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ABSTRACT: Metabolomics has a critical need for better tools
for mass spectral identification. Common metabolites may be
identified by searching libraries of tandem mass spectra, which
offers important advantages over other approaches to identi-
fication. But tandem libraries are not nearly complete enough to
represent the full molecular diversity present in complex
biological samples. We present a novel hybrid search method
that can help identify metabolites not in the library by similarity
to compounds that are. We call it “hybrid” searching because it
combines conventional, direct peak matching with the logical
equivalent of neutral-loss matching. A successful hybrid search
requires the library to contain “cognates” of the unknown:
similar compounds with a structural difference confined to a single region of the molecule, that does not substantially alter its
fragmentation behavior. We demonstrate that the hybrid search is highly likely to find similar compounds under such
circumstances.

Mass spectral reference libraries are an indispensable tool
for identifying molecules.1 When combined with gas2 or

liquid chromatography (GC or LC), mass spectrometry (MS)
can distinguish hundreds of components in complex mixtures.
Less-polar molecules can be analyzed by GC-MS, using
electron ionization (EI) to produce radical cations that often
fragment extensively in the source, giving structural informa-
tion useful for identification. EI fragmentation is highly
reproducible, so most compounds can be represented by a
single library spectrum.
Many metabolites are not volatile or stable enough for GC.

The electrospray ionization (ESI) source used in LC-MS
produces intact even-electron ions, often by [de]protonation.
To obtain structural information, LC is coupled with “tandem”
mass spectrometry (MS/MS or MS2). Tandem MS selects a
precursor ion in MS1, fragments it by collision-induced
dissociation (CID), then analyzes the product ions in MS2.
Tandem libraries are more complicated than EI libraries.3

Electrospray often produces different ions from the same
compound, so the library must include spectra from multiple
precursors. And MS/MS fragmentation patterns vary strongly
with collision energy, so the library must include spectra across
a range of energies. The NIST library includes spectra obtained
by ion-trap (IT) CID, which favors the lowest-energy
dissociation channels and thus produces relatively simple
spectra. It also includes beam-type collision-cell spectra
(“HCD”) at various absolute collision energies (in eV,

calculated from Thermo’s “normalized collision energy” and
the precursor m/z).
Metabolomics has a critical need for better tools for mass

spectral identification and expanded MS/MS libraries.4 Library
searching offers key advantages. Libraries are empirical, so
there is no need to predict spectra (in silico prediction works
best for highly modular structures like lipids,5−7 but is less
reliable for compounds with uncertain or complex fragmenta-
tion pathways). Libraries are also easily extended to higher
MSn stages.8 But libraries may never be complete, especially
considering the molecular diversity of complex biological
samples.
Similarity searchingfinding compounds sharing common

structural features with the unknowncan expand the scope
of library searching. The NIST software has long included a
“simple” similarity search for EI spectra, plus support for
substructure identification.9 We recently developed a novel,
more powerful similarity search that can also be used for
tandem spectra. We call it “hybrid” searching because it
combines direct peak matching with the logical equivalent of
neutral-loss matching. The algorithm elevates the scores of
similar compounds by matching shifted peaks. With current
libraries, hybrid searching has been shown10 to greatly increase
the number of metabolites found in biological samples.
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■ METHODS

Search Classes. The NIST software11 supports EI, small-
molecule tandem, and peptide tandem spectra, each with their
own libraries and search methods. EI assumes unit-mass
resolution, while tandem searches accept high-resolution
spectra using either relative (ppm) or absolute (m/z)
tolerances. The hybrid search has been implemented for
each. This paper focuses on high-resolution small-molecule

tandem searches. Peptide tandem12 and EI13 hybrid searches
are described elsewhere.
All NIST searches use the same basic steps: presearch, peak

matching, “dot product” calculation, match factor calculation,
and hit-list ranking/display. Presearching selects a subset of the
library likely to score highly. The tandem hybrid search is an
extension of tandem “in-source” and identity searches. Block
diagrams for each of these searches are given in Figure S1 of
the Supporting Information (SI).

Figure 1. Hybrid search results for “cluster_007290” from the “urine_HR_it_neg_rec” ARUS library. (a) Likely ID from inspecting the hybrid
matches: PI(16:0/18:2), not in NIST17. Peak assignments for the unknown spectrum (orange) are numbered; FA = fatty acid, HG = headgroup.
Hybrid library spectra for the (b) first, (c) second, and (d) third hits point down in the head-to-tail displays. Peaks that contain the differing group
(gray) match after shifting by Δm (pink). The unknown spectrum is (mostly) cropped out of (c) and (d) to save space.
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Identity Searching. An “identity” search can succeed only
if the library includes a spectrum of the unknown (from the
same precursor) that is returned by the presearch. The tandem
identity presearch is trivial: the precursor m/z must lie within
tolerance of the unknown. We typically specify a 20 ppm
precursor tolerance, which rarely returns more than 300
spectra.
For peak matching in small-molecule tandem searches, we

typically use a 40 ppm product-ion tolerance and exclude peaks
within 1.6 of the precursor m/z. Spectra are lists of (m/z, I)
data points. The algorithm determines which unknown and
library peaks lie within tolerance of each other. If multiple
peaks matchcommon even with narrow tolerancesit
attempts to select the best matching pair.
Scores for all NIST MS search types are based on a weighted

“dot product” (cosine similarity) calculation.14 First, each
abundance is transformed into a “weight” w = (m/z)mIn. All
searches use square-root abundance weighting (n = 1/2), but
m/z weightings vary. For small-molecule tandem searches, m =
0 and w = I 1/2. Next, let aL and aU denote “vectors” of all
library and unknown weights. Their magnitudes are used to
normalize the result between 0 (orthogonal) and 1 (colinear).
Then, let mL and mU denote equal-length lists of weights for
the subset of peaks returned by the matching algorithm:

θ =
·

|| || || ||
=

∑

∑ ∑
=

∑

∑ ∑

w w

w w

I I

I I

m m
a a

cos L U

L U
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2

all U
2

match L
1/2

U
1/2

all L all U (1)

Equation 1 is used for “forward” searches. In a “reverse” search,
nonmatching unknown peaks are assumed to be contaminants,
so mU replaces aU, and the result will be closer to unity. Only
forward searches are considered here.
For all NIST searches, the “match factor” (MF) is calculated

from cos θ by applying various empirical adjustments and
rounding to an integer on a 999-point scale. For small-
molecule tandem searches, the most important adjustments
reduce the score when only a few peaks match (an
unfortunately common situation, especially for ion-trap CID)
to make it consistent with the decreased confidence an
experienced analyst would have in such a hit. The detailed
implementation is irrelevantthe hybrid search can be used
with any reasonable metric.
“In-Source” Searching. It may not be possible to match

the precursor m/z if, due to in-source dissociation (or
adduction), the unknown spectrum comes from a different
precursor than any library spectrum. So the in-source “identity”
search (SI Figure S1b) replaces precursor matching with a
presearch against indexes of the top 16 product-ion m/z values
ranked by abundance and by mass-weighted abundance. This
typically returns 200−4500 candidates. (NIST presearches use
procedures first documented by Finnigan for searching EI
libraries.15) It then proceeds like an identity search. The in-
source search can be viewed as the hybrid search without peak
shifting.
Hybrid Searching. Like in-source searching, the hybrid

search (SI Figure S1c) does not require precursor matching.
But the hybrid search can elevate scores for similar compounds
by matching shifted product ion peaks. The core concept
behind the hybrid similarity searchcombining direct and
neutral-loss peak matchingwas originally used for sub-
structure identification with EI spectra.9 Neutral losses were
calculated from the molecular weight of the unknown, which is
uncertain if the molecular ion is absent. Fortunately, in tandem

MS (except for “data-independent” methods with broad
isolation windows) the precursor m/z is always known.
Peaks may be shifted by “delta mass” (Δm), the mass of the

unknown precursor minus that of the library spectrum. A
related strategy (allowing ultrawide precursor tolerances) has
been used to identify unanticipated modifications in
peptides.16−19 Unlike these “open modification” searches,
hybrid searching does not restrict the Δm range, nor does it
attempt to predict spectra of modified compounds.
Effective hybrid searching requires the presearch to return

spectra that are likely to benefit from neutral-loss matching. So
we added an index of neutral losses corresponding to the most-
abundant product ions. The presearch combines multiple
queries against all three indexes, and typically returns 300−
3000 candidates.
Next, a shifted library spectrum is created from each

candidate by adding Δm to the mass of each fragment. (Singly
charged ions are assumed unless otherwise annotated. Multiple
charging is more common for peptides.12) An unknown
fragment will match the shifted spectrum if it has the same
neutral loss as the library peak. The original and shifted library
spectra are separately compared to the unknown (again
excluding precursor peaks), and the resulting match lists are
merged.
The last step before scoring is constructing a “hybrid library

spectrum.” Any fragment that matches after shifting but not
before is replaced with its shifted version. If a peak matches
before and after shifting, the shifted peak is added to the hybrid
spectrum and the abundance is apportioned between the two.
The dot product and MF are then calculated from the hybrid
spectrum and the unknown. Since the number of matching
peaks cannot decrease, the hybrid MF should be greater than
or equal to the original MF.
A related peak-shifting strategy has been reported for low-

resolution “molecular networking” of living microbial colo-
nies20 and for high-resolution tandem MS of structurally
related micropollutants.21 These papers compared pairs of
experimental spectra from a relatively small poolnot against
a much larger libraryso no presearch was required. For
molecular networking, peaks that matched before and after
shifting were not split but assigned exclusively to whichever m/
z gave the higher cosine similarity score. As shown below in
Figure 1, there are many cases where all-or-nothing assignment
is inappropriate, despite the difficulty of optimizing the
apportionment.

■ RESULTS AND DISCUSSION
Annotated Recurrent Unidentified Spectra (ARUS).

Our libraries include nearly every metabolite that can be
purchased in pure form, but many more are unavailable or
unknown. So we started using the hybrid search to annotate
“recurrent unidentified spectra”1,22 observed in biological
fluids. The hybrid search can be used to generate chemical
class annotations for the large numbers of otherwise
unidentified spectra typically observed in LC-MS/MS
metabolomics experiments.10 Our ultimate goal is to build
libraries of spectra identified from authentic samples, an
approach that guarantees biological relevance.

Hybrid Search Example. Figure 1 shows hybrid matches
to a consensus spectrum (“cluster_007290”) from the ARUS
library “urine_HR_it_neg_rec” available on our website.23

The name given in the synonyms [“PI(16:0/16:0)” in
LipidMaps24 notation] is not the unknown itself but a similar
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compound: the top hit from an earlier hybrid search using a
prerelease library and software. The top three unique hits are
shown in Figure 1b−d. Upon examination, we think that
cluster_007290 is most likely the glycerophospholipid “PI-
(16:0/18:2)” (Figure 1a). The fatty acid (FA) formulas are
known here because the spectrum includes direct or loss peaks
involving the acyl chains. Otherwise, we would notate total
carbons and unsaturations as “PI(34:2).” More specific
structural features (FA positions on the backbone, double-
bond locations and stereochemistry, the absence of branching,
and chirality) were assumed.
Interpreting Hybrid Spectra. A hybrid library spectrum

is shown for each hit in Figure 1b−d. Unshifted peaks are blue,
shifted pink, and removed “ghost” peaks gray. Nearly all shifted
peaks also matched unshifted, so only portions of the original
peaks are grayed out. Precursor m/z values for the unknown
(orange) and library spectra are marked with triangles. A heavy
pink line marks the difference (Δm).
Cognates. Successful hybrid searching requires the library

to include similar compounds. To give a usable hybrid match,
the structural difference must be confined to a single region of
the molecule and must not substantially alter its fragmentation
behavior. We call compounds that meet these criteria
“cognates” of the unknown. In the first two hits in Figure 1,
the difference is a single FA and Δm is due to differences in the
number of carbons or unsaturations. Fragmentation is
unchanged because the acyl group is lost as a unit. Unknown
peaks having lost the differing group match directly, and
fragments retaining it match shifted library peaks. In the third
hit, the FAs are identical and the difference is in the
headgroup: the cognate lacks the inositol. Unknown peaks
without inositol match directly, and fragments with it match
shifted.
Interpreting Delta Mass. Delta mass is the difference

between distinct molecules: unknown − library. So unlike a
neutral loss, Δm can be negative (Figure 1b) and does not
have to represent a stable species (Figure 1c). The
corresponding chemical formula may include negative sub-
scripts. For example, deamidation (Δm = 0.9840) is H−1N−1O.
(Note that the “odd-nitrogen rule” applies to nominal Δm
values.) NIST MS Interpreter25 now allows negative subscripts
and thus can be used to find formulas within tolerance of an
experimental Δm. Another means of interpretation is to
generate lookup tables of calculated Δm values for all structural
differences that can be imagined for each chemical class. This
gives helpful chemical descriptions of the structural difference
(“deamidation” instead of just H−1N−1O). Once the difference
is known, assigning shifted peaks can determine its location on
the molecule.
Excluded-Query-Compound Analysis. To test the

performance of the hybrid search, we executed a global
“excluded-query-compound” (EQC) analysis on all high-
resolution MS2 spectra in the NIST17 tandem library from
compounds with known InChIKeys.26 NIST MSPepSearch27

(which also works for EI and small-molecule tandem MS) was
used to search each spectrum against the rest of the EQC
library, excluding all spectra from compounds with identical
connectivity. Up to 100 hits were retained, but most hit lists
were shorter (∼30 on average) because lower-scoring spectra
of the same compound from other precursors or collision
energies were discarded. The output is a large, tab-separated,
flat text file, which was processed in R28 using the data.table

package.29 See the SI for technical details and a discussion of
how EQC analysis differs from leave-one-out cross-validation.

Match Types.Most entries in a typical hybrid search hit list
have scores (and thus ranks) that were elevated by peak
shifting. But the software does not require this, or even that
Δm be nonzero. For each hit, it returns the number of
matching peaks and the “dot product” and MF from the hybrid
library spectrum, plus “original” versions of these quantities
without peak shifting. To assess the impact of peak shifting, we
can classify hits using these criteria. We define three types:
“Hyb,” “Ins,” and “ID” hits. Peak shifting can be detected by
any change from the original MF, dot product, or number of
matching peaks. ID hits have Δm within tolerance of zero and
no shifted peaks, and should also appear in identity and in-
source searches. Ins hits have nonzero Δm but no shifted
peaks, and should also appear with the same score in an in-
source search. And Hyb hits have both nonzero Δm and shifted
peaks, and thus appear with elevated score only in a hybrid
search (although they could also appear with their original
score in an in-source search).

Global EQC Results. The success of any library search
depends on the composition of the library. Match types from
hybrid EQC searches are shown in Figure 2. If the library

includes the actual unknown (excluded here), it should appear
near the top of the hit list. But if the library includes isomers,
these too can generate high-ranking ID hits, and there is no
easy way to tell which is correct.
We have previously noted that, because compounds with

similar structures often have similar mass spectra, most high-
scoring incorrect hits in EI identity searches are actually
correct “class identifications.”1 Tandem identity searches are
constrained by precursor matching, but removing this
constraint generates new hits to similar compounds. An in-
source search will hit compounds having fragments in common
with the unknown. (It only acts as an “identity” search when
the library contains the unknown as a different precursor with
similar fragmentation behavior.) And by including neutral-loss

Figure 2. Hybrid search “match types” by rank, excluding low-scoring
hits (MF < 600). Percentages are for all ranks. (a) All spectra in the
EQC library. Spectra from CID in ion-traps (b) and in beam-type
collision cells at moderate (c) or higher (d) energies.
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matching, the hybrid search elevates scores for cognates of the
unknown (if present), promoting them toward the top of the
hit list.30

Tandem searches also depend on the extent of fragmenta-
tion. Higher collision energies (Figure 2d) produce smaller
fragments, which may directly match peaks from many
different, often unrelated, library compounds. The resulting
hit lists are longer, with more lower-scoring Ins hits.
Conversely, ion-trap CID (Figure 2b) produces larger
fragments that are more likely to contain the structural
difference and thus match after peak shifting, generating
higher-scoring Hyb hits. And since ion traps cannot retain
smaller fragments, collision cells usually give more Ins hits even
at lower energies (Figure 2c).
Accuracy. The output of any library search is a ranked hit

list that must be interpreted by the user. For an identity search,
interpretation could be as straightforward as assuming that the
unknown is the top hit. Higher scores and a larger gap before
lower-scoring entries31 increase confidence. Accuracy can be
tested by checking if it correctly identifies known compounds.
For a similarity search, the most stringent definition of

accuracy would be to enable an experienced analyst to identify
the unknown within the limits of MS information. Identifying
RUS requires accuracy in this sense. But interpretation requires
class-specific expert knowledge and is difficult to automate. So
we deem the hybrid search “accurate” when it returns a list of
structurally similar compounds. This requires a workable
definition of similarity. The micropollutants investigators21

computed substructure fingerprint similarities for 462 pairs of

compounds. But our EQC searches generated over 2.4 million
unique pairs, so we start with a simpler metric: we define
chemical classes of interest and test each hit for membership.

Chemical Classes. The DataWarrior32 cheminformatics
program was used to find all compounds in the EQC library
containing class-defining substructures. Tested classes are
listed in Table 1 and described in the SI. For some, we
extended the class definition to additional compounds that
were counted as “similar” but not used as query spectra. Hit
rates depend on the breadth of these definitions, the depth of
library coverage, and the distinctiveness of any class-specific
fragmentation. Since the hybrid search works best at lower
energies, we restricted queries for each precursor to its ion-trap
spectrum and to the collision-cell spectrum obtained nearest
20 eV (within 10−30 eV; ignoring the effect of precursor m/z
on energy deposition). We also restricted queries to [M + H]+

ions, the most common precursor type.
Identity searching cannot be accurate if the presearch fails to

return the correct compound. But similarity searching is more
robust toward incomplete presearches: it does not require an
exhaustive list of similar library compounds, just a
representative one. The hybrid search can be run against the
entire library, but this is impracticably slow for general use. We
tested this for sphingolipids and glycerophospholipids and
found negligible improvement.
Table 1 shows hit rates for the hybrid search by match type

and chemical class. The score threshold (600, as in Figure 2)
reasonably balances breadth (84% of queries yielded at least
one hit) versus accuracy (85% class-hit rate). On average, the

Table 1. Excluded-Query-Compound Hit Rates (Score ≥600) for [M + H]+ by Chemical Class

query data class-hit rate distribution of class-hits by match type

query class
query
spectra

avg hits
per query

% with
>0 hits

% of hits to the
combined class

% Hyb
% Ins

combined
% ID

combinedquery extended

Ion-Trap CID Spectra
amino acids 974 11.8 84 90 96.7 0.5 2.8
nucleosides 121 2.6 65 89 91.5 4.6 3.9
fentanyls 37 12.0 89 81 90.0 3.3 6.7
flavonoidsa 353 18.6 90 77 78.4 9.1 0.1 12.5
carnitines 30 8.0 93 92 96.8 0.5 2.7
sphingolipids 48 4.9 81 61 100 0 0
glycerolipidsb 31 12.3 87 55 88.6 6.6 0 4.7
glycerophospholipidsc 111 2.8 70 96 95.7 2.0 0.3 2.0
hexuronidesd 56 2.2 54 61 97.3 0 2.7
steroids 329 22.9 89 77 95.1 1.2 3.7
glucuronide steroidse 8 7.2 75 95 36.4 58.2 5.5 0

Collision-Cell Spectra (∼20 eV)
amino acids 970 10.7 87 92 92.9 4.6 2.5
nucleosides 124 4.9 76 94 93.9 4.4 1.8
fentanyls 37 11.4 89 76 88.2 4.7 7.1
flavonoidsa 346 11.9 87 82 81.9 5.3 0.3 12.5
carnitines 30 14.8 97 99+ 97.5 0.9 1.6
sphingolipids 42 6.0 88 74 93.1 6.4 0.5
glycerolipidsb 32 13.2 84 53 84.7 7.7 3.2 4.5
glycerophospholipidsc 122 8.4 74 91 87.1 0.4 9.7 2.8
hexuronidesd 54 2.6 74 74 93.2 4.9 1.9
steroids 291 15.2 89 87 95.2 1.7 3.2
glucuronide steroidse 7 7.4 86 98 25.5 62.7 9.8 2.0

Overall 4153 12.0 84 85 91.5 1.7 2.0 4.8
aThe query class includes isoflavonoids; plus hits to an extended class of anthocyan[id]ins, [iso]flavan[one]s, and phenylcoumarins. bPlus hits to
glycerophospholipids. cPlus hits to glycerolipids. dMostly glucuronides with a few galacturonides. ePlus hits to steroids and hexuronides. See the SI
for structure templates and lists of compounds and spectra for each query and extended class.
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hybrid search returned 12.0 hits per query. Most of these
(93.4%) were Hyb hits, while only 2.4% were Ins and 4.2%
were ID hits (data not shown). The hybrid search converts
many potential Ins hits to higher-scoring Hyb hits by matching
shifted peaks, and unaltered Ins (and sometimes ID) hits may
get displaced from the top 100 by greatly elevated Hyb hits.
The table also shows class-hit rates for each class. Overall,

85% of all hits were to the query class. The percent
contribution of each match type to the class-hit rate is also
shown. Contributions from the query and extended classes are
listed separately for Hyb hits, but are combined for Ins and ID
hits. Overall, 93.2% (91.5% + 1.7%) of class-hits resulted from
peak shifting (Hyb hits), while only 2.0% were from Ins hits
and 4.8% were from ID hitsmostly to isomers. Furthermore,
the highest-ranked Hyb hit from each hit list was in the query
class 93% of the time (data not shown). The hybrid search
does an excellent job of finding similar compounds.
Class-hit rates were quite high for most classes tested, except

sphingolipids, glycerolipids, and “hexuronides” (glucuronides
plus a few galacturonides). Since glucuronidation is a broadly
applicable metabolic process, glucuronides have only glucur-
onic acid in common. This is a facile neutral loss, leaving
product ions from a variety of unrelated compounds. The
highest scores will be for compounds similar to these

fragments: for glucuronide steroids, adding steroids to the
extended class roughly triples the class-hit rate.

Flavonoid Example. Even with an extended class, testing
for membership in an arbitrarily defined class often under-
estimates the fraction of structurally similar hits. An example is
shown in Figure 3 and Chart 1. The query class is
[iso]flavonoids, and hits to anthocyan[id]ins, [iso]flavan[one]-
s, and phenylcoumarins are also counted as similar. The
“unknown” query spectrum is from the [M + H]+ ion of
isovitexin, fragmented in a beam-type collision cell at 19 eV.
The spectrum is dominated by fragmentation of the 6-C-
glycoside. While O-glycosides tend to lose the entire sugar
moiety upon collisional activation,33 the C-glycosidic linkage is
stronger, so the tandem spectrum of isovitexin shows a series
of losses due to fragmentation of the sugar itself.34

The EQC search hits 21 compounds: nine in the query class,
two only in the extended class, and 10 in neither class.
Structures (neglecting stereochemistry) are shown in Chart 1.
Note that four of the “misses” (5, 6, 10, 17) have a C-glycoside
linked to a flavonoid-like fused-ring core, and were not
counted as flavonoids because they lack the phenyl substituent.
Our class definitions did not capture this important structural
similarity that produces similar fragmentation behavior.

Figure 3. Hybrid EQC search for a 19 eV collision-cell spectrum of the [M + H]+ precursor of isovitexin, a 6-C-glycosidic flavonoid. The hit list
shows the hybrid score (match factor) and number of matching peaks for each hit, paired with “original” values calculated without peak shifting. It
also lists Δm and a description of each hit as it would appear in the NIST MS Search program. Score elevations for most hits in this example are
very large, because most peaks match only after shifting (pink), as shown in the head-to-tail spectrum for the top hit.
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The top four entries are Hyb hits to other 6-C-glycosidic
flavonoids. The top hit (isoorientin) has one more O atom
than isovitexin, on the phenyl ring. Its original spectrum
matched only two minor peaks, giving a 0 score. But after
shifting by −15.9949, a total of 15 library peaks matched,
elevating the score to a near-perfect 990. The modification
does not affect the pattern of losses produced by fragmentation
of the 6-C-linked sugar.
Saponarin (4) is isovitexin plus an O-linked sugar. Its best

match occurred at 29 eV, which cleanly removed the labile O-
linked sugar and fragmented the 6-C-linked sugar. Its original
score was high enough for an Ins hit, but a modest score
elevation due to at least one partial peak shift (without
changing the total number of matching peaks) made it a Hyb
hit.
Vitexin (7) is an 8-C-isomer of isovitexin, so it generated an

ID hit. Scores for it and other 8-C-glycosides (6, 8, 9, 13) are

lower than the best Hyb hits to 6-C-glycosides because the
position of the C-linkage alters the relative abundances of the
loss peaks.34 Vitexin 4-O-glucoside (9) also gave an ID hit
(despite its greater mass) because the library includes a
spectrum with an in-source loss of the labile O-glucoside.
A 46 eV spectrum of vitexin-2″-O-rhamnoside (13)

generated an Ins hit by directly matching smaller fragments
produced after loss of the O-linked sugar.
Neohesperidin (18) generated the first Hyb hit to the

extended class. Both it and 19 have a single bond at the 2-
position, contributing −2H to the total Δm. But they also have
differences in other locations, so neither is a true cognate. They
matched anyway because the modifications are in a region that
does not fragment significantly at these energies.

Chart 1. Isovitexin Peak Assignments and Hybrid Search Hit List
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■ CONCLUSIONS
Our tests show that, for unknowns from typical chemical
classes and with current libraries, the hybrid search is highly
likely to return a list of similar compounds: 85% of all hits with
a score of at least 600 were to compounds in the same class as
the query. But as our flavonoid example shows, arbitrary class
definitions often do not fully encompass the structural
similarity evident in high-scoring hybrid hit lists. Also, valuable
structural information can often be found deeper in the hit list
(it is wasteful to consider only the top hit), and interpretation
currently requires expert analysis, so a successful hybrid search
does not generate a simple answer that is easy to check for
accuracy. Our next step will be to use computational
substructure analysis of hybrid search hit lists to partially
automate unknown structure determination, toward our goal of
identifying recurrent unidentified spectra from authentic
biological samples.
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