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ABSTRACT 

The need of designing and controlling single-walled carbon nanotube (SWCNT) properties is a challenge 

in a growing nanomaterials-related industry. Recently, great progress has been made experimentally to 

selectively control SWCNT diameter and chirality. However, there is not yet a complete understanding of 

the synthesis process and there is a lack of mathematical models that explain nucleation and diameter 

selectivity of stable carbon allotropes. Here, in-situ analysis of chemical vapor deposition SWCNT 

synthesis confirms that the nanoparticle to nanotube diameter ratio varies with the catalyst particle size. It 

is found that the tube diameter is larger than that of the particle below a specific size (dc ≈ 2nm) and above 

this value is smaller than particle diameters. To explain these observations, we develop a statistical 

mechanics based model that correlates possible energy states of a nascent tube with the catalyst particle 

size. This model incorporates the equilibrium distance between the nucleating SWCNT layer and the metal 

catalyst (e.g. Fe, Co, Ni) evaluated with density functional theory (DFT) calculations.  The theoretical 

analysis explains and predicts the observed correlation between tube and solid particle diameters during 

growth of supported SWCNTs. This work also brings together previous observations related to the stability 

condition for SWCNT nucleation. Tests of the model against various published data sets and our own 

experimental results show good agreement, making it a promising tool for evaluating SWCNT synthesis 

processes.  
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INTRODUCTION 

Single-walled carbon nanotubes (SWCNTs) are among the most studied and promising carbon allotropes 

for flexible electronics and biomedical applications due to their mechanical stability and high electronic 

conductivity1–3. The design and controlled synthesis of carbon allotropes (e.g. nanotubes, fullerenes) and 

many other 2D polymorph materials have received increasing attention of several industries due to their 

wide range of applications1–5. Catalytic chemical vapor deposition (CVD) is currently the most widely used 

technique for growing carbon nanotubes6–9. This technology has been especially important in the mass 

production of SWCNTs and achieving a better selectivity in diameter and chirality. The structure of catalyst 

nanoparticles, including size, composition, morphology and their evolution during the CVD process (e.g. 

interaction with adsorbate gases and substrate) play a critical role in the growth of SWCNTs10. 

There is some consensus among experimentalists about the diameter-controlled synthesis of SWCNTs 

grown using a supported nanocatalyst: A uniform distribution of supported small solid catalyst particles is 

suggested to produce a homogeneous narrow nanotube’s diameter distribution11–14. These works show a 

strong relationship between the solid nanocatalysts size and the tube diameter profile. The phase of the 

catalyst (i.e. solid or liquid) has been suggested as an important factor for reducing the variability of possible 

chiral structures15,16, as well as that for diameter selectivity, with solid structures favoring such selectivity. 

Statistical analyses establishing the ratio between the diameters of catalyst particles and those of 

SWCNTs17–19 together with observations regarding the growth mode, have given birth to additional 

understanding, such as the tangential vs. perpendicular growth classification20. However, a model that may 

quantitatively explain the link between SWCNTs and catalyst particle diameters has not been successfully 

established limiting the advances of targeted synthesis for selective nanotube production and chirality 

control.  

 

Figure 1. Simulated structure of a nucleated cap system (green/orange) growing over a nanocatalyst (blue) supported 

on an oxygen-rich insulating substrate (𝑒𝑒.𝑔𝑔.  𝑆𝑆𝑆𝑆𝑂𝑂2 ,𝐴𝐴𝑙𝑙2𝑂𝑂3). [Top-Right] Nucleated semi-fullerene cap. [Bottom-Right] 

Curved tubular nanoribbon (orange) at the SWCNT open-end interacting with the catalyst. 
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Earlier studies have highlighted the thermodynamics-driven nature of the SWCNTs nucleation process21 

and its connection with chirality selectivity22. For all chiral angles χ, the energy scale variability associated 

with the SWCNT caps is small, compared to that of the SWCNT to catalyst interface23. A high interfacial 

surface stress between metal and carbon tends to peel off the cap. This process creates an incipient nanotube 

nucleus that could be described as composed of a thin curved tubular nanoribbon interacting with the metal 

surface topped by a semi fullerene cap as shown in Figure 1. We postulate that the fact that the nascent tube 

has elastic properties, and therefore curvature energy, allows the SWCNT to reach a defined range of 

energetically stable states. We show that the probability of reaching these stable states may determine the 

diameter of the tube. 

Here we have used high-resolution in-situ environmental transmission electron microscopy (ETEM) to 

determine the diameter relationship between Co metal catalyst particles and SWCNTs experimentally, and 

propose an innovative model based on the elastic energy of the rim nanostructure (orange region in Figure 

1) at the open-end tube edge.  Such model offers an understanding of the correlation between catalyst 

particle and nanotube diameter through the analysis of most probable energy states for the atoms in contact 

with the metal immediately after cap nucleation.  

The statistical-mechanical based model is tested against our own data and that from the literature.  The 

paper is structured as follows: First we introduce the basic concepts on which the model is developed, and 

then we provide a physical description and define the main equations, assumptions, and parameters. Finally, 

we apply the model and compare the prediction with experimental results.   

THEORETICAL BACKGROUND AND MODEL DEVELOPMENT 

We model a system conformed by an infinitesimal section of the incipient SWCNT wall referred here as 

the tubular nanoribbon (Figure 2). The nanoribbon is described as the outer edge of the nascent tube in 

contact with the metal particle after the nucleation occurs. This tubular nanoribbon has a single degree of 

freedom, the radial position on a curved surface (i.e. tube diameter). According to the dislocation theory24, 

the presence of free radicals at the edge of the early sp2 carbon structure allows the carbon atoms in contact 

with the surface to spread into new planes (edge dislocations) forming pentagons and hexagons until the 

complete cap is formed. This stepped spreading of the nascent cap25 allows the system to find a local 

minimum in the carbon structure’s curvature energy, and therefore a stable tube diameter (𝑑𝑑𝑇𝑇 ). The 

probability function 𝑓𝑓𝑑𝑑(𝑑𝑑𝑇𝑇)  of a tube having a certain diameter 𝑑𝑑𝑇𝑇 R  can be evaluated with a statistical-

mechanical model. We define the diameter distribution 𝑓𝑓𝑑𝑑  as a probability function of generalized 

coordinates (𝑝𝑝, 𝑞𝑞) such that the statistical equilibrium condition can be expressed mathematically using 

Equation 1.  
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This condition of statistical equilibrium dictates that the system evolves in a way that conserves the density 

of states and probability function 𝑓𝑓𝑑𝑑 within a multi-dimensional space (∏𝑑𝑑𝑝𝑝𝑖𝑖𝑑𝑑𝑞𝑞𝑖𝑖), called the extension of 

phase26. For our system, this condition is fulfilled defining the probability 𝑓𝑓𝑑𝑑  as a function of energy and 

including only conservative forces. Classical mechanics theory assigns energy states for an atom, or group 

of atoms, in terms of potential (𝑈𝑈) and kinetic energy (𝐾𝐾), these can be used to describe the configuration 

of the atoms for a microstate. Additional constraints to the degrees of freedom on the atoms are due to the 

C-C bonds in the nuclei layer that restrict the motion of the tubular nanoribbon. For this reason, we assumed 

that the carbon atoms on the tubular nanoribbon have a negligible velocity and the only relevant potential 

energy describing the intermolecular interactions is the energy stored as strain energy within the system 

(Equation 2), thanks to the flexible nature of the material.  

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠 =
𝑌𝑌𝑌𝑌𝑎𝑎3𝜋𝜋

6𝑑𝑑𝑇𝑇
         𝐸𝐸𝑞𝑞. 2  

The strain energy (Estrain) is defined in terms of Young modulus (Y), tubular nanoribbon length (L), 

nanoribbon wall thickness (a), and tube diameter (dT). A schematic illustration of these variables can be 

found in Figure S1 (Supporting Information). The curvature energy (Ec) is a function of Y, a, dT and the 

carbon surface density ρs and is defined as the strain energy normalized by N, the total number of C atoms, 

and reduced to the expression in Equation 3. 

𝐸𝐸𝑐𝑐 =
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠
𝑁𝑁

=
𝑌𝑌𝑎𝑎3

6𝜌𝜌𝑠𝑠𝑑𝑑𝑇𝑇2
=

𝛼𝛼
𝑑𝑑𝑇𝑇2

             𝐸𝐸𝑞𝑞. 3 

The parameter 𝛼𝛼  is defined in Equation 3. It is usually assumed constant for a defect and impurity-free 

material like the nanoribbon. Kudin et al. have shown the relation of 𝛼𝛼 to the flexural rigidity using the 

continuum shell approach27.  Equations 2-3 are based on previous works18,28–31 addressing diameter stability 

and their derivation can be found in the first section of the Supplemental Information. 

The tubular nanoribbon system in its nascent form may exist in many different configurations (i.e. radial 

position and orientation on top the particle). Each configuration has a unique corresponding energy state 

(i.e. microstate) associated with it. Thus, to evaluate these microstates we define them mathematically using 

a continuous function for the curvature energy according to the work-energy principle for elastic materials. 

The probability 𝑓𝑓𝑑𝑑(𝑑𝑑𝑇𝑇) of a tube having a certain diameter 𝑑𝑑𝑇𝑇 R will be proportional to the curvature energy 

𝐸𝐸𝑐𝑐 associated to a corresponding microstate as described by Equation 4. 
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𝑓𝑓𝑑𝑑(𝑑𝑑𝑇𝑇) ∝ 𝑒𝑒− 𝐸𝐸𝑐𝑐(𝑑𝑑𝑇𝑇)
 𝑘𝑘𝐵𝐵𝑇𝑇         𝐸𝐸𝑞𝑞. 4  

According to equation 1, the system is at statistical equilibrium, this means that the probability distribution 

function (𝑓𝑓𝑑𝑑) is independent of time. Strictly speaking, a finite number of systems cannot be distributed 

continuously in the phase space. But in the limit of an infinite number of states, we may approximate the 

discrete distribution to a continuous function26. The extension of phase’s radial limits in Equation 5 accounts 

for all possible tube diameter (dT) configurations and it is related to the nanocatalyst diameter (𝑑𝑑𝑝𝑝) in the 

upper limit (𝑑𝑑𝑢𝑢𝑝𝑝 = 𝑑𝑑𝑝𝑝 + 𝛿𝛿0).  

𝑑𝑑0 <  𝑑𝑑𝑇𝑇 < 𝑑𝑑𝑝𝑝 + 𝛿𝛿0        𝐸𝐸𝑞𝑞.  5  

Here, 𝑑𝑑0 is the minimum equilibrium distance between two graphene layers in a graphite structure at the 

absolute zero temperature (≈ 0.34 nm), and 𝛿𝛿0 is approximated by the equilibrium average distance between 

the surface of the metal catalyst and the carbon nanoribbon as shown in Figure 2.  

 

Figure 2. Cylindrical carbon nanoribbon interacting with a catalyst. The nanoribbon interacts with the catalytic surface 

and positions itself at an equilibrium average distance 𝛿𝛿0 at the most stable diameter 𝑑𝑑𝑇𝑇. For a stable particle with 

diameter 𝑑𝑑𝑝𝑝, the tube diameter 𝑑𝑑𝑇𝑇 is constrained within a diameter range described in Eq. 5 as the extension of phase’s 

radial limits. 

For a nascent carbon cap supported by a metal particle, the interfacial stress will bend the carbon structure 

to find a stable curvature. This quasi-static process follows an intrinsic energetic path under the principle 

of least action. Therefore, we propose a probability function in the pseudo-canonical ensemble (Equation 

6) with a phase function distributed according to the Boltzmann probability function.  In principle, this can 

be better understood as an a priori probability. 

𝑓𝑓𝑑𝑑(𝑑𝑑𝑇𝑇 ,𝑇𝑇) =
𝐵𝐵𝐵𝐵𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝐵𝐵𝐵𝐵 𝐸𝐸𝐵𝐵𝑒𝑒𝐸𝐸𝑔𝑔𝐸𝐸 𝐷𝐷𝑆𝑆𝐷𝐷𝐵𝐵𝐸𝐸𝑆𝑆𝐷𝐷𝐷𝐷𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵
𝑆𝑆𝐷𝐷𝐵𝐵 𝐵𝐵𝑜𝑜𝑒𝑒𝐸𝐸 𝑎𝑎𝑙𝑙𝑙𝑙 𝑝𝑝𝐵𝐵𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑙𝑙𝑒𝑒 𝐷𝐷𝐵𝐵𝑎𝑎𝐵𝐵𝑒𝑒𝐷𝐷

=
𝑒𝑒−𝐸𝐸𝑐𝑐(𝑑𝑑𝑇𝑇) 𝑘𝑘𝐵𝐵𝑇𝑇⁄

∫ 𝑒𝑒−𝐸𝐸𝑐𝑐(𝑥𝑥) 𝑘𝑘𝐵𝐵𝑇𝑇⁄𝑑𝑑𝑝𝑝+𝛿𝛿0
𝑑𝑑0

𝑑𝑑𝑑𝑑
      𝐸𝐸𝑞𝑞. 6 

At fixed temperature, 𝑑𝑑𝑇𝑇  is the only variable describing every possible microstate of the tubular 

nanoribbon. Therefore, we can use the expression for curvature energy found in Equation 3 to integrate the 
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denominator in Equation 6. The limits in the integral shown in the denominator of Equation 6 will match 

the boundaries in Equation 5 to account for all possible configurations. The resultant expression given in 

Equation 7 is a function only of the particle diameter (𝑑𝑑𝑝𝑝), temperature (𝑇𝑇), and the additional parameters 

(𝛼𝛼,𝑑𝑑0, 𝛿𝛿0). As such, it depends strongly on the carbon and nanocatalyst intrinsic properties, as well as on 

the tube/nanocatalyst interactions. 

𝑓𝑓𝑑𝑑(𝑑𝑑𝑇𝑇 ,𝑇𝑇) =
𝑒𝑒
−� 𝛼𝛼

𝑑𝑑𝑇𝑇
2𝑘𝑘𝐵𝐵𝑇𝑇

�

��
𝜋𝜋𝛼𝛼
𝑘𝑘𝐵𝐵𝑇𝑇

erf�
�𝛼𝛼/𝑘𝑘𝐵𝐵𝑇𝑇

𝑑𝑑 �+ 𝑑𝑑𝑒𝑒
−� 𝛼𝛼
𝑥𝑥2𝑘𝑘𝑏𝑏𝑇𝑇

�
�
𝑥𝑥1= 𝑑𝑑0

𝑥𝑥2=𝑑𝑑𝑢𝑢𝑝𝑝
    𝐸𝐸𝑞𝑞. 7  

From Equation 6, we have obtained a probability density distribution given by Equation 7. We note that 

this is an approximation because we have neglected the translational kinetic energy (𝐾𝐾 → 0) and considered 

only the potential energy associated with the curvature of the nascent carbon structure (𝑈𝑈 = 𝐸𝐸𝑐𝑐). This 

doesn’t mean that the total energy of the tubular nanoribbon is not affected by other contributing factors, 

like chirality, and the velocity of the catalytic particle (if it is in motion).  But the current approximation 

helps us to concentrate on the effect of the stability of the carbon nanostructure interacting with the catalytic 

particle that is assumed to be a dominant factor to determine the tube diameter.   

< 𝑑𝑑𝑇𝑇 >  =  � 𝑑𝑑 𝑓𝑓𝑑𝑑�𝑑𝑑,𝑑𝑑𝑝𝑝,𝑇𝑇� 𝑑𝑑𝑑𝑑

𝑥𝑥2 = 𝑑𝑑𝑝𝑝+𝛿𝛿0 

𝑥𝑥1= 𝑑𝑑0

     𝐸𝐸𝑞𝑞. 8 

The experimentally observed diameter is predicted by calculating the most probable value (< 𝑑𝑑𝑇𝑇 >) 

according to the probability density distribution (𝑓𝑓𝑑𝑑) given by Equation 7, once the properties of the catalyst 

and catalyst/carbon interactions (mainly reflected in the 𝛿𝛿0 parameter) are determined from first principles 

as shown below. The result can be obtained by solving the expression in Equation 8. Moreover, the standard 

deviation (𝜎𝜎) can be found using the definition in Equation 9 and the probability distribution obtained 

previously (𝑓𝑓𝑑𝑑). The standard deviation provides a measure of the most probable region where SWCNTs 

can grow, and it depends on temperature  𝑇𝑇 and the particle diameter (dp) through the upper integration 

limit 𝑑𝑑𝑢𝑢𝑝𝑝.   

𝜎𝜎2 = 𝑉𝑉𝑎𝑎𝐸𝐸(𝑑𝑑𝑇𝑇) =  � 𝑑𝑑2𝑓𝑓𝑑𝑑(𝑑𝑑,𝑇𝑇)
𝑑𝑑𝑢𝑢𝑝𝑝

𝑑𝑑0
𝑑𝑑𝑑𝑑− < 𝑑𝑑𝑇𝑇 >2    𝐸𝐸𝑞𝑞. 9 

We note that some other conditions may affect the proposed representation of SWCNT curvature stability 

and the model parameters. For example, intrinsic properties of the growing tube, such as chirality and 

defects may cause small changes of quantum origin on the physical properties of the tube32 (e.g. elasticity 
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Young modulus). Additionally, the distribution of accessible diameters should be discrete based on the 

existence of known distances between covalently bonded carbon atoms28–30. However, the use of a classical 

expression for the elastic energy and the subsequent statistical analysis are valid under the equipartition 

theorem and the ergodic hypothesis26,33. 

Moreover, as we demonstrate in this paper, the model can reproduce observed nanotube’s diameter 

distributions using exclusively the measured catalyst diameter distribution profile. Additional 

simplifications to the model and approximations for the probability distribution 𝑓𝑓𝑑𝑑 and the most probable 

diameter < 𝑑𝑑𝑇𝑇 > are discussed in the supplementary information.  We observed that a numerical evaluation 

of Equation 8 is the most accurate method for solving the expression, especially for small particles (Figures 

S3 and S4).  In the following section we use this probability function to determine the most probable tube 

diameter as a function of particle size where the model parameters are evaluated for sets of experimental 

synthesis data of SWCNTs grown on cobalt nanoparticles. 

RESULTS AND DISCUSSION 

A critical part of the model and the basis to understand nanotube formation and its relationship to the 

nanocatalyst properties relies on studying the stability of the nascent tube and the associated catalyst-

nanoribbon interaction. A deeper analysis of the interfacial interaction between the metal surface and the 

graphene layer is crucial to comprehend the forces involved during the tube’s nucleation. We use DFT to 

quantify the interaction between some common metal catalysts and carbon structures. These calculations 

are necessary to find an adequate model parameter value for the distance between the nascent nanotube 

wall and the catalyst surface. Additionally, we use our experimental data to assess the model and analyze 

its capabilities and limitations.  

The Strength of Graphene-Metal Interaction and Evaluation of Model Parameters 

Interlayer adhesion energies obtained using spin polarized DFT calculations reveal the information about 

the strength of interaction between metal (and metal carbide) catalysts and graphene. Table 1 displays 

values obtained by DFT under periodic boundary conditions. The calculations were set minimizing any 

graphene curvature contribution that could arise due to the finite size of the model. The values for energy 

in previous works shown in Table 1 correspond to multiple metal facets or in the case for cobalt carbide is 

the closer approximation found to the infinite layer approximation for this system. Previous work has 

reported the existence of a relation between the exposed metal (or metal-carbide) catalyst facet and the 

graphene/catalyst adhesion energy34.  

𝛥𝛥𝐸𝐸𝑖𝑖𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠&𝑔𝑔𝑠𝑠𝑠𝑠𝑝𝑝 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑔𝑔𝑠𝑠𝑠𝑠𝑝𝑝       𝐸𝐸𝑞𝑞. 10 
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The values for the interfacial interaction energy (𝛥𝛥Eint) were calculated using Equation 10, where Eslab&grap 

is the energy of each of the systems shown in the DFT section of the supplemental information, Eslab, and 

Egrap are the energies of the isolated slab and graphene respectively. The (100) facet was chosen for the 

metal and metal carbide structures because it facilitates (in general) the match with the graphene lattice 

structure and therefore helps to minimize the catalyst/graphene lattice mismatch when modeling graphene 

in the infinite layer approximation. Details of the calculations are given in the Methodology section and in 

the supplemental information.  

Table 1. Adhesion energy (𝐸𝐸𝑠𝑠𝑑𝑑ℎ), metal-carbon interaction energy (𝐸𝐸𝑀𝑀𝑀𝑀) and equilibrium distance (𝛿𝛿0) 

between (100) slabs and graphene layer. The calculated values are compared to previous published energies 

and distances. 

*Experimental Techniques (43-45) 

The metal-carbon interaction energy (𝐸𝐸𝑀𝑀𝑀𝑀) and the adhesion energy (𝐸𝐸𝑠𝑠𝑑𝑑ℎ) were obtained dividing the 

interfacial interaction energy (Δ𝐸𝐸𝑖𝑖𝑠𝑠𝑠𝑠) by the number of carbon atoms and by the transverse area of the 

simulation box respectively. This value is crucial because it defines the region where multiple stable carbon 

allotropes start to form49,50 (e.g. fullerene vs. nanotube). In other words, the metal-carbon strength of 

interaction is an indicator of the encapsulation-growth transition. As such, it can help us to determine the 

minimum tube diameter value (𝑑𝑑𝑇𝑇 ) where deactivation of the particle due to encapsulation becomes 

possible and may be used to characterize the stability regions as discussed further in the stability analysis.   

 

The equilibrium distance (𝛿𝛿0 ) is a parameter of the model that defines the extension of phase upper 

boundary (𝑑𝑑𝑢𝑢𝑝𝑝 = 𝑑𝑑𝑝𝑝 + 𝛿𝛿0) and therefore the number of accessible microstates. The values 𝛿𝛿0∞ shown in 

Table 1 correspond to the infinite layer approximation, two periodic metal – graphene layers interacting in 

the interface, this method is especially good to obtain a measure of the non-bonding, van der Waals 

interaction. Usually, bulk carbon atoms in a graphene sheet have a coordination number of three; however, 

System 
Eadh  [eV/𝐵𝐵𝐵𝐵2] EMC  [meV/atom] δ0∞ [nm] 

Calc Prev. Calc Prev. Calc Prev. 

Iron (Fe) -2.81 -5.5535 -74.20 -14935 0.204 [0.211 - 0.232] 35,36 

Nickel (Ni) -0.94 -9.1337 -24.77 [-19; -135]38–41 0.205 [0.204 - 0.280] 
38,40,42*43–45 

Cobalt (Co) -2.22 -7.6146 -55.49 [-24.7; -160]46–48 0.338 [0.205 - 0.340]47,48 

Cobalt Carbide 
(Co2C) -2.96 [-14.4; -26.5]34 -77.59 - 0.220 [0.180 - 0.309]34 
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edge carbon atoms may have a reduced coordination number. For example, the 𝛿𝛿0∞ equilibrium distance in 

the cobalt slab (0.338 nm) decreases to 0.190 nm, 0.179 nm and 0.161 nm by reducing the number of 

neighbor carbon atoms coordinating with a central bulk graphene atom to two, one and zero respectively. 

This decrease in the equilibrium distance is related to a stronger interaction due to free electrons available 

to form bonds at the edge of the tube (𝛿𝛿𝑜𝑜
𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒 ≈  [0.5− 0.6] 𝛿𝛿0∞) . The tubular nanoribbon region, on which 

the model is based, is composed of a bulk – edge combination of carbon atoms. For this reason, we assumed 

that 𝛿𝛿0 in the upper limit of the radial extension of phase (𝑑𝑑𝑢𝑢𝑝𝑝) is approximately equal to the infinite layer 

value (𝛿𝛿0 ≈ 𝛿𝛿0∞ ≈ 2𝛿𝛿0
𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒) for the entire diameter.  

 

 

 
Figure 3. Surface carbon density (𝜌𝜌𝑠𝑠) dependence on chiral angle. Estimated values (•)  using periodic units of 

different chiral tubes. 

An interesting observation based on the work-energy principle equations (Equations 2 and 3) is that the 

carbon surface density (𝜌𝜌𝑠𝑠) has a role defining the curvature energy function, or more explicitly the α 

parameter. We evaluated the surface carbon density dependency on chirality for SWCNTs with similar 

diameter. A quick analysis of the smallest repetitive section of different chiral tubes shown in Figure 3 

indicates that the surface carbon density is almost independent of the chiral angle and has a constant average 

value of 38.2 atoms nm−2.  
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Experimental Results 

The diameters of approximately 22 particles and the tubes associated with them were measured from the 

high resolution ETEM images recorded during SWCNT growth (see methods for details). It was not always 

possible to take images with both the particle and associated nanotube to be clearly visible in the 2D 

projection as often the particles are embedded in the support. Therefore, only the images with clear 

connection between the two were used for the data analysis. A broad distribution of three types of 

relationship can be established from the in situ data: (a) tube diameter is smaller than the particle diameter 

(Figure 4a and Figure 4b); (b) tube diameter is almost the same as particle diameter (Figure 4c and Figure 

4d); and (c) tube diameter is larger than the particle diameter (Figure 4e). This last observation is intriguing 

as it results in a different metal to carbon interaction than the first two. 

 

Figure 4. ETEM images of SWCNTs growing on Co particles. a and b) Tube diameter smaller than particle diameter, 

apparent perpendicular growth; c and d) Tube diameter very close to the particle diameter, apparent tangential growth; 

e) Tube diameter larger than particle diameter, apparent tangential growth; f) Observed correlation between tube 

diameter and particle diameter in this study.  

SWCNT production using a catalyst-support combination results in a clear dependence on particle diameter 

as indicated in Figure 4f.  For particles above ≈ 3 nm, no SWCNT growth was observed. The proposed 

model does not predict a maximum diameter for the SWCNT growth on active particles.  However, previous 

studies have shown the importance of the nanotube elastic behavior to keep its cylindrical structure and the 

existence of a transition between the cylindrical vs. the collapsed structure as a function of tube 
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diameter51,52. The elastic collapse has not been explored in this study, but it has been reported to impede the 

growth of SWCNTs above particle size of 3 nm53. 

 

Figure 4f shows the experimental correlation between the tube and particle diameter.  There is a clear 

change in behavior of this function with respect to the straight line in Figure 4f ( where 𝑑𝑑𝑇𝑇 = 𝑑𝑑𝑝𝑝). The tube 

diameter is larger than that of the particle below ≈ 2 nm and above this value is smaller than particle 

diameters. This change agrees with the reported transition from tangential (Figures 4c, d, and e) to 

perpendicular growth mode20 (Figures 4a and b). Note that in the tangential growth mode the small 

nanoparticle has more flexibility to let the tube diameter accommodate on its surface. Such flexibility 

(which depends on intrinsic properties of the catalyst such as its cohesive energy reflected in its melting 

point) disappears in the perpendicular mode, where the fate of the nascent tube is more related to the 

strength of the catalyst-carbon interaction. Moreover, in the tangential growth mode, the contact area 

between particle facets and nascent tube wall is much larger (Figures 4 c, d, e); thus we expect that the 

interfacial energies between carbon and catalyst be dominant. In contrast, in the perpendicular growth 

mode, the tube sits over the larger particle (Figures 4 a and b) and the interfacial interactions are 

predominantly between the tube rim and the catalyst surface. In addition, we know that the curvature energy 

of SWCNTs increases as the tube diameter decreases18. Therefore, the tube diameters from the smaller 

particles may be relatively larger. Molecular dynamics simulations have shown that the tube diameter is 

also dependent on the metal-support interactions and tubes with diameters within a stable region will 

nucleate from larger particles as the metal-support adhesive energy increases54. The tube diameter has also 

been reported to depend on the carbon availability. However, as the C2H2 pressure in our ETEM 

experiments was kept constant, the availability of carbon can only vary with particle size. In other words, 

for the data in our study, the tube diameter will increase with increasing particle size, which is generally 

true, except for the fact that there appears to be at a minimum (≈ 1.1 nm) and a maximum (≈ 2.8 nm) limit 

for tube diameters from particles of diameters varying from ≈0.85 nm to ≈3.14 nm.  

 

Model Predictive Capability 

 

Test of the model for the small particle range (dp < 5nm) 

We first attempt to replicate the trend observed in our experimental data relating the diameter of the particle 

to the tube (Figure 4f). The interfacial distance 𝛿𝛿0 found previously for cobalt is used to define the upper 

integration limit 𝑑𝑑𝑢𝑢𝑝𝑝. The parameter 𝛼𝛼 as discussed previously can be estimated using Equation 3 from the 

work-energy theory for elastic materials presented in the first part of the supplemental information. This 

relation makes 𝛼𝛼 exclusively dependent of tube properties like Young modulus (𝑌𝑌), the atomic surface 
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density (𝜌𝜌𝑠𝑠) and the wall thickness (𝑎𝑎). Values of Young moduli obtained from prior atomistic studies are 

largely scattered varying from (0.95 TPa to 5.5 TPa) for 𝑌𝑌 and [0.06 nm to 0.69 nm] for wall thickness (𝑎𝑎) 
53,55–58. The uncertainty on the definition and estimated values for these properties can impact 𝛼𝛼 greatly. For 

this reason, a convenient procedure for including the variations in the carbon nanoribbon properties is to 

numerically optimize the 𝛼𝛼 value from the experimental data and compare with previous estimations.  

  
Figure 5. Adjusting the parameter 𝛼𝛼 to our SWCNT experimental data. (+) High-resolution TEM experimental Data 

(this work). (−) Most probable or average diameter and (--) standard deviation limits (±𝜎𝜎) obtained after  𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 has 

been found. 

Figure 5 shows the results of fitting the model to our experimental data. The optimized 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 value for our 

SWCNT data using a cobalt catalyst is 1.15 eV nm2 atom-1. The inflection point (i.e. the point where the 

ratio 𝑑𝑑𝑇𝑇/𝑑𝑑𝑃𝑃 is approximately one) in the diameter’s behavior can be observed and explained within the 

model. For very small particles (< 2 nm) the most probable diameter (solid line) is close to the upper limit 

(𝑑𝑑𝑇𝑇 → 𝑑𝑑𝑝𝑝 + 𝛿𝛿0) in the extension of phase. This is due to the small range of possible states that results from 

a very sharp narrow probability distribution (Figure S1). On the other hand, the probability distribution for 

large particles is broader and the average is expected to be in an intermediate value between both limits of 

the range [d0, dup]. Hence, the most probable tube diameter in small particles is larger than dp, and the 

growth should be tangential to the particle (𝑑𝑑𝑇𝑇 > 𝑑𝑑𝑝𝑝), whereas the growth for large particles is expected to 

be perpendicular (𝑑𝑑𝑇𝑇 < 𝑑𝑑𝑃𝑃).  

It is important to further analyze the meaning of the 𝛼𝛼 parameter. For this reason, it is also necessary to 

consider previous evaluations of this parameter. For example, Gülseren et al reported a value of 𝛼𝛼 = 0.0214 

eV nm2 atom-1 obtained from ab-initio calculations31 ( 𝐸𝐸𝑐𝑐 = 𝛼𝛼/𝑅𝑅 
2 = 𝐸𝐸𝑀𝑀𝐶𝐶𝑇𝑇 − 𝐸𝐸𝑔𝑔𝑠𝑠𝑠𝑠𝑝𝑝 ). This value is 

equivalent to 𝛼𝛼 = 0.0856 eV nm2 atom-1 in our curvature energy representation (𝐸𝐸𝑐𝑐 = 𝛼𝛼/𝑑𝑑𝑇𝑇2). However, 
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𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 (1.15 eV nm2atom-1) is one order of magnitude higher than the one predicted by Gülseren et al. This 

difference in 𝛼𝛼 values can be related to the uncertainty in the evaluation of the SWCNT wall thickness 

where approximations also vary in orders of magnitude53,55,58. In an atomic thin shell model, the wall 

thickness is considered to be the graphite inter-layer spacing (0.34 nm), Cai et al. demonstrated that this 

value also corresponds closely to the thickness of the SWCNT electron cloud57.  To test the accuracy of our 

𝛼𝛼, we estimated the Young modulus ( 𝑌𝑌) using the optimized 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 value. Thus, using the 2D approximation 

(bending tubular carbon nanoribbon) in Equation 3, the previously calculated surface carbon density 𝜌𝜌𝑠𝑠 ,  

𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠  , and the value of 0.34 nm for the tubular nanoribbon thickness, we estimate a value of 1.07 TPa for 

the Young’s modulus of SWCNTs, that is within the range of many model approximations56,59,60 (0.97 TPa 

to 5.5 TPa) and very close to the few experimental values reported for SWCNTs61–63 (1.20 TPa to 1.25 

TPa). 

Test of the model for large particle range (dp > 5 nm) 

 
Figure 6. Adjusting the parameter 𝛼𝛼 to inner diameters in the MWCNTs data set from Tibbetts. (x) Data collected for 

iron particles from Tibbets18. (−) Most probable or average diameter and (--) standard deviation limits (±𝜎𝜎) obtained 

after  𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 has been found. 

Next we used the experimental set by Tibbetts18, that reports inner diameters of multi-walled carbon 

nanotubes (MWCNTs) for very large particles. Although the growth mechanism of MWCNTs is not yet 

clear, we assume that the inner tube structure nucleation occurs under similar conditions to the ones 

mentioned previously for SWCNTs. Figure 6 shows that the inner diameters in MWCNTs can also be 

adjusted to our model yielding an  𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 value of 2.063 eV nm2 atom-1 using 𝛿𝛿0 for iron (Table 1). To explain 

the difference between the 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 for SWCNTs in small particles and MWCNTs in larger particles it should 

be noted that the inner diameter in a MWCNT may be affected by the presence of compressive/attractive 
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forces due to the additional walls.  This can cause an increase in the ability of storing potential elastic energy 

within the curvature of the tube. An increase in the bending momentum stored by the carbon atoms at the 

edge of the tube is expected to affect the flexural rigidity (bending stiffness) of the tube and therefore the 

𝛼𝛼 value in the inner tube structure of MWCNTs. The difference could also be attributed to the van der 

Waals forces between the inner nuclei and the concentric layers of a MWCNT. These additional forces can 

modify the mechanical properties of the inner tube. Using the same approximation utilized for the SWCNT 

thickness (0.34 nm) and the 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠  obtained for MWCNTs, a Young’s modulus of 1.93 TPa is estimated, that 

is in reasonable agreement with reported Young moduli for MWCNTs64. 

We remark that the range of particle diameters in the two sets of data shown in Figure 5 and 6 is very large. 

To compare and test the applicability of the 𝛼𝛼 values, we evaluated both data sets with the 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 obtained 

for the smallest tubes and the value reported from Gülseren31 (Supplementary Information, Figure S6).  The 

model shows that even using a rough approximation of α from the literature or that previously obtained in 

the fitting of our data, the model predicts a good estimate of the inner diameter value in large particles.   It 

is found that the predicted tube diameters are much more sensitive to the 𝛼𝛼 value in the small tube range. 

For larger tubes, where the probability function is distributed over many possible configurations, the α 

dependence becomes weaker. We note that although 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠  was obtained for the previous described 

experimental sets of data, it could be applied to other metal catalysts because its calculation only involves 

tube properties. For this reason, the prediction of a SWCNT diameter distribution in a bed of iron 

nanoparticles is proposed as a final test for 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠. 

 

Prediction of a nanotube diameter distribution corresponding to a given catalyst size distribution 

(experimental data from supported CVD) 

 

 
Figure 7. SWCNT’s diameter distribution prediction using Iron catalyst particle profiles measured by Zou et al11. 

Figure 7a-c correspond to the experimental tube diameter distribution profile (orange) vs the prediction of the model 

(blue). Predictions were based on experimental catalyst particle diameters for particles (a) without etching, and (b and 
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c) after 10 s to 15 s of etching, respectively. The darkest colored regions show the overlap between the experimental 

and the theoretical descriptions. 

Another validation and possible application of this model is shown in Figure 7. The model was used to 

predict the SWCNT diameter distributions corresponding to catalyst diameter profiles measured on a 

support of Si-SiO2 wafer by Zou et al11.  The predictions were obtained using the diameter profiles for the 

catalyst particles at different etching times to define the upper limit (𝑑𝑑𝑢𝑢𝑝𝑝). This is because the range of the 

particle diameter distribution is reduced after exposed to a longer etching time. The experimental data was 

normalized using Equation 11 and the parameters used for the prediction (Equations 7 and 8) were the 

equilibrium distance 𝛿𝛿0 for Iron (Table 1) and the parameter 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠  (1.15 eV nm2/atom). 

 

𝑁𝑁𝐵𝐵𝐸𝐸𝐵𝐵𝑎𝑎𝑙𝑙𝑆𝑆𝐵𝐵𝑎𝑎𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵 =
𝐹𝐹𝐸𝐸𝑒𝑒𝑞𝑞𝐷𝐷𝑒𝑒𝐵𝐵𝐹𝐹𝐸𝐸

# 𝑀𝑀𝑒𝑒𝑎𝑎𝐷𝐷𝐷𝐷𝐸𝐸𝑒𝑒𝐵𝐵𝑒𝑒𝐵𝐵𝐵𝐵𝐷𝐷  
 𝐸𝐸𝑞𝑞 11 

 

We observe that all the predicted profiles in Figure 7a-c are in good agreement with the reported 

experimental sets. The slight right shift in the distributions of the three examples could be attributed to the 

assumptions on the estimation of 𝛿𝛿0 and 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠. The equilibrium distance approximation for the nanoribbon 

(𝛿𝛿0 ≈ 𝛿𝛿∞ ≈ 2𝛿𝛿𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒), as discussed before, will affect the probability distribution for small particles. An 

overestimation of 𝛿𝛿0 may cause this type of shift due to an increase in the upper limit (𝑑𝑑𝑢𝑢𝑝𝑝) and the number 

of possible accessible microstates. However, for the 𝛿𝛿0 range found in this and previous studies (0.2 to 0.35 

nm) the shift due exclusively to 𝛿𝛿0 will not account for the total difference. A lack of information in the 

inactive particles and non-growth events may be contributing to overestimate the amount of tubes from the 

particle distribution as well. 

 

Stability Analysis 

An important question relates to the probability of a nascent SWCNT cap to develop a stable tube growth 

or stop the growth and encapsulate the catalytic particle (stable fullerene). Early studies in carbon allotropes 

have established the relation between curvature energy and tube diameter18,28–31,65 as described in the 

theoretical background (i.e. Equations 2, 3 and Equations S1 to S6). Burgos et al, for example, showed the 

existence of an explicit relation between adhesion energy, curvature and nucleation49, as expressed in 

Equation 12. Furthermore, the analysis of an approximated support-particle interaction showed that the 

support nature has a strong influence on the catalyst structure, therefore on the catalyst shape (i.e. curvature) 

and tube’s diameter54,66. Note that this discussion relates only to systems where the reaction conditions favor 

a slow carbon supply rate on the catalyst surface (e.g. low pressure of precursor gas). Lowering the carbon 
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supply flow will likely allow the carbon structures to form more slowly, this annealing process may favor 

evolution to low energetic configurations65. In this section we analyze the stability conditions and locate 

the estimated tube diameter prediction within the growth stability limits. 

 

𝐸𝐸𝑐𝑐𝑇𝑇�
𝑇𝑇𝑢𝑢𝑠𝑠𝑒𝑒 𝑀𝑀𝑢𝑢𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠𝑢𝑢𝑠𝑠𝑒𝑒 𝐸𝐸𝑠𝑠𝑒𝑒𝑠𝑠𝑔𝑔𝐸𝐸 
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𝑀𝑀𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑 𝑐𝑐𝑢𝑢𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒 𝐸𝐸𝑠𝑠𝑒𝑒𝑠𝑠𝑔𝑔𝐸𝐸

     𝐸𝐸𝑞𝑞. 12 

Comparing the curvature energy per atom of the tube (𝐸𝐸𝑐𝑐𝑇𝑇) with the one for a fullerene with similar diameter 

(𝐸𝐸𝑐𝑐𝑐𝑐) shows that the tube is always more stable. However, the attractive metal-graphene interaction (𝐸𝐸𝑀𝑀𝑀𝑀) 

may reduce the energy necessary to bend the carbon bonds and therefore the curvature energy per atom of 

the fullerene capsule (𝐸𝐸𝑠𝑠𝑐𝑐 = 𝐸𝐸𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑀𝑀𝑀𝑀). Hafner et al. introduced the stability criteria graphically using 

empirically fitted functions to represent the curvature energy of tubes and fullerenes65. Following Hafner’s 

work, Figure 8 shows that the energy difference between both states is in the order of meV. 

 
Figure 8. Stability analysis for the nucleation of carbon allotropes on metal catalysts.  Empirically fitted functions for 

the curvature energy in SWCNTs (EcT)  and fullerenes (EsF) and the critical diameter of transition (dc) for a cobalt 

catalyst. 

Figure 8 offers a better understanding of Equation 12.  Here, we used the interfacial cobalt-carbon 

interaction energy (Table 1) to estimate the fullerene capsule energy (𝐸𝐸𝑠𝑠𝑐𝑐). For this reason, even if a tube 

is less stable for diameters approximately above 𝑑𝑑𝑐𝑐 in a cobalt particle, the energy difference is extremely 

small, and in many cases, nanotubes are observed to grow with a nucleation probability proportional to 

𝑒𝑒(−𝐸𝐸𝑀𝑀𝑀𝑀)/𝑘𝑘𝑏𝑏𝑇𝑇. An interesting observation is that 𝑑𝑑𝑐𝑐 corresponds to the point where the ratio between 𝑑𝑑𝑇𝑇/𝑑𝑑𝑃𝑃 

is approximately one for our experimental data, and the growth behavior changes from tangential to 
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perpendicular. Therefore, we could use this value as a point of reference and merge the stability analysis 

with our model.  

 
Figure 9. Diameter stable regions during the growth process of SWCNTs and high probability zones within one 

standard deviation from the most probable diameter (< 𝑑𝑑𝑇𝑇 > ±𝜎𝜎). (+) High-resolution TEM experimental Data for 

Co catalysts. (--) Upper limit for the radial extension of phase (𝑑𝑑𝑢𝑢𝑝𝑝). (∙∙∙) Transition critical diameter (𝑑𝑑𝑐𝑐) between 

stable fullerene and tube allotropes. (−) Most probable or average diameter and standard deviation limits (±𝜎𝜎). In the 

purple region, the probability of finding a diameter dT is ≈ 0. 

Curvature stability plays a role delineating the stable tube growth regions. These are tube diameter stable 

zones for a specific particle diameter with boundaries defined by the critical diameter (𝑑𝑑𝑐𝑐) horizontal line 

and the upper boundary in the extension of phase (𝑑𝑑𝑢𝑢𝑝𝑝 = 𝑑𝑑𝑝𝑝 + 𝛿𝛿0) shown as a dashed red line in Figure 9. 

The small particle zone (𝑑𝑑𝑝𝑝 𝑑𝑑𝑐𝑐⁄ ≪ 1) has an upper limit in stability and it is the 𝑑𝑑𝑐𝑐 line. This means that 

the tube is always trying to reduce its curvature energy making the transversal area as big as possible until 

< 𝑑𝑑𝑇𝑇 >  or a value energetically accessible is reached. We can also observe that most of the experimental 

data is close to 𝑑𝑑𝑢𝑢𝑝𝑝 for this zone, this is due to the existence of a very low standard deviation, leading to a 

small region with a high probability of nucleating the tube (< 𝑑𝑑𝑇𝑇 > ± 𝜎𝜎). Above 𝑑𝑑𝑢𝑢𝑝𝑝  the probability 

distribution 𝑓𝑓𝑑𝑑 rapidly collapses to zero (𝑓𝑓𝑑𝑑 → 0) so wider tubes beyond this limit will not grow. In our 

model the accuracy of the    𝑑𝑑𝑢𝑢𝑝𝑝 limit will depend on the 𝛿𝛿0 estimation that has an associated error as 

discussed in the model parameters section. 

For SWCNTs growing from large particles (𝑑𝑑𝑝𝑝 𝑑𝑑𝑐𝑐⁄ ≫ 1), the upper limit in stability (Figure 9) will be the 

line corresponding to 𝑑𝑑𝑢𝑢𝑝𝑝. Figure 9 shows that the tube diameter (for dp > dc and dp approximately smaller 

than 2.5 nm) is also slightly smaller than the particle diameter in the transition zone. This is because the 

tube will try to minimize its internal strain energy by reducing the transversal area until reaching the stable 
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diameter region with a value close to 𝑑𝑑𝑐𝑐. That is why we see an inversion in the data trend between the two 

zones (i.e. the tube diameter is no longer bigger than the particle). This zone also is characterized by a co-

existence between fullerenes and tube allotropes. For carbon allotropes with a weak metal-carbon 

interaction (< 1 𝑒𝑒𝑉𝑉) and large transversal area, the curvature energy will favor nucleation, but a strong 

metal-carbon binding energy (1 eV to 2 eV) favors encapsulation in every event for particles with a diameter 

above the transition diameter (𝑑𝑑𝑐𝑐). The nature of the metal catalyst will change the value for 𝑑𝑑𝑐𝑐 . For 

example, iron, with a strong attractive interaction with carbon is expected to slightly decrease the value of 

𝑑𝑑𝑐𝑐 , therefore the probability of encapsulation will increase, and the transition between tangential and 

perpendicular growth may be below 2 nm. However, a better estimation should include the distribution of 

stable facets and the average metal-carbon interaction energy (𝐸𝐸𝑀𝑀𝑀𝑀) according to the percentage of covered 

area for the case of metal particles below the melting point. 

 

CONCLUSIONS 

Using a combination of experimental data, quantum mechanical calculations, and statistical mechanics we 

developed a model to describe the relationship between catalyst size and SWCNT diameter. Good 

agreement of the predicted and the measured tube diameters demonstrates that the curvature energy of the 

nascent carbon nanostructure is a major contributor to the process of carbon nanotube nucleation.  The 

proposed model offers a simple description of the correlation between tube diameter and catalyst particle 

diameter for a tube growing on an approximately spherical solid active nanocatalyst. Real conditions may 

show that a particle, especially less crystalline particles, are not completely spherical and multiple 

curvatures can be present in the catalyst (i.e. a nonhomogeneous particle diameter ). For this scenario, our 

model could include those multiple curvatures (𝑘𝑘 = 1/𝑑𝑑𝑝𝑝 ) as individual events represented in the 

probability distribution function 𝑓𝑓𝑑𝑑.  

The DFT calculations of the interlayer adhesion energies provide important information about the strength 

of interaction between common metal catalyst particles and graphene. These data are valuable for the 

evaluation of model parameters like the tube-particle equilibrium distance and to develop a discussion about 

the stability of SWCNT’s diameters. CVD data collected using ETEM provided an insight into the tube-

particle diameter relationship and allowed determination of an “optimized” model parameter 𝛼𝛼. We show 

that the value obtained (𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠) is only dependent of intrinsic properties of a graphene-like structure such as 

surface carbon density, wall thickness, and Young modulus, and could be used in many systems 

independently of the catalyst selection. The predicted Young moduli obtained from the optimized parameter 

for SWCNTs and MWCNTs are in good agreement with experimental values. 
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We recognize that particle composition and surface stability may play an important role during the SWCNT 

nucleation vs. catalyst encapsulation dynamics. Magnin et al67 recently highlighted a correlation between 

the carbon concentration in the particle and graphene/catalyst wetting properties, thus leading to tangential 

vs. perpendicular growth. This analysis is based in partially molten (liquid) particles where surface tension 

can deform the particle and wet the tube. However, the direct effect between the formation of solid carbide 

phases, the mode of growth (perpendicular vs tangential) and deactivation is not yet completely explained. 

Our own unpublished work suggests that metal particles for which many possible carbide structures may 

exist, multimodal surface composition distributions may be responsible of the change of growth mode. But 

the effects of these observations on the tube diameter-particle diameter are not yet well understood and 

possibly could be incorporated into future models. 

Moreover, Bets et al68 demonstrated the important and interesting nature of the tube edge interacting with 

the metal surface. The analysis of the rim-metal interaction shows the stability of specific edge 

configurations and the effect on the chirality selectivity. Nevertheless, the study suggests that the influence 

of the catalyst particle size on the nucleation probability has to be added separately. This is because the 

edge-catalyst interaction does not account for the stability of the tube’s wall internal elastic energy. It could 

be concluded that for the perpendicular mode of growth (usually larger catalyst particles with  𝑑𝑑𝑝𝑝 > 𝑑𝑑𝑐𝑐), 

the tube edge/metal interaction may be especially important to define chirality/diameter. This interaction 

could help to reduce the number of possible states of similar curvature energy, this aspect is not accounted 

in our current model.  

Finally, the central focus of our paper was on whether single-walled carbon nanotube diameters are defined 

by catalyst particle diameters. With respect to the specific correlation between tube diameters and particle 

diameters, various new insights are obtained. It is found that for small catalyst particle diameters, the tube 

diameter is larger than or equal to the particle diameter, thus favoring tangential tube growth, and the range 

of possible tube diameters for a given particle is rather narrow corresponding to a sharp tube diameter 

distribution function. We identified a critical diameter that separates regions of stable nanotube and stable 

fullerene. Such critical diameter depends on the intrinsic catalyst properties and on its interactions with 

carbon. For 𝑑𝑑𝑇𝑇 larger than such critical diameter, the growth behavior changes and the tube diameter tend 

to become smaller than the particle diameter, leading to a perpendicular growth. This transition to the 

perpendicular mode of growth, coincides with much broader probability distribution functions allowing a 

wider range of possible tube diameters for a given particle size.  Interestingly, the model has also proved 

useful for the prediction of inner diameters of MWCNTs as well as to reproduce nanotube’s diameter 

distributions using exclusively the catalyst diameter distribution profile for supported CVD particles. A 
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more complete characterization of inactive and encapsulated particles may improve the agreement of the 

model with the experimental results. 

The results showed that the careful estimation of model parameters like 𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 and the tube wall-catalyst 

surface distance 𝛿𝛿0 is a requirement for a good accuracy of the model. We have noticed, for example, the 

ability of 𝛿𝛿0  and 𝛼𝛼 for shifting the predicted tube diameter profile based on experimental catalyst size 

distributions. Thus, changes in 𝛿𝛿0  increase or reduce the amount of possible states in the proposed 

continuous function approximation for the tube diameter probability distribution (𝑓𝑓𝑑𝑑). A different approach 

for the estimation of these parameters can be further explored for each metal or alloy after a detailed study 

of the stable facets present in the nanoparticle at growth conditions and their interaction with graphene.  

METHODOLOGY 

In-situ CVD growth 

A high-resolution environmental transmission electron microscope (ETEM), with differentially pumped 

column capable of tolerating up to 2000 Pa gas pressure, monochromated high intensity field-emission gun, 

image corrected, operated at 80 KV, was used for in-situ observation of SWCNT nucleation and growth 

process. Co-Mo/MgO catalyst/support was dispersed on micro-electro-mechanical system (MEMS) based 

heating chip that were then loaded on the heating holder and introduced in the ETEM column. It is important 

to note that although the nominal composition of catalyst was Co-Mo, the catalyst particles active for 

SWCNT growth did not contain any Mo, as explained in previous publications34. The sample was first 

heated to 900 °C in flowing O2, maintaining ≈ 3000 Pa gas pressure in the sample area. This pre-treatment 

was needed to clean the catalyst/support from any contaminants that may be present. The ETEM column 

was then evacuated to initial high vacuum condition while keeping the sample at 900 °C. It is important to 

note the temperature is as measured by the heating holder and may not be the exact temperature at the 

investigated zone in the sample. We did not try to measure the actual temperature as it was not critical for 

the current experiments. Approximately, 0.055 Pa of C2H2 was then introduced to the sample chamber and 

videos were recorded at a rate of 6 frames-1. Atomic-resolution images were also recorded from the area 

under observation as well as from the regions that were not exposed to electron beam under reaction 

condition. Both the images extracted from the videos and recorded post-synthesis were used to measure the 

diameters of the carbon nanostructures and associated catalyst particle. 

Density Functional Theory (DFT) Calculations 

We perform DFT calculations for geometry relaxations and adhesion energy for graphene on metallic slabs 

(e.g Nickel, Cobalt, Iron) with [100] and [111] orientation. All metal-graphene systems were modeled using 
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periodic boundary conditions (PBC) to recreate two infinite long flat surfaces at absolute zero temperature. 

The Monkhorst-Pack scheme69 was used for Brillouin zone’s k-point sampling with a characteristic length 

(𝑙𝑙𝑐𝑐) optimized for each metal. Table 2 shows the optimization results for 𝑙𝑙𝑐𝑐, K-points, and the energy cut 

off used in every system.  

Table 2. Metal slabs parameters for the modeled system. 

Metal Slab System Length (𝑙𝑙𝑐𝑐) K-points-Mesh Energy Cutoff (eV) 

Nickel 40 9 x 16 x 2 700 

Cobalt 60 25 x 15 x 4 600 

Cobalt Carbide (Co2C) 50 10 x 12 x 3 700 

Iron 40 16 x 5 x 2 700 

 

The exchange-correlation functional given by the Perdew-Burke-Ernzerhof (PBE) approximation70, and the 

Projector Augmented Wave Method71,72 (PAW) was employed for calculating core-electron energies. The 

dispersion correction to the Kohn-Sham energy was implemented using the DFT-D273 based method of 

Steinmann and Corminboeuf74 (DFT-dDsC). This Van-der Waals energy correction method has the special 

characteristic that the dispersion coefficients and damping function are charge-density dependent75. 

 

Figure 10. Metal – graphene interfacial systems for Cobalt carbide (Co2C), Nickel, and Iron. Periodic boundaries 

were defined in all systems after relaxing a primitive cell with similar graphene’s lattice constant. 

The interfacial interaction energies and equilibrium distances (𝛿𝛿0∞) were calculated using a [100] metal slab 

with lattice vectors optimized for the graphene-metal system. The approach for the [111] structures was 

different, the metal slab lattice was kept fixed and the graphene layer was rotated until reducing the 

mismatch with the periodic image. We constructed a vacuum space of 10 Ȧ for every slab and it was reduced 

to 7 Ȧ  after the graphene was coupled to the metal system.   
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Figure 11. Test for optimizing the initial lattice vectors 𝑎𝑎0,𝐷𝐷0 in the [100] system. The 0.7 – 1.2 range was tested for 

the ratio 𝑎𝑎0/𝑎𝑎𝑐𝑐 , where 𝑎𝑎𝑐𝑐  corresponds to the graphene lattice vector (0.246 nm). The iron system was optimized 

against 2𝑎𝑎𝑐𝑐 for a better fit. 

Figure 11 shows the test for the [100] structures in the graphene-metal slab system, we changed the lattice 

parameters and observed the variation in the system energy. We searched within the 0.7 – 1.2 range for the 

ratio (𝑎𝑎0/𝑎𝑎𝑐𝑐) to ensure an energy minimum of the initial system and reduce the graphene’s curvature (lateral 

stress). The maximum change of the graphene lattice constant (𝑎𝑎𝑐𝑐 = 0.246 𝐵𝐵𝐵𝐵) after the relaxation of the 

system (Table S2) was a measure of the mismatch of graphene with respect the relaxed graphene periodic 

unit. The length of the lattice vectors and a measure of the mismatch caused by them can be found in the 

DFT calculation section of the supporting information. 
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NOMENCLATURE 

T Temperature 

P Pressure 

�̇�𝜌 Material flow at the open reactor system 

𝑘𝑘𝐵𝐵 Boltzmann constant  

𝑓𝑓𝐷𝐷 Probability distribution function 
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p generalized momentum coordinate 

q generalized position coordinate 

𝑑𝑑𝑝𝑝 Particle diameter  

𝑑𝑑𝑇𝑇 Tube diameter 

𝑑𝑑𝑐𝑐 Transition critical diameter 

U Potential energy 

K Kinetic energy 

𝐸𝐸𝑐𝑐 Curvature energy 

𝑀𝑀 Flat 2D sheet momentum 

𝑌𝑌 Young modulus 

𝐼𝐼 Moment of Inertia  

𝑅𝑅 Curvature radius 

𝑌𝑌 Flat 2D sheet length 

𝑎𝑎 Flat 2D sheet thickness 

𝑁𝑁 Number of atoms in the sheet 

𝜌𝜌𝑠𝑠 Surface atomic density  

𝜎𝜎𝑠𝑠 Nanoribbon cylindrical length 

𝑑𝑑0 Equilibrium distance between two graphene layers at absolute zero temperature (𝑇𝑇 = 0𝐾𝐾). 

𝛿𝛿0 Equilibrium distance between metal catalyst and graphene walls 

𝛿𝛿𝑜𝑜
𝑒𝑒𝑑𝑑𝑔𝑔𝑒𝑒 Equilibrium distance between metal catalyst and carbon atoms at the tube edges 

δ0∞ Equilibrium distance between an infinite metal catalyst slab and an infinite graphene layer 

𝛼𝛼 Material parameter 

𝛼𝛼𝑜𝑜𝑝𝑝𝑠𝑠 Optimized material parameter 

𝑑𝑑1,𝑑𝑑2 Integration limits corresponding to the extension of phase boundaries 



24 
 

𝑙𝑙𝑐𝑐 Characteristic length for Brillouin zone’s k-point sampling using Monkhorst-Pack scheme 

𝐸𝐸𝑠𝑠𝑑𝑑ℎ  Adhesion metal-graphene energy 

𝛥𝛥𝐸𝐸𝑖𝑖𝑠𝑠𝑠𝑠 Interfacial metal-graphene energy 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠&𝑔𝑔𝑠𝑠𝑠𝑠𝑝𝑝 Energy for the interacting slab-graphene system. 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Energy for the metal catalyst slab using PBC  

𝐸𝐸𝑔𝑔𝑠𝑠𝑠𝑠𝑝𝑝 Energy for the graphene layer using PBC  

𝐸𝐸𝑀𝑀𝑀𝑀 Interfacial metal – carbon interaction energy 

𝐸𝐸𝑐𝑐𝑐𝑐 Curvature energy for a fullerene 

𝐸𝐸𝑠𝑠𝑐𝑐 Supported curvature energy for a fullerene 

𝐸𝐸𝑐𝑐𝑇𝑇 Curvature energy for a tube 
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1. Elastic Energy stored in tubular nanoribbon  

The moment M of a tubular nanoribbon is related to its radius of curvature 𝑅𝑅 through Equations (S1 to S3), 

where 𝑌𝑌 is the Young’s modulus, 𝐼𝐼 is the moment of inertia, L is the length of the cylindrical wall, 𝑎𝑎 is the 

thickness of the nanoribbon surface layer (≈ 0.34 nm), 𝑁𝑁 is the number of atoms in the tubular nanoribbon, 

and 𝜌𝜌𝑠𝑠 is the surface carbon density.  

𝑀𝑀 =
𝑌𝑌𝐼𝐼
𝑅𝑅

                        𝐸𝐸𝐸𝐸. 𝑆𝑆1      

𝐼𝐼 =
𝐿𝐿𝑎𝑎3

12
                        𝐸𝐸𝐸𝐸. 𝑆𝑆2 

𝑁𝑁 = 2𝜋𝜋𝑅𝑅𝐿𝐿 ∗ 𝜌𝜌𝑠𝑠             𝐸𝐸𝐸𝐸. 𝑆𝑆3 

 

Figure S 1. Laminar sheet of graphene bended to form a tubular ribbon 

The energy (𝑑𝑑𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) needed to bend a flat 2D graphene nanoribbon with moment 𝑀𝑀 through an angle 𝑑𝑑𝑑𝑑 

to form a tubular nanoribbon, as shown in Figure S1, corresponds to the total strain energy stored in the 

nanoribbon’s bonds with a curvature  1/𝑑𝑑𝑇𝑇. Therefore, the strain energy (Estrain) can be defined in terms of 

Young modulus (Y), tubular nanoribbon length (L), nanoribbon wall thickness (a), and tube diameter (dT). 

a

L
M
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dT
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𝑑𝑑𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = � 𝑀𝑀 2⁄  𝑑𝑑𝑑𝑑
2𝜋𝜋

0
       𝐸𝐸𝐸𝐸. 𝑆𝑆4 

𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≈ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 =
𝑌𝑌𝐿𝐿𝑎𝑎3𝜋𝜋

12𝑅𝑅
=
𝑌𝑌𝐿𝐿𝑎𝑎3𝜋𝜋

6𝑑𝑑𝑇𝑇
         𝐸𝐸𝐸𝐸. 𝑆𝑆5 

The curvature energy (Ec) is a function of Y, a, dT and the carbon surface density 𝜌𝜌Rs and is defined as the 

strain energy (Equation S4) normalized by N, the total number of C atoms and reduced to the expression in 

Equation S6. 

𝐸𝐸𝑐𝑐 =
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏
𝑁𝑁

=
𝑌𝑌𝑎𝑎3

6𝜌𝜌𝑠𝑠𝑑𝑑𝑇𝑇2
=

𝛼𝛼
𝑑𝑑𝑇𝑇2

    𝐸𝐸𝐸𝐸. 𝑆𝑆6 

2. Model Approximations  

The dimensional analysis is useful to reduce some of the expressions obtained in the Theoretical 

Background and Model Development section. We can start by defining the characteristic diameter 𝛽𝛽 as a 

temperature dependent function, this allows us to separate the temperature effect in a simple expression 

(Equation S7) and group the particle effect using the variable 𝑑𝑑𝑢𝑢𝑢𝑢 (i.e. the upper limit in the extension of 

phase). 

𝛽𝛽(𝑇𝑇) ≡ �
𝛼𝛼
𝑘𝑘𝐵𝐵𝑇𝑇

    𝐸𝐸𝐸𝐸. 𝑆𝑆7 

𝑑𝑑𝑢𝑢𝑢𝑢 =  𝑑𝑑𝑢𝑢 + 𝛿𝛿0  𝐸𝐸𝐸𝐸. 𝑆𝑆8 

We obtain a friendlier form of the probability distribution 𝑓𝑓𝑏𝑏 (Equation S9) reducing the expression in 

Equation 7 with the new variables 𝛽𝛽, and 𝑑𝑑𝑢𝑢𝑢𝑢. In this expression, the denominator is a function of the 

dynamic particle curvature (𝑑𝑑𝑢𝑢), and the strength of interaction (𝛿𝛿0), both contained in 𝑑𝑑𝑢𝑢𝑢𝑢. For simplicity, 

we will call 𝜙𝜙(𝑥𝑥) the function evaluated at the denominator for both limits of the extension of phase. 𝜙𝜙(𝑥𝑥) 

is almost constant for an independent SWCNT growth event due to the small variation of particle diameter 

during the dynamic process. 

𝑓𝑓𝑏𝑏(𝑑𝑑𝑇𝑇 ,𝛽𝛽) =
𝑒𝑒−(𝛽𝛽 𝑏𝑏𝑇𝑇⁄ )2

�√𝜋𝜋𝛽𝛽 erf �𝛽𝛽𝑥𝑥� + 𝑥𝑥𝑒𝑒−(𝛽𝛽 𝑥𝑥⁄ )2�
𝑥𝑥1= 𝑏𝑏0

𝑥𝑥2=𝑏𝑏𝑢𝑢𝑢𝑢
=

𝑒𝑒−(𝛽𝛽 𝑏𝑏𝑇𝑇⁄ )2

𝜙𝜙�𝑑𝑑𝑢𝑢𝑢𝑢� − 𝜙𝜙(𝑑𝑑0)
    𝐸𝐸𝐸𝐸 𝑆𝑆9 

The probability distribution is only valid for diameters within the extension of phase. Then, It is logical to 

assume that the probability of reaching a diameter with a value bigger than 𝑑𝑑𝑢𝑢𝑢𝑢 or lower than 𝑑𝑑0 is null 
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(𝑑𝑑𝑇𝑇 > 𝑑𝑑𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑑𝑑𝑇𝑇 < 𝑑𝑑0 → 𝑓𝑓𝑏𝑏(𝑑𝑑𝑇𝑇) = 0). For this reason, we can constraint the Equation S9 multiplying the 

probability distribution by the Heaviside function1 𝐻𝐻(𝑑𝑑𝑇𝑇) and fulfill the previous condition. 

𝑓𝑓𝑏𝑏(𝑑𝑑𝑇𝑇 ,𝛽𝛽) =
𝑒𝑒−(𝛽𝛽 𝑏𝑏𝑇𝑇⁄ )2

𝜙𝜙�𝑑𝑑𝑢𝑢𝑢𝑢� − 𝜙𝜙(𝑑𝑑0)
[ 𝐻𝐻(𝑑𝑑𝑇𝑇) −𝐻𝐻�𝑑𝑑𝑇𝑇 − 𝑑𝑑𝑢𝑢𝑢𝑢�]   𝐸𝐸𝐸𝐸 𝑆𝑆10 

Equation S10 can be easily used to calculate the probability of obtaining a specific diameter range for 

different independent particle conditions. Taking the limit when 𝑑𝑑0 → 0, we can observe that 𝜙𝜙(𝑑𝑑0) →

 √𝜋𝜋𝛽𝛽, this value will be used in the simplifications that follow instead of the evaluated value for 𝑑𝑑0(=

0.34 𝑛𝑛𝑛𝑛). 

2.1 Probability Distribution Function 

The probability distribution for five different particle sizes between 1 nm to 5 nm are shown in Figure S2 

(left). We can see that the distribution collapses to zero above 𝑑𝑑𝑢𝑢𝑢𝑢, this is due to the Heaviside function  

𝐻𝐻(𝑑𝑑𝑇𝑇 − 𝑑𝑑𝑢𝑢𝑢𝑢) constraint. However, it naturally converges to zero in the lower limit due to the rapid increase 

in curvature energy (𝐸𝐸𝑐𝑐 →  ∞), reducing the probability of reaching this microstate according to the 

Boltzmann energy distribution (𝑒𝑒−∞ → 0). The 𝑓𝑓𝑏𝑏 distribution evolves from a very pronounced Dirac like-

form for a small catalyst to almost a uniform distribution when the particle gets bigger. 

 

Figure S 2. Probability distribution 𝑓𝑓𝑏𝑏 using optimized parameters for a cobalt particle. [Left] Probability distribution function (𝑓𝑓𝑏𝑏) 

for different particle curvatures (e.g. 1 nm to 5 nm). [Right] Cumulative distribution function. The probability of obtaining a 4 nm 

diameter tube using different particle sizes (4 nm and 5 nm) is calculated for this scenario. 

A quick example for the probability calculation is proposed with the parameters fitted from our 

experimental data set (e.g. 𝛼𝛼𝑜𝑜𝑢𝑢𝑠𝑠). Figure S2 (right) shows the cumulative distribution function (CDF) in 

Equation S11 for our model.  
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𝐶𝐶𝐶𝐶𝐶𝐶(𝑑𝑑𝑇𝑇) = � 𝑓𝑓𝑏𝑏(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑥𝑥
𝑏𝑏𝑇𝑇

−∞
  𝐸𝐸𝐸𝐸 𝑆𝑆11 

Using the CDF properties, we can calculate the probability of obtaining a tube within a certain diameter 

range. The probability of obtaining a tube diameter of at least 4 nm is 84% with a particle diameter of 4 nm 

and only 47% with a particle diameter of 5 nm.  

2.2 Dimensional analysis 

We define two extreme limits for the analysis as shown in Figure S3. The first case is for  𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≫ 1: 

most of the small particle zone (𝑑𝑑𝑢𝑢 𝑑𝑑𝑐𝑐⁄ ≪ 1) considered in the stability analysis is under this approximation 

due to the linear dependency of the denominator with the particle curvature. Figure S3 shows the 

simplifications for the probability distribution function (𝑓𝑓𝑏𝑏) and the average diameter (< 𝑑𝑑𝑇𝑇 >) using both 

approximations for the first case. It is remarkable to observe that the model foresees an approximate linear 

behavior corresponding to the upper limit in the extension of phase 𝑑𝑑𝑢𝑢𝑢𝑢 for the lower stable region. This 

result agrees with our experimental data (Figure 5). 

 

Figure S 3. Approximations for the model using dimensional analysis. Expressions for 𝑓𝑓𝑏𝑏 and < 𝑑𝑑𝑇𝑇 > were obtained using both 

extreme scenarios. 

Figure S4 shows that the deviation between the final approximated expressions and the numerical estimate 

is still large for the region of interest (𝛽𝛽 ⁄ 𝑑𝑑𝑢𝑢𝑢𝑢  ≫ 1). Nevertheless, the error decreases with the particle 

size and we can observe that for large particles there is even a reasonable agreement with the experimental 

data (Figure S4 - right).  

1. ) 𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≫ 1 ∶ 𝑤𝑤  erf 𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄  → 1 

2. ) 𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≪ 1 ∶ i  exp −𝛽𝛽2 𝑑𝑑𝑢𝑢𝑢𝑢2�  → 1−
𝛽𝛽2

𝑑𝑑𝑢𝑢𝑢𝑢2
   ; 𝑤𝑤𝑤𝑤 erf 𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄  →

2𝛽𝛽
𝑑𝑑𝑢𝑢𝑢𝑢 𝜋𝜋

1. ) 𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≫ 1  ∶ 𝑤𝑤 Ei −𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄  → 0

 

CALCULATION STEPS

FIRST APPROXIMATION

DIMENSIONAL ANALYSIS    

1. ) 𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≫ 1  
          
2. )𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≪ 1

SECOND APPROXIMATION
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Figure S 4. Reduced functions obtained for the first case (𝛽𝛽 ⁄ 𝑑𝑑𝑢𝑢𝑢𝑢  ≫ 1) scenario in the dimensional analysis. Both approximations 

were compared against Tibbets’s experimental set (Right) and our experimental wdata (Left). 

The second limit case is for 𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≪ 1. This scenario corresponds to the tube diameter behavior for most 

large particles. The reduced expression for < 𝑑𝑑𝑇𝑇 >  in Figure S3 can be difficult to visualize only with the 

function obtained. However, we can observe that both, the denominator and numerator increase to similar 

rates creating a counterweight for the final diameter expression. The effect is a linear trend for large 

particles, and an especially accurate agreement using any approximation (i.e. either for the distribution or 

the final diameter expressions) as shown in Figure S5. 

 

Figure S 5. Reduced functions obtained for the second case (𝛽𝛽 𝑑𝑑𝑢𝑢𝑢𝑢⁄ ≪ 1) scenario in the dimensional analysis. Both approximations 

were compared against Tibbets’s experimental set (Right) and our experimental data (Left).  
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3. Optimization of Parameter 𝜶𝜶 

In this work, we decided to estimate a useful reference value for 𝛼𝛼 from our experimental data. Gulseren et 

al, as mentioned before, obtained a value of 0.086 𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛2 using ab-initio calculations in their work about 

the energetics and curvature effects in CNTs2, therefore we used this value as an initial guess. The α 

parameter is the only unknown variable in the model and for this reason, we proposed the following 

optimization model to fit the data:  

Minimize:    ∑�< 𝑑𝑑𝑇𝑇 ≻ −𝑑𝑑𝑇𝑇𝑚𝑚𝑏𝑏𝑠𝑠𝑠𝑠𝑢𝑢𝑠𝑠𝑏𝑏�
2     𝐸𝐸𝐸𝐸 𝑆𝑆12 

𝑤𝑤𝑤𝑤𝑤𝑤ℎ, < 𝑑𝑑𝑇𝑇 >  =  � 𝑥𝑥 
𝑒𝑒−(𝛽𝛽 𝑥𝑥⁄ )2

𝜙𝜙(𝑑𝑑𝑢𝑢𝑢𝑢,𝑑𝑑0)
 𝑑𝑑𝑥𝑥

𝑏𝑏𝑢𝑢𝑢𝑢 

𝑏𝑏0

    𝐸𝐸𝐸𝐸 𝑆𝑆13 

𝐶𝐶𝑜𝑜𝑛𝑛𝐶𝐶𝑤𝑤𝑜𝑜𝑎𝑎𝑤𝑤𝑛𝑛𝑤𝑤𝐶𝐶,      𝛼𝛼 ≥ 0     𝐸𝐸𝐸𝐸 𝑆𝑆14 

Figure S5 shows the results and comparison between the optimization and DFT method. The fitted value 

for the α parameter (𝛼𝛼𝑜𝑜𝑢𝑢𝑠𝑠 = 1.15 𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛2) reduces the error for the small particle region and gives good 

results even against Tibbett’s data set that wasn’t adjusted with the optimization model.  

 

Figure S 1. Optimization of the parameter 𝛼𝛼. (+) High-resolution TEM experimental Data. (x) Data collected from Tibbets3. A 

comparison between the optimized value 𝛼𝛼𝑜𝑜𝑢𝑢𝑠𝑠 and the value from Gulseren et al2 is shown. 

In the left image, the particle diameters yielding SWCNTs range between ≈ 0.8 nm and slightly above 3 

nm, whereas the range is much wider for the MWCNTs (between ≈ 10 nm and ≈ 80 nm). It is evident that 

the prediction for inner tube diameters using either Gülseren reported value for 𝛼𝛼, or the value optimized 

for SWCNT is very similar. We can observe that the model is more sensitive for small particle sizes and 
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produces small deviations for the large particles. For this reason, an accurate α parameter will allow the 

design of a narrower diameter profile in the growth of supported SWCNTs. 

4. DFT Calculations 

The graphene – metal system has been studied extensively for transition metals like cobalt4–7 (Co) and 

nickel7–15 (Ni), and on a lesser extent for the iron16,17 (Fe) and cobalt carbide18 (Co2C) surfaces. A general 

trend observed in these DFT studies is that the interfacial interaction energy between graphene and the 

metal is strongly dependent on the correlation used to calculate the dispersion energy. Other factors like the 

rotation of the graphene layer above the metal slab, crystal structure and lattice mismatch may also affect 

this interaction as well. GGA-type density functionals with a long-range dispersion correction are 

exceptionally good for noncovalently bound systems including many pure van der Waals (vdW) 

complexes19. Additionally, the use of exchange-hole dipole moment dispersion correction has been recently 

improved the prediction of the DFT studies in comparison with experimental results11,20. For this reason, 

Steinmann’s dispersion correction21 was chosen, this method can account variations in the vdW contribut 

ion of atoms due to their local chemical environment. Note that our model requires the equilibrium distance 

only. 

Table S1. Metal structure effect in the interaction energy between catalyst and graphene. Adhesion Energy, Metal-Carbon 

interaction and equilibrium distance are calculated for [100] and [111] metal surfaces. 

System Crystal Structure 
𝑬𝑬𝐚𝐚𝐚𝐚𝐚𝐚  [𝒆𝒆𝒆𝒆/𝒏𝒏𝒏𝒏𝟐𝟐] 𝑬𝑬𝑴𝑴𝑴𝑴  [𝒏𝒏𝒆𝒆𝒆𝒆/𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚] 𝛅𝛅𝟎𝟎∞ [𝒏𝒏𝒏𝒏] 

[100] [111] [100] [111] [100] [111] 

Iron (Fe) Bcc -2.81 -2.66 -74.20 -63.11 0.204 0.306 

Nickel (Ni) Fcc -0.94 -2.04 -24.77 -54.85 0.205 0.309 

Cobalt (Co) Hcp -2.22 -6.68 -55.49 -205.86 0.338 0.219 

Cobalt Carbide 

(Co2C) 
Orthorhombic -2.96 -2.63 -77.59 -68.66 0.220 0.348 

 

Table S1 shows the variations for the adhesion energy, metal-carbon interaction and equilibrium distance 

for the different metal-graphene structures showed in Figures S7 and S8. Graphene-like ribbons allow a 

stronger interaction thanks to carbon dangling bonds at the edges16, the infinite layer approximation used 

here focus in the metal-carbon regions where the bulk sp2 structure is interacting weakly with the metal. It 



S-8 
 

is observed the preference of certain facets to attract strongly the carbon structure, this could give an 

indication in the type of adsorption (chemisorption vs physisorption) as proposed by some previous works.  

 

Figure S 7. Top and side views for the metal – graphene systems using [100] metal slabs. The black rectangle at the top view 

corresponds to the periodic unit area, 𝑎𝑎0 and 𝑎𝑎1 are vectors conforming the shape of the simulation box. 

 

Figure 1. Top and side views for the metal – graphene systems using [111] metal slabs. The black parallelogram at the top view 

corresponds to the periodic unit area, 𝑎𝑎0 and 𝑎𝑎1 are vectors conforming the shape of the transversal area. 

The (1x1) unit cell corresponding to the metal slab lattice vectors (𝑎𝑎0 𝑥𝑥 𝑎𝑎1) was used in most [100] and 

[111] systems. However, the Fe (100) and Co2C (111) systems were optimized with a (3x1) and (2x1) 

Iron: Nickel: Cobalt: Cobalt Carbide:

Side:

Top:

𝑎𝑎0

𝑎𝑎1

𝑎𝑎0 x 𝑎𝑎1: 4.92 x 4.262.44 x 4.104.30 x 2.462.46 x 8.60

Iron: Nickel: Cobalt: Cobalt Carbide:

𝑎𝑎0 x 𝑎𝑎1: 5.24 x 12.364.34 x 4.784.98 x 4.984.05 x 4.05

Side:

Top:
𝑎𝑎0

𝑎𝑎1
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supercell respectively to reduce the lattice mismatch with the graphene periodic unit. All the systems were 

started with an initial separation of approximately 0.3 nm between the graphene layer and the metal slab 

and they were relaxed until reach the energy tolerance of 1 𝑥𝑥 10−6 𝑒𝑒𝑒𝑒. Table S2 shows the maximum stretch 

or compression after the relaxation for the graphene lattice constant22 (0.246 nm). We decided to use the 

[100] surface for the analysis because this facet minimized the lattice mismatch with the graphene layer. 

Table S 2. Percentage of change from the graphene lattice constant due to mismatch with the metal slab. 

System [100] [111] 

Carbon Carbide (Co2C) 1.32% 6.61% 

Cobalt (Co) -3.02% 15.79% 

Nickel (Ni) 0.69% 1.31% 

Iron (Fe) 1.75% -4.87% 

 

The difference in the equilibrium distance 𝛿𝛿0 between surfaces [100] and [111] is expected due to different 

surface interactions and graphene alignment. Previous works in Nickel11 and many other metals8,12,20 have 

shown that even for the same facet the chemisorption/physisorption behavior is observed due to a double 

minimum in the interaction energy. It is then reasonable to assume most works report one of the two 

minimum equilibrium distances in the energy profile. Table S1 shows that one of the metal facet converges 

to either the chemisorption distances (~0.2 nm) or the physisorption distances (~ 0.3 nm) for the interaction 

with the graphene layer. The model doesn’t distinguish between facets due to the approximately spherical 

shape assumption, but neither 𝛼𝛼𝑜𝑜𝑢𝑢𝑠𝑠 nor the tube profiles predicted for the Iron particles show significative 

changes for the range 0.2 – 0.3 nm. The results obtained of the interaction energies and the equilibrium 

distance compared to other DFT works are within the reported ranges as shown in Table 1. 
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