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Abstract—Fog computing is an emerging architecture, which 
extends the Cloud computing paradigm to the edge of the network, 
enabling new applications and services, including Internet of 
Things (IoT).  End users have certain computation tasks, which 
can be completed either locally on the end device or remotely on 
an accessible Fog node via computation offloading.    Due to 
mobility and highly dynamic nature of end users, the access is 
wireless with severe physical limitations on the access network 
capacity to sustain stringent latency requirements for streaming 
and real-time applications for large number of end users over 
wide-spread geographical area.  Also, computationally and storage 
intensive tasks can be offloaded to centralized cloud over IP core 
network at the cost of higher communication delay.  Efficiency of 
offloading critically depends not only on the wireless access to Fog 
nodes, but also on availability of the computing, storage, control, 
and networking resources at the Fog nodes.  This position paper 
proposes Fog Network Utility Maximization (FoNUM) for 
balancing end user preferences for various Fog services with 
mobile end user preferences for conserving battery energy to 
prolong battery lives.  We suggest that approximate, pricing-
based, distributed solution to FoNUM can be obtained by 
employing soft handoff, which allows peripheral devices to connect 
to several “close” Fog nodes and then customize the offloading 
depending on the specific task resource requirements and resource 
availability at the Fog nodes.  
 

Keywords-Fog network; utility maximization; resource 
management; pricing; approximation, soft handoff. 

I.  INTRODUCTION 
Fog computing is an emerging architecture that moves 

computation, communication, and storage closer to the end 
users [1]-[2].  The emergence of Fog computing is driven by 
advent of the Internet of Things (IoT) and enabled by a variety 
of powerful end-user, network edge, and access devices with 
embedded artificial intelligence and 5G communication 
capabilities.  These devices include smartphones, tablets, smart 
home appliances, small cellular base stations, edge routers, 
traffic control devices, connected vehicles, smart meters, and 
energy controllers in a smart power grid, smart building 
controllers, industrial control systems, drones, industrial and 
consumer robots, etc. 

While “Cloud paradigm” assumes moving computing, 
control, and data storage into the centralized cloud, “Fog 
paradigm” relies on balancing centralized and local computing, 
storage, and network management.  However, finding the “right 
balance” is a challenging problem due to “very large scale,” 

highly dynamic nature of IoT, and strong externalities, i.e., side 
effects of local resource management decisions.  Recently 
developed Network Utility Maximization (NUM) [3] 
demonstrated feasibility of distributed cross-layer network 
optimization by pricing externalities for balancing user 
demands for communication bandwidth.   

This position paper proposes Fog Network Utility 
Maximization (FoNUM) as an extension of NUM [3].  FoNUM 
balances end user preferences for various services with mobile 
user preferences for conserving battery energy to prolong 
battery lives.  We argue that approximate, pricing-based, 
distributed solution to FoNUM can be obtained by employing 
soft handoff, which allows peripheral devices to connect to 
several “close” Fog nodes and then customize the job 
offloading depending on the job resource requirements and 
resource availability at the Fog nodes. 

Figure 1 shows a “bird view” architecture of Fog computing 
architecture [1]-[2]. 

 
 

Figure 1.  Fog computing architecture. 
 

Each mobile device has certain computation tasks, which can 
be completed either locally on the mobile device or remotely on 
the cloud via computation offloading.  Due to mobility and 
highly dynamic nature of end users, the access is wireless with 
severe physical limitations on the access network capacity to 
sustain stringent latency requirements for streaming and real-
time applications for large number of mobile nodes over wide-
spread geographical area.   

Assuming wireless access network to be interference limited, 
we quantify system performance by the aggregate user utility.  
Optimization of the system computing and communication 
resources requires accounting for externalities due to 
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interference created by the individual offloading transmissions.  
While each Fog node can account for the intracell externalities, 
exact accounting for the intercell externalities in a large-scale 
network is not feasible due to prohibitive exchange of the 
“microscopic” information on the intercell interference by end 
users. We suggest that approximate, pricing-based, distributed 
solution to FoNUM can be obtained by employing soft handoff, 
which allows peripheral devices to connect to several “close” 
Fog nodes and then customize the offloading depending on the 
specific task resource requirements and resource availability at 
the Fog nodes. 

The paper is organized as follows.  Section II describes 
interference limited wireless access network to the Fog network 
and service model at the Fog nodes, which extends model [4].  
Given upper limits on the interference at the Fog nodes, the Fog 
capacity region is the intersection of the communication 
capacity region of the access network to the Fog nodes and 
capacity regions for computing services at the Fog nodes.  
Extending results [5], Section III shows that the communication 
capacity region of the access network to the Fog nodes can be 
effectively evaluated using Perron-Frobenius theory.  Section 
IV describes Fog Network Utility Maximization (FoNUM) 
framework as argues that efficient resource allocation in Fog 
network can be achieved with distributed, pricing-based 
solution to FoNUM. Finally, conclusion briefly summarizes 
and outlines directions of future research. 

II. COMMUNICATION AND COMPUTING MODELS 
Subsection A describes interference limited wireless access 

to Fog nodes, used by end users for offloading.  Subsection B 
describes computing service model at Fog nodes.  Given upper 
limits on the interference at the Fog nodes, these models yield 
the feasible region for the offloading rates. 

A. Access Communication Network to Fog Nodes 
Consider Fog network with S  peripheral users and N  Fog 

nodes.  User 1,..,i M=  Signal to Interference plus noise Ratio 
at Fog node 1,..,n N=  is  

                   2( )in in in in nSINR = p Iξ σ+ ,                                  (1) 

where inp  is user i  transmission power to node n , inξ  is 

propagation gain from user i  to Fog node n , 2
nσ  is exogenous 

interference at node n , and interference experienced by user i  
at node n  from other users j i≠  is 

                           
1

N
in jk jnj i k

I = p ξ
≠ =∑ ∑ .                                     (2) 

Expression (2) assumes that each user coordinates her 
transmissions to different nodes, thus these transmissions do not 
interfere with each other.  However, different nodes do not 
coordinate transmissions with each other. 

We assume that user i  transmission rate is an increasing 
function of the Signal to Interference plus noise Ratio (1): 

                            
2
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,                                            (3) 

 where (0) 0inϕ = .  Two examples of rate function (3) are 
Shannon capacity: 
                       2log (1 )in inr =W SINR+ ,                                       (4) 
where W  is the wireless bandwidth, and threshold capacity: 
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Threshold-based capacity (5) is an extreme case of a realistic 
sigmoid rate function of a wireless channel.  

Given the interference level at the Fog nodes 
                      

1 1

M N
n ik ini k

I = p ξ
= =∑ ∑ ,                                          (6) 

equations (2)-(3) yield end user i  transmission power needed 
for offloading rate to Fog node n : 
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where 1(.)inϕ−  is inverse of increasing function (.)inϕ .  Thus, 
given interference levels at the Fog nodes (6), the feasible 
region for the offloading rates is as follows: 
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Note that despite region (8) is not necessarily convex, it can be 
shown [6] that convexification can be achieved with time 
sharing between different transmission power vectors.    

B. Computing Services at Fog Nodes 
We assume that each Fog node has up to J  types of 

resources in addition to the communication resources, which 
can be requested by an offloaded task.  These additional 
resources may include computing resources, memory, network 
management resources, etc.  Let njB  be amount of resource 

1,..,j J=  at Fog node 1,..,n N= .  We assume that each end 
user 1,..,i M=  can offload up to S  classes of tasks.  Task 
offloading to a Fog node consumes task class specific mixture 
of resources at this node.  We model the amount of consumed 
resources by assuming that offloading of a type 1,..,s S=  task 

at rate 0r >  consumes amount s
jrc  of type j  resource at a 

Fog node.   
Assuming that system can direct the offloading to different 

fog nodes, let s
inr  be user i  transmission rate to node n  required 

to sustain class s  jobs generated by this peripheral.  The total 
offloading rate by peripheral i  to node n  is 

                           s
in ins

r r=∑ .                                                       (9) 

Assuming that resource j  capacity at node n  is jnC , node n  

can sustain demand for this resource if and only if 
                        s s

j in jns i
c r B≤∑ ∑ .                                           (10) 



In Figure 2, region 0, , ,0s s
in jnR R  represents convexified 

feasible region due to communication constrains (8), region 
0, , , ,0A AB B  represents capacity region due to limited 
resources at the Fog nodes (10).  Intersection of these two 
regions 0, , , ,0s

jnF B b R′=  represents the feasible region for 
the Fog network, given interference levels at the Fog nodes. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Feasible and capacity regions for offloading rates 

III. CAPACITY REGION 
While inequalities (8) determine feasible user offloading 

rates for given interference levels at the Fog nodes, this section 
derives communication capacity of a Fog network, i.e., region 
of sustainable offloading rates.  Subsection A demonstrates that 
solution to “microscopic” system (6)-(7) can be exactly 
recovered from “macroscopic” linear system for interferences 
at the Fog nodes.  Dimension of this system, equal to the 
number of Fog nodes N , is typically much lower than number 
of the end users M : N M<< .  Subsection B gives concise 
characterization of achievable transmission rates in terms of 
Perron-Frobenius eigenvalue to the non-negative matrix of the 
macroscopic system. 

A. Dimension Reduction 
Multiplying both sides of (7) by ikξ , then summing over 

( , )i n , and taking into account (6), we obtain the following 

equations for interference at base stations kI , 1,..,k N= : 
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Moving term containing kI  from the right-hand to the left-hand 
side and renaming indices, we obtain the following closed 
system of N  linear equations for interferences at base stations 

nI , Nn ,..,1= : 

  21
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where 

                         
1

1

( )( )
1 ( )

ik ik
ik ik

ik ik

rr
r

ϕγ
ϕ

−

−=
+

,                                      (13) 

                          ( ) ( )k ik iki
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and ( )ikr r=  is vector of transmission rates.  After solving 

linear system (10)-(12) for interferences nI , user transmission 

powers nsp  can be recovered with explicit expressions (8). 
In a case of a single cell, (12)-(13) yield explicit expression 

for interference at the base station 

                               2
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γ
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−
= ,                                               (15) 

and end user transmission powers 
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where 
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B. Perron-Frobenius Characterization 
According to (16)-(17), capacity region of a single-cell 

system is given by 

                       
1
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1 ( )i i i

M
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In a case of Shannon capacity (4), 
                         1( ) 2 1nir W

ni rφ− = − ,                                            (19) 
and thus sustainability condition (18) takes the following form: 
                          1 2 sr W

i
M −< +∑ .                                              (20) 

In a case of threshold-based capacity (5), 
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and thus, sustainability condition (18) takes the following form: 

                       
*

11
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For a multi-cell system, 
               1)( <rnγ , Nn ,..,1= ,                                           (23) 

where )(rnγ  are given by (13)-(14), is generally a necessary 

but not sufficient condition for sustainability of rates ( )inr r= .  
Assuming conditions (23) are satisfied, in the rest of this 
subsection we concisely define the Fog communication 
capacity region in a general case of multiple Fog nodes: 
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Our analysis is based on observation that equations (12) form 
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a linear system: 
                            )()( rbIrAI += ,                                           (25) 

where matrix , 1( ) [ ( )]N
nk n kA r A r ==  has non-negative 

components 
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if n k≠ , and 0=nnA , and column vector N
nnbb 1)( ==  has 

positive components 

            21( ) ( )
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According to (7), transmission rates ( )inr r=  can be 
realized with finite transmission powers if and only if system 
(25)-(27) has non-negative solution 0≥nI , Nn ,..,1= , i.e., 

   ˆ { : 0 : ( ) ( )}R r I I A r I b r= ∃ ≥ = + .                     (28)   

It is known [6] that capacity region (28) can be characterized in 
terms of Perron-Frobenius eigenvalue of matrix )(rA  with 
components (26), )(rΓ=Γ : 

                                 ( ) 1s
ins

rΓ <∑                                                 (29) 

complemented with conditions (23).  Conditions (23), (29) 
provide a concise Perron-Frobenius characterization of system 
communication capacity region (24), which is open and 
generally non-convex.  Convexification of the capacity region 
(23), (29) can be achieved with time sharing between different 
transmission power vectors [6].  In Figure 2 region 
0, , , , ,0s s

in jnR a b R  represents this convexified communication 

capacity region.  Intersection of the convexified communication 
capacity region and resource capacity region at the Fog nodes 
0, , , ,0A AB B  represents the overall Fog capacity region F̂ . 

We conclude this subsection by noting that approximations 
and bounds on the Perron-Frobenius eigenvalue )(rΓ  
immediately lead to the corresponding approximations and 
bounds on the Fog communication capacity region (24).  For 
example, it is known [6] that  
                       ( ) max ( )nkk nn

r A r
≠

Γ ≤ ∑ ,                               (30) 

and thus, condition 

                   1max ( ) 1
1 ( )
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ik ikn k n in ik

r
r
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<
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supplemented with (23) guarantee (29), and thus determine low 
bound on the Fog communication capacity region (24).  Also 
note that in a case of a single cell 1=N , conditions (23) and 
(31) the Fog communication capacity region (24).  

IV. FOG NETWORK UTILITY MAXIMIZATION (FONUM) 
System operation inside capacity region close to its boundary 

results in high level of interference and thus requires high level 

of transmission powers.  Since for mobile end users, 
transmission power is inversely related to battery life 
expectancy, mobile users should balance their preferences for 
the offloading rate on the one hand and prolonging the battery 
life on the other hand.  Subsection A introduces user utility 
functions which quantify this tradeoff.  Assuming that overall 
Fog performance is characterized by the aggregate utility, 
subsection B demonstrates inefficiency of selfish user utility 
maximization.  This inefficiency is due to strong negative 
externalities of the offloading decisions by individual end users.  
Subsection C discusses possible distributed implementation of 
Fog Network Utility Maximization (FoNUM), which is based 
on approximate pricing of these externalities. 

A. User and System Performance Criteria 
We assume that end user i  preference for class s  service can 

be quantified by increasing utility function ( )s
is iv r , where 

(0) 0isv = .  Specific form of end user utility as a function of 
transmission rate in a case of computation offloading have been 
discussed in literature, e.g., see [8].  Here we only note that in a 
case of services which do not require minimum bandwidth, e.g., 
file transfer, this function is concave: 1( )v v r= , as shown in 
Figure 3.  In a case of real-time, e.g., streaming, services, which 
require minimum bandwidth, this function has a sigmoid shape: 

2 ( )v v r= , as shown in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. User utility of offloading 
 

We assume that the aggregate utility of user i  offloading 
services 1,..,s S=  at rates : ( , 1,.., )s

i isr r s S= =  is additive: 
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( ) ( )Ss s s
i i i is

v r rΣ
=

=∑ .                                           (32) 

Mobile end user i  balances preference for high offloading rate 
with incentive for prolonging the battery life which translates to 
lower transmission power ip .  We model this balance by 

including penalty ( )i if p  in user i  utility as follows:     

           ( , ) ( ) ( )s s
i i i is i i is

u r p v r f p= −∑ ,                             (33) 

where ( )i if p  is an increasing and convex function, (0) 0if =  

and ( )i if p ↑ ∞  as ip ↑ ∞ .  Penalty function ( )i if p  is 
sketched in Figure 4. 

0
r

1( )v r

2 ( )v r

( )v r



 
Figure 4.  Penalty due to battery depleting 
 
Function 1( )f p  describes mobile user with less remaining 

battery energy than function 2 ( )f p  describes. 

B. Inefficiency of Selfish Optimization  

In selfish optimization, each peripheral user i I∈  selfishly 
makes offloading decisions in an attempt to maximize hers 
individual utility (33), given interference levels at the Fog nodes 

nI .  Substituting expression (3) for the offloading rate inr  in 
user i  utility (33), we obtain the following expression for the 
user utility i  as a function of the transmission power, given 
interference levels at the Fog nodes nI : 

  
2( )

s
s in in

i in n is in s
s n n in in n

s
i in
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f p

ξϕ
ξ σ
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Thus, user i  selfish optimization takes form of utility (34) 

maximization over transmission powers s
inp , 1,..,s S= ,

1,..,n N= : 

                             
( )

max ( )
s
in

s
i in n

p
U p I .                                               (35) 

subject to resource capacity constraints (10).   
Optimization (35) in a case of inactive capacity constraints 

(10) is shown in Figure 5 in a typical case of sigmoid rate 
function (3).   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Utility: offloading vs. battery depleting, 1 2 3I I I< <  

Increase in the user transmission power benefits user utility for 
sufficiently small transmission power due to increase in the 
offloading rate.  However, for large transmission power, 
detrimental effect due to high battery energy expenditure 
dominates.  Given interference level I , the optimal 
transmission power *( )p I  is a decreasing function of I .  

Since interference levels at the Fog nodes nI  depend on 
transmission powers by all interfering end users: 

                
1 1 1

( ) M N S s
n in ini k s

I p = pξ
= = =∑ ∑ ∑ ,                          (36) 

selfish user optimization can be naturally interpreted within 
game-theoretic framework.  If fixed-point equations (6), (35) 
converge, the corresponding selfish equilibrium is a pure 
equilibrium of the corresponding game.  Since ( ) 0U p I ↓  as 

0p ↑ , system avoids “power warfare,” i.e., unlimited increase 
in the transmission powers by end users competing for wireless 
bandwidth.  Still, selfish equilibrium may be highly inefficient 
since “more transmission power challenged” end users with 
penalty function 1( )f p  in Figure 4 may be completely starved 
from offloading by “less transmission power challenged” end 
users with penalty function 2 ( )f p  in Figure 4. 

Assuming that overall performance of Fog network is 
characterized by the aggregate utility 
                 [ ( )] [ ( )]s

i in ni
U p I p U p I pΣ =∑ ,                         (37) 

a natural goal for Fog resource allocation is maximization of 
this aggregate utility: 
                        max

0
max [ ( )]

p
U U p I pΣ Σ≥

=                                   (38) 

subject to resource capacity constraints (10).   
We call optimization problem (38)-(10) a Fog Network 

Utility Maximization (FoNUM) and quantify inefficiency of 
selfish optimization by the corresponding Price of Anarchy 
(PoA): 

                       * max * 1PoA U UΣ Σ= ≥ ,                                     (39) 

where *UΣ  is the aggregate utility (37) at the selfish 
equilibrium.  The inefficiency of selfish optimization is due to 
not accounting for externalities due to interference at the Fog 
nodes, which may eliminate some users from offloading.  Since 
exact accounting for the externalities in a large-scale Fog 
network is not feasible, in the next subsection we propose some 
approximations. 

C. FoNUM: Towards Distributed Solution through Pricing  
Following NUM framework, FoNUM accounts for 

externalities by imposing social costs on the users for the 
created externalities.  The corresponding user i  net utility is:  
  

, ,
( , ) ( , )s s s s s s

i in in i in i in nj j n in
n s j n s

w r p u r p r g c q p= − −∑ ∑ ∑ ,    (40)  

where njg  is the marginal social cost of using of an unit of 

resource j  capacity at Fog node n , and nq  is the marginal 
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p
*
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social cost of a unit of interference at Fog node n . 
User i I∈  maximization of its net utility (40): 
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s
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s
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yield solution, which depends on the costs njg  and iq .  The 

problem is finding the socially optimal costs, such that 
individual user net utility maximization (41) yields solution to 
FoNUM (37)-(38).  In the rest of this subsection, we suggest 
that these socially optimal costs can be determined adaptively 
as an implementation of the demand/supply principle: cost 
increases (decreases) as resource supply decreases (increases).  

Following [10], we consider algorithm which proceeds in 
discrete time 0,1, 2,..t =  .  We assume that each Fog node 

1,..,n N=  measures the aggregate demand on the type 

1,..,j J=  resource at this node at time t  

                    ( ) ( )s s
jn j ins i

R t c r t=∑ ∑                                     (42) 

and evaluates the excess over available capacity jnB : 

( )jn jnR t B− .  Following demand/supply law for resource j  at 
node n , the marginal social cost of using of an unit of resource 
j  capacity at Fog node n  evolves as follows: 

           ( 1) ( ) ( ( ) )nj nj t jn jng t g t h R t B
+

 + = + −  ,                  (43) 

where [ ] max( ,0)x x+ =  and some sufficiently small 0th > .  

We also assume that each Fog node 1,..,n N=  estimates 

interference at this node at time t , ( )nI t , and evaluates the 
excessive interference over predetermined ermined target level 

nI


, ( )n nI t I−


.  Following demand/supply law for the wireless 
bandwidth at node n , the marginal cost of a unit of interference 
at Fog node n  evolves as follows: 

             ( 1) ( ) ( ( ) )n n t n nq t q t h I t I
+

 + = + − 


.                        (44) 

After costs (43)-(44) are communicated to users, these users 
determine Fog nodes to connect to and the transmission powers 
by solving their individual optimization problems (40)-(41).   

The first issue with this algorithm is convergence for 0th ↓  
as t →∞ .  The convergence can be expected based on 
convergence of similar algorithms in simpler situations [10].  
However, for a Fog network, relevance of convergence is 
questionable due to arrivals/departures and mobility of end 
users.  More relevant is an adequate ability to combine near 
optimal performance under steady scenario with adaptability 
under reasonable dynamic scenarios for sufficiently small but 
fixed 0th h= > .  The second issue is selection of upper limits 

of interference levels at the Fog nodes nI


, 1,..,n N=  in (44).  

In accordance with FoNUM framework, this selection should 
be able to approximate solution to optimization problem (37)- 
(38). The third major issue is practically implementable strategy 
of updating end users on the costs (43)-(44) since only users 
expected to initiate soft handoff should be updated on the real-
time costs (43)-(44) of the resources and interference at the 
“neighboring” Fog nodes.  We outline possible ways to address 
these issues in the next section.  

V. CONCLUSION AND FUTURE RESEARCH 
Efficient balancing of the centralized and local computing, 

storage, and network management in emerging Fog computing 
infrastructure requires accounting for the externalities created 
by offloading decisions made by individual end users.  This 
position paper suggests Fog Network Utility Maximization 
(FoNUM) for balancing various tradeoffs in Fog networks for 
each end user as well as across different users.  FoNUM extends 
conventional Network Utility Maximization (NUM), which 
solves this problem in a case of communication resources.  

We plan give recommendations on parameter th  in (43)-(44) 
under realistic simulation scenarios.  Selecting “near-optimal” 
target interference levels at the Fog nodes nI



, 1,..,n N=  as 
well as updating end users on the costs (43)-(44) requires 
evaluation of the long-range intracell externalities in near real 
time.  Physical limitations on the wireless bandwidth create 
inherent tradeoffs between accuracy of the Fog management 
information and Fog ability to handle payload.  One may 
envision a scheme which adapts frequency of updates of the 
implied costs according to the importance and rate of change.  
We plan investigation of such scheme by employing 
methodology of learning algorithms for soft handoff with 
recently emerged concept of the Age of Information (AoI) [11]. 
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