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Abstract. We present a strategy for identifying and correcting for aberration effects
in Spherical Neutron Polarimetry. The transformation of the neutron beam polarization
vector due to scattering from a material is determined with Spherical Neutron Polarimetry.
This neutron scattering technique measures the three cardinal components of the scattered
polarization for any chosen cardinal direction of the incident polarization for a given Bragg
reflection. As a consequence, the instrumentation required for this technique is desired to be
capable of measuring the three-dimensional polarization vector over the sphere. As with all
instrumentation, the field of measurement is subject to aberration which must be characterized.

1. Introduction
Spherical Neutron Polarimetry (SNP) is a neutron scattering technique that measures the
nine elements of the polarization property tensor of a material [1]. These nine elements are
derived from the three-dimensional neutron beam polarization vector with Cartesian components
Pj = (I+−I−)/(I++I−), for j = 1, 2 or 3 corresponding to X, Y or Z. The terms, I±, correspond
to the measured intensity of the ±1/2 spin eigenstates of the neutron angular momentum in
the jth direction. This measurement technique was first fully realized in 1989 at the Institut
Laue-Langevin [2] and has since been revised, [3] expanded upon [4, 5] and developed elsewhere
[6]. Figure 1 illustrates in a three step process the general layout of SNP. In the first step,
the polarization direction of the incident polarized neutron beam is set to one of the jth

Cartesian directions. In the second step, this oriented polarized beam scatters, through Bragg
reflection from a crystal, which changes the neutron beam’s initial momentum, k1, to some final
momentum, k2. In the third step, for a given Bragg reflection, the axis of measurement is set
to measure one Cartesian component of the scattered neutron beam. Orienting and measuring
all possible directional combinations yields the nine component polarization property tensor for
that material at a specific Bragg reflection.

The Cartesian axis of measurement and orientation is fixed relative to the scattering vector,
Q, which specifies a Bragg reflection and is defined as the change in momentum between the
incident and scattered neutron beams (i.e., Q = k2 − k1). We call this frame of reference the
Q-frame. To easily move a neutron detection apparatus about a crystal and thereby measure
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Figure 1. Coordinate system of the SNP setup as seen from the Q-frame. Here, the XY-
plane is the scattering plane. The relative placement of polarization control instrumentation
is outlined with boxes. Adjacent to each box, the respective local coordinate system and local
control parameter are depicted. For each local coordinate system, the axis of rotation for the
control parameter is highlighted in red. The letters distinguish the instrumentation as follows:
A) Local rotation about the y1 axis, Ry1(θ1) B) Local rotation about the x1 axis, Rx1(φ1) C)
Local rotation about the x2 axis, Rx2(φ2) D) Local rotation within the XZ-plane, Bxz(θ2)

different Q, the possible directions of Q are typically restricted to rotations about a single axis
fixed in the lab frame. The lab frame may be thought of as being aligned with, k1, the direction
of the incident neutron beam. The resulting plane through which Q rotates defines what is called
the scattering plane.1 The Cartesian directions are then typically labeled X, Y and Z where X
is parallel to Q, Z is vertical and perpendicular to the scattering plane and, Y completes the
orthogonal set. Upon scattering, the neutron beam’s initial state polarization is transformed
by interacting with the magnetic structure of the crystal to some final state polarization. That
transformation is defined by the Blume-Maleyev tensor [7].

2. Calibration
The instruments that orient the incident polarization and set the direction of the measurement
axis each have local independent coordinate systems. Through calibration, the local coordinate
system of each instrument is transformed into the Q-frame. As such, calibration requires
the precise mutual alignment of each coordinate system and the precise characterization of
distortions inherent within the SNP apparatus. Each SNP component device(s) can be identified
with respect to the polarization degree of freedom that it controls and/or measures. As a result,

1 Throughout this article we generally assume that the scattering plane is level with the floor of the laboratory.
This is an important assumption in that it places real restrictions on the overall geometry of an SNP apparatus
which naturally influences the potential distortion in the measurement.
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there are four main devices corresponding to four degrees of freedom: two degrees for the incident
beam and two degrees for the scattered beam, which must be mutually aligned. To understand
alignment one can describe the measurement of a single component, Pj , of the polarization
vector in terms of the rotation of an initial state polarization vector and its dot product with
the measurement axis in the Q-frame. This is given by the relationship,

Pj = B(Θ2,Φ2) · T R(Θ1,Φ1)Po (1)

Here Po is the initial state polarization, T is the Blume-Maleyev tensor, R(Θ1,Φ1) is the
net rotation of the initial state polarization by the instrumentation and B(Θ2,Φ2) is the axis of
measurement. The spherical coordinates Θ1,2 and Φ1,2 are angles about the Q-frame Y and X
axes, respectively. Implicitly, T , Θ1, Φ1, Θ2 and Φ2 are all dependent on Q. For simplicity we
will first consider one value of Q and later discuss other directions. From Equation 1 the three
steps of Figure 1 can be distinguished mathematically as,

Step 1. R(Θ1,Φ1)Po Directing the incident polarization

Step 2. T Scattering from a crystal

Step 3. B(Θ2,Φ2) Measurement of the scattered polarization

The first part in calibration is to remove effects due to magnetic scattering from a crystal so
as to isolate the character of the apparatus. This can be achieved by either removing the crystal
from the SNP apparatus altogether and measuring the polarization of the purely transmitted
beam or by measuring the scattered polarization of a pure nuclear Bragg peak. In either case,
having all effects resulting from magnetic scattering properly removed will reduce T to the
identity operator.

To understand the calibration of each component instrument we first decompose the rotation
operator, R(Θ1,Φ1), into three operators: Rin(Q), Ry1(θ1) and Rx1(φ1) where, R(Θ1,Φ1) =
Rin(Q)Rx1(φ1)Ry1(θ1). Here, Ry1(θ1) and Rx1(φ1) represent a rotation about the local y1
and x1 axes, respectively, and Rin(Q) represents the net transformation into the Q-frame. In
Figure 1 the relative orientations of the local axis as seen from the Q-frame are depicted. The
measurement axis decomposes likewise into three operators: Bxz(θ2), Rx2(φ2), and Rout(Q)
where B(Θ2,Φ2) = Bxz(θ2)Rx2(φ2)Rout(Q). Here Bxz(θ2) is a local planar measurement field
in the XZ-plane, Rx2(φ2) is a local rotation of the scattered polarization into that field, and
Rout(Q) is the net transformation out of the Q-frame. To simplify matters further, we only
consider the transmitted beam method for calibration such that T , Rin(Q) and Rout(Q) each
reduce to the identity operator.2 The measured polarization of the purely transmitted beam is
now,

Pj = Bxz(θ2)Rx2(φ2) ·Rx1(φ1)Ry1(θ1)Po (2)

From this Equation we can define two domains on either the incident polarization or on the
measurement of the scattered polarization. The first is the domain of control, which describes
all possible orientations of the incident polarization,

S2
con = {(θ1, φ1) | 0 ≤ θ1 ≤ 2π, 0 ≤ φ1 ≤ π} (3)

The second is the domain of measurement, which describes all possible orientations of the
measurement axis B,

S2
mes = {(θ2, φ2) | 0 ≤ θ2 ≤ 2π, 0 ≤ φ2 ≤ π} (4)

2 The operators Rin and Rout are a very simple way of mathematically visualizing the coordinate transformation
of θ1,2 and φ1,2 into the Q-frame.
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Figure 2. Simulated SNP measurement field. (a) and (b) Measurement field with no
misalignment. (c) Misalignment applied by setting α1 = 30o (d) Misalignment applied by
setting α2 = 30o (e) Misalignment applied by setting β1 = 30o (f) Misalignment applied by
setting β2 = 30o. In Figures (e) and (f) the data is segregated into two hemispheres with black
and white face circles. This is to show clearly the effect of misalignment, which is identical in
these two cases.
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Figure 3. Orientation of the Q-frame for different values of Q as seen in the lab frame. (a) The
transmission configuration during calibration and, (b) Crystal measurement. The blue cross
(solid & dashed) indicates the Q-frame orientation for Q = 0 and the red cross indicates the
Q-frame orientation for Q 6= 0.

Table 1. (Left) The opposing angles required for measuring the jth vector component over the
control domain. (Right) The opposing angles required for measuring the jth vector component
over the measurement domain.

θ2 φ2

X π/2 0
Y 0 π/2
Z 0 0

θ1 φ1

X π/2 0
Y 0 -π/2
Z 0 0

For each element of either S2
con or S2

mes, Equation 2 will produce a vector P =
∑
j Pj êj

from three cardinal orientations corresponding to j = 1, 2 or 3 of the two opposing angles. The
angles of these three opposing orientations for both the control and measurement domains are
shown in Table 1. As an example, a measurement of some vector PG, from the control domain
S2

con, first requires the setting (θ1, φ1)G to access the Gth point in that domain. Then one must
independently measure the X, Y and Z components by setting (θ2, φ2) according to the Table 1
values for the S2

con domain. When properly aligned, the resulting range of vectors, P, for each
domain ideally form a spherical field of radius Po centered at the origin. Figures 2(a) and (b)
illustrate a three-dimensional plot of the ideally aligned perfectly spherical measurement field
resulting from the S2

mes domain. In this context, misalignment can now be characterized by
the Q independent phases α1, β1, α2 and β2, which add to the local control coordinates, i.e.,

Pj = Bxz(θ2 + α2)Rx2(φ2 + β2) ·Rx1(φ1 + β1)Ry1(θ1 + α1)Po (5)

From Figure 2 one can see how the addition of these phases distorts the sphere. Figure 2(c)
shows the resulting distortion in the measurement field (or equivalently the control field) when
α1 = 30o. From Figure 2(d) the distortion is entirely different when the same misalignment angle,
α2 = 30o, is applied. In contrast to these, Figures 2(e) and (f) show a tilting of the spherical field
when the same 30o misalignment is applied to either β1 or β2 separately. In all of these cases,
switching the sign of the misalignment mirrors the distortion and, combinations of misalignment
superpose. These phases can be deduced by an iterative comparison of measured data with
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simulation. The phases are then corrected for by electromechanical means within the hardware
until the apparatus is well described by Equation 2 alone. We therefore define misalignment to
be any distortion in either the control or measurement fields that is well described by Equation
2.

Physically, alignment through measuring either the control or measurement fields acts to
maximize the transmission of polarization through the SNP apparatus along the cardinal
directions of the Q-frame. The control and measurement fields, while both spherical, differ
in that they describe different aspects of the SNP functionality. For example, consider Figure 3.
Here, two values of Q in the lab frame are depicted, one for Q = 0 and one for Q 6= 0. For both
values of Q the orientation of the corresponding spherical field is also depicted. The Q = 0 case
(Figure 3(a)) was used for alignment and is described by Equation 2. During the measurement
of a crystal, Q will most likely be non-zero and the resulting Q-frame will be rotated relative to
the Q-frame used for alignment (refer again to Figure 3(b)). Consider that at most six points
of the measurement field are needed for any given Q. In the lab frame, this amounts to the
vertical poles and a great circle within the scattering plane of the measurement field. Practically,
only these regions of the measurement field need to be well described by Equation 2. This is
not so for the control field. Nuclear-magnetic scattering, at values of Q 6= 0, would result in a
scattered polarization directed away from the Q-frame cardinal axes [8]. If the control field is
distorted in that direction and is fixed to the lab frame, then that distortion will propagate to
any polarization measurement when the direction of scattered polarization coincides with that
distortion, regardless of how spherical the measurement field is.

To emphasize the diference between the measurement and control fields we must first consider
two other forms of distortion in addition to misalignment, noise and aberration. Noise we
characterize as the expected variation in the spherical field due to the compounded Poisson
error of the neutron detection process [9]. Aberration, in contrast, we define as distortion
which is greater than the noise and is not well described by misalignment (i.e., Equation 2).
As an example of noise, first consider Figures 4(a) and (c) which shows a simulation of 1024
discrete measurements on the S2 domain where Figures 4(b) and (d) are respective Mollweide
projections of Figures (a) and (b). We use the Mollweide projection to visually retain the relative
proportionality of the point distribution when compared to the three-dimensional plots [10]. In
Figures 4(a) and (b) the average noise level is twice as large as the angular sampling period (i.e.,
the average angular distance between points in S2). Consequently, the noise is the dominant
signal and the sampling period satisfies the Nyquist-Shannon sampling limit [11], meaning that
this spherical field is noise limited. The noise level, displayed in Figures 4(c) and (d), has been
reduced by an order of magnitude but the sampling period is unchanged (i.e., an equivalent 1024
points have been used). In this case, the noise fluctuation is small and features resulting from
any other distortion may only be resolved if the Nyquist-Shannon sampling limit is met. This
means that the spherical field for this reduced noise level is now Nyquist-Shannon limited. In
other words, the angular resolution provided in Figures 4(c) and (d) is now adequate to resolve
aberration in the spherical field occurring at large enough angular scales.

Now consider an example of aberration in the control field, for Q = 0, depicted in Figures
5(a) and (b). We imagine this type of aberration being brought about by artifacts in either the
laboratory or the sample environment. By mapping such an aberration, as in Figure 5(b), real
space correlation to known artifacts would potentially allow the source of the aberration to be
identified and removed. Figure 5 is a simulation where the noise level here is equivalent to that
used in Figures 4(c) and (d). This simulated aberration appears in a decrease in polarization
within the upper octant of the control field. Figure 5(b) shows that the aberration is localized
within that octant and does not intersect the cardinal planes. If this aberration is now fixed
relative to the lab frame then, for some value of Q 6= 0, the cardinal planes would intersect
it resulting in a loss of transmitted polarization. Figure 5(c) through (e) show the projections
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Figure 4. Simulation of the spherical field for two noise levels plotted in 3D and as a 2D
Mollweide projection. (a) and (b) Noise Limited Data where the noise level is twice a large as
the sampling period. (c) and (d) Nyquist Limited Data where the noise level is much smaller
than the sampling period.

of this aberrated control field onto the cardinal planes for Q = 0. Since the polarization in
each projection follows the great circle (outlined in black) of that respective projection plane,
the resulting measurement field will appear to be undistorted. Again, this is because only the
undistorted X, Y and Z directed polarizations of the control field are used in constructing the
measurement field. Therefore only a spherical measurement of the control field through the
aberrated region will fully account for that distortion.

To characterize the type of aberration depicted in Figure 5 we now explore a strategy that
involves expanding the measurement field in terms of a finite series of spherical harmonics.
Techniques similar to this have been used to model three-dimensional data for Computer
Generated Imaging (CGI) [12].

P (θ, φ) =
N∑
n=0

n∑
m=−n

εnmYnm(θ, φ) (6)

Equation 6 describes an expansion of the magnitude of the measured polarization on the S2

domain in terms of the spherical harmonics Ynm(θ, φ) with coefficients εnm for degree n and
order m. Here the maximum degree, N , is determined by the total number of measurements
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Figure 5. Simulated aberration. The noise level is equivalent to Figure 4(b). (a) A three-
dimensional plot showing a decrease of polarization relative to the control field. The dotted line
indicates the undistorted polarization. (b) Mollweide projection of of the simulation showing
that the distortion is localized within one octant of the sphere. Here arcs and lines indicate great
circles and are labeled according to the respective plane that contains them. The dotted line
of (a) is also shown. (c-e) Projections of the simulation onto the planes labeled in (b). Great
circles act as a guide for the eye.

taken, similar to discrete Fourier analysis.
To apply this expansion, we first begin by correcting for angular aberration. Angular

correction serves to regularize the spherical field for harmonic decomposition by Equation 6.
The operation we suggest here is a simplified form of image warping and we refer to Wolberg
(1990) , for a more in depth treatment [13]. This is a procedure which first involves calculating
the set of spherical angles, {Ak, Bk}, from the set of vectors, {Pk}. Each Ak and Bk then
correspond to the expected angles, ak and bk, set by the instrumentation such that the resulting
angular aberration is the respective difference,

δk = Ak − ak, ρk = Bk − bk (7)

To later apply this to an arbitrary measurement we may linearly interpolate between angles
such that for an arbitrary pair of measured angles, (γ, ζ), which, for example, are in the intervals,
Ak ≤ γ ≤ Ak+1 and Bk ≤ ζ ≤ Bk+1, the calculated aberration for those angles is,

∆δ =
∣∣∣ γ −Ak
Ak+1 −Ak

∣∣∣(δk+1 − δk) + δk (8)
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∆ρ =
∣∣∣ ζ −Bk
Bk+1 −Bk

∣∣∣(ρk+1 − ρk) + ρk (9)

The corrected angles for an arbitrary measurement are then,

Θ = γ −∆δ (10)

Φ = ζ −∆ρ (11)

With the angular distortion removed, correcting for radial distortion is more straight forward.
This is accomplished by describing the set of magnitudes, {Pk}, of the calibration data with
Equation 6. A correction to an arbitrary measurement, Pmeasured, with spherical angles Θ and
Φ is then,

C(Θ,Φ) =
N∑
n=1

n∑
m=−n

εnmYnm(Θ,Φ) (12)

such that,

Pcorrected = Pmeasured − C (13)

The corrected polarization described in Equation 13 is subject to the innate Poisson error
of the calibration data, {Pk}, and this error will propagate to the corrected polarization. We
suggest that the error in {Pk} be kept to a level much smaller than that used for routine
measurement.

3. Discussion
Thus far we have considered the limited case where both the control and measurement fields,
measured at one value of Q, are fixed to the lab frame and are therefore Q-dependent.
This dependency is described simply by a rotation of these fields about the Z-axis (Figure
3). In this sense, calibration requires characterization of one control and measurement field.
Experimentally, we estimate that the measurement of a single spherical field would take about
20 hours for a neutron flux on the order of 2 × 106/cm2/s. The simplicity of this kind of Q-
dependency may be somewhat of an ideal since the modern SNP apparatus requires movement
of instrumentation in the lab frame to measure different Q. An actual Q-dependency may be
more complicated requiring field characterization at more than one Q. In any case, the strategy
we have outlined for characterization of the control and measurement fields would not change.

Finaly, it must be pointed out that SNP calibration typically involves only measuring vector
components along great circles within the control and measurement fields [4, 14, 5]. To date,
there has been no attempt to characterize variation in an SNP apparatus over a spherical domain.
As a result, it is not clear in what context aberration will significantly affect SNP measurements.
For minor aberration in the control field, that is an aberration on the order of 2% above the
noise, we expect aberration to have the potential of severely effecting measurements of weak
nuclear-magnetic reflections. For these reflections, the nuclear component may be significantly
stronger than the magnetic and, any loss in intensity could wrongfully suggest that the signal
is purely nuclear.
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