them273

(blue dots in Fig. S15a). The NEI CO prior case was strongly corrected down over all urban274

areas, even in Philadelphia, indicating that the inversion is able to correct underestimation275

as well as overestimation in the prior. The NEI CO overestimation has been extensively276

reported in the literature;22,23,51 specifically in the DC/Baltimore region a close to 50 %277

overestimation of the NEI CO inventory has been reported,11,12 similar to our result of 58%.278

Sensitivity Analysis279

For all three gases, the diagonal model-data mismatch error covariance (EDC1) provided280

larger emissions estimates than the equivalent full covariance case (C1) (Fig. S16). In addi-281

tion, the range and IQR within each case was larger with the diagonal covariance indicating282

that the off-diagonal terms played an important role in limiting the number of possible so-283

lutions. The background selection impacted both the mean estimates and the range and284

IQR indicating that incorrect background specification can bias the estimation results. The285

prior flux error sensitivity test showed that posterior emissions estimates were larger when286

prior uncertainties were doubled, and the range and IQR within each case was also larger287

indicating a potential over-fitting problem. When prior uncertainties were halved from the288

base case, the estimates were lower and less variable, indicating the solutions were more289

constrained by the prior fluxes than by the observations. This effect was similar to the FF-290
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DAS prior case for CO2, for which the prior uncertainties were likely too small. Despite the291

differences described above, the variability of the mean across the sensitivity analysis cases292

remained relatively low, at 11% for CO2, 17% for CH4 and 8% for CO.293

Special Case: Flat Prior294

The inversions using a spatially flat prior (FL) were able to provide mean totals close to those295

in which an inventory prior was used for all three gases (Fig. 2). This result demonstrates the296

potential for using aircraft measurements to estimate an overall city-wide emission rate for297

a location where a spatially explicit inventory or other emissions information is unavailable.298

However, we have also shown that the range and IQR in the flat prior case was the greatest299

among all the prior cases, implying that when using a flat prior sampling more time periods300

(i.e. using more observations) is required to provide confidence in the estimates. The spatial301

distribution of the campaign-averaged posterior fluxes for CO2, CH4 and CO (Fig. S17) is302

consistent with the results obtained with the other priors as well. For example, CO2 and CO303

show very similar spatial distributions with most of the emissions originating in the urban304

areas while CH4 shows a broader spatial distribution. Note that these spatial patterns are a305

result of a campaign of 5 days with winds coming from different directions (Fig. S1), leading306

to a good triangulation of the source locations.307

Discussion: Uncertainty and Sources of Variability308

Method Combined Uncertainty309

We were able to disentangle and quantify the different sources of variability present in the310

inversion-based emissions estimates and found that the largest source of variability in the311

retrieved emissions is the daily variability. In the following analysis, we omit the daily312

variability because the goal is to understand the uncertainty we expect in each day’s estimate313

and whether the daily variability is likely to be caused by general uncertainty in the method.314
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Here we assume each source of variability is independent of the others, so that the variances315

can be summed to estimate the method uncertainty in each day’s estimate. We note that the316

assumption of independence is not likely to be true and therefore this uncertainty estimation317

might be biased due to not considering the correlations among them. In addition, the318

ensemble construction (transport, priors, observation dataset, covariances and background)319

might impact the ensemble spread and therefore might not be the true uncertainty in the320

method but it does, however, provide an indication of the likely variability introduced by321

the different model choices.322

Three different cases are shown in Table 1 for estimating combined uncertainties. The323

Combined Uncertainty 1 case considers all sources of variability tested in the inversion.324

However, we believe that two transport models are outliers that suffer from improper mixing325

and resulted in biased estimations. The highest retrieved fluxes are obtained consistently326

using the HR configuration, suggesting that this configuration is too dispersive, although327

more research is needed to be more certain. The lowest posterior estimates consistently328

correspond to the configuration including the experimental vertical mixing parametrization329

(MY2), indicating that this method may under-predict vertical mixing. Removing these two330

outlier configurations reduces the variability due to transport model choice to 7% for CO2,331

10% for CH4 and 8% for CO; these are used to calculate the Combined Uncertainty 2 case.332

Because the flight tracks are different for each aircraft, the variability due to the observation333

dataset may also be affected by the spatial and temporal distribution of the sources being334

measured, so we remove this variability to also calculate the Combined Uncertainty 3 case.335

Daily Variability in Estimated Emissions: Aliasing336

The daily variability in our posterior emissions from the inversion ensemble was 33% for CO2337

and 28% for CH4 and CO (Table 1). This variability is larger than each individual source of338

variability as well as the three cases of the combined uncertainties as shown above, although339

for CH4 the two are comparable. In order to better understand the origin of this variability340
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Table 1: Sources of variability and combined uncertainty.

Source of uncertainty ε CO2 (%) ε CH4 (%) ε CO (%)

daily 33 28 28
prior 11 13 6
transport 15 14 16
transport no outliers 7 10 8
observation dataset 6 10 6a
sensitivity 11 17 8
Combined Uncertainty 1
(prior, transport,
dataset and sensitivity) 22 27 20
Combined Uncertainty 2
(prior, transport no outliers,
dataset and sensitivity) 18 26 14
Combined Uncertainty 3
(prior, transport no outliers
and sensitivity) 17 24 13
aCO variability due to the observation dataset is assumed to be the same as for CO2.

in the estimates, we conducted an analysis of the temporal variability and spatial sampling341

of the two largest sources of CO2 in the accounting box, according to the ACES inventory:342

energy generation and on-road traffic.39 Thirteen power plants and 87 counting stations were343

used within the accounting box (Fig. S18). Both of these sources have significant variability344

throughout a single day, with traffic counts in the area varying by up to a factor of 20 between345

night time and evening rush hour depending on the location (Fig. S19, S20), and individual346

power plant reported emissions varying up to a factor of two within a single day, but even347

more between days as they sometimes shut down completely (Fig. S21). If daily means348

of these emissions are investigated, neither the average daily mean of powerplant emissions349

nor the average daily mean of traffic counts correlates with the daily mean emissions from350

our inversion posterior. However, the daily variability in the posterior estimates can indeed351

be explained using an analysis that considers the hourly variability of these two sectors’352

emissions, combined with the specific flight pattern on a given day. We define each day’s353

normalized observed emissions (nOE, Eq. 2) using powerplant and traffic count data to354

conduct this analysis.355
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Figure 3: Estimated CO2 emission rates (kmol s-1) for each research flight as a function of
the normalized observed emissions (nOE) computed using CEMS and TMAS hourly data.
Errors bars correspond to 25th and 75th percentiles of the ensemble of inversions for each
day. Red line indicates the linear fit.

Fig. 3 shows the daily mean estimated CO2 emissions from the inversion as a function356

of the normalized observed emissions (nOE), with error bars representing the 25th and 75th357

percentiles of the ensemble of inversions for each day. The correlation between the two is358

nearly perfect (r2 = 0.97), implying that the daily variability observed by the inversion is359

caused by irregular spatiotemporal sampling (aliasing) of the rapidly changing underlying360

emissions.361

These results, showing that aliasing of large hourly variability in emissions from large362
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CO2 sources can explain 97% of the variability in our CO2 emissions estimate, suggest that363

similar spatiotemporal variability in CO and CH4 sources could explain the variability in our364

estimates for those gases as well. We note that for CH4 this is less clear due to the larger365

estimated uncertainty in the posterior emissions, but it is plausible given that large temporal366

variability in CH4 source emissions has been reported in oil and gas production fields,27,52367

and likely exists in urban areas as well.368

Path Forward369

Flight campaigns are extremely useful for greenhouse gas (GHG) and pollutant emissions370

estimation because of the fast deployment and large spatial coverage that is provided by371

a moving platform. However, they are limited by the reduced temporal coverage as well372

as the difficulty of measuring all the areas at the same time. We have shown that this373

irregular sampling (in time and space) generates aliasing of the emissions impacting both374

the emissions estimates and the variability of those estimates. Therefore, moving forward,375

multiple flights over a region over different hours, days, months and seasons are recommended376

as well as multiple aircraft flying together with well-coordinated flight plans based on forecast377

back-trajectories so that the coverage of the cities can be maximized at all times. Addition378

of measurements from every platform (surface, aerial or from space) available should also379

help reduce the aliasing of emissions. This aliasing of emissions is likely not exclusive to380

aircraft campaigns but rather a ubiquitous problem to all monitoring systems based on381

spatiotemporally discrete sampling (aircraft, cars, polar orbiting satellites as well as sparse382

tower networks) and it must be considered when designing the measurements and interpreting383

the results.384
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1 Methods

1.1 Observations

Two airborne platforms were used to quantify trace gas emissions from the Baltimore-

Washington area: Purdue University’s Beechcraft† Duchess housing the Airborne Laboratory

for Atmospheric Research, or ALAR, (Purdue) and the University of Maryland’s Cessna†

402B research aircraft (UMD). Both planes flew simultaneously for 5 days, mostly during the

afternoon hours, collecting trace gas mole fraction and meteorological data. Figure 1 shows

the flight paths of both aircraft for the flights conducted over the Baltimore-Washington

area in February 2016. A typical flight experiment includes transects at different altitudes

to capture trace gas enhancement at the downwind side and spirals, en route vertical profiles

generally exceeding the PBL, and missed approaches at regional airports to capture vertical

gradients.

The equipment on the Purdue aircraft included a global positioning and inertial navi-

gation system (GPS/INS), a Best Air Turbulence (BAT) probe for wind measurements, a

cavity ring-down spectroscopy (CRDS) analyzer (Picarro† Model G2301-m) for CH4, CO2,

and H2O measurements. Details about the instrumentation on the Purdue aircraft are de-

scribed elsewhere.1,2

The UMD Cessna was equipped with an instrument package to measure gaseous and

particulate air pollutants, including a CRDS (Picarro†, Model G2401-m) analyzer to measure

CO2, CH4, CO, and H2O. The instrument package has been described in detail elsewhere.3

Calibrations for CO2, CH4 (from both aircraft) and CO (UMD) were conducted both in-

flight and on the ground using NOAA/WMO-traceable standards. Observations, originally

collected at 0.5 Hz, were averaged at 1 minute resolution and the standard deviation of the

averaging period was computed in order to assess the representativity of the mean for each
†Certain commercial equipment, instruments, or materials are identified in this paper in order to specify

the experimental procedure adequately. Such identification is not intended to imply recommendation or
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the
materials or equipment identified are necessarily the best available for the purpose.
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particular minute.

In order to ensure well-mixed conditions, the correlation of CO2 concentration with al-

titude was computed from the bottom up (with a floor of 150 magl) until the correlation

between concentration and altitude was significant, as we expect concentrations in well-mixed

conditions not to be correlated with altitude. Then, the highest altitude with no significant

correlation (correlation near to zero with p-values > 0.5) was used as the top of the mixed

layer. Observations outside this mixed layer were excluded.

To determine the effect of withholding observations from the inversion system, we alter-

natively used CO2 and CH4 observations from both aircraft, the UMD aircraft alone, or the

Purdue aircraft alone, as part of the ensemble of inversions. Purdue did not measure CO,

so the CO inversions all used the UMD observations alone.

1.2 Bayesian Inversion Framework

We estimate trace gas emissions from measured atmospheric mole fractions using a Bayesian

inverse analysis4,5 as in Lopez-Coto et al.6

The measurements model can be written as follows:

y = Hx+ εr (1)

where y is the observations vector (n x 1, where n is the number of observations), here the

tracer mole fractions measured along the track; x is the state vector (m x 1, where m is the

total number of pixels in the domain) which we aim to optimize, here the tracer fluxes; H is

the observation operator (n x m) which converts the model state to observations, constructed

by using the footprints computed by the transport model, and εr is the uncertainty in the

measurements and in the modeling framework (model-data mismatch). Fluxes are assumed

to be static in time for a given flight.

Optimum posterior estimates of fluxes are obtained by minimizing the cost function J :4,5
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J (x) =
1

2

[
(x− xb)

T P−1
b (x− xb) + (Hx− y)T R−1 (Hx− y)

]
(2)

where xb is the first guess or a priori state vector, Pb the a priori error covariance matrix

which represents the uncertainties in our a priori knowledge about the fluxes and R the error

covariance matrix, which represents the uncertainties in the observation operator H and the

observations y, also known as model-data mismatch.

The analytical solution for the posterior state vector, xa, can be written as:

xa = xb −K (Hx− y) (3)

K = PbH
T
(
HPbH

T + R
)−1 (4)

In the equations above, y usually represents the enhancement over the background, i.e.

the mole fraction enhancement at an observation location and time that is attributable to

emissions in the region of interest. However, here we split the background (ybg) into two

terms: the outside contribution from nearby sources (yoc) and the long range background

(ylr), so that the total mole fraction measured by the aircraft, yT, is:

yT = yic + ybg = yic + yoc + ylr (5)

Therefore, the observations vector y considered in this work contains both the inside

contribution (yic) due to the emissions that we aim to estimate plus the outside contribution

(yoc) from nearby sources.

In this case, the state vector contains additional parameters, similarly to,7–9 character-

izing the outside contribution from nearby sources for each observation (xoc) that are the

yoc computed as described in Section 1.5 Background determination . Therefore, the

observations operator H (n x (m+n)) is composed of the transport operator, T (n x m), and
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the outside contribution operator that is, in fact, the identity matrix, I (n x n).

H =

[
Tnxm Inxn

]
(6)

With this formulation, the prior error covariance Pb gets modified in a similar manner

to represent the uncertainty in the emissions and the outside contribution parts of the state

vector:

Pb =



Emxm 0

0 Onxn


 (7)

where E is the portion of Pb associated with the error in the emissions priors, and O is

the error on the prior estimate of the outside contribution.

1.3 Transport Models

The transport model used in this work was the Hybrid Single Particle Lagrangian Integrated

Trajectory Model (HYSPLIT10). The HYSPLIT model was used in a mode that allows it

to emulate the Stochastic Time Inverted Lagrangian Transport model11 and then compute

sensitivity of observations to surface fluxes, or footprints (units: ppm µmol-1 m2 s). Fig. S1

shows the total observations’ sensitivity (footprints) for both aircraft only for the data within

the well-mixed layer used in the inversion for the five different days (a-e) and the campaign

mean (f). The footprints show that the Washington, DC - Baltimore metropolitan area

was well-covered during the campaign as well as during each of the individual flights. The

sensitivity to nearby outside sources is also apparent, as previously mentioned.

In order to generate an ensemble of transport models and therefore better represent the

uncertainties, HYSPLIT was driven with five different meteorological products: the High

Resolution Rapid Refresh (HRRR) NOAA operational forecast product12 provided in the

proper format by the NOAA Air Resources Laboratory (ARL) and four configurations of
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the National Center for Atmospheric Research (NCAR) Weather Research and Forecasting

model (WRF13).

Four Planetary Boundary Layer (PBL) parameterizations were used in WRF along with

two sources of initial and boundary conditions to drive it. The local PBL scheme MYNN14

and the non-local scheme YSU15 were used along with the North American Regional Re-

analysis product (NARR16) provided by the National Center of Environmental Prediction

(NCEP) as initial and boundary conditions. On the other hand, the QNSE scheme17 and

BOULAC18 scheme with the Building Energy Parameterization (BEP19) were driven by

HRRR.20 The rest of the parameterizations were kept constant between WRF configura-

tions being: RRTMg for the radiation scheme,21 Thompson microphysics scheme22,23 and

Noah land surface model.24

WRF used a configuration with 3 nested domains (9, 3 and 1 km horizontal resolution)

and 60 vertical levels with 34 below 3000 m. The temporal resolution of the output was set

to 1 hour for the 9 and 3 km domains and 15 minutes for the 1 km domain, which covers

most of the flight tracks. NARR has 32 km horizontal resolution, 30 vertical levels and 3

hours temporal resolution while HRRR has 3 km horizontal resolution, 51 vertical levels and

1 hour temporal resolution. When driven by HRRR, only the 3 and 1 km domains were used

in WRF.

HYSPLIT was configured to use Planetary Boundary Layer Heights (PBLH) and Tur-

bulent Kinetic Energy (TKE) from the meteorological models with the exception of YSU,

which does not produce TKE due to the non-local nature of this PBL parameterization,

and HRRR. In these cases, HYSPLIT used the Kantha-Clayson parametrization to diag-

nose the turbulence. In addition, an experimental vertical mixing parametrization where the

eddy diffusivity for scalars, Kz, exported directly from the underlying WRF model is used

in HYSPLIT to compute the vertical velocity variances, was used with WRF-MYNN driven

by NARR. Table S1 summarizes the six transport configurations.

The HYSPLIT computation domain for the inversion was set to 100 x 125 grid cells (lat x
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lon) at 0.03o spatial resolution in order to fully cover the flight tracks and the area of interest.

In addition, a secondary domain of 300 x 183 grid cells at the same spatial resolution was

used to cover the outer region of influence (Fig. 1). Footprints were computed for both

aircraft every minute following the flight tracks.

Here we were after uncertainties that come from the fact that we do not know the right

physics and from the initial and boundary conditions. We wanted to have an ensemble of

plausible solutions covering that spectrum.

The PBL parametrization drives the vertical mixing of mass, heat and momentum in

the planetary boundary layer (PBL)25 and therefore directly impacts the prediction of tem-

perature, winds and of course planetary boundary layer height (PBLH). The TKE is also

different for each scheme, specially between MYNN and QNSE since the latest is based on a

substantially different theory.17 In addition to the 4 PBL schemes, the WRF ensemble con-

sisted of 2 sets of initial and boundary conditions (HRRR and NARR), which also impact

winds, temperatures, PBLH and other parameters. Also, the surface layer parametrization

was different in the models and one version had the BEP urban canopy model, directly

impacting the heat and latent fluxes, which act as the surface boundary condition for the

PBL scheme and strongly influence the near surface variables and PBL mean properties.26

The winds drive the advection in the Lagrangian model but the dispersion is driven by the

velocity variances which are parametrized in different ways, also making a big impact.27

In this work, we used 3 mixing parametrizations in HYSPLIT: KC which depends on the

friction velocity and the PBLH, one based on the TKE from WRF and one experimental

parametrization that uses directly the eddy diffusivity from WRF (computed by the PBL

scheme) to derive the velocity variances. In addition, the footprints, by definition, depend

inversely on the PBLH.11

We believe that all these choices and options generate enough (plausible) differences on

the ensemble of footprints. Nevertheless, to study the similarities among configurations, we

applied an agglomerative hierarchical clustering method.28–30
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The algorithm consists of an iterative process which looks for the smallest dissimilarities

between elements, based on the selected distance metric. Once the first 2 elements are

clustered, the algorithm computes distances (similarities) between this new cluster and each

of the former clusters using the linkage criterion. This process is repeated until all elements

are clustered into just one. To cluster N elements, N-1 iterations are required.

Each model is represented by a vector of the wind components for each minute along

the flight tracks for the 5 days, X = (u1 . . . uN , v1 . . . vN), where N is the total number of

minutes of the campaign.

The comparison metric is the Euclidean distance between models and the linkage criterion

is the "average" criterion, which is based on the average distance between pairs, i.e., the link

between two clusters contains all element pairs, and the distance between clusters equals the

average distance between the two elements. "Ward" and "complete" criteria were tested as

well with identical results in the resulting grouping.

Figure S2 shows a graphical representation of the clustering results, a dendogram, where

the dissimilarities (distance) between models are shown in the y axis. The top hierarchy is

split in two branches that are distinguished by the initial conditions (left branch contains

only configurations driven by NARR while the right branch contains configurations driven

by HRRR or HRRR itself). Thus, the most important choice generating variability in the

winds is in fact the initial conditions. The right branch is split further in two, with QS on

the left and HR and BL clustered together on the right. This indicates that HR and BL are

more similar to each other than they are to QS. This result is reasonable considering that

HR and BL use PBL schemes that follow a very similar theory (using different constants and

length scale formulations), while QS uses a substantially different theory for parametrizing

the turbulence. It is interesting to note that the difference between QS and the cluster BL-

HR is also larger than the differences between MY and YU. However, the difference between

MY and YU is larger than the difference between HR and BL. In conclusion, BL and HR are

the most similar configurations with respect to the wind prediction along the flight tracks.
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However, the differences between them are not small, being about 65 % of the most different

cluster.

In addition, we analyzed the relative ensemble spread (RES) with respect to enhance-

ments using AC2 emissions inventory, (Fig. S3). The relative ensemble spread of the en-

hancements had a campaign average of 50 % and was similar for all days, although modest

differences exist between days. This might also be due to the fact that different emissions

are being sampled each day due to the different flight patterns.

1.4 Emissions Inventories

In addition to the ensemble of transport models, we also used an ensemble of prior fluxes

to represent the a priori knowledge about the emissions in the area (summarized in Table

S2). All the inventories were re-gridded to the inversion domain (0.03°) using a geographical

re-projection with bilinear interpolation method.

1.4.1 CO2

Nine CO2 emissions inventories were used in the inversion to investigate the resultant vari-

ability in the posterior emissions. Four of them (Vulcan, ODIAC, FFDAS and ACES) are

existing anthropogenic CO2 inventories but for a different year; one provides only on-road

emissions (DARTE); one is the mean of the previous five (Ensemble); and the rest (Flat and

Simple) are constructed here to complement the ensemble of prior fluxes (Fig. S4, Table S3).

Vulcan31 is a 10x10 km fossil fuel emissions dataset for the United States for the year

2002. The Open-source Data Inventory for Anthropogenic CO2 (ODIAC32) is a dataset with

a horizontal resolution of ~1 km based on total emissions estimated by the Carbon Dioxide

Information and Analysis Center (CDIAC) at the US Department of Energy’s Oak Ridge

National Laboratory. Here we use the ODIAC monthly average for February 2015. The

Fossil Fuel Data Assimilation System (FFDAS33) is a global product with a horizontal grid

of 0.1° x 0.1°. The Database of Road Transportation Emissions (DARTE34) is a data set
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that provides a 33-year, 1 km resolution inventory of annual on-road CO2 emissions for the

conterminous United States. Since DARTE only provides road emissions, the National Land

Cover Database (NLCD, 2011) was used to compute an urban fraction and assign an emission

value of 5 µmol m-2 s-1 (multiplied by the urban fraction) for urban areas to complement

this prior. This value is derived based on the other priors’ values for urban areas. The

Anthropogenic Carbon Emissions System (ACES) provides estimates of annual and hourly

CO2 emissions from the combustion of fossil fuels for 13 states across the Northeastern United

States on a 1 x 1 km spatial grid, for the year 2011.35 For the ensemble of inversions, we

use two different versions of ACES as priors: first, the 2011 annual mean (AC), and second,

the mean over the Februaries of 2013 and 2014 (AC2) during the afternoon hours to be

consistent with the hours that the flights were conducted.

Using the five inventories described above (Vulcan, ODIAC, DARTE, FFDAS and ACES)

we also computed their mean (Ensemble thereafter) and used it as an additional prior in

our inverse analysis. Furthermore, we constructed a flat prior that is constant for the whole

domain with a value of 1 µmol m-2 s-1. This value is arbitrary, as this prior is designed to

represent the case of zero prior knowledge about emissions. Lastly, we constructed a simple

inventory following the methodology in Lopez-Coto et al.6 where the land use emissions are

considered to be the urban fraction multiplied by 5 µmol m-2 s-1, the road emissions to be 2

µmol m-2 s-1, and the point sources emissions from the EPA GHGRP. The value assigned to

on-road emissions is low due to the large area that one road pixel represents at our resolution

(~ 9 km2). In addition, this value is close to the mean value across the inversion domain

for the road emissions provided by DARTE (1.9 µmol m-2 s-1). All emissions priors were

constant in time. Fig. S4 shows the nine CO2 prior emissions used in the inversions.

1.4.2 CH4

Methane prior emissions were represented using the EPA gridded inventory for 2012,36

EDGAR v4.3.237 for 2012, the mean of the previous two, and a flat prior. Both the EPA and
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EDGAR inventories are provided at 0.1° × 0.1° and were re-gridded to the 0.03° resolution

of this study. The flat prior was chosen to be 1 nmol m-2 s-1 (Fig. S5, Table S3).

1.4.3 CO

For CO we use EDGAR v4.3.238 at 0.1°, the National Emissions Inventory (NEI) for 2011

at 4 km resolution from EPA,39 the annual mean ACES inventory (AC as in the CO2 case)

scaled using the mean observed ∆CO:∆CO2 ratio (6.18 ppb/ppm) and, again, a flat prior

(Fig. S6, Table S3).

1.5 Background Determination

Properly accounting for the background is critical for the inversion as the flux correction is

based on the observed enhancements above the background value. The impact of upwind

sources can be important especially in areas such as the one under study here, where multiple

urban areas and oil and gas fields exist around the area (Figure 1).

Measurements along an upwind flight transect often do not properly represent the back-

ground in the downwind transect because of differences in timing of both transects plus

the differences induced by the transport of air masses itself, such as flow convergence or

divergence and differences in the mixing layer height.3,40,41

Here we choose to optimize the contribution to the background of sources nearby but

outside our domain, yoc (Eq. 5). First, we estimate this contribution as a first guess using a

Lagrangian approach by convolving footprints from a reduced set of our ensemble of transport

models and with prior fluxes. We extend the domain to the full extent shown in Fig. 1,

to account for the contribution of large nearby sources, including the cities of Philadelphia,

New York and Pittsburgh as well as the gas operations in the Marcellus shale. The full

background is then represented as the ensemble mean of the contribution from outside of

the domain of interest (yoc, time-varying along the track) plus the long-range background

(ylr, constant for a given flight) (Eq. 5). ylr is defined here as a reference value measured
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along the track, the 5th percentile, minus the mean contribution from inside and outside of

the inversion domain for all the locations measuring below the specified reference value (Eq.

8).

ylr=p5th (obs)− 1

N

N∑

obs<p5th(obs)

(yic+yoc) (8)

Selecting the 5th percentile as reference value shields the background from abnormally

low values that may occur due to non-representative situations. On the other hand, the

specific inside contribution of the reference value along the track might be misrepresented

due to transport model and emissions errors. To alleviate this situation, we consider that

contribution to be the mean value of all the measurements below the reference value, as

indicated in Eq. 8. This methodology yields to a time varying background and the associated

uncertainties, as described below.

The uncertainty in the background (σbg) is composed of 3 terms: 1) the uncertainty in the

outside contribution (σoc) due to the transport models and prior fluxes, 2) the uncertainty

in the inside contribution (σic) due to the ensemble of transport models and prior fluxes

and 3) the uncertainty in the determination of the inside and outside contribution due to

the potential mis-location of the reference value picked along the track (σmis). All the

uncertainties are computed as the standard deviation of the respective set of data used in

the calculation.

Because the outside contribution determined in this way depends on the priors used in

the computation, it might underestimate or overestimate the values if the ensemble of priors

do. To address this problem, we optimize the outside contribution of the background along

with the fluxes in the same inversion as described above, Eq. 5 to 7.

In addition, we also performed a sensitivity test (separately from the main ensemble of

inversions) to specifically determine the impact of 1) not optimizing the outside contribution,

2) scaling the outside Contribution, and 3) using a less sophisticated approach of selecting a
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single constant value along the track as background defined by the 1st, 5th or 10th percentile.

For the scaled background case, a single scaling factor for each flight was applied to the

background time series. This scaling factor was the ratio of posterior to prior emissions for

the inversion case where the background was not optimized or scaled (case 1 in the above

text).

1.6 Error Covariances

1.6.1 Prior Flux Error Covariance

The prior flux error covariance, E in Eq. 7, represents the uncertainties in the prior esti-

mation of the fluxes. It is commonly assumed to follow an exponential model where the

correlation between two points decays as the distance between them increases.6,42–44

Eij = σiσje
−dij/L (9)

where σi represents the uncertainty for the pixel i, d ij represents the distance between

the pixels i and j and L is the correlation length of the spatial field.

A wide range of correlation lengths is found in the literature from less than 10 km to

hundreds or thousands of kilometers.8,42,44 Typically, small values of the correlation length

are associated with high-resolution studies conducted in small domains, as for Indianapolis,44

while large correlation length values are seen in low-resolution inversions in regional to global

domains.42 In this work, the correlation length was assumed to be 10 km, consistent with

Lopez-Coto et al.,6 where the authors found this value to be appropriate for studies at urban

scales.

Although bottom-up CO2 emissions estimates are made on global and national scales with

small uncertainties, considerable errors are introduced when the emissions are disaggregated

due to the usage of proxies to spatially distribute emissions.45 Reported errors at grid cell

levels range from 4% to more than 190%, averaging about 120%.46 These errors depend
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on the inventory disaggregation methodology as well as on the resolution that the error

evaluation is performed. For CH4 and CO it is likely that the errors at grid cell levels are

even larger than for CO2 because of the less well-known characteristics of these species’

sources.

Given the aforementioned reported uncertainties at grid cell levels, here we use a value

of 100% of the grid cell emissions as uncertainty for all the prior inventories and gases with

the exception of FFDAS and the ensemble cases for CO2. FFDAS provides uncertainties at

grid cell level that are very small as compared to the other uncertainty estimates. Because

we use the FFDAS annual mean for 2010 to represent a few days in February 2016, the

FFDAS provided uncertainties probably do not represent the real errors in our application;

therefore we multiplied the provided annual uncertainty by 121/2 to try to get a monthly

uncertainty estimate, assuming the annual uncertainty is provided as the uncertainty of the

annual mean. The uncertainties still remained low compared to the uncertainty estimates

for the rest of priors and the impact on the inversion will reflect that. For the ensemble

mean prior, we used the standard deviation of the ensemble at each pixel to represent the

uncertainties.

For the flat prior cases, we assigned uncertainty values of 10 µmol m-2 s-1 for CO2, 30

nmol m-2 s-1 for CH4 and 50 nmol m-2 s-1 for CO. This choice was based on the 90th percentile

of the ensemble of prior emissions within the accounting box for CO2 (8.9 µmol m-2 s-1) and

CH4 (32.5 nmol m-2 s-1). For CO we used the CO2 value scaled by the ∆CO:∆CO2 ratio.

Because the inventories used here represent only anthropogenic emissions, pixels with

low or zero fossil fuel emissions will have a very low uncertainty value making it difficult for

the inversion to correct those areas, for example in cases where there may be non-reported

emissions such as fugitive emissions or even wintertime biogenic respiration. To address this,

we set a floor in the prior uncertainties of 1 µmol m-2 s-1 for CO2, 3 nmol m-2 s-1 for CH4

and 5 nmol m-2 s-1 for CO.
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1.6.2 Outside Contribution (background) Prior Error Covariance

We consider a double exponential model, in space and time, to represent the error covariance

of the outside contribution along the track (O in Eq. 7). The diagonal is populated with

the uncertainty of the initial guess outside contribution (σoc) based on the variance from

the different transport models and prior fluxes.

Because the only constraint imposed on the outside contribution during the inversion

comes through the covariance, we impose very large correlation length (L=104 km) and

correlation time (τ = 8760 h). These choices are based on the assumption that the error

structure in the outside contribution is similar across large scales in space and time, meaning

that if an underestimation/overestimation exists in a region, would likely occur in the nearby

areas even if they are very far apart due to the nature of the construction.

Making the correlation equal to zero would allow each individual point to be corrected

independently leading to a general over-fitting. Correlations equal to one would force the

entire time series for one flight to be scaled up or down together, not allowing for any

additional correction in time and space of this background. The selected correlation model

allows the inversion to coherently adjust the time series while retaining some flexibility to

adjust each point independently based on the specific errors assigned along the diagonal.

1.6.3 Model Error

The model-data mismatch error covariance (R) was assumed to have three independent

contributions: 1) uncertainty in the observations (Robs), 2) uncertainty in the long range

background mole fraction (Rlrbg) and 3) uncertainty in the transport model representation

(Rtransport). The uncertainties in the observations are assigned as the measurement uncer-

tainties (0.2 ppm for CO2, 2 ppb for CH4 and 2 ppb for CO, obtained from the calibrations

and comparisons between measurements from the two aircraft) and the representativity of

the assigned mean to the whole averaging period (one minute in our case). This contribution

is not correlated and thus the covariance was considered diagonal, where the diagonal was
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populated with the maximum of the measurement variance and the variance of the averag-

ing period (1 minute). The long-range background determination also introduces uncertainty

into the system. This contribution was also assumed to be uncorrelated and the covariance

diagonal populated with the sum of the variances due to the inside contribution and the

mis-location errors (σ2
ic + σ2

mis). Lastly, the transport model uncertainty is complex with

several previously published methods for its determination. Here we tested two methods,

both based on the ensemble of transport models. First, we tested a diagonal covariance

populated with the inter-model variance simulated using the same surface fluxes (the prior

emissions in each inversion case) in all the transport models similar to47 and.48 As stated

in,47 this estimate can be too large for some models and too small for other models, thus,

in order to better represent the fidelity of each model and for each observation, we weighted

the inter-model standard deviation (σe) with the relative error (ε) computed by using the

wind measurements from the aircraft as follows:

σ2 = σ2
eε

2 = σ2
e(ε2ws + ε2wd) (10)

where εws is the relative error for wind speed and εws is the normalized absolute error for

the wind direction. Due to the circular nature of the wind direction, the absolute difference

is kept between 0 and π by measuring the absolute differences larger than π in the opposite

direction (2π −∆). Then we normalized the error to the maximum range, π.

This definition of the transport model error covariance assumes there are no correlations

in space and time which is unlikely to be true. Therefore, for the second method, which was

used in the main ensemble of inversions, we computed the correlations between the different

transport models and included them into the covariance as follows:

Rtransport = σ ⊗ σ · cor(T) (11)

where σ is the weighted inter-model standard deviation computed as in the previous case,
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⊗ is the outer product, and T is a matrix constructed with the simulated observations using

the same surface fluxes (the prior emissions in each inversion case) in all transport models.
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2 Figures

Figure S1: Total observations’ sensitivity for both aircraft only for the data within the
well-mixed layer used in the inversion for a) 02/08/2016 (RF1), b) 02/12/2016 (RF2), c)
02/17/2018 (RF3), d) 02/18/2016 (RF4), e) 02/19/2016 (RF5) and f) the campaign average.
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Figure S2: Dendogram computed using agglomerative hierarchical clustering with euclidean
distance as similarity metric and the "average" method as the linkage criterion.
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Figure S3: Histograms of the Relative Ensemble Spread (RES, %) for the different days (a-e)
and for the entire campaign (f) using AC2 emissions inventory.
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Figure S4: Prior CO2 emission rate spatial distribution (a) AC is ACES inventory annual
mean, (b) AC2 is the mean for February between 12 - 19 EST, (c) DA is the DARTE
inventory, (d) EB is the ensemble mean inventory, (e) FF is FFDAS inventory, (f) FL is the
Flat inventory, (g) OD is ODIAC, (h) SP is the simple inventory and (i) VU is VULCAN.

S-22



Figure S5: CH4 prior emissions (a) EP is EPA inventory, (b) EG is EDGAR (v4.3.2), (c)
EB is the ensemble mean and (d) FL is the flat inventory
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Figure S6: CO prior emissions (a) AC is ACES inventory scaled using the observed
∆CO:∆CO2 ratio, (b) FL is Flat inventory, (c) EG is EDGAR (v4.3.2) and (d) NI is NEI-
2011 inventory
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Figure S7: Boxplots of the total estimated CO2 emission rate within the accounting box
compared to the values provided by ACES, scaled to totals of 2016, for February between 12
- 19 EST (referred as REF in the four panels) grouped by: (a) the different inventories used
as priors where AC is ACES inventory annual mean, AC2 is the mean for February between
12 - 19 EST, DA is the DARTE inventory, EB is the ensemble mean inventory, FF is FFDAS
inventory, FL is the Flat inventory, OD is ODIAC, SP is the simple inventory and VU is
VULCAN; (b) the different research flights; (c) the different transport model configurations
where HR is HRRR, YU is YSU, MY is MYNN, MY2 is MYNN with HYSPLIT using the
WRF eddy diffusivities to compute the mixing, QS is QNSE and BL is BouLac; (d) the
observation dataset choice using observations from only the UMD Cessna, Purdue Duchess,
or both. Blue bars indicate the 25th and 75th quantiles, whiskers the range, x’s the outliers
(1.5 times the IQR), red line the median, square markers the mean and the dotted line the
posterior mean. The circled pluses in panel (a) represent each prior’s total emissions.
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Figure S8: Mean estimated CO2 emission rate spatial distribution for all days and transport
models using the different priors (a) AC is ACES inventory annual mean, (b) AC2 is the
mean for February between 12 - 19 EST, (c) DA is the DARTE inventory, (d) EB is the
ensemble mean inventory, (e) FF is FFDAS inventory, (f) FL is the Flat inventory, (g) OD
is ODIAC, (h) SP is the simple inventory and (i) VU is VULCAN.
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Figure S9: Spatial distribution of differences between the mean estimated CO2 emission rate
and the prior emissions for all days and transport models using the different priors: (a) AC
is ACES inventory annual mean, (b) AC2 is the mean for February between 12 - 19 EST,
(c) DA is the DARTE inventory, (d) EB is the ensemble mean inventory, (e) FF is FFDAS
inventory, (f) FL is the Flat inventory, (g) OD is ODIAC, (h) SP is the simple inventory
and (i) VU is VULCAN (Table S2). The legend also indicates the total difference inside the
accounting box (dashed red).
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Figure S10: Total estimated CH4 emission rate within the accounting box grouped by:
(a) the different inventories used as priors where EG is EDGAR, EP is EPA, EB is the
ensemble and FL is the Flat inventory; (b) the different days; (c) the different transport
model configurations (as in Fig. S7); (d) the observation dataset choice. Markers as in Fig.
S7
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Figure S11: Mean estimated CH4 emission rate spatial distribution for all days and transport
models using the different priors (a) EP is EPA inventory, (b) EG is EDGAR, (c) EB is the
ensemble mean inventory and (d) FL is the Flat inventory
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Figure S12: Spatial distribution of differences between the mean estimated CH4 emission
rate and the prior emissions for all days and transport models using the different priors (a)
EP is EPA inventory, (b) EG is EDGAR, (c) EB is the ensemble mean inventory and (d)
FL is the Flat inventory
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Figure S13: Total estimated CO emission rate within the accounting box grouped by: (a) the
different inventories used as priors where AC is ACES inventory annual mean scaled using the
mean observed ∆CO:∆CO2 ratio, EG is EDGAR inventory, FL is the Flat inventory and NI
is the NEI inventory; (b) the different days; (c) the different transport model configurations
(as in Fig. S7); (d) the observation dataset selection using only UMD plane because no CO
measurements were made with the Purdue plane. Markers as in Fig. S7
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Figure S14: Mean estimated CO emission rate spatial distribution for all days and transport
models using the different priors (a) AC is ACES inventory annual mean scaled using the
mean observed ∆CO:∆CO2 ratio, (b) FL is the Flat inventory, (c) EG is EDGAR inventory
and (d) NI is the NEI inventory
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Figure S15: Spatial distribution of differences between the mean estimated CO emission rate
and the prior emissions for all days and transport models using the different priors (a) AC
is ACES inventory annual mean scaled using the mean observed ∆CO:∆CO2 ratio, (b) FL
is the Flat inventory, (c) EG is EDGAR inventory and (d) NI is the NEI inventory
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Figure S16: Boxplots of the sensitivity analysis for a) CO2 (N = 9720), b) CH4 (N = 4320)
and c) CO (N = 1440) for the 12 cases where the covariances and background choice were
changed: OB are cases with optimized Lagrangian background, SB is scaled Lagrangian
background, cases C05, C1 and C2 are non-optimized Lagrangian background and C1P01,
C1P05 and C1P10 are using a constant background determined by the quantile 1st, 5th or
10th respectively. Case EDC1 refers to diagonal transport error covariance. The C in all
cases refers to the prior flux error covariance being 50%, 100% or 200%. Blue bars indicate
the 25th and 75th quantiles, whiskers the range, x’s the outliers (1.5 times the IQR), red
line the median, square markers the mean, the dashed line the mean and the dotted lines
the range ± 1-σ. S-34



Figure S17: Posterior fluxes obtained using the flat prior averaged across the five days of the
campaign.
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Figure S18: Location of the CEMS power plants and TMAS counting stations within the
inversion domain. Accounting box also shown. The circled black crosses with yellow back-
ground are the Dickerson power plant (left) and Brandon Shores power plant (right).
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Figure S19: Hourly traffic counts for two TMAS stations placed in Washington, DC and
Baltimore during the month of February 2016.
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Figure S20: Daily cycle of the hourly traffic counts for nine TMAS stations placed within
the accounting box for the month of February 2016.
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Figure S21: Hourly CO2 emission rate for two Power Plants in the area during the month of
February 2016.
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3 Tables

Table S1: Transport model configurations summary with the labels used to identify them
throughout the text.

Label Model IC/BC HYSPLIT vertical mixing

HR HRRR RAP Kantha / Clayson
YU WRF-YSU NARR Kantha / Clayson
MY WRF-MYNN NARR TKE
MY2 WRF-MYNN NARR Experimental (Kz)
QS WRF-QNSE HRRR TKE
BL WRF-BouLac+ UCM HRRR TKE

S-40



Table S2: Summary of the emissions inventories used as priors along with the labels used to
identify them throughout the text.

Tracer Label Name Period Total* (mol s-1)

CO2 VU VULCAN Feb – 2002 63 103
OD ODIAC Feb – 2015 49 103
DA DARTE + LandUse 2012 42 103
FF FFDAS 2010 42 103
AC ACES 2011 59 103
EB ENSEMBLE --- 51 103

AC2 ACES2 Feb – 2013 & 2014 (Afternoon hours) 94 103
FL FLAT --- 14 103
SP SIMPLE --- 42 103

CH4 EP EPA 2012 153
EG EDGAR 2012 237
EB ENSEMBLE --- 195
FL FLAT --- 14

CO AC ACES** 2011 362
EG EDGAR 2012 436
NI NEI 2011 932
FL FLAT --- 14

*Washington DC / Baltimore area accounting box. **Scaled using the mean observed ∆CO:∆CO2 ratio.
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Table S3: Summary of the sensitivity analysis cases along with the labels used to identify
them throughout the text.

Case Background Prior Covariance Transport Covariance

OBC05 Optimized lagrangian background 50% prior emissions Full covariance
C05 Non-Optimized lagrangian background 50% prior emissions Full covariance
OBC1 Optimized lagrangian background 100% prior emissions Full covariance
OBC1* Optimized lagrangian background 100% prior emissions Full covariance
C1 Non-Optimized lagrangian background 100% prior emissions Full covariance
SBC1 Scaled lagrangian background 100% prior emissions Full covariance
OBC2 Optimized lagrangian background 200% prior emissions Full covariance
C2 Non-Optimized lagrangian background 200% prior emissions Full covariance
C1P01 Constant background (P1%) 100% prior emissions Full covariance
C1P05 Constant background (P5%) 100% prior emissions Full covariance
C1P10 Constant background (P10%) 100% prior emissions Full covariance
EDC1 Optimized lagrangian background 100% prior emissions Diagonal covariance
*Uncertainty due to the potential mis-location of the reference value (σmis) excluded.
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