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ABSTRACT
Development and testing of industrial robot environments

is hampered by the limited availability of hardware resources.
Simulations provide a more accessible and readily modifiable
alternative to physical testing, but also require careful design
to maximize their fidelity to the real system. In this paper, we
describe new progress in building an entirely physics-driven
simulation of the Agility Performance of Robotic Systems
(APRS) Laboratory at the National Institute of Standards and
Technology (NIST). To maximize the accuracy of physics-based
interactions in this environment, we develop several general-
purpose improvements to the simulation of parallel grippers
and multi-object collisions. We use pick-and-place tasks from
the APRS Laboratory as well as generic benchmarks to verify
the performance of our simulation. We demonstrate that our
proposed improvements result in more physically-consistent
simulations compared to standard implementations, regardless
of the choice of physics engine or simulation parameters.

Keywords: robotics, agility, grasping, pick-and-place, simu-
lation

1 INTRODUCTION

Simulations are invaluable tools in developing industrial robotic
systems. In situations where hardware resources are limited or
costly to use, simulations can provide a test-bench for developing
controllers, debugging software, and testing various work-space
configurations [1]. One of the limiting factors to using a simula-
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tion in place of a real system is how well it replicates the physical
dynamics of the real system. This discrepancy has inspired the
development of new rigid-body physics engines that tackle spe-
cific problem areas, such as numerically stable contacts and joint
articulations [2–4].

However, existing robotics simulators are not a one-size-
fits-all solution. A significant amount of effort needs to be put
into defining contact behavior, inertia matrices, friction coeffi-
cients, and numerical solver parameters to ensure acceptable per-
formance [5]. This effort becomes increasingly laborious as the
simulated environment becomes more complex.

In this work, we use the Robot Operating System (ROS)
[6] and the Gazebo [7] robotics simulator to build an entirely
physics-based simulation of the APRS Laboratory, an environ-
ment designed for evaluating the capabilities of robots perform-
ing industrial pick-and-place tasks [8]. This environment is fairly
difficult to replicate with standard simulators due to the large
number of small, low-mass objects that the robot must accurately
manipulate. Along the course of building this simulation, we de-
veloped several practical and general-purpose improvements to
simulating two important components of our pick-and-place task
(namely parallel grippers and multi-object collisions).

This work presents the following contributions:

1. A complete simulation of the APRS Laboratory that inte-
grates with existing APRS software

2. A simple controller for simulated parallel grippers that im-
proves grasp stability

3. A method for simplifying contacts between many relatively
stationary objects in simulation
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In the following sections, we will (1) discuss relevant ex-
periments in physics-based simulation at NIST and abroad; (2)
describe the design of our APRS Laboratory simulation; (3) de-
scribe our two improvements mentioned above; and (4) present
experiments verifying the benefits of these improvements.

2 RELATED WORK

Despite the popularity of Gazebo for robot simulation, there have
been comparatively few publications that use it for physics-based
grasping and manipulation—particularly in full-fledged, realistic
environments. The most notable example is the Defense Ad-
vanced Research Projects Agency (DARPA) Virtual Robotics
Challenge (VRC) which required grasping as part of several sub-
tasks [9, 10]. Simulations have also been used for the dexterous
manipulation of cloth [11], pick-and-place tasks [12], and dexter-
ous reinforcement learning agents [13]. The robots in these sim-
ulations generally use high degree-of-freedom (DOF), anthropo-
morphic hands. They also generally handle palm-fitting objects
rather than smaller objects that require fingertip-only grasps. In
contrast, the APRS simulation robots use parallel grippers and
manipulate peg-like objects with diameters that are under 1 cm.

Another angle of research has been verifying the physical
accuracy of the physics engines themselves [14–16] with some
works emphasizing grasping in particular [17, 18]. Often, this
research seeks out general benchmarks that measure either: 1)
how the engine’s compute speed scales with simulation com-
plexity; 2) how well the engine conserves energy/momentum; or
3) how far the engine deviates from some ground-truth behavior
for a simple dynamical system. We verify the accuracy of the
APRS simulation using similar methods (to be discussed in the
Experiments section), but focus on benchmarks that are relevant
to grasping and pick-and-place tasks. We do not make claims
about the general accuracy of the tested physics engines.

NIST has also pursued research in verifying the physical ac-
curacy of robot simulators [19,20]. This earlier work focused on
the simulation of the Talon Robot using the older Karma Physics
Engine. The evaluation metrics used in this work were based pri-
marily on mobility with limited discussion of grasping. In con-
trast, our work simulates a pick-and-place task using Gazebo’s
variant of the Open Dynamics Engine (ODE) [2, 5]. It focuses
more finely on grasp stability and simulator performance.

3 SYSTEM OVERVIEW

In this section, we give a high-level overview of our APRS sim-
ulation. We will begin by reviewing the objectives and design of
the physical APRS Laboratory. Following this, we will present
the design of our simulation along with its interfaces to the exist-
ing APRS architecture.

APRS Architecture
The APRS Laboratory seeks to study and measure the “agility”
of robotics systems, which widely refers to a system’s retask-
ing capability, robustness to failures, and interoperability [8]. As
part of this research effort, the APRS Laboratory implements an
archetypal agile robotics system that operates on a simple pick-
and-place kitting task.

The system consists of a Fanuc LR-Mate 200iD and a Mo-
toman SIA20F robot. These two robots are positioned on op-
posite sides of a conveyor, which carries several part trays con-
taining gears. These gears must be moved by the robots (both
equipped with parallel gripper end-effectors) to a specified kit
tray. As the robots perform the kitting task, the system experi-
ences several mock failures, such as a robot breaking down or a
part being misplaced.

Reacting to these failures requires an agile approach to sens-
ing, planning, and control—the details of which can be found
in [8]. To briefly summarize:

1. The APRS Laboratory maintains an ontology describing rel-
evant kitting objects and concepts

2. An overhead camera system is used to locate instances of
objects described in this ontology

3. A planner uses the ontology and instance information to gen-
erate a high-level action plan

4. Low-level controllers execute this plan on the robots

In the described architecture, replacing the physical system with
a simulation requires three steps: replicating the camera system,
replicating the robot grasping dynamics, and creating an inter-
face between the high-level plan and the low-level virtual con-
trollers used by the simulated robots. Virtual sensors were ex-
plored in [21], while implementing a shared interface and achiev-
ing accurate dynamics is this work’s focus.

Simulation Framework
The APRS simulation framework is built primarily using ROS,
which is an open-source suite of robotics-related software pack-
ages that are interconnected through a shared message-passing
framework. Out of the box, ROS packages provide us with the
kinematic descriptions of the robots, joint controllers, joint-state
information, forward/inverse kinematic solvers, and collision-
aware trajectory planning. ROS can also be extended by writ-
ing new packages, which is how we implement the kinematic
descriptions of the conveyor and parallel grippers in the system.

We use Gazebo, an open-source robotics simulator, to dy-
namically simulate the system. Gazebo is designed to be compat-
ible with many of ROS’s components, including the robot kine-
matic descriptions, joint controllers, and joint-state publishers.
Gazebo also supports multiple physics engines and allows users
to tune the behavior of each engine’s numerical solver. We will
provide a detailed discussion our choice of physics parameters
and physics engine in the “Experiments” section.
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FIGURE 1: APRS system architecture
Components enclosed in dashed box are swappable

Like ROS, Gazebo’s functionality can be extended—this
time with user-defined plugins, which give access to nearly all
aspects of the simulator’s physics, sensing, and communication
systems. We use plugins to implement both robots’ grippers, and
the light curtain. The light curtain is implemented as a collection
of Gazebo built-in laser rangefinders, whose values are unified
into a single output using a plugin. The gripper actuation is han-
dled entirely by a plugin described in the Physics Improvements
section. Defining custom behavior using plugins has virtually no
performance overhead and can be done in only a few lines of
code (as shown in Algorithms 1 and 2).

Our conveyor is implemented using both a ROS controller
and a Gazebo plugin. It is modeled as a single planar surface
controlled by a linear actuator. The surface needs to apply force
to carried objects as though it were moving, while appearing

approximately stationary itself (to approximate a realistic con-
veyor). This is accomplished by using a ROS controller to con-
trol the actuator’s velocity while using a Gazebo plugin to peri-
odically reset the position of the surface after any small displace-
ment.

FIGURE 2: The simulated APRS Laboratory

Shared Interface
The physical APRS Laboratory performs low-level control of
each robot using proprietary controllers, and operates the con-
veyor by using a programmable logic controller (PLC) running a
Modbus server [22]. These heterogeneous interfaces are unified
using the Canonical Robot Command Language (CRCL) [23].
After the APRS architecture synthesizes a high-level plan, this
plan is converted into the corresponding CRCL primitives, which
are then sent to the appropriate device (either the robot, gripper,
or conveyor).

To integrate the simulated robots’ controllers with the APRS
architecture, we implement a conversion from CRCL primitives
to ROS messages, which can be used to specify controller tar-
gets and trajectories. The resulting CRCL2ROS library con-
verts CRCL-formatted commands to the ROS-compatible pro-
tobuf format [24].

For conveyor commands, we forego using the CRCL2ROS
library in favor of re-using the Modbus interface already in-place
for the physical conveyor. To do this, we implement a Modbus
server in software using the libmodbus C++ library [25]. In
the physical system, the Modbus server controls the conveyor’s
velocity by writing to the appropriate registers on the PLC. In the
software implementation, the Modbus server controls the simu-
lated conveyor’s speed and direction by writing a velocity target
to its ROS controller.

4 PHYSICS IMPROVEMENTS

Having established the overall design of the APRS simulation,
we will now present two simulation improvements that form the
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main contribution of this paper. Each improvement targets a
component of the simulated system that is prone to unstable,
physically unrealistic behavior. “Stability” will be defined and
tested more precisely in the “Experiments” section, while this
section will focus on the conceptual description of each improve-
ment. We want to stress that these improvements are agnostic to
the physics engine used and are simple to implement provided
the physics engine supports a programming interface (this is han-
dled by Gazebo’s plugin system in our case).

Parallel Gripper Control
The APRS robots perform grasping using pneumatic parallel
grippers. A typical approach for defining parallel grippers in
software involves mimic joints, where one joint “mimics” a sec-
ond joint by maintaining its relative position and velocity in joint-
space. Unfortunately, many physics engines do not define a joint
constraint that describes this mimic behavior directly. Because
of this, a popular ad-hoc approach is to use external control plu-
gins [26]. This approach implements a proportional-integral-
derivative (PID) force controller that uses the mimic joint’s rela-
tive joint position as the feedback term. However, there are two
problems with using such a control scheme for parallel grasping.

• The output force is 0 N when the error feedback is 0 (i.e.,
when the gripper’s fingers are symmetrically positioned).
During grasping, this creates asymmetric forces on the grip-
per that either cause the grasp to fail or the mimic joint to be
pushed to an asymmetric position so that the force generated
by the controller matches the force of the original joint.

• Since the original joint’s controller has no knowledge of the
mimic joint, there is no guarantee that the gripper’s fingers
will remain symmetric throughout a trajectory if they expe-
rience different external forces. For example, if an obstacle
blocks the mimic joint but not the original joint, the result-
ing finger positions would not be symmetric like they would
be in the real gripper.

To address these shortcomings, we implement a new control
scheme operating on both joints simultaneously:

F1 = Fc + kp(p2− p1), (1)
F2 = Fc + kp(p1− p2). (2)

Here, Fi is the force output for each joint; pi is the joint-space
position of each joint; Fc is a constant force shared by both joints;
and kp is a proportional gain. Using this controller, both joints
maintain an identical non-zero force during grasps and are driven
to symmetric positions by mimicking each other, satisfying both
problems.

This control scheme has an elegant physical interpretation:
the Fc term emulates the force generated by the gripper’s piston,

and the kp(·) term emulates the normal forces of the gripper’s
actuator linkage.

While this controller was developed with pneumatic grip-
per’s in mind, it can easily be extended for approximating any
mimic joint(s). Given some collection of N mimic joints, a
single-joint force-controller Fj, and a relative joint-error force-
controller Fs, we can define the control of joint i ∈ {1 . . .N} as:

Fi = Fj(pi)+ ∑
n∈{1...N}\{i}

Fs(pn− pi). (3)

In our gripper implementation, Fj(·) was chosen to be the con-
stant force Fc. Fs(·) was chosen to be a proportional controller.

Contact Simplification
The kitting tasks performed by APRS robots involve handling
dozens of small objects such as gears and trays. This intro-
duces two challenges to simulation. The first challenge is simu-
lation stability. The stacking of objects, especially objects with
large inertia-ratios, is known to cause instability due to over-
constraining the linear complementarity problems (LCPs) that
are solved by the physics engine at each time step [5]. The sec-
ond challenge is compute speed, which deteriorates as the num-
ber of contacts to simulate increases.

To improve both stability and computational performance,
we implement a Gazebo plugin for automatically simplifying
contacts between relatively stationary objects. The approach is
straightforward in concept:

1. Use Gazebo’s built-in ContactSensor class to find ex-
isting contacts and their contact forces

2. Determine whether the objects in contact are stationary rel-
ative to each other

3. Create a virtual, fixed joint between objects satisfying the
stationary criteria and disable collisions between them

4. Destroy the virtual joint and re-enable collisions if the ob-
jects are no longer stationary, resuming normal behavior

Effectively, this replaces a dynamics problem for the physics
engine with a much nicer statics problem for the plugin. The
sensing of forces, creation and destruction of joints, and en-
abling and disabling of collisions can be handled entirely through
Gazebo’s programming interface. This only leaves the question
of how to define the stationary criteria.

For our purposes, two objects are considered stationary if
their relative velocity and acceleration are 0. These criteria work
fine for creating a virtual joint, but are problematic for deleting
it since the virtual joint constrains the relative velocity and ac-
celeration of the objects to be 0. However, we can observe the
force needed for the virtual joint to satisfy these constraints and
use that as part of the criteria.
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More precisely, we can define the net force Fσ on a relatively
stationary object as:

Fσ = FE +FC +FV = 0, (4)

where FE is the external, non-measurable force, FC is the con-
tact force, and FV is the virtual joint force. Since only one of
either contact forces or joint forces are active at any one time,
this equation becomes:

Fσ = FE +FC = 0 Fσ = FE +FV = 0. (5)

Solving and substituting for FE , we have FC = FV at the time-
step that the virtual joint is created. If FC 6= FV at a future time-
step, then the external force FE has changed and the original sta-
tionary criteria Fσ = FE + FC = 0 is no longer satisfied. The
actual plugin uses a threshold on ‖FC−FV‖ rather than a strict
inequality, but behaves equivalently.

This plugin offers an improvement over previous dynamics-
disabling features found in Gazebo’s primary physics engine,
which only applied to absolutely stationary objects [5]. It is
also fairly physics engine-agnostic and lightweight, provided the
physics engine supports measuring constraint forces and dynam-
ically spawning joints. The complete pseudocode is given in Al-
gorithms 1 and 2.

Data: GazeboContactSensorMessage Msg,
ErrorThreshold e1, ErrorThreshold e2
Result: VirtualJoint V, ContactForce CF

Executed on new ContactSensorMessage
c1← Msg.collision1
c2← Msg.collision2

v1← GetWorldFrameVelocity (c1)
v2← GetWorldFrameVelocity (c2)

a1← GetWorldFrameAccel (c1)
a2← GetWorldFrameAccel (c2)

if‖v1−v2‖< e1 & ‖a1−a2‖< e2 then
CF← Msg.NetForce
V← GazeboCreateNewJoint(c1, c2)
GazeboDisableContact(c1, c2)

end
Algorithm 1: Virtual Joint Creation Callback

5 EXPERIMENTS

In this section, we measure the performance of our two proposed
improvements. To do this, we design several scenarios that target

Data: Virtual Joint V, ContactForce CF,
ErrorThreshold e

Executed on each simulation physics step
if‖CF−V.Force‖> e then

GazeboEnableContact(V.Collision1,
V.Collision2)
GazeboRemoveJoint(V)

end
Algorithm 2: Virtual Joint Deletion Callback

the behavior of each improvement in isolation. Each scenario and
metric is designed such that the performance of the real system
is known to be trivially simple. For example, we know that once
a real robot successfully grasps an object, the object will remain
completely stationary relative to the gripper during any of the
robot’s motions (due to the large force exerted by the pneumatic
gripper). Now, the objective is to measure whether the simulation
violates this “relatively stationary” condition that is known to
hold for the real system. Using this approach, we can verify the
physical accuracy of our improvements without needing to take
any measurements on the real system.

We tested our scenarios primarily with Gazebo’s variant of
ODE using default simulation parameters. This configuration
was mainly used due to technical limitations in Gazebo’s support
for other physics engines, and because this ODE configuration is
fairly common in other work [1].

Parallel Gripper Control
The gripper controller experiments are motivated primarily by
the “relatively stationary” condition described above. We con-
sider a grasp more stable and physically accurate if it maintains a
constant displacement between the object and the gripper during
a motion. Mathematically, we measure this using the Euclidean
distance between an initial position and subsequent positions:

δt =‖pt − p0‖2 . (6)

Here, p is a 3-dimensional relative position and t is a simulation
time-step. This metric is similar to Measure C used in [18].

We would also like to incorporate angular displacement into
our analysis. To do this, we record the quaternions q0 and qt
corresponding to initial and subsequent relative orientations be-
tween the gripper and grasped object. Thus, we can compute
angular displacement as:

θt = arccos(2〈qt ,q0〉2−1). (7)

We report this value along with δt (ideally both should be close
to 0 if the simulation is physically accurate). These metrics are
computed for our gripper controller along with two baselines:
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Standard Plugin

Cumulative δt 1.3 ·10−2 m 1.0 ·10−3 m

Real-Time
Factor

0.43 0.98

TABLE 1: Multi-object contact simplification experiment

• Constant opposing forces to both joints

• The preexisting mimic joint plugin from [26] with constant
force on the mimicked joint

Each controller is attached to a floating gripper (not expe-
riencing any forces). Using each of the three controllers, the
floating gripper grasps a conveniently placed APRS gear. Once
the gripper is closed, the floating gripper is subjected to a range
of accelerations defined in Cartesian world coordinates (emulat-
ing the motion of robots performing pick-and-place operations).
During these trajectories, the positional and angular displace-
ment metrics are computed and reported using a combination of
ROS and Gazebo telemetry.

Our results, summarized in Figure 3, show that our proposed
parallel gripper controller outperforms both baselines in min-
imizing positional displacement during Cartesian trajectories.
The controller also matches the constant force control scheme
in angular displacement. We also note that positional displace-
ment was the largest contributor to objects falling out of the grip-
per, and that both baselines would drop their objects from much
smaller impulses as compared to our proposed controller.

Contact Simplification
Like our previous test, the experiment for our contact simplifica-
tion improvement uses another “relatively stationary” condition.
This time, we know that gears placed inside trays must be sta-
tionary relative to the tray (based on their coefficient of friction
and the tray design shown in [8]). Therefore, we can reuse the
metrics given by Equations 6 and 7, this time computing the rel-
ative displacement from gear to tray (rather than gear to gripper).

The scenario that we used consists of a conveyor carrying
multiple trays. Each tray is loaded with gears, reminiscent of a
typical kitting task. We choose this particular configuration to
highlight the benefits of our improvement to both accuracy and
run speed for simulations with scaling complexity.

We summarize our results in Table 1. This data was col-
lected based on a simulation of 10 trays carrying 40 gears, which
we believe adequately demonstrates the effect of the plugin on
both accuracy and simulation speed. We record the relative dis-
placement δt between a gear and the tray at t = 4 s. We then
sum the δt values from all 40 gears to compute a cumulative δt
value for the scenario. We also record the real-time factor of the
simulation.

(a) Positional Displacement

(b) Angular Displacement
FIGURE 3: Relative displacement along a Cartesian trajectory

using various controllers

As expected, once the contact simplification plugin creates
a virtual joint, the displacement of the gear relative to its tray
is fixed. This gives the plugin a slight edge over the standard
approach by limiting the effect of any unstable simulation be-
haviour (like jittering contacts).

The plugin also has a pronounced effect on the simulator’s
compute speed. On average, every collision between objects in
our simulation had about 10 contact points that needed to be pro-
cessed per time step. The plugin effectively reduced this to one
contact point per collision.
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FIGURE 4: Gripper benchmark tool with Gazebo visualization

FIGURE 5: Visualization of contact plugin performance testing

6 CONCLUSION

We have presented a physics-based simulation of the APRS Lab-
oratory along with several techniques that enabled it to reach
good physical accuracy (as measured by the degree to which the
simulation violates static friction conditions). We have demon-
strated how our simulation integrates into the overall APRS ar-
chitecture, and how its design leverages open-source software
to include additional industrial components, such as conveyors,
grippers, and light curtains.

Given that the APRS Laboratory simulation now achieves
good physical accuracy on kitting-related tasks, it can now be
extended to simulating entire kitting scenarios currently being
developed for the physical APRS Laboratory. To do this, future
work will involve improving the software tools needed to cre-
ate these scenarios, extending the robot agility measures used
by the physical lab to the virtual environment, and disseminat-
ing the virtual environment to external collaborators. The vir-
tual environment also opens new areas of data-intensive research
that are too costly to run on actual hardware, such as controlling
robots using reinforcement learning agents or testing the viability
of new sensor configurations for computer vision tasks.

Disclaimer
Certain commercial/open source software, hardware, and tools
are identified in this paper in order to explain our research. Such
identification does not imply recommendation or endorsement

by the authors or NIST, nor does it imply that the software tools
identified are necessarily the best available for the purpose.
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