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Abstract

A novel approach to surrogate modeling motivated by recent advancements in parameter

dimension reduction is proposed. Specifically, the approach aims to speed-up surrogate

modeling for mapping multiple input variables to a field quantity of interest. Computational

efficiency is accomplished by first identifying principal components (PC) and corresponding

features in the output field data. A map from inputs to each feature is considered, and the

active subspace (AS) methodology is used to capture their relationship in a low-dimensional

subspace in the input domain. Thus, the PCAS method accomplishes dimension reduction

in the input as well as the output. The method is demonstrated on a realistic problem

pertaining to variability in residual stress in an additively manufactured component due to

the stochastic nature of the process variables and material properties. The resulting surrogate

model is exploited for uncertainty propagation, and identification of stress hotspots in the

part. Additionally, the surrogate model is used for global sensitivity analysis to quantify

relative contributions of the uncertain inputs to stress variability. Our findings based on the

considered application are indicative of enormous potential for computational gains in such

analyses, especially in generating training data, and enabling advancements in control and

optimization of additive manufacturing processes.

Keywords: Surrogate model, dimension reduction, principal components, active subspace,

additive manufacturing, residual stress
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1 Introduction

The field of uncertainty quantification (UQ) can be broadly categorized into two classes

of problems, namely, the forward problem and the inverse problem. The former involves

propagating the uncertainty associated with model inputs to the output, whereas, the lat-

ter involves model calibration against the available set of measurements. Both forward and

inverse problems typically require tens of thousands of model predictions at samples in the

input space. Therefore, UQ becomes remarkably challenging in situations where simulating

the model is computationally intensive. Other pertinent analyses in computational science

such as sensitivity analysis, optimization under uncertainty, risk and reliability assessment

also require a large number of model predictions and thus offer similar challenges. More-

over, in complex systems, it is commonplace that a multivariate output which can also be

a field quantity (exhibits spatial dependence) or a stochastic process (exhibits temporal de-

pendence) is a function of a large set of variables in the input domain. It is not surprising

therefore, that numerous research efforts especially in UQ and reliability analysis have fo-

cused on efficient ways to map the set of model inputs to the output. These efforts have

mainly resulted in techniques for constructing a so-called surrogate model that effectively

aims to capture the dependence of a model output on its inputs.

As discussed above, a surrogate model can offer a significant computational advantage

in mapping a set of model inputs to the output especially in situations involving intensive

model simulations. However, constructing a reasonably accurate surrogate itself can be

computationally demanding due to the need to generate training points using the original

physics model. For instance, estimation of coefficients of a polynomial chaos expansion

(PCE) [1–3], can be computationally demanding in large-dimensional applications despite

recent development of sparse grids [4, 5] and basis adaptive methods [6, 7]. Similarly, in

the case of Gaussian Process (GP) [8] surrogate modeling, computing the inverse of the

covariance matrix becomes challenging in large dimensions. Additionally, the number of

tuning parameters associated with the correlation function also increase with dimensions

thereby limiting the applicability of GPs in large-dimensional applications. In the case of

support vector machines (SVMs) [9] and neural networks (NNs) [10], commonly used machine

3



learning models for regression as well as classification, the accuracy is largely dependent on

the data used to train them. Hence, their applicability is limited in situations involving

sparse and noisy training data.

Traditional methods for surrogate modeling have mainly focused on gains in efficiency

by reducing the dimensionality in either the input space or the output space. Dimension

reduction in the input space aims to reduce the training effort using sparse grids [11–14], pro-

jection to a sparse orthogonal basis (e.g. PCE, proper orthogonal decomposition (POD) or

principal component analysis (PCA), Karhunen-Loéve Expansion) [15–17] or a combination

of both strategies (e.g. sparse pseudospectral approximation) [7,18–20]. On the other hand,

dimension reduction in the output space has been accomplished using spectral decomposi-

tion to capture dominant modes or principal directions in the output data represented in the

form of a matrix (e.g. PCA) [21–24]. Additionally, methods such as co-kriging [25] have also

been used for the case of multivariate outputs. However, co-kriging approaches can be com-

putationally demanding for large-dimensional field quantities of interest [26]. Recent efforts

in this direction have focused on gradient-based techniques for subspace computation for di-

mension reduction in situations involving multivariate outputs [27,28]. These efforts aim to

extend the applicability of active subspace methods [29,30] typically applied to scalar-valued

functions.

In this work, we present a novel approach aimed at combining dimension reduction in

the output space with dimension reduction in the input space. Specifically, PCA is exploited

to extract key features in the output field quantity of interest. Then, we discover a low-

dimensional structure in the relationship between representative features of the output and

the set of inputs using the active subspace methodology [30]. The proposed methodology

is referred to as the PCAS method in this work as it combines principal component analy-

sis (PCA) with active subspaces (AS). Thus, the proposed methodology aims to compound

computational gains by constructing a low-dimensional relationship between uncertain vari-

ables in the input space and representative features in a low-dimensional output space.

The PCAS method is applied to a multiphysics problem wherein a surrogate is con-

structed for an expensive thermo-mechanical finite element model (FEM) to enable uncer-

tainty propagation from a set of inputs (process variables and material properties) to a field
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output (residual stress) in a mechanical component fabricated using an additive manufac-

turing process. Additionally, the surrogate model is used to perform a global sensitivity

analysis (GSA) to quantify relative contributions of individual uncertain variables to vari-

ability in residual stress. The surrogate model is further exploited to perform a reliability

analysis of the component. Traditional approaches for reliability analysis in the field of ad-

ditive manufacturing have predominantly relied on trial-and-error based approaches and are

therefore limited in terms of scope and applicability. Tremendous scope for computational

gains is demonstrated for this purpose using the proposed approach in this work. Specifi-

cally, the resulting surrogate, constructed using a sparse set of realizations of the expensive

physics model is shown to reconstruct the field quantity of interest (residual stress) with

reasonable accuracy. The output is undoubtedly high-dimensional since it is a field quantity.

It must also be highlighted that each run of the physics model requires approximately 30

minutes as discussed further below. The application in this work considers 12 uncertain

inputs including process variables and material properties. Exploring the 12-dimensional

parameter space for the aforementioned analyses (uncertainty propagation, GSA, reliability)

would require tens of thousands of model runs which essentially precludes us from using

the original model for this purpose. Considering the underlying computational effort, the

input space can also be regarded as high-dimensional. A generalized framework of the pro-

posed methodology is presented which motivates its use for such applications and potential

extension to higher-dimensional problems.

Residual stress develops during additive manufacturing due to the presence of steep ther-

mal gradients as well as physical constraints in the part which adversely affect its mechanical

properties, geometry, and shape [31–33]. In fact, residual stress in addition to porosity is

one of the concerns in additively manufactured (AM) components [34], and has significantly

inhibited rapid certification as well as standardization of the certification process due to post

processing involving machining and heat treatment [35]. Several recent investigations [36–38]

have focused on developing thermo-mechanical models to better understand the development

of residual stress and optimize the microstructure as well as the manufacturing process pa-

rameters accordingly. However, since simulations are intensive and models require a large

amount of calibration data, the progress has so far been limited by the availability of compu-
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tational and experimental resources. Through this study, we aim to demonstrate an effective

strategy based on surrogate modeling that could accelerate material selection, microstruc-

ture design, and process control and optimization for controlling the evolution residual stress

during additive manufacturing.

Residual stress in the part is computed for a single scan of an electron beam in the

Electron Beam Melting (EBM) process considered in this work. Simulations are performed

using a finite element thermo-mechanical model in Abaqus in this work. More specifically,

the FEM includes a thermal model that simulates the thermal response of the part. Part

thermal response is then used as an input to a mechanical model that predicts residual stress

at the end of a cooling phase. For a given set of process conditions and material properties,

the thermal model requires approximately 20 minutes to generate the temperature field and

the mechanical model takes approximately 10 minutes to estimate the residual stress in the

part. Therefore, one realization of the output field of interest using the FEM requires ap-

proximately 30 minutes. In order to perform reliability analysis using sampling techniques,

O(104 − 105) realizations are typically required for reasonable accuracy. Therefore, it is not

practical to rely on the FEM for this purpose. Additionally, conventional approaches for

surrogate modeling would require a large amount of computational resources for the pur-

pose of training as mentioned earlier. A parametric random field description is a possibility

for output dimension reduction by representing the output with a small number of param-

eters. However, such an approximation could be difficult and erroneous in the case of a

non-stationary output field wherein the covariance between any two points in the field is

dependent on their spatial or temporal location in addition to its difference. Instead, we aim

to exploit the structure in the output data by identifying important directions or principal

components in the field. This approach allows us to select an optimal number of features

required to re-construct the field with reasonable accuracy and computational effort.

The main highlights of this paper are as follows: (1) A computationally efficient approach

is developed for constructing a surrogate model for problems where both input and output are

high-dimensional using sparse training data. In particular, the output is a field quantity. (2)

Thermo-mechanical finite element modeling is pursued to simulate residual stress distribution

in an additively manufactured part. (3) The surrogate model is used to perform uncertainty
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propagation and global sensitivity analysis (GSA) to assess the relative importance of the

material properties and manufacturing process parameters. (4) Finally, the surrogate model

is used for the purpose of reliability analysis by estimating the probability that residual stress

in the part exceeds a certain threshold.

The remainder of this paper is organized as follows: Section 2 outlines the proposed

methodology for constructing the surrogate model including a brief background on the ac-

tive subspace methodology used in this work. Section 3 details the finite element model used

to generate stress data for building the surrogate model. Section 4 provides numerical results

and discussion pertaining to the implementation of the methodology for surrogate construc-

tion, hotspot identification, GSA, and reliability analysis of the AM product. Finally, we

summarize this study in Section 5.

2 Methodology

2.1 Random field discretization

Random field discretization is employed in the proposed method, and therefore a few prelim-

inary comments are provided in this subsection. In this work, we consider a scenario where

the model output is a spatially distributed quantity. The model inputs are considered as

random variables and the output is regarded as a random field to account for spatial vari-

ability. A random field is essentially a collection of random quantities in space. The random

quantity at any given point in space can be a scalar or a vector resulting in a univariate or

a multivariate random field respectively. Model prediction at a specific point in continuous

space is considered to be scalar (random variable) in this work. The corresponding random

field representation is thus univariate and infinite-dimensional. Dimension reduction in the

output space is accomplished through discretization, i.e., by representing by representing the

random field in terms of a finite number of random variables. One commonly used method

for random field discretization is the Karhunen-Loéve expansion (KLE) which employs a

spectral decomposition in terms of eigenvalues and eigenfunctions of the autocovariance ker-

nel of a random field. KLE is mainly applicable to Gaussian random fields although several

studies have focused on enhancing its applicability to non-Gaussian fields [39–42]. To avoid
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numerical issues pertaining to KLE, the autocovariance kernel associated with the field is

required to be bounded, symmetric and positive semi-definite [43]. Therefore, the feasibil-

ity of the random field discretization is largely dependent on the choice of the numerical

method for solving a suitable eigenvalue problem for a given application. Several methods

such as functional principal component analysis (PCA) for time-dependent problems [44],

the Nystrom method [45, 46] for integral eigenvalue problems, and the EOLE method [47]

for complex geometries have been developed for this purpose.

The proposed approach relies on the feasibility of a random field discretization for a given

application. While this requirement poses a limitation on its applicability, the main focus

of this paper, which is to map a sparse set of representative random variables (from ran-

dom field discretization) to a set of input variables in a low-dimensional subspace could be

valuable in many applications. Such a map is referred to as a surrogate model in this work.

Our approach for building a surrogate model is demonstrated on an engineering application

from additive manufacturing. Although the methodology is demonstrated using a simple

2D uniform mesh, it is extensible to more complex geometries using the advanced numerical

methods mentioned above. Note that even for a simple geometry, the UQ analyses and sen-

sitivity studies discussed in this work would be intractable using the original physics model.

Therefore, a surrogate model is needed to make the analyses computationally affordable.

2.2 The PCAS method

The PCAS method aims to construct a surrogate model that captures the relationship be-

tween a set of inputs that map to an output which is a field quantity. Building the surrogate

model using this method is shown to be remarkably efficient by means of dimension reduc-

tion in the input as well as the output space. Dimension reduction in the field output is

accomplished using PCA, and using active subspaces in the input space. Both PCA and ac-

tive subspaces are well established and have been discussed in much detail in the literature.

Therefore, we focus our efforts on providing details pertaining to the implementation of these

ideas in this section and include references for further mathematical details. Additionally,

we outline the underlying mathematical framework associated with active subspaces con-

sidering that it is a more recent development. The method is demonstrated for an additive
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manufacturing process wherein the set of inputs correspond to process variables and material

properties, and the output corresponds to a two-dimensional stress field in a cross-section of

a component. Additional details pertaining to the AM process are provided in Section 3. In

this section, we provide a general framework that can be easily adapted for such applications.

In the proposed methodology, we outline a two-step process to accomplish this. The first

step involves dimension reduction in the output space that involves identification of principal

directions or components in the dataset for the field of interest.The principal components

constitute the so-called orthogonal space on which variables in the original physical domain

are projected. We refer to these variables, projected onto the orthogonal space as ‘features’ in

this work. Mathematically, each feature is an inner product of the field data and elements of

a given principal direction. Hence, the number of features is equal to the number of principal

directions used to reconstruct the field. In the second step, each feature is represented as a

function of the inputs and a low-dimensional representation of the function is computed using

the active subspace methodology outlined in [30]. To avoid unnecessary computations of the

finite element model and thereby enhance the efficiency of the proposed method, the two

steps are implemented in an iterative manner as discussed further below. In 2.2.1, we outline

the strategy for computing the feature vector. In 2.2.2, we provide a brief background on

active subspaces and outline the sequence of steps for surrogate construction for each feature.

The proposed iterative procedure for constructing the surrogate is discussed in 2.2.4.

2.2.1 Output dimension reduction using PCA

As discussed earlier, the surrogate model in this work is used to reconstruct a field quan-

tity for a given set of model inputs and parameters. The spatially varying field quantity,

S = S(x,θ) (x: computational domain, θ: model inputs) is essentially obtained by simulat-

ing a physics-based model. It is assumed including in the application presented in this work

in Section 3, that the numerical method (including the underlying scheme and discretization)

used to simulate the model, results in a converged solution with reasonably small approxima-

tion errors. Additionally, the scheme is stable (bounded numerical errors) for the considered

application. Numerical simulations of field quantities are typically performed using meshes

or grids which transform a continuous field variable into a matrix, each element of which
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corresponds to its value at a particular node of the mesh. Thus, for the purpose of outlining

the mathematical details pertaining to the implementation of the proposed methodology,

the 2-dimensional field is represented as a matrix as discussed further below.

We consider a field, S(θ) ∈ Rr×c evaluated on a 2-dimensional mesh of size (r × c)

for a given set of inputs θ. Consider that the field data is available at Ns pseudorandom

samples, drawn from the joint probability density function (PDF) of θ. A data matrix

X is first constructed using the field data at Ns samples. Specifically, X has Ns rows

and (r × c) columns. Thus, each row of X contains the matrix S, reshaped as a long

vector of size (r × c). Specific steps pertaining to the construction of the X are provided

in Algorithm 1 (lines 3–11). A singular value decomposition SVD of the covariance matrix,

X>X is then performed to obtain an orthogonal matrix, U of size: [(r× c) ∗Ns]). Note that

since X>X is symmetric positive semidefinite, performing an SVD is identical to performing a

spectral or an eigenvalue decomposition. The columns of U contain eigenvectors or principal

directions in the considered data. A matrix, Z with Ns rows, each representing a feature

vector corresponding to a sample is obtained by multiplying the matrices, X and U. The

length of a feature vector or the number of columns in Z are thus equal to the number of

eigenvectors (K) or columns in U, sufficient for reconstructing the field S with reasonable

accuracy. It must be noted each entry in S represents a feature in the physical space i.e. the

value of a physical quantity at a particular point in the mesh. Entries in Z = (XU(:, 1 : K))

correspond to the features or variables in the physical space projected onto the orthogonal or

latent space. The field S is essentially reconstructed by projecting the features back to the

physical space by multiplying Z and the transpose of U since the latter is orthogonal. Since

most of the information is captured by the dominant eigenvectors, S can be re-constructed

with a reasonable amount of accuracy in a low-dimensional column space of U. We adopt

an iterative approach wherein the number of eigenvectors or components of U are increased

by one at each iteration and the accuracy of the reconstructed field Ŝ is assessed. Thus,

the optimal number of components correspond to the reconstruction error ε∞R being smaller

than a desired threshold τ . The sequence of steps is outlined in Algorithm 1.

Algorithm 1 Determining the optimal number of components, K∗ for reconstructing S
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Input: τ , Si’s, θi’s (i = 1, 2, . . . , Ns)
Output: Ur, K∗

1: procedure Output Dimension Reduction
2: Construct the data matrix, X:
3: Set k = 0
4: loop
5: Reshape Si ∈ Rr×c into a vector, Sv,i ∈ R(r∗c)×1

6: k = k + 1
7: X(k, :) = Sv,i
8: if k = Ns then
9: break . exit the loop when all Ns rows have been assigned
10: end if
11: end loop
12: Perform a Singular Value Decomposition (SVD) on the covariance matrix, X>X:

X>X = UWV>

13: Optimize the number of components, K:
14: Set K = 1
15: loop
16: Compute the feature matrix, Z:

Z = XU(:, 1 : K)

17: Reconstruct the data matrix, X as X̂:

X̂ = ZU(:, 1 : K)>

18: Each row in X̂ corresponds to the field vector Ŝv,i
19: Estimate the relative error, ε∞R by comparing Sv,i and Ŝv,i at each sample, i:

ε∞R = max
i

‖Sv,i − Ŝv,i‖∞
‖Sv,i‖∞

, i = 1, 2, . . . , Ns

20: if ε∞R < τ then
21: K∗ = K . τ : specified tolerance
22: Ur = U(:, 1 : K∗)
23: break . exit when optimal number of components (K∗) has been determined
24: end if
25: K = K + 1
26: end loop
27: end procedure

At the end of the iterative procedure, a feature vector with K∗ components is obtained for

each θi. Dimension reduction in the output space is achieved in situations where K∗ < (r∗c),

where (r ∗ c) is the dimensionality of the column space of U. In fact, smaller the ratio:

K∗/(r∗c), larger the expected computational gains due to dimension reduction in the output
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space. Therefore, the expected gains are problem dependent. For instance, in problems where

the field of interest exhibits irregularities or discontinuities, significant dimension reduction

using PCA will generally not be possible. The feature matrix, Z can be mathematically

represented as follows:

Z =


Z11 Z21 · · · ZK∗1

Z12 Z22 · · · ZK∗2
...

...
. . .

...
Z1Ns Z2Ns · · · ZK∗Ns

 (1)

The data matrix in the right hand side (RHS) of (1) is used to construct an active subspace

for each feature, Zi (i = 1, 2, . . . , K∗) as discussed in the following section. Note that Zij
denotes the jth realization of the ith feature, Zi.

2.2.2 Active subspace discovery

Each column in the feature matrix, Z corresponds to Ns realizations of a feature in the latent

space. In other words, each column captures the variability in corresponding feature due to

variability in inputs, θ exhibited by Ns samples. A feature corresponding to the ith column,

Zi = Zi(θ) can thus be considered as a scalar valued function of the set of inputs, θ. An

active subspace in the present context is a low-dimensional subspace in the input domain

that effectively captures the variability in Zi due to variations in θ. The set of inputs, θ in

the physical space are parameterized as canonical random variables, ξ ∈ Ω ∈ RNθ , where

Nθ denotes the number of uncertain parameters referred to as the dimensionality of the

parameter space. The active subspace is spanned by the dominant eigenvectors of a matrix,

C comprising the derivative information of Zi with respect to the components of ξ. Note that

a component ξk can be projected back to the physical space to its corresponding potential

parameter, θk. The positive semi-definite matrix, C for the ith feature is given as follows:

Ci =

∫
Ω

(∇ξZi)(∇ξZi)>dPξ, (2)

where dPξ = πξdξ and πξ denotes the joint PDF of ξ. Note that Zi is assumed to be

differentiable and L2 integrable in Ωθ. The validity of this assumption is tested by comparing

the field evaluated using the surrogate model with the same field evaluated using the original
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model for the considered application in 4.1.1. Since the integral in (2) is multidimensional,

the symmetric and positive semidefinite matrix Ci is approximated numerically in practice.

Consider its sampling based estimate and associated eigenvalue decomposition as follows:

Ci ≈ Ĉi =
1

N

N∑
l=1

(∇ξZi(ξl))(∇ξZi(ξl))> = ŴΛ̂Ŵ>. (3)

The matrix Ŵ comprises orthonormal eigenvectors as its columns, and Λ̂ is a diagonal

matrix with eigenvalues arranged in descending order as its elements:

λ1 ≥ λ2 ≥ · · · ≥ λNθ ≥ 0.

Dimension reduction is achieved by partitioning the eigenpairs about the jth eigenvalue such

that

(
λj
λj+1

)
� 1 as follows:

Ŵ = [Ŵ1 Ŵ2], Λ̂ =

[
Λ̂1

Λ̂2.

]
(4)

The column space of Ŵ1 constitutes the active subspace, and Λ̂1 is the corresponding di-

agonal matrix with its elements: {λ1, . . . , λNj}, where Nj is the number of columns or

eigenvectors in Ŵ1. Zi(θ), a function of Nθ independent variables is transformed as Gi(η),

a function of j independent variables since η = Ŵ>
1 ξ ∈ RNj . In other words, Gi(η) assumes

the same set of values as Zi(θ), i.e. Gi(η) = Zi(θ). However, the former is a function of the

so-called active variables η, whereas the latter is a function of the physical variables θ.

From (3), it is clear that the computational effort needed to construct Ci is directly

proportional to the number of samples, N . A regression-based approach outlined in [48]

and adapted from Algorithm 1.2 in [30] is used to estimate the gradients of Zi, required to

compute the elements of Ci. In this approach, the gradient is estimated using linear-regression

fits to a set of available model evaluations. Specifically, the methodology presented in [48]

increases the number of model evaluations in an iterative manner based on convergence of

dominant eigenvectors of C. Therefore, gradient estimation approach in [48] essentially aims

to enhance the efficiency of Algorithm 1.2 in [30] by using an iterative approach and thereby

avoiding unnecessary model evaluations. The iterative approach is not included in this paper

in the interest of brevity and we encourage interested readers to look into the aforementioned

references for further details.
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Gradient estimation using the regression approach is expected to be computationally

advantageous in situations where simulations are expensive and the model output does not

exhibit large non-linearities or irregularities. An active area of research explores alterna-

tive techniques such as adjoint-based methods [49, 50], automatic differentiation [51], and

regression-based estimation of gradients using quadratic fits [52]. However, exploring these

advanced strategies is not the focus of this work and the proposed framework can be extended

to incorporate them for the purpose of gradient estimation. Based on the results presented

later in Section 4, the regression-based approach involving linear fits in an iterative manner

as discussed, seems to be a reasonable choice for the considered application.

2.2.3 Surrogate in the active subspace

Dimension reduction in the input space using the active subspace methodology aims to

accomplish computational gains in two ways: First, representative features of the output are

expressed in terms of fewer independent variables (active variables) in the active subspace as

Gi(η). Second, the dependence of individual features on the active variables is approximated

using a surrogate model Ĝi(η) in the active subspace. For a low-dimensional surrogate model

(1 or 2 dimensions), a polynomial regression fit is often an adequate choice. However, for

a relatively large dimensional active subspace, one could use a PCE or a GP. It is however

critical to assess the surrogate model for its accuracy. The following algorithm provides a

sequence of steps adapted from [30] to construct a surrogate model in the active subspace.

Algorithm 2 For constructing a surrogate model in the active subspace

1: procedure Surrogate Model, Ĝi(η)

2: Consider N available data points in the full space, (ξk,Zi(ξk)), k = 1, . . . , N

3: For each ξk, compute ηk = W>
1 ξk (Note: Gi(ηk) = Zi(ξk))

4: Fit a regression surface, Ĝi(η) to approximateGi(η) using the data points, (ξk, Gi(ηk))

5: Note that the overall approximation is: Zi(ξ) ≈ Ĝi(W
>
1 ξ)

6: end procedure

To sum up, an active subspace is computed for each dominant feature, Zi and a cor-

responding surrogate fit, Ẑi is performed. Therefore, a total of K∗ surrogate models are
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constructed to map the set of inputs θ in the physical space to the field in the output space.

Therefore, at the end of the two-step process, dimension reduction in the output space is

R(r∗c) → RK∗
, and dimension reduction in the input space is RNθ → RNη,max ; where Nη,max

corresponds to the surrogate model with the largest dimensionality in η.

In the context of expensive multiphysics models that need to be used to generate training

points for the surrogate model, it is desirable to minimize the number of training points.

Therefore an iterative procedure for constructing the surrogate model is discussed in 2.2.4.

2.2.4 Iterative procedure for surrogate construction

As a first step, we construct a validation dataset using the expensive multiphysics model

for testing the accuracy of the surrogate model. An initial set realizations of the output

field is generated at N0 samples (drawn from the joint PDF of θ) using the original model.

The optimal number of components (K0) or representative features (Z0
i , i = 1, . . . , K0) are

then determined for the initial dataset using Algorithm 1. A map from ξ to each feature

Z0
i is approximated by a surrogate model: Z0

i (ξ) ≈ Ĝi(η) in the active subspace using the

methodology presented in 2.2.2. The output field is reconstructed using surrogate prediction

for each feature Z0
i . Finally, to assess the accuracy of the resulting surrogate, we estimate the

surrogate fitting error (εfit
0 ) and validation error (εval

0 ). The output field is reconstructed at the

training points to estimate the former and at an independently generated set of realizations

of the field using the multiphysics model to estimate the latter. The mathematical expression

for the two errors is given as follows:

εfit,val
0 =

1

Nfit,val
0

Nfit,val
0∑
i=1

‖S0 − Ŝ0‖2

‖S0‖2

, (5)

where Nfit
0 and Nval

0 denote the number of samples used for estimating the fitting error and

the validation error respectively; S0 and Ŝ0 denote the output field simulated using the

original model and the surrogate model respectively. Note that the subscript ‘0’ indicates

that these variables correspond to the initial set of computations. A new set of realizations

for the residual stress field is generated at each subsequent iteration and augmented with

the existing dataset. The two-step process is repeated until both εfit
0 and εval

0 are found to

be smaller than a prescribed tolerance. In other words, convergence is established once the
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reconstructed field is observed to be accurate within a certain threshold. The sequence of

steps associated with the iterative procedure for building the surrogate model is provided in

Algorithm 3.

Algorithm 3 Iterative strategy for surrogate modeling using the PCAS method

Input: Nominal values and intervals for each component of θ, Error threshold: τs

Output: K∗, Ĝ∗i (η) (i = 1, . . . , K∗)

1: procedure PCAS Methodology

2: Draw an initial set of N0 samples from the joint PDF πθ

3: Generate model realizations of the residual stress field at these N0 samples

4: Determine optimal number of components K0 using Algorithm 1

5: Discover an active subspace for each feature Z0
i (θ)

6: Approximate Z0
i (θ) with a low-dimensional surrogate Ĝ0

i (η)

7: Reconstruct the output field Ŝ0

8: Evaluate the relative errors: εfit
0 and εval

0 using (5)

9: if (εfit
0 < τs AND εval

0 < τs) then

10: K∗ = K0

11: Ĝ∗i (η) = Ĝ0
i (η)

12: Proceed to Step 17

13: end if

14: Draw a new set of samples θnew from πθ and perform model evaluations at θnew

15: Augment the new dataset with existing dataset for building the surrogate

16: Repeat Steps 4–9 and 14–15 until the ‘if’ condition is satisfied

17: end procedure

An overall flow diagram for the two-step process implemented at each iteration for the

input and output dimension reduction is illustrated in Figure 1. Once dimension reduction

for a given iteration is complete, the field is reconstructed using the sequence illustrated in

Figure 2.

The proposed method is found to be remarkably effective in constructing an efficient

surrogate model for the considered application involving a field output and expensive simu-

16



Field Data
S ∈ RN

Optimal number of features:
Zi, i = 1, . . . , K∗

DR: RN → RK∗
, K∗ � N

Principal Component

Analysis

Zi = Zi(θ)
θ ∈ RNθ

Zi(θ) ≈ G(η = θ>W1)
G(η) ≈ Ĝ(η), η ∈ RNj

DR: RNθ → RNη,max , Nη,max � Nθ

Active Subspace

Computation

Figure 1: Flow diagram illustrating the sequence of steps and associated dimension reduction
(DR) in the PCAS method.

Draw a sample,
ξk ∈ RNθ from πξ

Compute:
Ĝi(ηk = ξ>kW1,i)
ηk ∈ RNj

i = 1, 2, . . . , K∗

Zi(ξk) ≈ Ĝi(ηk) Compute Ŝ(Zi)

Figure 2: Flow diagram illustrating the sequence of steps for reconstructing the field of
interest.

lations of the physics model based on the results presented later in Section 4. The method

can be extended or adapted to other applications which could further help characterize its

effectiveness in scenarios that are relatively more complex with regards to dimensionality

and the stochastic nature of the field output.

3 Electron Beam Melting: Multiphysics Model

Electron beam melting (EBM) is an additive manufacturing process of fusing powder parti-

cles, layer-upon-layer, using an electron beam as the energy source. The process is typically

used in the case of metals and its alloys. Multiple passes of a low power electron beam is

used for heating and sintering the powder bed prior to selective melting. For the application

problem in this study, we focus on the thermo-mechanical behavior of an AM part produced

by the EBM process. For this purpose, we have developed a finite element-based thermal

analysis model to simulate the thermal response of the part and a finite element-based me-

chanical model that uses the part’s thermal response to estimate the residual stress in the
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part at the end of the cooling phase. Note that the stress is computed at the end of a single

pass of the electron beam. In this study, the two models are weakly coupled i.e. the tem-

perature history of the part is used as an input heat load for the mechanical model. Finite

element analysis is performed using Abaqus [53], a commercially available software.

Our analysis is based on stress development in an AM part as a result of a single scan of an

electron beam along its length. A layer thickness, 50 µm and a part of dimensions (in mm),

2×1.5 × 0.65 is used as shown in Figure 3 (left). The process of laying the new powder on

bulk material formed by previous scans is simulated by activating the initially deactivated

elements representing the powder layer. To mitigate computational cost associated with

FEA, a non-uniform mesh is employed wherein a finer mesh is considered for the powder

region where the heat flux is applied. A gradually coarsening mesh is considered for the

bulk material, significantly far from the heat source as shown in Figure 3 (right). The mesh

consists of 13,200 nodes and 10,752 elements in total. The material used to manufacture the

Figure 3: Part geometry and the corresponding mesh as modeled in Abaqus

part is Ti6Al4V and its thermophysical properties considered in the finite element analysis

are provided in Table 1.

3.1 Thermal Model

The governing equation for the heat transfer analysis [55] is given by:

ρCp
∂T

∂t
= ∇ · (κ∇T ) +Qe −Qr (6)

where T , ρ, Cp, κ, Qe, Qr denote the local temperature, average density, specific heat,

thermal conductivity, applied heat flux and the radiative heat flux respectively. A single
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Table 1: Thermophysical properties of Ti-6Al-4V [54]

Density (kg /m3) 4428
Solidus Temperature (◦ C) 1605
Liquidus Temperature (◦ C) 1655
Latent heat (J/kg) 365000
Elastic Modulus (GPa) 110
Poisson’s ratio 0.41
Yield strength (MPa) 825

scan is considered along the x-direction at the top surface of the part. Heat flux due to the

moving electron beam is modeled as a Gaussian [36] according to the following equation:

Qe =
2P

πr2d

1

5

[
− 3
(z
d

)2

− 2
z

d
+ 5
]

exp

(
−2((x− vt)2 + y2)

r2

)
(7)

where P = αIV denotes the power associated with the electron beam for a given absorptiv-

ity (α), current (I), and voltage (V). The quantities: v, r, and d denote the beam velocity

or scan speed, beam spot radius, and penetration depth respectively. The external heat flux

is illustrated using temperature contours on the top surface in Figure 4 (left) and along x-z

plane passing through the center of the part in Figure 4 (right).

Figure 4: Left: Temperature contours associated with the moving electron beam as a heat
source. Right: Temperature contours in the x-z plane passing through the center of the part
once the electron beam is turned off.

The laser beam radius (r) and the thermal penetration depth are fixed at 200 and 28

microns respectively. The powder is pre-heated to a temperature, T0 prior to the scan using

fixed temperature boundary conditions at the lateral sides as well as the bottom of the

part. Heat transfer in the part occurs by two mechanisms: First, by means of thermal
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conduction due to temperature gradients especially along the depth (x-z plane), and second,

by means of radiative losses from the exposed surface of the part denoted as Qr in (6). The

radiative heat flux, Qr is modeled using the Stefan-Boltzmann law i.e., Qr = σSBε(T
4−T 4

a ),

where σSB, ε, and Ta denote the Stefan-Boltzmann constant, emissivity of the top surface,

and the ambient temperature respectively. Note that convective losses are not considered

since the manufacturing process is assumed to be carried out in vacuum. As discussed later

in Section 4, the beam power (P ), scan speed (v), and pre-heat temperature of the powder

bed (T0) are considered as process parameters (θP ) in our analysis using the surrogate model.

The temperature history of the part determined using the thermal model is used as an input

to the mechanical model (one way coupling) to compute residual stress in the AM part as

discussed in the following section.

3.2 Mechanical Model

The governing equation for structural analysis [56] is given by:

∇ · σ + f = 0 (8)

where σ denotes the stress tensor. The internal forces, f are developed within the part to

be able to balance external forces. From Hooke’s law, the stress tensor (σ) is proportional

to the total strain (εT ). Material stiffness tensor, C is the proportionality constant. The

constitutive relationship is given as follows:

σ = Cεe (9)

where C is the fourth-order material stiffness tensor and εe denotes the elastic strain. The

total strain εT can be decomposed as follows:

εT = εe + εp + εt (10)

where εp, and εt denote plastic and thermal strains respectively [56]. The plastic strain is

modeled by considering elastic perfectly-plastic [57] condition in the model. Thermal strain

is calculated from the thermal expansion constitutive relationship: εt = αt∆T , where αt is

the thermal expansion coefficient. The boundary surfaces in the X-direction and Y-direction
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are constrained in the x- coordinates and y-coordinates respectively. The bottom surface is

considered fixed in all coordinates. The temperature history at each node, obtained using

the thermal model in 3.1, is used to compute the strain tensor, σ. Hence, the mechan-

ical response is dependent on the thermal response of the part but not vice versa. The

coupling between the two models is therefore regarded as one-way or weak [58] (A strong

or two-way coupling assumption is computationally unaffordable, since it requires multiple

back-and-forth iterations between the two models for convergence, at each time step). The

weak coupling does introduce approximation errors, however, it has been shown to capture

experimental trends with reasonable accuracy in similar applications [59]. Moreover, the

PCAS method presented in Section 2 is not impacted by this approximation.

The von Mises stress at the end of the cooling process is considered as the residual

stress in the AM part [36]. It is considered as the quantity of interest (QoI) in our analysis

for demonstrating the methodology proposed earlier in Section 2. The stress contours are

illustrated in Figure 5 The contour plot in Figure 5 clearly indicates that the residual stress

Figure 5: von Mises stress contours in the x-z plane passing through the center of the part
after it has cooled down to the ambient temperature.

in the part attains higher values near the top surface and diminishes quickly along the depth

of the part. It can thus be said that thermal strain due to the applied heat flux is the

dominant contributor to the residual stress in the present set-up.

Simulations are performed on a workstation with a system configuration: Intel Core i7-

4790 CPU, 3.60 GHz with 16GB RAM. It is observed that on average the thermal model takes

20 minutes, and the mechanical model takes 10 minutes to complete the simulation pertaining

to a single pass of the electron beam. Note, however, that the simulation duration depends

on the choice of values for the set of inputs. Moreover, a weak coupling assumption leads

to a computational time of 30 minutes to generate 1 training point for the surrogate model.
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On the other hand, a strong coupling assumption would lead to 150 minutes considering 5

iterations are needed for convergence to generate 1 training point.

4 Results

In this section, we provide relevant details pertaining to the construction of the surrogate

model to predict the field quantity of interest, i.e. residual stress in a cross-section of an AM

part using the PCAS method in 4.1. The computational efficiency enabled by the surrogate

model is exploited for identifying stress hotspots in the part in 4.2. Note however that in

addition to identifying stress hotspots, the surrogate model could be used for other quantities

of interest such as mean stress, range of stress, etc., since it maps the process parameters and

the material properties to the entire stress field as mentioned. Additionally, the surrogate

model is used to perform a global sensitivity analysis of the inputs in 4.3. Finally, the

surrogate model is used for reliability prediction of the manufactured part by estimating the

probability of failure based on residual stress in 4.4.

4.1 Surrogate Model

A surrogate model is constructed for the residual stress field at the cross-section of the part

(x-z plane in Figure 3) passing through its center. We will refer to this plane as xc-zc in

the remainder of this paper. The surrogate model maps three sets of parameters, namely,

the process parameters (θP ), mechanical properties (θM ), and thermal properties (θT ) to

the stress field. Note that the surrogate model maps a deterministic set of parameter values

to a deterministic stress field. However, since the parameters are uncertain, we obtain an

ensemble of such deterministic maps. In other words, the uncertainty in the parameters is

propagated to obtain a distribution in the output stress field. The set of process parame-

ters includes beam power (P ), scan speed (v), and pre-heat temperature (T0). Mechanical

properties include yield strength (Y ), elastic modulus (E), and bulk density (ρ). Thermal

properties include specific heat (Cp) and bulk thermal conductivity (κ). Note that Cp and

κ are considered to be functions of the local temperature, T . Specifically, a polynomial of

degree 2 is fit to a set of data pertaining to the variation of Cp and κ with temperature
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(20 K–1655 K), provided in [54] as shown in Figure 6. Hence, a total of 12 parameters (θ)

 

C
p
 = - 3.2e-05T

2
 + 0.43T + 5.4e+02

 

 = 1.4e-06T
2
 + 0.011T + 7.2

Figure 6: A second degree polynomial fit to specific heat (Cp), and thermal conductivity (κ)
data for a temperature range, [20,1655](K). Note that the data provided in [54] is used to
determine the coefficients of the regression fit.

are mapped to the stress field including coefficients of the polynomial fits corresponding to

Cp and κ. A uniform probability distribution in a range: [0.9θ∗, 1.1θ∗], where θ∗ denotes a

vector of nominal values, is considered for each parameter. Nominal values of the mechanical

properties: Y , E, and ρ are provided in Table 1. Nominal values of the process parameters

and temperature coefficients for the thermal properties are provided in Table 2. It must be

noted that the choice of a uniform probability distribution for θ indicates that any value in

the considered range for a given parameter has a probability value of 1/(u − l) (u: upper

limit, l: lower limit) associated with it. Predictions of the original physics model at a col-

lection of so-called training points, generated using Latin hypercube sampling (LHS) in the

input probability space is used to train the surrogate model for each Zi as discussed further

below. Therefore, surrogate construction is purely a computational exercise in the present

scenario and does not use any manufacturing data.

Table 2: EBM process parameters and temperature coefficients for Cp (Ci,Cp) and κ (Ci,κ).

Scan Speed, v (mm/s) 500
Beam Power, P (W) 160
Pre-heat Temperature, T0 (◦C) 650
Specific heat, Cp = C0,Cp + C1,CpT + C2,CpT

2 (J/kg/K) 540 (C0,Cp),0.43 (C1,Cp),−3.2× 10−5 (C2,Cp)
Thermal Conductivity, κ = C0,κ + C1,κT + C2,κT

2 (W/m/K) 7.2 (C0,κ),0.011 (C1,κ),1.4× 10−6 (C2,κ)

Residual stress is initially computed at the xc-zc plane for 10 pseudorandom samples in the
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12-dimensional input domain. Stress data is simulated on a 2-dimensional non-uniform grid

comprising 32 points along the length (xc) and 14 points along the height (zc) as highlighted

in Figure 10 (left). Note that the mesh size was selected such that a converged solution

was obtained within a reasonable amount of computational effort. As mentioned earlier in

Section 3, a finer mesh is used near the part surface since sharp thermal gradients lead to

a larger amount of stress in this region as shown in Figures 5 and 10. Following the flow

diagram in Figure 1, the first step involves a principal component analysis on the field data

using Algorithm 1. However, the reconstructed field in this case although results in a small

fitting error (εfit
0 ) of 0.06, the validation error (εval

0 ) of 0.31 is significantly larger than the set

tolerance, τs = 0.1. A new set of 5 model realizations are added in each subsequent iteration

and the resulting surrogate is assessed for accuracy. The iterative procedure is observed to

converge in 2 iterations. Error estimates for each iteration and the corresponding number of

representative features are provided in Table 3.

Table 3: Convergence of the surrogate model as a function of iterations and sample size.

Iteration Sample Size # of features εfit
i εval

i

0 10 5 0.06 0.31
1 15 7 0.09 0.28
2 20 7 0.04 0.07

In Figure 7, we plot the reconstruction error, ε∞R against the number of principal com-

ponents K for the converged case with 20 samples. As expected, ε∞R is observed to mostly

decrease with the number of components. A monotonic behavior is not expected since the

components only capture partial information in the data. It appears that all the information

is captured using 20 components as the value of ε∞R is expectedly 0 since a maximum of

20 samples were used during SVD. However, building the surrogate model for 20 features

would potentially entail a large computational effort depending upon the application. Here,

we consider that K∗ = 7 corresponding to ε∞R < τ = 0.06 as the optimal number of compo-

nents. Moreover, it is observed that the error plateaus as the number of components increase

from 7 to 10 indicating diminishing returns. Thus, the residual stress field is reconstructed

using a surrogate model for each of these K∗ components (Zi’s, i = 1, 2, . . . , K∗). The
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Figure 7: A plot of the reconstruction error, ε∞R as a function of the number of principal com-
ponents obtained using the iterative PCA approach in Algorithm 1 and model realizations
at 20 samples.

dimensionality of the output space is therefore reduced from R14×32=448 → R7. It must be

noted that the choice of the thresholds, τ and τs is problem-dependent and it may not be

possible to assume a reasonable value upfront. In this case, we mainly rely on the trends

in Figure 7 to obtain a reasonable estimate of τ . In general, we suggest assuming an ini-

tial conservative guess for τ and τs based on desired accuracy of the reconstructed field in

Algorithm 1. However, it is likely that owing to numerical approximations pertaining to

PCA, gradient estimation during active subspace computation, and a surrogate-fit in the

active subspace, the PCAS method might either not converge or become computationally

intractable. In such a scenario, the set tolerances can be increased in an iterative manner in

order to reduce the underlying computational effort. We now shift our focus on dimension

reduction in the input space.

As discussed earlier in 2.2.2, each feature can be expressed as a function of θ : {θP ∪

θM ∪ θT } in the physical space. An active subspace computation is performed using a

regression-based approach [30, 48] for estimating the gradient and the available set of 20

realizations for each Zi. The eigenvalue spectrum of the matrix, Ĉi for each Zi is shown in

Figures 8 and 9. The variability of a given Zi in terms of the active variables, η regarded

as the sufficient summary plot (SSP) is also included in each case. From these plots, it is

observed that in all cases except Z4, a 1-dimensional active subspace captures the variability
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Figure 8: Eigenvalue spectrum (left) and the corresponding SSP (right) for Zi, i = 1, 2, 3, 4.
A straight line fit in the case of Z1,2,3 and a 2D polynomial surface fit in the case of Z4 is
used as a surrogate model as illustrated.
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Figure 9: Eigenvalue spectrum (left) and the corresponding SSP (right) for Zi, i = 5, 6, 7. A
straight line fit to the SSP is used as a surrogate model as illustrated in each case.
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in the feature with reasonable accuracy. This is expected based on the eigenvalue spectrum

which exhibits a significant jump between λ1 and λ2. A polynomial fit in terms of a single

variable η1 could thus be used as a surrogate model for these features. In fact, a fitting error

(not reported) was computed with increasing polynomial degrees ranging from 1 to 3, and a

straight-line fit was found to be most accurate in the case of Zi 6=4. It must also be noted that

higher degree polynomial fits are susceptible to over-fitting. In the case of Z4, λ1 and λ2 are

observed to be comparable, and a significant jump exists between λ2 and λ3. Therefore, a

2-dimensional active subspace is considered in this case as shown. Polynomials of degrees 3

and 2 along η1 and η2 respectively were found to yield sufficient accuracy and are therefore

used to construct the regression surface in this case. Therefore, a sample ξi corresponding

to θi in the physical space is propagated through each surrogate model to estimate Zi’s and

hence, the residual stress field as shown using a flow diagram in Figure 2. The individual

surrogate models for Zi’s thus constitute the overall surrogate model that maps the physical

variables to the stress field.

Dimension reduction in the input space is thus found to be from R7 → R2. Therefore,

using the proposed PCAS method, significant dimension reduction in both input and output

spaces is accomplished, thereby yielding enormous gains in computational efficiency for the

considered application.

4.1.1 Surrogate Assessment

As mentioned earlier in this section, 20 model realizations are needed to obtain a surrogate

model with reasonable accuracy with respect to the reconstructed residual stress field in the

xc-zc plane. Specifically, the fitting and validation errors are found to be approximately 0.04

and 0.07 respectively. In other words, the mean error introduced by the surrogate model for

stress field reconstruction is approximately 7%. The validation error was computed using

an independent set of 10 model realizations. Although these error estimates are based on

a relatively small sample size, they seem reasonable considering that the validation test

samples are generated using LHS that explores the entire input domain more uniformly as

compared to Monte Carlo sampling. Therefore, the PCAS approach appears to provide

a reasonably accurate surrogate model coupled with enormous computational gains which
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makes the analyses pertaining to the present application affordable.

Figure 10 illustrates a side-by-side comparison of stress distribution in the xc-zc plane,

computed using the multiphysics model (left) with those generated using the surrogate

model (right) using the same set of input conditions. The two plots are observed to be

in close agreement with each other. Note that the stress distribution on the left generated

using the finite element model took approximately 30 minutes, whereas, the surrogate model

took a split second to generate the distribution on the right indicating enormous gains in

computational efficiency for the considered application. Subsequent analyses such as hotspot

identification, GSA, and reliability prediction presented in 4.2, 4.3, and 4.4 respectively re-

quire tens of thousands of model predictions and are therefore intractable using the original

model. The proposed surrogate modeling approach is shown to make them tractable.

x
c

z
c

Figure 10: Left: Residual stress field in the xc-zc plane as generated using the finite element
model in Abaqus. The grid points in the 2D mesh used in simulations are also highlighted.
CPU time required to generate this plot is approximately 30 minutes. Right: Reconstructed
stress field using the surrogate model using the same set of parameters. CPU time required
to generate this plot is less than a second.

4.2 Hotspot Identification

As mentioned earlier in Section 1, a large amount of residual stress severely impacts part

performance due to sub-optimal mechanical properties, reduced fatigue life, and geometrical

inaccuracy. Identification of ‘stress hotspots’ is thus an important step in supporting the

manufacturing process quality control. Owing to the transient nature of the process con-

ditions, material microstructure, and part configuration, it would not be practicable to use

the expensive multiphysics model for this purpose. The surrogate model constructed using

the PCAS method proposed in this work is used instead.

For the present analysis, any location in the xc-zc plane where the residual stress exceeds

a threshold is considered as a hotspot. Figure 11 illustrates the location of the hotspots
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and associated stress values in the xc-zc plane for a particular set of input conditions using

a threshold value of 640 MPa. As expected, the hotspots are located near the top surface

Figure 11: Location of the hotspots in the AM part and corresponding estimates of the von
Mises stress are indicated by means of a colorbar. The location of the peak stress (l∗) is also
shown using a black square.

of the part that experiences sharp temperature gradients. For the purpose of identifying a

global hotspot, the residual stress field in the xc-zc plane is simulated for 106 pseudorandom

samples, generated using LHS in the 12-dimensional input domain and projected to an active

subspace corresponding to each representative feature in the stress field as shown using a

flow diagram in Figure 2. Thus, stress distribution is obtained at each point in the mesh.

The specific grid point with the maximum mean stress is regarded as the global hotspot,

denoted as l∗. Our findings reveal that l∗ is in fact located at the top right corner of the

xc-zc plane, consistent with the location of the square in Figure 11. Figure 12 shows the

PDF of stress distribution at point l∗.

Figure 12: Probability density function (PDF) of von Mises stress at l∗, generated using
kernel density estimation in Matlab. The distribution is based on 106 evaluations and the
mode value is estimated as 852.31 MPa.
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Note that Figures 11 and 12 are generated using surrogate model predictions at 106

samples as mentioned above. Using the physics model which requires approximately 30

minutes per run would be impractical for such analyses.

4.3 Global Sensitivity Analysis

The surrogate model is further used for the purpose of global sensitivity analysis (GSA). GSA

is performed with respect to the stress value at point l∗, identified as the global hotspot for

residual stress in the xc-zc plane as discussed earlier in 4.2.

As mentioned earlier, the set of inputs in the physical space denoted by θ is classified

into three categories: process parameters (θP ), mechanical properties (θM ), and thermal

properties (θT ) of the alloy (Ti6Al4V) used to manufacture the AM part. We focus our efforts

on determining the relative importance of θP , θM , and θT wherein the individual parameters

in each category are grouped together. Additionally, we investigate the relative importance of

the process parameters and the material properties, i.e. θM and θT grouped together. Such

analyses with grouped variables would help focus the manufacturer’s attention on the key

contributors to the variability in residual stress. For instance, depending upon the sensitivity

estimates, the manufacturer could focus on optimizing either the mechanical properties,

thermal properties, or the process variables for minimizing the uncertainty in residual stress

prediction. More importantly, optimizing the key contributors to the variability in residual

stress would help maximize the reliability of the finished product.

GSA is performed by estimating the main-effect (Si) and the total-effect (STi) Sobol’

sensitivity indices at 105 samples in the input domain using an algorithm based on Monte

Carlo sampling (MCS) [60]. Mathematically, Si and STi can be expressed as follows:

Si =

contribution due to θi︷ ︸︸ ︷
V (E [f |θi])

V(f)
, (11)

STi = 1−

contribution due to θ∼i︷ ︸︸ ︷
V (E [f |θ∼i])

V(f)
, (12)

where θi denotes the ith uncertain parameter, and θ∼i denotes a set of all uncertain pa-

rameters except θi. Estimating the Sobol’ indices thus involves computing variance over
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an expectation that is typically approximated using numerical techniques such as sampling-

based methods (quadrature, Latin hypercube sampling, etc.). Model runs at a large number

of sample points (especially in a high-dimensional setting) are typically needed for estimating

Si and STi with reasonable accuracy. Therefore, in applications such as those considered in

this work, it is not feasible to use simulations of an expensive physics model for this pur-

pose. The surrogate model is therefore employed to make the computations tractable. The

estimated sensitivities for the two cases are plotted in Figure 13. Several inferences can be

Figure 13: Left: Sobol’ sensitivity indices for the set of inputs grouped as process vari-
ables (θP : v, P, T0), mechanical properties (θM : Y,E, ρ), and thermal properties (θT :
Cp, κ). Right: Sobol’ sensitivity indices for the set of inputs grouped as process vari-
ables (θP ), and material properties (θM,T ).

made: The residual stress at P is most sensitive to the mechanical properties, followed by

thermal properties of the alloy. Sensitivity towards the process parameters is found to be rel-

atively small. Consistent with these findings, the sensitivity towards the material properties

grouped together is relatively higher as compared to the process variables. However, it must

be noted from these plots that the interactions between θP , θM , and θT are significantly

large. Hence, the total-effect index of θP indicates that the sensitivity towards the process

variables is significant. Therefore, optimizing the process parameters for minimizing residual

stress in the AM part could help improve its performance characteristics. Note that these

results are dependent on the choice of nominal values as well as considered intervals for the

uncertain inputs.

The main-effect and total-effect sensitivity indices of the 12 uncertain parameters are

plotted in Figure 14. Specifically, the yield strength (Y ) is observed to a major contributor
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to the variability in peak stress. Other important contributors include material properties,

elastic modulus (E) and bulk density (ρ) as well as constants, C1,Cp and C1,κ associated with

the specific heat (Cp) and bulk thermal conductivity (κ) respectively. Contributions due to

the process parameters, scan speed (v) and the pre-heat temperature (T0) are also found

to be significantly large. These results are found to be consistent with those presented in

Figure 13. It is also observed that there is significant disparity between the main-effect and

total-effect indices in all cases except for P and Y . This indicates that contribution to the

variability in peak stress due to interactions among parameters is significantly large.

Figure 14: Sobol’ sensitivity indices of the 12 uncertain parameters mapped to the stress
field using the surrogate model.

From the results presented in Figure 14, it is evident that the interactions between pa-

rameters are important contributors to the variability in peak stress. Therefore in addition

to the main-effect and total-effect indices, second-order (Sij) Sobol’ indices are estimated

to gain insight into the relative contribution to stress variance by individual pairwise in-

teractions between parameters. These insights pertaining to pairwise contributions to the

variability in residual stress could also be exploited for process control and material prop-

erty optimization. Considering that there are 12 uncertain parameters, a total of 66 (12C2)

pairwise interaction terms are possible. Estimates of Sij as well as are provided in Table 4.

Each cell has been color coded in ‘grey’ with intensity based on corresponding Sij estimate in
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order to highlight significant interactions. Mathematically, Sij can be expressed as follows:

Sij =

contribution due to θi and θj︷ ︸︸ ︷
V (E [f |θi,j])

V(f)
. (13)

Table 4: Pairwise and total second-order Sobol’ indices

v P T0 Y E ρ C0,Cp C1,Cp C2,Cp C0,κ C1,κ C2,κ

v 0.0002 0.0142 0.0025 0.0070 0.0080 0.0021 0.0185 0.0016 0.0019 0.0203 0.0014
P 0.0002 0.0004 0.0001 0.0000 0.0001 0.0001 0.0001 0.0000 0.0001 0.0006 0.0000
T0 0.0142 0.0004 0.0051 0.0046 0.0106 0.0045 0.0083 0.0024 0.0044 0.0441 0.0033
Y 0.0025 0.0001 0.0051 0.0005 0.0018 0.0008 0.0017 0.0004 0.0008 0.0080 0.0006
E 0.0070 0.0000 0.0046 0.0005 0.0025 0.0004 0.0040 0.0004 0.0003 0.0043 0.0002
ρ 0.0080 0.0001 0.0106 0.0018 0.0025 0.0015 0.0074 0.0009 0.0015 0.0157 0.0011
C0,Cp 0.0021 0.0001 0.0045 0.0008 0.0004 0.0015 0.0012 0.0003 0.0007 0.0069 0.0005
C1,Cp 0.0185 0.0001 0.0083 0.0017 0.0040 0.0074 0.0012 0.0014 0.0008 0.0110 0.0005
C2,Cp 0.0016 0.0000 0.0024 0.0004 0.0004 0.0009 0.0003 0.0014 0.0003 0.0035 0.0002
C0,κ 0.0019 0.0001 0.0044 0.0008 0.0003 0.0015 0.0007 0.0008 0.0003 0.0067 0.0005
C1,κ 0.0203 0.0006 0.0441 0.0080 0.0043 0.0157 0.0069 0.0110 0.0035 0.0067 0.0048
C2,κ 0.0014 0.0000 0.0033 0.0006 0.0002 0.0011 0.0005 0.0005 0.0002 0.0005 0.0048

Total 0.0777 0.0017 0.1019 0.0223 0.0242 0.0511 0.0190 0.0547 0.0114 0.0180 0.1259 0.0131

The sum total of the contribution of a given parameter θ∗i to total variance of the peak

stress by means of interactions (STi∗j) with other parameters can be computed as follows:

STi∗j =
∑

j∈[1,Nθ],j 6=i∗
Si∗j. (14)

Estimate of STi∗j for each parameter is plotted in Figure 15. From the results presented

in Table 4 and Figure 15, it is observed that C1,κ exhibits large second-order interactions

with v and T0. More specifically, the interaction between T0 and C1,κ was found to be the

largest followed by the interaction between v and C1,κ. Thus, the thermal conductivity (κ)

contributes significantly to the stress variance by means of interactions with scan speed (v)

and pre-heat temperature (T0). Additionally, it is found that the second-order interactions

exhibited by P are negligible. Note that these observations are consistent with the sensitivity

results plotted in Figure 14.

4.4 Reliability Prediction

Reliability prediction involves estimating the probability of failure (pf ) of the AM part

corresponding to a defined failure criterion. Here, we estimate pf based on the residual
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Figure 15: Estimates of STi∗j for each parameter is plotted using a bar graph.

stress estimate at any location in the part exceeding a given threshold. In other words,

we aim to ensure that the residual stress in the part does not exceed an upper bound and

therefore, the performance characteristics of the AM part are not severely degraded. Once

again, we exploit the surrogate model to numerically estimate pf as follows:

p̂f =
1

N

N∑
k=1

H
[
max(Ŝ)− S∗

]
, (15)

where p̂f is the approximation to pf , N denotes the number of samples, S∗ denotes the

limiting stress value, and max(Ŝ) denotes the peak stress in the xc-zc plane based on the

surrogate model prediction. H[] is a Heaviside unit step function that assumes a value 1

for a positive argument and 0 for a negative argument. To ensure that p̂f is a reasonable

approximation, it is estimated using 106 samples in the input domain. Based on surrogate

model predictions at these samples, the probability of failure using S∗ = 900 MPa is estimated

to be 0.177.

5 Summary and Discussion

PCA has traditionally been used for constructing reduced order models (ROMs) by mapping

a field quantity to a low-dimensional orthogonal space. On the other hand, the active sub-

space methodology aims to identify important directions that mainly capture the variability
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in a model output as a function of its inputs. Both approaches have been used extensively

on an individual basis for dimensionality reduction as discussed earlier in Section 1. The

main highlight of this work involves combining the two approaches in a systematic man-

ner such that dimensionality reduction in accomplished in both input and output spaces

thereby enabling enormous scope for computational gains. Specifically, we have proposed

an efficient approach, namely the PCAS method for constructing a surrogate model that

maps a high-dimensional input to a high-dimensional output. The high-dimensional output

considered here is a field quantity, estimated at discrete points on a mesh used for numerical

simulations. Computational efficiency is accomplished by means of dimension reduction in

the output space as well as the input space. We begin by determining the optimal number

of components required to reasonably approximate the output field using an iterative PCA

approach (Algorithm 1). Variability in each feature due to the variability in the inputs is

next captured in a low-dimensional subspace using the active subspace methodology. The

PCAS method thus reduces the dimensionality of the map from a large set of input variables

to a high-dimensional field quantity of interest. Computational efficiency is enhanced by

approximating the variability of each feature in the active subspace by a low-dimensional

surrogate model. The overall surrogate model that maps input variables to the output field

is constructed in an iterative manner to avoid unnecessary realizations of the stress field

using the expensive multiphysics model for generating the training data. It is expected that

the computational efficiency is accompanied with a trade-off in accuracy. Therefore, it is

critical to perform a robust assessment of the resulting surrogate model as discussed in 4.1.1.

The proposed methodology is demonstrated using an engineering application pertaining

to reliability analysis of an additively manufactured part. Specifically, we focus our efforts on

predicting the development of residual stress in a part at the end of an electron beam melting

process using a finite element model in Abaqus. The von Mises stress field in a 2-dimensional

non-uniform mesh in a cross-section of the part is computed, and it is found that 7 features

are able to approximate the stress field using the iterative PCA approach. The set of inputs

comprising the process parameters, and mechanical and thermal properties of the alloy (used

to manufacture the AM part) are mapped to each of these 7 features. A 1-or-2 dimensional

active subspace is shown to reasonably capture the dependence of each feature on the inputs
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thereby indicating enormous scope for computational gains. The surrogate model is shown

to be remarkably accurate by estimating the relative L-2 norm of the discrepancy between

the model output and the field reconstructed using the surrogate model. Specifically, on

average, the fitting error and the validation error are found to be approximately 4% and 7%

respectively.

The surrogate model is used for identifying stress hotspots in an AM part in 4.2, and

global sensitivity analysis of the process variables, mechanical, and thermal properties of the

alloy in 4.3. The hotspots are observed to be in the proximity of the applied heat flux by

the electron beam, i.e. closer to the surface of the AM part. This clearly indicates that

the residual stress is dominated by the presence of large temperature gradients. The GSA

results highlight that the residual stress is relatively more sensitive to the material properties,

although the sensitivity towards the process variables is also found to be significant due

to their interactions with the material properties; such interaction is accounted for in the

total-effect index. Specifically, our computations of the second-order Sobol’ sensitivity index

indicate that the scan speed (v) and the pre-heat temperature (T0) contribute significantly to

the variability in peak stress through interactions with the coefficient of temperature (C1,κ)

used in the thermal conductivity model as provided in Table 2. Finally, the surrogate model

is exploited to numerically estimate the probability of failure using a million samples in the

input domain for the purpose of reliability analysis of the AM part.

It must be highlighted that the aforementioned analyses such as hotspot detection, GSA,

and reliability prediction under various process and material uncertainties are typically com-

putationally intensive in additive manufacturing. The surrogate model constructed using the

PCAS method makes them computationally affordable while ensuring a reasonable amount

of accuracy for the present application. In addition to the analyses presented in this work,

the surrogate model-based predictions of the stress field could be used to estimate other

quantities of interest such as the difference between maximum and minimum local stress,

identification of regions with stress concentration in the part and so on. Furthermore, com-

mon approaches to process control in additive manufacturing are mainly based on trial-

and-error with no ability to perform reliability analysis on either the part or the process.

The fast surrogate modeling approach presented in this work could enable reliability analy-
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sis in this rapidly emerging area. Moreover, computational efficiency enabled by dimension

reduction could enable real-time process control which can otherwise be remarkably challeng-

ing. However, there are limitations that should be considered when applying the proposed

methodology. First, dimension reduction in the output space is conditioned on the existence

of a structure in the data that could be captured by a relatively small number of principal

components or directions. Second, a low-dimensional active subspace is used here to map

the set of inputs to the quantity of interest (QoI). To accomplish this effectively, the gradient

of the QoI with respect to each input should be estimated with reasonable accuracy. For the

application presented in this work, we have used a regression-based approach for estimating

the gradients that resulted in a reasonably accurate surrogate model for each feature of the

output field of interest. However, depending upon the relationship between the QoI and the

set of inputs, a relatively more accurate (but expensive) approach such as those involving

perturbation techniques (e.g. automatic differentiation [51], adjoint methods [49,50]) may be

required. Additionally, the active subspace methodology is not suitable in situations where

the QoI exhibits large nonlinearities with respect to uncertain inputs, and the gradient is

not continuous in the entire domain of the inputs.

To sum up, the proposed methodology is successfully demonstrated in this paper for

a reasonably challenging practical application involving reliability analysis of an additively

manufactured part. Enormous computational gains leading to significant dimension reduc-

tion in both input and output spaces are accomplished. Therefore, the proposed framework

appears to be quite promising for surrogate modeling in applications involving large input and

output dimensions. Potential future efforts pertaining to this work could explore alternate

strategies such as adjoint-based methods for gradient estimation to enhance the robustness

and applicability of the proposed approach to more complex scenarios. Additionally, such

improvements could enhance the applicability of the surrogate model for process control and

optimization in additive manufacturing. In this work, the accuracy of the surrogate model

is validated against finite-element based numerical simulations. However, for such practical

applications, surrogate-based predictions must be validated against measurements in order

to assess its applicability.
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