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ABSTRACT: Understanding the dynamics of soft colloids, such as star polymers,
dendrimers, and microgels, is of scientific and practical importance. It is known that
the excluded volume effect plays a key role in colloidal dynamics. Here, we propose
a condition of compressibility equivalence that provides a simple method to
experimentally evaluate the excluded volume of soft colloids from a thermodynamic
view. We apply this condition to survey the dynamics of a series of star polymer
dispersions. It is found that, as the concentration increases, the slowing of the long-
time self-diffusivity of the star polymer, normalized by the short-time self-diffusivity,
can be mapped onto the hard-sphere behavior. This phenomenon reveals the
dynamic equivalence between soft colloids and hard spheres, despite the apparent
complexity of the interparticle interaction of the soft colloids. The methods for
measuring the osmotic compressibility and the self-diffusivities of soft colloidal
dispersions are also presented.

Dispersions of soft deformable colloids, such as star
polymers, dendrimers, microgels, and polymer-grafted

nanoparticles, constitute a great portion of soft matters.1−4

These materials exist extensively in the fields of food,
pharmaceutical, and chemical engineering. Therefore, measur-
ing and modeling their physical properties are of practical
importance. A fundamental challenge in the physics of soft
colloids is to quantitatively predict the slowing of their long-
time dynamics as the concentration increases, since this
behavior is closely related to many essential phenomena, for
example, the phase behavior, glass formation, and rheology.3−8

Over past decades, several theoretical and computational
efforts have been made on this topic.9−14 In these studies,
researchers introduced the effective volume fraction ϕeff (or
effective diameter deff = (6ϕeff/nπ)

1/3, where n is the number
density of particles) for soft particles due to their excluded
volume effect at high concentrations. With ϕeff, the long-time
dynamics of soft particles can be scaled to the hard-sphere
behavior,10−13 which is well investigated both experimentally
and theoretically.15 The key prerequisite for these scaling
operations is the pair potential v(r)10 (r is the distance
between two colloids) or the interparticle structure factor
S(Q)11−13 (Q is the magnitude of the scattering vector in
scattering experiments) of the soft colloids. However, without
knowing the exact way how the particle deforms as

concentration increases and an accurate functional form of
the pair potential at high concentrations, it is very difficult to
measure v(r) and S(Q) precisely from scattering experiments,
especially at high concentrations. To address this problem
from an experimental perspective, we propose a condition of
compressibility equivalence that provides a remarkably simple
way to determine the effective volume fraction of soft colloids
from the small-angle neutron scattering (SANS) experiment.
Employing this condition, we find that the slowing of the long-
time self-diffusion of soft colloids can be nicely mapped onto
the property of hard spheres.
A series of star polymer dispersions are measured to study

the dynamics of colloidal liquids with soft repulsive
interactions. Star polymers are synthetic macromolecules
consisting of polymeric branches emanating from the
molecular center. Experimental and theoretical studies show
that star polymers exhibit colloidal nature in dispersions.2,16−20

Due to their flexible molecular architecture, the effective
potential between two stars has been modeled as an ultrasoft
repulsion.21,22 In this work, 15-arm polystyrene stars, with on
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average 12.5 monomers contained in each arm, are used as the
model soft deformable colloids. Cyclohexanone is adopted as
the good solvent. Six concentrations of stars, 3, 10, 15, 20, 30,
and 40 wt % (wt % indicates the weight fraction in percent),
are investigated. Figure 1 displays the SANS spectra of the stars

at the above six concentrations. Upon increasing the
concentration, the interaction peak grows gradually up to
about 15 wt % and then decays with a further concentration
increment. This nonmonotonic evolution of the main peak has
been identified as the generic feature of soft colloidal
systems,2,23 and its origin has been attributed to the
diminishing density fluctuation at the molecular level due to
the increasing mutual interaction.21,24 Notice that this behavior
is significantly different from the behaviors of hard spheres,
where the interaction peak progressively grows as concen-
tration increases.15

It is instructive to briefly review a few theoretical results
before further analysis. There are two well-defined self-diffusive
processes in colloidal suspensions: the short-time self-
diffusivity DSS and the long-time self-diffusivity DLS.

5,8,25−28

DSS describes the diffusion of the particle within its neighbor
cage, while DLS describes the self-diffusion on a time scale
longer than that of the local structural rearrangement.25,26 At
the dilute limit, both of them equal the Stokes−Einstein
diffusivity of an isolated particle: D0 = kT/3πηsa, where k is the
Boltzmann constant, T is the temperature, ηs is the solvent
viscosity, and a is the hydrodynamic diameter of the particle.
As the concentration increases, DSS is retarded due to the
emergence of the hydrodynamic interaction.5,27 In the long-
time self-diffusion, the tagged particle breaks the neighbor cage
and moves to relatively distant places. This process requires
the distortion and relaxation of the local configuration.25,26 As
concentration increases, it slows down more significantly than
the short-time self-diffusion due to the excluded volume effect
of particles. Considering that the mechanisms of the slowing of
DSS and DLS are distinct and the time scales of DSS and DLS are
well separated at high concentrations, theorists point out that
DLS can be approximately factorized into a hydrodynamic part
and a thermodynamic or structural part, namely,25,26

D D f S Q( ( ))LS SS≈ (1)

where f(S(Q)) is a factor depending on the properties of S(Q)
(or the pair distribution function g(r)). Therefore, it is natural
to introduce a normalized long-time self-diffusivity D* = DLS/
DSS to characterize the long-time dynamics of the star
polymers. DSS, on the other hand, plays a role as a coarse-
grained time resolution. We would like to point out that the
influence of hydrodynamic interaction on DLS is more
complicated than the decoupling approximation given by eq
1.28−31 Nevertheless, we argue that D* is a proper quantity that
reflects the thermodynamic or structural basis of the long-time
self-diffusion of colloids, by considering that (i) the drastic
slowing of DLS as the concentration increases is mainly due to
the structure rather than the hydrodynamic interaction and (ii)
the approximation given by eq 1 explains experimental data
well, as suggested in refs 25 and 26. In the following analyses,
we will use D* as a measure of the long-time dynamics of the
star polymers.
To describe the dynamics of soft particles with hard-sphere

properties, it is crucial to find the effective volume fraction ϕeff
for soft particles based on certain structural or thermodynamic
similarities between these two systems. Inspired by previous
theoretical results,9−13 we propose that, for a soft repulsive
colloidal dispersion with the number density of colloids n, ϕeff
is determined by the following condition:

S Q n S Q nlim ( ; ) lim ( ; , )
Q Q0

sc
0

hs effϕ=
→ → (2)

where Ssc(Q;n) is the interparticle structure factor of the soft
colloidal dispersion with number density of n, Shs(Q;n,ϕeff) is
the structure factor of the monodisperse hard-sphere system
with number density of n and volume fraction of ϕeff. Since
S(Q → 0) is related to the osmotic compressibility χ of
colloidal dispersions by S(Q → 0) = nkTχ,15,32 we call eq 2 as
the condition of compressibility equivalence. This equivalence
suggests that the two systems bear a resemblance to each other
regarding the effect of the excluded volume of all particles. In
fact, for liquids with purely repulsive potential, χ is largely
determined by the second virial coefficient that gives the
excluded volume of a particle in the van der Waals picture. In
eq 2, Shs(Q;n,ϕeff) can be calculated with Percus−Yevick
approximation33 and Verlet−Weis correction.34 Thus, ϕeff can
be obtained when Ssc(Q → 0;n) is known. In the following
part, we will show that, with ϕeff defined by eq 2, the D* of star
polymers is found to be equivalent to that of the hard spheres.
The theoretical foundation of eq 2 is similar to the scheme

proposed by Xu et al.9 With a computer simulation, these
authors investigated many soft-core liquids. Some of them are
with very soft interactions, such as harmonic repulsion. They
found that at low pressures, the dynamics of soft-core liquids
and hard-sphere liquids can be collapsed to a single curve as a
function of T/Pd3, where P is pressure and d is the diameter of
the soft repulsion. By employing eq 2 at all concentrations, we
ensure that the soft particles and hard spheres have a common
dP/dϕeff in the case that deff does not change too much as
concentration increases. Consequently, the soft particles and
hard spheres are with similar equations of state, that is, the
pressure as a function of volume fraction. Therefore, the
condition of compressibility equivalence leads to comparable
dynamical properties of soft particles and hard spheres
according to the scheme given by Xu et al. Nevertheless, this
dynamic scaling fails at high pressures or concentrations due to
the overlap between soft particles. Further investigation
suggests that this scaling can be improved and extended to

Figure 1. SANS spectra of the star polymer dispersions at six
measured concentrations. The inset illustrates the meaning of vp,
vpolymer, and vcavity in a star polymer dispersion.
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systems with ϕeff well above 50% by considering the shrink of
the effective volume of particles at high pressures or
concentrations.10

Another scheme, proposed by Medina-Noyola et al., states
that the ϕeff, determined by the following condition, maps the
long-time self-diffusion of soft colloids onto that of hard
spheres:11−13

S Q n S Q n( ; ) ( ; , )sc hs effϕ≈ (3)

The symbol “≈” in the preceding equation means that the
two structure factors match at low and intermediate Q,
corresponding to the main peak of S(Q).11−13,35,36 In real
space, eq 3 indicates that the pair distribution functions g(r) of
the two systems are approximately equal at r > ∼1.3deff.15,36 It
emphasizes the similarity of the overall nature of packing rather
than the details at the contact of the two systems. Therefore,
we arguably state that the physical backgrounds of eqs 2 and 3
are consistent.
To experimentally measure D* of soft colloids and verify its

possible equivalence to the hard-sphere behavior, one needs to
probe Ssc(Q → 0), DSS, and DLS. We devise a model-
independent method using the contrast-variation SANS to find
Ssc(Q → 0). For a monodisperse colloidal dispersion,37 the
SANS spectrum is expressed as38

I Q nv P Q S Q( ) ( ) ( ) ( )p
2 sld 2ρ= Δ (4)

where n is the number density of colloid particles, vp is the
volume occupied by one colloidal particle, Δρsld is the contrast
of the scattering length density (sld) between the colloidal
particle and the solvent, and P(Q) is the form factor of a
colloidal particle normalized as P(0) = 1. At zero scattering
angle, the SANS intensity of the star polymer dispersion is
written as

I Q n v S Q( 0) ( ) ( 0)p
sld 2

scρ γ→ = [ Δ ] →γ (5)

where γ is the fraction of deuterated component in the solvent.
For soft colloidal liquids, vp contains two parts, the n-
independent volume of the dry polymer (vpolymer) and the n-
dependent volume of the cavity (vcavity), as illustrated in the
inset of Figure 1.39,40 Here we denote the contrast of the
scattering length in the volume of vp as b(γ). It can be found
that

b v

b v v n v n v h n

( ) ( )

( ) ( ) ( ) ( )

p
sld

polymer sol
sld

polymer cavity cavity sol

γ ρ γ

ρ γ

= Δ

= − [ + − ] (6)

where bpolymer is the scattering length of a star, ρsol
sld is the sld of

the solvent, vsol is the volume of a solvent molecule, and h is
the number density of the solvent molecule in the cavity. The
justification of eq 6 is given in ref 41. Combining eqs 5 and 6, it
is found that

I Q

n
L n S Q b S Q

( 0)
( ) ( ) ( 0) ( 0)sol

sld
sc polymer scρ γ

→
= − → + →γ

(7)

where L(n) = vpolymer + vcavity(n) − vcavity(n)vsolh(n). The
preceding equation shows the linear relation between

I Q n( 0)/→γ and ρsol
sld(γ). By measuring the samples with

different γ and plotting I Q n( 0)/→γ as a function of ρsol
sld(γ),

Ssc(Q → 0) can be obtained from the vertical intercept. Figure
2 illustrates this method. The experimentally determined Ssc(Q

→ 0) for the measured concentrations, from low to high, are
0.665, 0.235, 0.143, 0.0877, 0.0388, and 0.0184. Then applying
eq 2, we obtain the values of ϕeff to be 0.051, 0.18, 0.25, 0.31,
0.41, and 0.49, respectively.
Traditionally, people use dynamic light scattering to measure

the self-diffusivities of hard-sphere colloids at high Q
regions.8,27 However, it cannot be applied to star polymers,
since the local motions, such as the rotational diffusion and
intramolecular motion, are prominent. Here we use the
Neutron Spin Echo (NSE) spectrometer with a contrast-
match method to measure the short-time self-diffusion of star
polymers. We measured the samples at Q = 0.04 Å−1 to
determine DSS. This Q value is much smaller than 2π/Rg (Rg =
19 Å is the radius of gyration of a star), so that the dynamical
contribution of local motions is much less than that of the
translational diffusion and thus can be reasonably ignored. To
obtain the self-dynamics of the star, we prepared the samples
composed of a fixed concentration of 3 wt % protonated star
with progressively increasing concentration of fully deuterated
stars immersed in solvent whose sld matches that of fully
deuterated stars. Because the fraction of protonated stars is
relatively dilute, the NSE signal is mainly from the self-motion
of a star. The DLS was measured with the diffusion Nuclear
Magnetic Resonance (NMR) spectroscopy on the same set of
samples. Both the measured results of DSS and DLS are shown
in Figure 3.42

Knowing DSS, DLS, and ϕeff, we are able to explore the
equivalence in colloidal dynamics. In Figure 4a, we plot 1/D*
as a function of ϕeff for the star polymer dispersion. We also
plot 1/D* as a function of the volume fraction for hard
spheres. The hard-sphere equation is obtained from the least-
squares fit of the Brownian dynamics simulation:44

D 1 2 1.272 1.9512 3ϕ ϕ ϕ* = − + − (8)

It is proven that this form nicely describes the simulations
and experimental measurements.44 From Figure 4a, an
excellent agreement between the experimental result and the

Figure 2. Illustration of the contrast-variation SANS method for the
determination of Ssc(Q → 0). In this study, we prepared four solvents
at γ = 40%, 50%, 65%, and 80% for each concentration. Deuterated
star polymers were used to reduce the incoherent background. The
symbols represent the experimental data. The lines are from the linear
fitting with eq 7. The adjusted R2 values of all fittings are above 0.995,

indicating a good linearity between I Q n( 0)/→γ and ρsol
sld(γ).
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hard-sphere behavior is seen, which verifies the dynamic
equivalence between the soft star polymers and the hard
spheres. This observation highlights the effects of excluded
volume and overall packing of particles in determining the
long-time dynamics of soft colloids. Furthermore, it supports
the theoretical conjecture that D* is not affected by the solvent
permeability in soft colloidal suspensions.44 To make a
comparison, we calculate an “apparent volume fraction” of
the star, which is defined as ϕ′ = 4nπRg

3/3 and has been used in
previous studies of soft particles.6 The result is presented in the
inset of Figure 4a. As seen, the experimental points
systematically deviate from the hard-sphere prediction. This
deviation suggests that Rg underestimated the excluded volume
of soft particles. A similar situation happens to another
definition of volume fraction expressed as ϕ″ = nπσ3/6,45

where σ is the corona diameter of a star and is related to Rg by
σ ≈ 1.26Rg.

22 ϕ″ is found to be even smaller than ϕ′ at the
same concentration and, therefore, again underestimates the
excluded volume of the star in terms of the long-time self-
dynamics. We also evaluate the volume fraction with the
hydrodynamic radius Rh by ϕh = 4nπRh

3/3. Rh is estimated by
noting the experimental result that the value of Rh is close to
σ.46 The result is shown in the inset of Figure 4a. It is seen that
ϕh overestimates the excluded volume of the star at
concentrations higher than 15 wt %.
An important observation is the evolution of deff as

concentration increases. As shown in Figure 4b, deff is
approximately equal to the hydrodynamic diameter ah at the
lowest concentration. It starts decreasing slightly from a
concentration about 15 wt %, corresponding to the number
density of star polymers of n′ = 5.14 × 1018 cm−3. This shrink
of deff at high concentrations (or pressure) is similar to
previous simulations.10 It is interesting to compare n′ with the
overlap number density n* defined as

n R/
4
3RCP g

3ϕ π* ≈
(9)

where ϕRCP = 0.637 is the random-close-packing volume
fraction.47 Note that, in other studies, n* is usually defined as
n* ≈ 3/4πRg

3.48,49 These definitions are within the same order.
n* calculated with eq 9 is 2 × 1019 cm−3, which is much larger

than n′. The same conclusion can be drawn by calculating n*
using deff/2 or σ/2 instead of Rg. The difference between n′
and n* suggests that the star undergoes conformational change
before the physical overlap develops. This result is consistent
with our previous study on dendrimer solutions.50

Actually, seeking for the analogy between hard-sphere and
soft-core liquids has been an essential topic in liquid physics
since at least 50 years ago.51 It was shown that the
intermolecular structure of liquids with strongly isotropic
repulsive potential can be understood in terms of the packing
of equivalent hard-sphere systems.35 The perturbation theory
built on this idea successfully describes the structure and
thermodynamics of Lennard-Jones liquids.52 The hard sphere−
soft core analogy has also been observed in dynamic properties
in simulations.9,13,53 Notice that, other scaling scenarios have
been given for temperature-driven liquid−glass transition,
where hard-sphere properties do not play a substantial
role.54−56 To summarize various liquids’ universal behaviors,
Dyre et al. proposed a concept of isomorph for liquids,57−59

which suggests that the liquids have nearly the same structure
and dynamic correlation functions if they are isomorphic. This

Figure 3. Measured short-time and long-time self-diffusivities of the
star polymer dispersions as a function of concentration. The upper
horizontal scale is in unit of the overlap concentration w*.43 The inset
presents the diffusivities in logarithmic scale.

Figure 4. (a) 1/D* as a function of ϕeff. The symbols represent the
experimental result of the star polymer dispersion. The line represents
a theoretical calculation for hard spheres.44 It is seen that the hard-
sphere curve gives an excellent prediction to the behavior of the star
polymer dispersion. The inset gives the results with two different
methods for determining the volume fraction of star polymer: ϕ′ =
4nπRg

3/3, ϕh = 4nπRh
3/3. (b) Effective diameter of the star deff as a

function of concentration. deff is related to ϕeff by ϕeff = nπdeff
3 /6. The

dashed line indicates the value of the hydrodynamic diameter ah.
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scaling works well for liquids with inverse-power-law potentials
and also for hard-sphere and Lennard-Jones systems. Our
result is generally consistent with this scenario. A special
feature of this work is the way to determine ϕeff. Compared
with other methods,10,11,60,61 eq 2 can be directly accessed by
SANS measurements for colloidal suspensions without
knowing the functional form of interparticle potential.
Therefore, it could be of particularly importance for the
experimental investigation on colloidal systems.
This work, as well as many previous studies on soft core−

hard sphere dynamic analogy, assumes that the dynamics is
fully determined by structure. The relevant structural
parameter and dynamics evolve monotonically as concen-
tration increases in the studied region. However, the situation
at concentrations higher than the overlap concentration could
be complicated. Simulation and experiment show that near the
jamming point the dynamics and structure of soft-core
particles exhibit uncommon discrepancies.62 A recent study
suggests that the crossing of the barriers in the energy
landscape needs to be considered in finding the effective
volume fraction.63 Moreover, recent simulations found that
ultrasoft colloids exhibit re-entrant glass transition above the
overlap concentration.64−66 These findings indicate that the
strong overlap between soft particles leads to unusual
dynamical behaviors.
We notice that a computer simulation study reports that the

ultrasoft potential developed for star polymers22 violates the
hard sphere−soft core dynamic analogy.67 The inconsistency
between the simulation and our result is probably due to two
reasons. First, our samples have a small number of monomers
on each arm, which is not perfectly consistent with the physical
background of the ultrasoft potential. Second, the theoretical
potential form underestimates the excluded volume of the star
at finite concentrations. In fact, the SANS spectrum calculated
with the ultrasoft potential exhibits a higher Qmax (Qmax is the
position of the main peak of S(Q)) and a lower intensity
compared with the measured spectrum at intermediate
concentrations, as shown in Figure 2 of ref 22. This indicates
that the theoretical potential underestimates the strength or
the range of exclusion of the interparticle interaction.
In conclusion, we measure star polymer dispersions to study

the dynamics of soft colloidal liquids. We find that the slowing
of the long-time self-diffusivity, normalized by the short-time
self-diffusivity, can be scaled to the hard-sphere behavior with
an effective volume fraction, determined using the condition of
compressibility equivalence. This result provides a new insight
in understanding the long-time self-diffusion of soft colloids
from a thermodynamic view. In addition, we give a simple
method to determine the osmotic compressibility of soft
colloidal liquids with SANS.
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