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Abstract36

Massively parallel DNA sequencing is a critical tool for genomics research and clinical diagnostics, but there37

is a variegated landscape of technologies, platforms, and chemistries. Here, data from the Association of38

Biomolecular Resource Facilities (ABRF) Next-Generation Sequencing (NGS) Study was used to delineate39

the reproducibility, accuracy, and utility of both current and emerging NGS platforms. Human and bacte-40

rial reference DNA samples were sequenced on Illumina HiSeq/NovaSeq and ThermoFisher Ion Torrent in-41

struments, the Pacific Biosciences and Oxford Nanopore long read sequencers, and the recently released42

BGI/MGISEQ platform, GenapSys GS110 sequencer, and the Illumina paired-end 2x250bp chemistry. Each43

platform showed variable reference-based mapping rates, coverage disruptions in high/low GC regions (the44

lowest in Pacific Biosciences), sequencing mismatch and insertion/deletion rates, and variable variant de-45

tection of single-nucleotide variants (SNVs) and structural variants (SVs). The long-read platforms showed46

the best mapping in repeat-rich areas and across homopolymers, whereas some short-read platforms (e.g.47

GenapSys) had very distinct base composition profiles, both of which are critical formodeling variant calling.48

As chemistries, methods, and platforms continue to evolve for NGS, this study serves as a benchmark for49

current and future genomic technological development, as well as a resource to inform experimental design50

and NGS variant-calling.51
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Introduction52

High-throughput next-generation DNA sequencing (DNA-seq) is an essential method for clinical and basic53

biomedical research [1, 2]. DNA-seq has numerous experimental applications, including but not limited to54

genotyping and variant discovery within individuals [3], population- and species-level characterization of55

genomes [4], and revealing taxonomic diversity within a metagenomic mixture [5]. Genome sequencing has56

become ubiquitous, owing to the significant decrease in cost [6], which has led to diversification of sam-57

ple collection, library preparation, sequencing chemistries, and downstream bioinformatic pipelines. Rapid58

advancement of DNA-seq has also enabled clinical standards to emerge and proficiency tests to be estab-59

lished that are routinely run by medical organizations [7, 8]. Prior studies have provided valuable reference60

sets for various modalities of sequencing, including amplicons [9], multilocus/core genome bacterial typing61

[10], and DNA-seq within then-emerging instruments [11]. The Microarray Quality Control (MAQC) Consor-62

tium has led several large-scale studies of RNA-seq reproducibility [12, 13] [14], RNA-seq quality control [15],63

concordance with microarrays [16], and best practices for data processing [17] and normalization [18] but64

there is not yet an analogous study for DNA-seq reproducibility. Signicant studies have laid the ground-65

work for proficiency trials and accreditation of NGS devices for clinical use that have leverged large cohorts66

[19] across large collections of participating laboratories [20, 21]. As sequencing technologies continue to67

evolve, a broad collection of DNA-seq data can serve as a robust benchmarking resource to facilitate further68

standardization of clinical applications, as well as to evaluate new methods, chemistries, and protocols.69

The Genome In A Bottle (GIAB) Consortium has enabled genomics benchmarking by developing a series70

of reference materials (RM) [22], benchmarking tools [23], ultra-deep sequence data [24], and benchmarking71

variant reference sets [25]. Here, the ABRF NGS Phase II DNA-seq Study leverages referencematerials (NIST72

RM 8392, known as the Ashkenazi Trio; Mother (HG004), Father (HG003), and Son (HG002), a family trio73

consented through the Personal Genome Project [26]) to provide insight into currently common sequencing74

instruments. Inter- and intra-lab DNA-seq replicates of the Ashkenazi Trio are analyzed, as well as three75

individual bacterial strains and a metagenomic mixture of ten bacterial species to study the effects of GC76

content and library complexity. These replicates were generated across six Illumina and three ThermoFisher77

Ion Torrent platforms, the BGI-SEQ 500 and MGISEQ-2000 platforms, the GenapSys GS110 platform, and78

using Oxford Nanopore Flongle, MinION, and PromethION flow cells, as well as publicly available PacBio Cir-79

cular Consensus Sequence (CCS) data for HG002. These data are tested within the most "difficult" regions80

of the genome, represented by the UCSC RepeatMasker regions, to highlight the differences between each81

instrument. All data generated by this consortiumwere examined for performance and reproducibility over a82

range of base compositions and GC-content profiles. Collectively, these data provide a robust benchmarking83

resource for human and bacterial DNA-seq NGS across a wealth of sequencing instruments.84
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Results85

Data Quality86

Human and bacterial genomic and targeted exomic libraries were sequenced across an array of platforms,87

including five Illumina platforms, three Ion Torrent platforms, Oxford Nanopore MinION (R9.4 and Flongle88

flow cells) and PromethION, BGI-SEQ 500, MGI-SEQ 2000, and GenapSys GS110 (Figure 1A). PacBio datasets89

generated using Circular Consensus Sequencing (CCS) as well as additional Oxford PromethION flow cells90

were downloaded from the NCBI Genome database to ensure full representation of commonly used plat-91

forms. Multiple inter- and intra-lab replicates per library were prepared for the majority of instruments in this92

study (see Supplementary Table 1 for an exhaustive list of replicates generated by each sequencing facility).93

Depth of sequencing varied across experiment type, ranging from ultra deep genomic coverage of bac-94

terial taxa (nearing 1000x mean coverage) to shallow genomic coverage (<1x mean global coverage). Most95

WGS libraries were sequenced to between 25-80x mean coverage (Figure 1B), and subsequent analyses96

were performed on alignments downsampled to 25x mean coverage (see below).97

The overall quality of sequence data was consistently high across all libraries, including base quality98

scores, GC distributions, balanced sequence content, low N content, and low sequence duplication levels99

(complete FASTQC quality control reports for every replicate are available in Supplementary Data 1). Insert100

size distributions were highly library-specific (Figure S1). Human data were aligned against GRCh38 with101

decoy contigs (see methods) which successfully deflected 1% of Illumina and GenapSys reads, 0.5% of102

BGI- and MGI-SEQ reads, nearly no ThermoFisher reads, and 2-5% of long read data (Figure S2).103

Mapping rates were consistent within instruments but highly variable between (Figure 1C). BGI-SEQ 500104

and GenapSys had the lowest short read unique mapping efficiency and highest multi-mapping rate, pos-105

sibly owing to 2x100bp and 150bp single-end chemistries, respectively. ThermoFisher mapping rates were106

slightly better than Illumina and MGI technologies, reflecting fewer regions in the exome that are difficult107

to align. PacBio CCS had the most accurate mapping rate compared to Oxford platforms. Not pictured are108

PromethION replicates, whose mapping rates were around 85%, far lower than other platforms due to the109

significant fraction of shorter readswithin these datasets that do notmap. BGI- andMGI-SEQ had lower opti-110

cal duplicate and unmapped read rates than Illumina platforms, although both data types were very efficient.111

Total mapping rates are available in Supplementary Table 2. All replcates showed highly consistent capture112

per GC bin with no platform-specific effect, although whole genome and targeted exome capture revealed113

differences in GC composition (Figure S3). For AmpliSeq Exome panels used on IonTorrent instruments,114

the rate of on-target mapping was high, ranging from 84.6–96.6%, with little variation between replicates,115

showing high consistency for this assay (Supplementary Table 3).116
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Three individual bacterial species and one metagenomic mixture comprising ten bacterial species were117

sequenced on Illumina, Ion Torrent, Oxford Nanopore, and GenapSys platforms (Figure 1D). The species118

chosen for individual and metagenomic sequencing comprised a wide variety of genome sizes, GC content,119

Gram staining responses, ecological niches, and in some cases would provide physiological challenges for120

capture, such as high saline affinity (Supplementary Table 4), meant to challenge each platform’s ability to121

overcome these factors. The mappability of reads from each library was found to be directly related to the122

species sequenced, with high variability between species and high consistency within each instrument.123

Normalized Coverage Analysis124

Evenness of coverage across the genome was calculated per instrument, using only replicates that had125

sufficient coverage (mean depth of coverage >=10x with a mapping quality cutoff of MQ20), and with align-126

ments normalized to a global mean of 25x coverage per replicate. Note that replicates from GenapSys and127

the Flongle and R9.4 MinION flow cells (as two replicates from the HiSeq2500 platform) were excluded here128

due to inadequate coverage.129

Coverage distributions were very consistent among technologies, including short and long reads (Fig-130

ure 2A). However, within each context, certain platforms out-covered the collective mean of others, based131

on a one-tailed Wilcoxon base versus mean test. HiSeq2500, BGISEQ500, and MGISEQ2000 consistently132

under-covered these regions, with HiSeq2500 only out-covering the mean in Low Complexity regions, and133

BGISEQ500 and MGISEQ2000 only out-covering the mean in Alus (and LTRs for MGISEQ2000). Notably, the134

HiSeq4000 and HiSeqX10 performed well, with high coverage in L2s, LTRs, and simple repeat regions. No-135

vaSeq replicates performedwell in themost regions among short read platforms, particularly using 2x250bp136

chemistry. Overall, PacBio and PromethION (i.e. long read) technologies outperformed the other platforms137

in every context. The direct comparison of each platform versus all others summarizes performance across138

contexts (Figure 2B), and all-vs-all comparisons provide a more detailed profile of any one platform’s cover-139

age capture versus any other (Figure S4).140

Although the instruments could be stratified by coverage performance, intra-platform varaibility was low,141

demonstrated by the even distribution of coefficient of variation in all contexts for all platforms (Figure 2C).142

One notable exception is within satellite regions, where a bimodal distribution of coverage was observed.143

A sub-set of satellite regions had near-zero coverage across all platforms, primarily on the Y chromosome.144

The genomic coordinates of each bin of coverage (high and near-zero) for satellite regions is available as145

Supplementary Data 2.146
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Sequencing Mismatch Rate147

Rates of inconsistency of aligned reads against the reference genome (i.e. mismatch rate) were character-148

ized against UCSCRepeatMasker region to evaluate sequencing performance in difficult regions (Figure 3A).149

Overall, short read platforms had lower mismatch rates in every context compared to Nanopore. However,150

PacBio CCS reads had mismatch rates equal to or even lower than short reads in every context except for151

satellite regions. BGISEQ500 outperformed HiSeq 2500, 4000, and X10, though MGISEQ2000 trailed be-152

hind. GenapSys had greater mismatch rates than all other short read platforms except for satellite regions.153

Notably, NovaSeq 2x250bp had a greater mismatch rate than 2x150bp chemistry.154

Mismatches were also stratified by GC% content (Figure 3B) and base position per read (Figure 3C). All155

platforms showed elevated rates of substitution and insertion/deletion events in low (<25%) and high (>75%)156

GC contexts in the same manner as above, including PacBio, which otherwise had the lowest rate across157

GC%. GenapSys showed more INDEL mismatches than point substitutions. All short read platforms and158

CCS reads had increased error rates toward their 3’ end, while Nanopore reads (here the Flongle, MinION159

R9.4, and PromethION R9.4 flow cells are combined) had flat (though high) rates across their reads.160

Reads were then stratified against the UCSC Table Browser Simple Repeat Schema as defined by Tan-161

dem Repeat Finder [27]. Repeats were split into true homopolymers (stretches of poly-N in the reference162

genome) (Figure 3D) and other short tandem repeats (STRs), ordered by their entropy, a measurement of163

complexity of the STR motif (Figure 3E). Within both homopolymer and STR classes, PacBio CCS showed164

the lowest mismatch rate. Within short reads, BGISEQ500 and MGISEQ2000 performed better than Illumina165

instruments in shorter homopolymer stretches, while GenapSys performed worse, although surprisingly re-166

turning lower error rates with increasing homopolymer rates. All short reads returned roughly the same per-167

formance in homopolymer regions longer than 25bp. GenapSys reads were consistently more erroneous168

in STR regions. Though all platforms performed worse in longer homopolymer regions or areas of lower169

entropy, all Nanopore reads had a flat (though high) mismatch rate.170

SNV and INDEL Detection171

In addition to calculating error rates, mismatches were identified as variants against the human reference172

genome using benchmarking call sets. Variants, including short nucleotide polymorphism (SNP) and in-173

sertion/deletion (INDEL) events, were characterized against the Genome in a Bottle (GIAB) high confidence174

truth set (v4.1 [28]) for every replicate of the Ashkenazi Son (HG002) genome with adequate depth of cover-175

age (minimum 10x), and each alignment normalized to a mean of 25x coverage. Note that replicates from176

GenapSys and the Flongle and R9.4MinION flow cells (as two replicates from the HiSeq2500 platform) were177
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excluded here due to inadequate coverage.178

Several common germline variant callers were compared across instruments, incluidng DeepVariant,179

GATK HaplotypeCaller, Sentieon Haplotyper, and strelka2 for short reads, as well as Clair2 for long reads180

(Figure 4A). BGISEQ500, MGISEQ2000, and NovaSeq 2x250bp had the highest precision and recall rates181

compared to other platforms, with HiSeq2500 and 4000 performing theworst. PacBio CCS reads called with182

Clair2 performed highly comparably to all short read data for global SNP and INDEL detection. DeepVariant183

consistently had the highest accuracy rates (except for a fewHiSeq2500 replicates). Strelka2was as precise184

as DeepVariant, but not as sensitive. Both GATK and Sentieon haplotype callers were less precise, and185

Sentieon was marginally less sensitive than GATK. Moving forward, all analyses were conducted using the186

DeepVariant call sets for short read data (normalized to mean 25x coverage for all samples).187

Like coverage and mismatches before, the variants were stratified by UCSC RepeatMasker class to look188

for accuracy and reproducibility in difficult regions (Figure 4B). Sequencing instruments performed similarly189

against one another as in the global analysis. L1s, L2s, and LTRs were the "easiest" to capture, having the190

most accurate calls across instruments. Satellites and Alus were the second most "difficult" contexts, fol-191

lowed by low complexity regions and simple repeats as the least accurate across all technologies. Variants192

within the Askhenazi Son (HG002) genome in particular were harder to capture than the Father (HG003) and193

Mother (HG004) genome, although within satellites Mother variants were captured with less sensitivity than194

Father and Son.195

Beyond measuring specificity and sensitivity, the total number of variants captured within each context196

was recorded, as well as the overlap between platforms, for SNPs (Figure 4C) and INDELs (Figure 4D). Within197

SNP regions, HiSeq2500 and Nanopore captured the fewest true positive variants. MGISEQ2000 and both198

NovaSeq chemistries captured the greatest number of true positive SNPs. Within INDELs, Nanopore failed199

to capture the majority of true positives across each context, followed by PacBio CCS, then HiSeq2500, 400,200

and X10. Again, MGISEQ2000 and both NovaSeq chemistries successfully captured the greatest number of201

true positive variant calls. Capture of true positive INDELs was also visualized by mutation size (Figure 4E).202

This showed a similar pattern, with Nanopore capturing the fewest sites. Interestingly, insertions showed a203

different pattern than deletions. Although NovaSeq andMGISEQ2000 captured the greatest number of large204

insertions, followed by other Illumina platforms and then BGISEQ500, there was more consistency between205

platforms to capture deletions, with every platform but Nanopore showing the same capture rate.206

SNVs and short INDELs were also captured within genes from the CLINVAR [29] and Online Mendelian207

Inheritance in Man (OMIM) [30] databases as a measure of confidence in accessing variants in clinically rel-208

evant regions, stratified by high confidence regions for each cell line (Figure S5). The NovaSeq chemistries209

achieved the greatest accuracy in these medically relevant genes, while PacBio CCS achieved the highest210
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precision, with lowered sensitivity. Sequencing instruments were generally less able to detect variants in211

OMIM genes than in CLINVAR genes. To incorporate ThermoFisher targeted exome samples, variant call212

sets in genomic data were filtered to exomic regions and compared (Figure S6). Again here, short read213

platforms including NovaSeq and BGI/MGISEQ had the greatest sensitivity and precision in these regions,214

followed by other Illumina platforms, then PacBio. Proton and S5 replicates showed lower ability to accu-215

rately detect variants, with some S5 replicates falling below the accuracy provided by PromethION data.216

Genomes were further compared to one another by aggregating and merging all calls across the entire217

trio, revealing strong clustering of replicates by cell line (Figure S7). Relatively little missing data was seen218

within short read and PacBio replicates, andmuchmore frequent missing data within Nanopore data. Lever-219

aging the trio relationship of these genomes, rates of Mendelian violations were calculated across SNPs,220

insertions, and deletions of varying sizes. All platforms showed some violations, with BGISEQ500, HiSeqX10,221

and NovaSeq 2x150 returning the most violations in SNP regions, and BGISEQ500 showing elevated viola-222

tion rates in INDEL regions (Figure S8). These violations are mostly platform specific, tend to be less than223

1% of all variants called, and are likely technical artifacts specific to each platform (Supplementary Table 5).224

Structural Variant Detection225

Creating a reference set: To enable a detailed analysis of structural variants (SV), a high quality reference SV226

set was constructed using three ONT and three PacBio CCS data sets (see methods). A high concordance227

SV set was identified across these long read-based calls (Figure S9) by requiring at least two call sets out228

of the six to agree on a SV [31]. This high confidence set is hereafter referred to as the HG002 Reference (or229

HG002 Ref) SV set.230

Across all long read data sets, an average of 22,000 SVs were identified per sample, which matches the231

current expected number of genomic SVs [32]. Interestingly, a slight increase in SVs was observed within232

Nanopore (22,905) data sets compared to PacBio CCS (22,330) data (see Supp Figure x2), despite the fact233

that one Nanopore replicate showed a lowered number (21,591 SV).234

Insertions and deletions that only overlapped with high confidence regions were investigated (see meth-235

ods). Note that only replicates fromHiSeq2500, HiSeq4000, and HiSeqX10 could be included in all analyses,236

asmultiple replicats were required per instrument. The examined technologies showed a high concordance,237

with only 3.94% (442) SVs (26.47% deletions and 73.53% insertions) specific to PacBio CCS and 1.69% (190)238

SVs (63.16% deletions and 36.84% insertions) specific to Nanopore (Figure S10). This was again impacted239

by the one Nanopore sample that underperformed.240

241

Capturing Structural Variants: An average of 12,435 SVs were detected across 32 short read HG002 sam-242
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ples. The majority (95.21%) of these SVs overlapped with the lifted over GIAB high confidence regions [25]243

(see methods). The SV calls followed the expected distribution in size and type, with the majority of events244

being deletions (7315), followed by translocations (3454), duplications (978), inversions (686) and finally in-245

sertions (2). Translocationswere ignored as they are often false positives [33]. An average of 6965 SVswere246

captured that overlap with the filtered data set, 27.59% (1921) of which constitute deletions and insertions247

that overlap with the established reference set. Figure 5A shows the overall statistics among all data sets,248

as well as the distribution of SV calls per sample. No significant correlation was found between the total249

number of SVs and an increase in the average coverage or insert size (see Supplemental results). However,250

when restricting to true positives, a positive correlation was observed with coverage (mean: 27.06, cor: 0.56,251

p-value: 0.0008116, standard deviation: 51.60, cor:0.64, p-value: 7.435e-05), insert size (mean: 351.07, cor:252

0.59, p-value: 0.0003852, standard deviation: 122.44, cor: 0.64, p-value: 6.996e-05) and read length(mean:253

142.97, cor: 0.86, p-value:3.707e-10, standard deviation: 0 cor: NA, p-value: NA).254

The different sequencing and analysis steps were analyzed one at a time in order to detect the cause255

of variability. This included stratifying results by SV callers, sequencing instruments, and by library repli-256

cates. Overall, the SV callers contributed the most to individual variability (527 SVs, 41.59%), followed by257

sequencers (237 SVs, 18.71%), and lastly by replicates (226 SVs, 17.84%). SV call sets overlapped the HG002258

reference set for SV callers (82.54%), platforms (40.08%), and replicates (78.32%). Thus, interestingly, false259

negatives (i.e. calls missed by others) were predominantly observed, rather than the expected false positive.260

SV call sets did not show any clustering in a particular region of the genome and seemed to be distributed261

throughout (Figure 5E).262

The majority of SV calls that are specific to Delly or Manta are in fact true positives. In parallel to this, it263

is evident that most false positives from SV caller variability are attributed to SV calls from Lumpy, followed264

by Delly and Manta (Figure 5B, Figure S12). Supplementary Table 6 summarizes the results for all strategies265

in terms of false positive, negative and true positive. Within platforms, HiSeqX10 has the largest number266

of SVs (3751), followed by HiSeq4000 (3714) and HiSeq2500 (3294). We observe that HiSeqX10 produces267

the largest number of unique false positive SVs (249) followed by HiSeq4000 (223) and HiSeq2500 (208)268

Interestingly, 14.43% (42) of unique HiSeqX10 SVs are false negatives compared to HiSeq4000 13.90% (36269

SVs) and HiSeq2500 8.77% (20 SVs) (Figure 5C, Figure S13). Within replicates, 47.51% of unique replicate270

SVs are false positives that are not concordant with the HG002 reference SV set. Overall, 73.17% of non-271

unique SVs overlapped with HG002 reference set, indicating a smaller number of false positives and high272

concordance between the replicates (Figure 5E, Figure S14).273
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Bacterial Genome Capture274

In addition to the relatively GC-balanced human genome, analysis of sequencer performance at high and275

low GC content genomes was evaluated. In addition to bacterial isolates, a metagenomic mixture of ten276

bacterial species was included in order to assess reproducibility of genomic sequencing with variable GC277

content, Gram stain, ecology, and physiology in a single sample. In particular for the metagenomic pool278

(ATCC MSA-3001 mix), taxonomic composition was found to be quite variable both within and between279

platforms (Figure 6A). Replicates within platforms were highly similar to one another, with the exception of280

the PGM, which had two outlier samples. Still, platform-specific compositions were detected (Figure 6B).281

Correlation of composition between instruments showed that Flongle and MinION R9.4 flow cells clustered282

closest to one another, and interestingly most closely to Illumina HiSeq. Also notably the GenapSys and283

PGM systems had a closer relationship than PGM to its ThermoFisher counterpart in the S5 system, which284

was most dissimilar to other platforms.285

Irrespective of sequencer, taxonomic composition was clearly impacted by GC content of each taxon286

(Figure 6C). In particular, low-GC (S. epidermidis and E. faecalis) and high-GC taxa (H. volcanii andM. luteus)287

were underrepresented. These taxawere also Grampositive, showing that physiology had a direct impact on288

genomic sequencing. Taxa with middling GC contents and Gram-negative cell walls were overrepesented,289

in particular P. fluorescens, which averaged nearly double the representation expected from the equamolar290

mixture.291

In addition to the metagenomic mixture, coverage of individual strains was highly consistent among all292

replicates from all instruments (Figure S11A). Coverage matched the expected GC range per taxon. Calcu-293

lation of entropy across GC contexts showed the highest in the metagenomic mixture, followed by E. coli,294

then S. epidermidis, and finally P. fluorescens as the most consistently sequenced isolate (Figure S11B).295

Discussion296

The ABRF-NGS Phase II study is a comprehensive DNA-seq resource, providing a wealth of whole genome297

and exome sequencing data across multiple established and emerging instruments. This work adds to the298

data available for the well-characterized and publicly accessible human cell lines within RM 8392 that have299

become standard use cases for genomic technology research, as well as bacterial genomes that span a300

diversity of genome sizes and nucleotide compositions. Analyses of these data provide insight into the rel-301

ative strengths and weaknesses of each instrument across genomic contexts, offering a valuable resource302

for benchmarking and experimental design. As expected, long read technologies are better suited to pro-303

vide coverage in difficult regions of the genome. However, among short read platforms, Illumina HiSeqX10304
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and Illumina HiSeq4000 excel, and can perform as well as Nanopore and Pacbio Circular Consensus Se-305

quencing (CCS) reads in most regions. Telomeric and centromeric regions are the most highly variable,306

with a subset of masked satellites poorly covered across all technologies. Oxford Nanopore provides the307

least variable coverage irrespective of genomic context. Beyond coverage, all platforms demonstrate in-308

creased mismatch rates at high and low GC content regions as well as toward the 3’ end of reads, though309

CCS provides the highest nucleotide accuracy against the reference genome in all contexts. This is also310

true in homopolymer stretches, whereas all short reads show elevated error rates, and an expected increase311

in error as homopolymers get longer (though worth noting that GenapSys may be more reliable in longer312

homopolymer stretches). While considerably improved over time, Oxford Nanopore platforms still lag be-313

hind others in accuracy across all sequence compositions and genomic contexts, though it is worth noting314

that enough Nanopore data to achieve 25x mean genomic coverage may be much cheaper than the same315

cost for equivalent PacBio data. It is also worth noting that, for several instruments, only one replicate was316

available per cell line or at all (including GenapSys, Flongle and MinION flow cells, and NovaSeq 2x250bp re-317

actions), which made it impossible to estimate intra-platform reproducibility. Additional data will be critical318

for future assessment of the performance of these platforms.319

DeepVariant provided the highest sensitivity and specificity metrics against Genome in a Bottle (GIAB)320

v4.1 benchmark reference set. This machine learning-based variant caller was highly robust for all genomic321

contexts fromall platforms. It is worth noting that deep learning tools are trained specifically on these single-322

ethnicity, B-lymphocyte-derived cell line genomes, which may lead to some overfitting to training samples323

and may perform differently in other use cases [34]. Strelka2 was generaly as precise as DeepVariant, while324

GATK HaplotypeCaller was generally as sensitive. Sentieon Haplotyper lags slightly behind, but is consid-325

erably faster to implement than other callers [35] and has performed comparably in the PrecisionFDA 2016326

challenge [22]. It is also worth noting that Sentieon is an implementation of GATK, which makes it appli-327

cable to standard GATK variant-calling practices. Although these outcomes portray a current snapshot of328

variant accuracy, methods for both short and long read variant calling are under continual development and329

continue to improve beyond the results presented here, particularly in difficult regions, as seen in the recent330

precisionFDA Truth Challenge V2 [34].331

Turning to the cell lines themselves, the Ashkenazi Son (HG002) provided the lowest precision and sensi-332

tivity across complex genomic features than the Father (HG003) and Mother (HG004), revealing underlying333

differences in complexity of each genome irrespective of platform. Sequencing platforms were also not the334

primary factor influencing structural variant (SV) detection, instead primarily driven by the SV caller which335

had the largest effect on detection of true positive events. These results highlight the need for continually336

improved methods to resolve disagreement beyond that of bias introduced by each platform.337
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The distribution of reads in a DNA-seq reaction was highly reproducible when sequencing an individual338

genome, including all three members of the Ashkenazi Trio as well as within bacterial strains. Across lab-339

oratories and platforms, error rates were consistent, including in repetitive and low complexity regions. In340

particular, emerging platforms from BGI, GenapSys, and Oxford Nanopore performed comparably to well-341

established platforms, providing promising results as the genomics landscape continues to grow and diver-342

sify. More complex metagenomic samples were less consistent, showing compositional bias and elevated343

variance of normalized coverage, indicating a challenge for future metagenomic studies. Notably, all plat-344

forms were able to identify all strains in each mix, and showed robustness in identifying the presence of345

each expected taxon within metagenomic samples. Mappability was also highly taxon-specific, with S. epi-346

dermidis mapping more poorly than all other individual bacterial strains, underlining the importance of high347

quality reference genomes for any alignment. Overrepresentation of negative Gram staining bacteria also348

points to DNA extraction as a critical factor for species distribtuion, even within a mock community stan-349

dard, though it should be noted that a small sample of only ten species may lead to some randomness of350

representation. At the same time, the degree of variability within metagenomic sequencing remains a clear351

confounding variable that should be tracked and examined in future work, along with the other components352

of metagenomics analysis [36].353

Building on the resources provided by GIAB, the Global Alliance for Genomic Health (GA4GH), and UCSC,354

the datamade publicly available and results presentedwithin this study provide a resource for benchmarking355

genomics data as well as an unbiased evaluation of current and emerging sequencing technologies. These356

findings can inform the evolution of new best practices in sequencing and analysis, serving as highly char-357

acterized reference material data designed to support a variety of genomic analyses and methods, which358

will be essential as new methods emerge.359

Summary Box360

1. Mapping efficiency rates are both platform-specific and species-specific. Illumina instruments are most361

comparable to one another. BGISEQ500 and GenapSys GS110 instruments return the lowest uniquely map-362

ping rate and highest multi-mapping rate. BGI/MGISEQ libraries have the lowest duplicate read rate. PacBio363

CCS datasets have the highest rates of unique mapping and lowest non-mapping rate. Short fragments in364

Nanopore data bring down overall mapping efficiency.365

366

2. Alignments (BAM files) can be normalized by calculating mean autosomal coverage using mosdepth367

and then downsampling using Picard DownsampleSam. However, even within normalized data, coverage368
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dramatically varies within repetitive and low complexity regions, even among replicates sequenced on the369

same instrument. Long read technologies provide the highest coverage within these genomic regions. For370

short read platforms, HiSeq 4000 and X10 provide the most consistent, highest coverage.371

372

3. Sequencing error can be calculated with BBMap reformat.sh and comparingmismatch histogram tables.373

All instruments have some level of sequencing error ranging from 0.1% up to 20% in poorly defined satellite374

regions. BGI/MGISEQ provide the lowest sequencing error rates among short read technologies. PacBio375

Circular Consensus Sequencing provides the lowest error rate out of all technologies. Although the error rate376

is highest of all platforms, Nanopore technologies perform highly consistently from the smallest throughput377

(Flongle) flow cell to the largest (PromethION R9.4).378

379

4. Mismatch rates are elevated in areas of high and low GC content, and by base to a lesser extent. Errors380

are more frequent in regions with larger repeat sizes of homopolymers and lower entropy of short tandem381

repeats, except for Nanopore which shows flat (though currently still high) error rates irrespective of se-382

quence content. PacBio CCS has the lowest error rate in these contexts, while GenapSys has elevated STR383

error rates compared to other short read platforms.384

385

5. Variant calling - DeepVariant is themost sensitive and precise software for calling known variants, though386

this software is trained on immortalized B-lymphocyte cell line data and may be overfitted. Strelka2 is as387

precise as DeepVariant, while GATK HaplotypeCaller is as sensitive. Sentieon Haplotyper is very nearly as388

sensitive as GATK HaplotyperCaller, while by far being the most computationally efficient. Default parame-389

ters may be used for each caller.390

391

6. Sensitivity and specificity of variant detection can be assessedwith RTGVcfEval. Among known variants,392

true positives in L1/L2/STR regions are recalled the most easily, while variants in simple repeats and low393

complexity are the hardest to capture. Read length makes an impact on the ability to call true positives,394

since data with shorter read lengths (HiSeq2500 2x125bp and BGISEQ500 2x100bp) capture the lowest395

proportion of true positives across RepeatMasker regions examined.396

397

7. The length of insertion/deletions (INDELs) captured by each platform can be evaluated using RTG vcf-398

stats with the –allele-lengths flag. INDEL detection is highly platform-specific, in particular for insertions399

(deletions are more comparable between platforms). Nanopore captures the lowest proportion, followed400

by BGISEQ500, Illumina HiSeq platforms, and then PacBio CCS. The NovaSeq 6000 using 2x250bp read401
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chemistry is the most robust instrument for capturing known INDELs.402

403

8. Structural Variant (SV) calling consistency is most impacted by the variant caller used. This can be eval-404

uated by calling SVs with Delly, Manta, and Lumpy, and then consolidating calls with SURVIVOR. Sequencing405

instrument is the second highest source of variability, followed by within-instrument replicates. Themajority406

of unique SVs are likely due to sequencing artifacts and can be considered false negatives.407

408

9. A genome-wide distribution of roughly 20,000 SVs is common with a given genome, which is slightly409

higher than previous estimates and benefits from longer reads. Within those, the majority ( 70%) will be410

called as deletions, followed by translocations ( 14%), insertions ( 6%), duplications ( 5%), and inversions411

( 4%). No significant clustering of SVs is seen within the genomes examined in this study, indicating that412

overlapping SVs between replicates or instruments can be considered true positives rather than mapping413

artifacts.414

415

10. In mixed metagenomic samples, the rate of mapping is significantly linked to the GC-content of the416

reference genome for each taxon. High- and low-GC content taxa tend to be underrepresented in reference-417

based alignment. This can be determined using mosdepth with the -F 3844 flag to assess the number of418

reads uniquely mapping to each genome within the mixed reference set.419

Methods420

Human Genomic DNA421

DNA from cell lines derived from a family trio in the Personal Genome Project (PGP) are distributed as Na-422

tional Institutes for Standards and Technology (NIST) reference material RM 8392, which serves as source423

material for genomic DNA sequencing. These DNA samples were developed for the Genome in a Bottle424

(GIAB) Consortium to create a set of highly characterized standards for genomic analysis, and are approved425

for all research uses under the terms of the PGP. Standardized human genomic DNA samples were obtained426

fromNIST, andwhole genome sequencing (WGS) libraries were prepared at a single laboratory site (Hudson-427

Alpha Institute for Biotechnology, Huntsville, AL), then distributed to individual laboratories for sequencing428

on respective instruments.429

In a few cases, libraries were prepared at the facility where sequencing was done. All libraries were pre-430

pared using the same NIST stock and synthesis kits as at the central site above. This included both sets of431

NovaSeq 6000 data (one site preparing 2x150bp data and a second site providing both 2x150 and a novel432
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2x250bp reaction), two laboratories synthesizing and sequencing GenapSys GS110 data, one lab synthesiz-433

ing and sequencing BGISEQ500 and MGISEQ2000 data, and two labs synthesizing and sequencing Oxford434

Nanopore data (one using PromethION R9.4 flow cells and the other utilizing Flongle and MinION R.94 flow435

cells). Oxford Nanopore PromethION R9.4 replicates were prepared using the PCR-free Ligation Sequencing436

Kit (LSK109). Libraries were prepared for the Flongle using the PCR-free Ligation Sequencing Kit (LSK109)437

and the native barcoding kit for the MinION R9.4 flow cell. Finally, all replicates of PacBio Circular Consen-438

sus Sequencing (CCS), as well as two Oxford Nanopore PromethION replicates, were downloaded from the439

public repository generated by the Genome in a Bottle (GIAB) Consortium and hosted by the National Center440

for Biotechnology Information (NCBI).441

Bacterial Genomic DNA442

Microbial reference gDNA was prepared from bacteria obtained from the American Type Culture Collection443

(ATCC-Manassas, VA). Pure agar cultures were grown to early log phase and harvested prior to gDNA extrac-444

tion using the Omega Metagenomics DNA kit (Omega BioTek Norcross GA. M5633-00). Briefly, cell mass445

was resuspended in dPBS pH 7.5 and digested with Metapolyzyme (MAC4L Millipore Sigma, St. Louis, MO)446

for 8 hours before dual detergent lysis with CTAB and SDS, and farther lysis and clean up was done using447

phenol chloroform + isoamyl alcohol and RQ magnetic beads. DNA was evaluated using Qubit spectrofluo-448

rometry (Thermo Fisher, Waltham, MA), Agilent Bioanalyzer 2100 (Santa Clara, CA), RTqPCR (Applied Biosys-449

tems, Foster City, CA), and Nanodrop spectrophotometry (Thermo Fisher). Sequencing QC was performed450

using both Sanger sequencing of the entire 16s rDNA (Primer 27f and 1492r) as previously described (Innis et451

al. 2012). DNA for the 10 species combined mixtures was combined as an equimolar pool at approximately452

10% each. This gDNA material is deposited at ATCC as product MSA-3001 and is publicly available.453

Library Synthesis454

Illumina: For human and bacterial samples, TruSeq PCR-free libraries were prepared according to manufac-455

turer’s protocols. The high molecular weight (HMW) genomic DNA from NIST was fragmented using an LE456

Series Covaris sonicator (Woburn MA) with a targeted average size of 350 bp. Libraries were then synthe-457

sized at HudsonAlpha Biotechnology Institute robotically using 1ug of DNA. Library quality was evaluated458

by Qubit quantification and Agilent Bioanalyzer 2100. After passing QC, libraries were shipped to different459

sites (core facilities) for sequencing.460

461

ThermoFisher: For non-exomic libraries, each laboratory used the Ion Xpress Fragment Library kit (part462

4471269) per the manufacturer’s protocol, using 100ng of input DNA. For Ion Ampliseq exome sequencing,463
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DNA was amplified through a massively multiplexed PCR reaction to create the library following the Ion464

Ampliseq Exome protocol (kit 4489061).465

All libraries were templated onto beads (Ion PI Hi-Q Template OT2 kit A26434 for Proton, Ion PGM Hi-Q466

OT2 200 Kit A27739 and S5 (part A27751 for bacterial libraries and A27753 for Exome libraries). The Exome467

libraries were sequenced on either the Ion S5 or Ion Proton instruments used standard 200bp chemistries468

and protocols (Proton kit A26771, S5 kit A27753). The bacterial libraries were sequenced on the Ion PGM or469

Ion S5 using 400bp chemistries (Ion PGM Hi-Q Seq Kit A25592 and Ion S5 kit A27751).470

471

GenapSys GS110: Library synthesis was performed using a two step approach by first synthesizing a stan-472

dard NGS library followed by a GenapSys clonal amplified library. 100 ng of microbial gDNA was fragmented473

using Covaris S2 instrument to a mean size of 250 bp and used as input to the NEBNext Ultra II kit (E7645474

New England Biolabs Ipswich, MA) and checked for quality using the Agilent Bioanalyzer 2100 and Qubit475

spectrofluotometer. This NEBNext library was used as input to the version 1 chemistry of the fully manual476

GenapSys clonal amplification kit (1002000) which required 1.0 x 108̂ molecules (33 pol) before hybridizing477

to the G3 electronic sequencing chip (1000737 GenapSys Redwood City, CA) and sequencing on the GS111478

Genius Sequencing Platform.479

480

Bacterial Nanopore Sequencing: Microbial gDNA was prepared for Nanopore sequencing using two library481

methods. For the Flongle flow cell runs, the direct ligation sequencing library kit (LSK-109 Oxford Nanopore482

UK) was used on individual bacteria and sequenced on dedicated flow cells. For the R9.4 flow cells runs,483

the individual bacteria strains as well as the 10 species mix was prepared using the LSK109 method with484

the native barcoding expansion kit (EXP-NBD104) and combined into one final library pool and sequenced485

together on a single flowcell. This ligation sequencingmethod is a non-PCRbased librarymethod that allows486

for direct sequencing of native DNA. Briefly, gDNA is "repaired" using theNEBNext FFPEDNARepair reagents487

(M6630, New England Biolabs Ipswich Ma) followed by dA-tailed using the NEBNext End Repair/dA-tailing488

module, and ligated to nanopore specific sequencing adapters. Sequencing was performed immediately489

after library synthesis.490

DNA Sequencing491

TruSeq PCR-Free libraries were sequenced on the Illumina HiSeq 2500, HiSeq 4000, HiSeq X10, MiSeq, and492

NovaSeq 6000 with Xp loading. ThermoFisher kibraries were run separately on the PGM and were multi-493

plexed on the Proton PI and S5 540 chips. Standard protocols were used for 400bp read lengths on the494

PGM and S5 520/530 chips. The bacterial libraries were run using 200bp reads on the Proton and S5 540495
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chip using standard protocols. The different read lengths were due to the availability of 400bp chemistry496

on the smaller chips for both PGM and S5 whereas the larger PI and 540 chips run 200bp chemistry. All497

libraries were run in triplicate. All libraries were synthesized using 1ug of DNA.498

The exomeswere run only on the Proton PI and S5 540 chips because of the read numbers requirements.499

Briefly, the exomes were amplified in a massively mulitplexed PCR reaction and the resulting libraries were500

sequenced per standard sequencing protocols. Samples were run in triplicate with two samples per chip to501

accommodate read numbers needed for analysis.502

For GenapSys sequencing, successful clonal libraries were loaded onto the G3 electronic sequencing503

chip according to manufacture protocol (GS111 User Guide 1000698, Rev C Oct 2019) following an initial504

priming step including buffer washes. The electronic flow cell was injected with 35ul of the sequencing505

bead library followed by 40ul of a DNA polymerase solution. Sequencing was initiated on the GS111 Genius506

sequencer and run for 48 hours to achieve 15 million reads of single end 150 bp data.507

Oxford Nanopore sequencing was performed using the PromethION for the human samples with stan-508

dard use R9.4 flow cells. For bacterial genomes, the MinION MK1B sequencer was used with both Flongle509

and R9.4 flow cells. Flongles were injected with 20 fmol of each library on the with the slight modification510

of a 20% reduction of loading beads to increase Q-score performance. Sequencing was perfomed up to511

48hrs. R9.4 flow cells were injected with 50 fmol of the pooled native barcoded library according to the512

manufactures example protocol (NBE_9065_v109_revJ_23May2018) and allowed to sequence for 72hrs.513

Alignment and Variant Processing514

Reference Genome: Whole genome human samples were aligned against GCA_000001405.15_GRCh38 re-515

trieved from the NCBI FTP resource. This includes the GRCh38 primary assembly (including canonical chro-516

mosomes plus unlocalized and unplaced contigs), the rCRS mitochondrial sequence (AC:NC_012920), Hu-517

man herpesvirus 4 type 1 (AC:NC_007605), and concatenated decoy sequences to improve variant calling.518

519

Alignment: Short read Illumina datasets were aligned using bwa mem with default scoring parameters.520

INDEL realignment and base quality score recalibration was performed using the DNASeq workflow within521

Sentieon build 201808.0329with default parameters. ThermoFisher datasetswere alignedwith Torrent Suite522

v5.10 tmapmapall (tmapmapall -f $reference -r $input -n 20 -v -u -o 1 stage1map4). Nanopore datasets were523

aligned using minimap2 (v2.13-r850) [37]) with the –MD, -a, and -x ont flags. Aligned BAMs were sorted with524

sambamba (https://lomereiter.github.io/sambamba/) and optical duplicates (plus PCR duplicates for non-525

PCR-free libraries) were marked with Picard v2.10.10-SNAPSHOT. For bacterial data, all reads were aligned526

to genome builds of respective species derived from the NCBI Genome portal (Supplementary Table 4).527
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Base quality distributions, insert size distributions, and GC bias metrics were calculated using default528

values within Picard. Readmappingmetrics, on-target mapping rates, species distributions inmetagenomic529

mixtures, conversion of BAMs to FASTQs, BAM indexing, and BAM header alterations were performed using530

samtools v1.930. Depth of coverage per contig was calculated using mosdepth [38]) with the -n flag. BAMs531

were downsampled to a normalized 25x coverage using Picard, with the fraction to retain calculated based532

on mosdepth-inferred depth.533

534

Variant Calling: Genomic germline variants were called using Sentieon Haplotyper [35], GATK Haplotype-535

Caller [39], Strelka2 [40], and DeepVariant [39], all using default parameters. ThermoFisher alignments had536

variants called using variant_caller_pipeline.py within tvc, using default parameters. For long reads, SNVs537

were calledwith Clair (v2) [41]) while structural variantswere called using amulti-algorithmic approach (Delly538

[42]), Lumpy [43]) and Manta [44]), and validated with SURVIVOR [31]).539

540

Variant Call Set Processing: VCF statistics were summarized using vcftools v0.1.1532, and merging was541

done with bcftools v1.633. Variant allele frequency marix generation was done with bcftools using the –012542

flag. UpSet plots were generated with the UpSetR package [45]. Heatmaps with colored annotation tracks543

were created using the ComplexHeatmap R library [46]. Mismatch rates across GC content and base num-544

ber were calculated using mhist tables generated by BBtools (https://sourceforge.net/projects/bbmap/).545

Mendelian Violations were estimated with VBT [47].546

High confidence variants were analyzed using RTG vcfeval (https://github.com/RealTimeGenomics/rtg-547

tools) against the GIAB truth variant sets for each of the RM 8392 genomes (see Supplementary Methods548

for RTG vcfeval analysis of SNPs and INDELs). Conversion of VCF data to allele frequency matrices, extrac-549

tion of mapping/mismatch/variant statistics, generating UpSet matrices, and homopolymer detection and550

SNP/indel assignment were all performed using Python 3.7.0 scripts, and all visualizations were performed551

using R 3.6.3.552

553

All customscripts andRmarkdownnotebooks are available at https://www.github.com/jfoox/abrfngs2.554
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Figure 1: Experimental design and mapping results. (a) Three standard human genomic DNA samples from
the NIST Reference Material 8392 were used to prepare libraries, including TruSeq PCR-Free whole genome
libraries and AmpliSeq exome libraries, for sequencing on an array of platforms. Three bacterial species (E.
coli, S. epidermidis, P. fluorescens) and one metagenomic mixture of ten bacterial species (Metagenomic
Pool) were also sequenced. (b) Mean depth of coveage of replicate, colored by platform, and stratified by
sample type. Depth is calculated by dividing total bases sequenced by size of respective genome. Squares
indicate Father replicates, circles indicate Mother replicates, triangles indicat Son replicates. (c) Mapping
rate for every replicate for each instrument, including uniquely mapped reads, reads that mapped tomultiple
places in the genome, reads marked as duplicates, and reads that did not map. (d) The same as (c), but for
bacterial species sequenced, colored by sequencing platform.
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Figure 2: Distribution of genomic coverage across sequencing technologies for all replicates. (a) Aligned
BAMs were downsampled to 25x mean read depth, and the distribution of coverage of each locus in the
UCSC RepeatMask regions was plotted. Asterisks indicate significantly higher coverage for a given platform
compared to the global mean, as measured by a one-tailed Wilcoxon test. (b) Comparison of each platform
against all other platforms in each UCSC RepeatMasker context. Blue dots indicate >50% of shared sites
are better represented in a given platform versus some other platform. Red dots indicate that the other
platform out-covered the given platform. (c) Coefficient of variation of coverage per platform per UCSC
RepeatMasker region. Coverage was calculated for all bases within a region and variation was calculated
among all replicates per platform.
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Figure 3: Estimating rates of sequencing error per platform. (a) Bar plot showing total average error rate
within each UCSC RepeatMasker context. Individual replicates per platform are shown as separate bars.
Values are averaged across all bases covering a given context. Y-axis is plotted as square root transformed.
(b,c) Proprortional mismatch rates across GC windows and base number. Values at each window are av-
eraged across all reads from all replicates. For long read platforms, read length is capped at 6kbp. Y-axis
is plotted as square root transformed. (d,e) Error rate in homopolymer (n=72,687) and short tandem repeat
(n=928,143) (STR) regions, respetively. On the left plot, true homopolymers are shown at increasing copy
number. On the right, STRs are plotted by entropy, a measure of complexity of the motif. Y-axis is plotted as
square root transformed.
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Figure 4: Validating short nucleotide polymorphisms (SNPs) and insertion/deletion (INDEL) events from
short read datasets against the Genome in a Bottle (GIAB) high confidence truth set as determined by
RTG vcfeval. (a) Common germline haplotype variant callers were compared for each sequencing platform
across the entire genome, showing sensitivity and specificty achieved by each, for every replicate. (b) Over-
all sensitivity and specificity plotted for variants in each UCSC RepeatMasker region, overlapped with high
confidence regions for each cell line respectively. (c) Presence matrix of true positive SNP variants within
each UCSC RepeatMasker region. Each column is one variant. A yellow value indicates that the majority of
replicates for that platform captured that variant, whereas blue indicates that variant was missed. (d) Same
as above, but for INDELs. (e) Distribution of sizes of INDELs capture per sequencing platform. Values below
zero on the x-axis indicate deletions; values to the right indicate insertions. Number of true positive INDELs
is plotted per mutation size and colored by platform.
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Figure 5: Assessing variability for Son (HG002) across HiSeqX10, HiSeq2000 and HiSeq4000, platforms
which hadmore than one replicate per cell line to enable this analysis. (a) Number of SVs across sequencing
reactions for HG002 replicates including deletions, duplications, inversions, insertions, translocations, total,
SVs overlapping with the HG002 reference set, and SVs overlapping with GIAB high confidence regions.
Variability is shown that can be attributed to callers (b), platforms (c), and replicates (d). (e) The distribution
of single support (unique) SVs in 100kb windows across the different stratifications strategies.
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Figure 6: Reproducibility of sequencing of bacterial genomes in a complex metagenomic mixture. (a) Distri-
bution of taxonomic assignment of strains present in the metagenomic mixture, stratified per replicate per
sequencing platform. (b) Heatmap showing the spearman correlation of the average coverage within all in-
struments of each strain in the mixture. (c) Distribution of presence of each taxon across all replicates from
each sequencing insrument. The taxa are ordered by GC content and have their Gram-stain status indicated.
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Supplementary Methods692

SNP and INDEL Analysis693

Sensitivity vs. precision analyses were performed using the short nucleotide variant (SNV) and insertion /694

deletion (INDEL) call sets generated by each of the sequencing platforms (based on downsampled BAMs;695

see above) for the HG002 sample. Each replicate was compared against the GIAB SNV/INDEL HG002 truth696

set (v4) [22] using the Real Time Genomics (RTG) vcfeval tool [48]. True positive, false positive, and false697

negative calls were identified within the high confidence regions of the genome (as defined by GIAB) using698

Genotype Quality (GQ) as a Receiver-Operator Curve (ROC) score, stratified by variant type. For long read699

datasets (PacBioCCS and PromethION) processed through the Clair pipeline, we only report sensitivity and700

precision value based on all SNVs/INDELs (equivalent of GQ >=0) because Clair does not output normalized701

Phred-scaled GQ scores.702

To compare genome-wide INDEL size distribution across sequencing platforms and replicates of sample703

HG002, we used the RTG vcfstats tool with the option –allele-length, which outputs a histogram of variant704

length for a given VCF file. Vcfstats increments counts for each called allele, therefore a heterozygous call705

increases a count of an appropriate size bin by 1, while a homozygous alternate call increases a count by 2.706

To ensure that differences in distribution of INDEL sizes across platforms are not driven by the differences707

in mean coverage, we used INDEL call sets generated using alignment files downsampled tomean coverage708

of 25X.709

In addition to comparing the distribution of INDEL sizes genome-wide (i.e. including all INDELs called710

by the SNV/INDEL Sentieon or Clair pipeline), we also restricted the analysis to high confidence genomic711

regions, as well as high confidence true positive INDEL calls, as defined by the GIAB the SNV/INDEL truth712

set (v4.1) for sample HG002 [22, 25]. True positive calls made by each platform were again identified using713

the RTG vcfeval tool.714

To facilitate a more detailed comparison, we also generated genome-wide, as well as high confidence715

true positive pairwise comparisons of INDEL size distributions for all possible pairs of sequencing platforms716

and replicates of the HG002 sample, stratified by shared and unique INDEL calls. Shared and unique INDEL717

calls for each pair of datasets were identified using the RTG vcfeval tool by treating one of the datasets as a718

truth set and the other as an evaluation set. High confidence true positive subsets were identified using the719

merged GIAB SNV/INDEL and SV truth set, as described above.720

To compare numbers of SNV and INDEL calls that fall within different classes of repetitive and low com-721

plexity regions of the genome across all sequencing platforms we first restricted the analysis to the HG002722

true positives thatmatch theGIAB high confidence calls. We then annotated the true positive SNV and INDEL723
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calls from each platform using the UCSC RepeatMask BED files.724

Structural Variant Calling725

Defining High Confidence Regions: NCBI Genome Remapping Service was used to re-map the GIAB v0.6726

high confidence regions (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_-727

Integration_v0.6/HG002_SVs_Tier1_v0.6.bed) from GRCh37 to GRCh38. Subsequently, bedtools intersect728

was used to filter all SV call sets with the aforementioned regions before they were compared across family729

members and strategies.730

731

Illumina SV calling: The aligned reads (see above) were analyzed using Delly (v0.8.2) [42], Lumpy (v0.2.13)732

[43], and Manta (v1.4.0) [44], each with default parameters. The generated SV call sets per sample were733

merged using SURVIVOR (v1.0.7) [31] using the following parameter: 1000 2 1 0 0 0; requiring a maximum of734

1kbp allowance on the start or stop breakpoint; requiring that the SV to be merged have the same SV type,735

and that at least two out of the 3 caller need to agree on a SV to keep it. Overlaps with GIAB high confidence736

regions (v.0.6) were captured using bedtools (v2.29.2).737

738

Long read processing: Princess (https://github.com/MeHelmy/princess) was used to analyze samples with739

default parameters agains the human genome (GRCh38). SVs are identified with a minimum of two reads740

of support. Using bcftools view (version 1.9), SV were subsequently filtered for a minimum size of 50bp741

and a minimum read support of 5. Subsequently, SVs were further filtered using bedtools intersect (version742

2.29.2) for their overlap with the SV GIAB regions lifted over from GRCh37 to GRCh38. SURVIVOR version743

1.0.7 with a maximum of 1kbp between SVs was used to merge and compare these six data sets.744
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Supplementary Results745

Structural Variant Disribution746

On average, 12,602 structural variants (SVs) were detected per sequencing run for HG002. The SVs were747

considered passing if they were concordant between two or more SV call sets produced using Delly, Lumpy748

and Manta SV callers. The SURVIVOR [31] merge function was used to evaluate such concordance between749

the three different SV call sets. SVs weremerged if their start and end breakpoints were less than 1kbp apart750

and had the same SV type. Subsequently, the SVs were filtered to be at least 50bp long following the most751

common definition of SVs [32, 49, 50].752

Supplementary Table 6 gives an overview of the SVs identified in HG002. When filtered using the GIAB753

high confidence regions, 6964.9375 SVs overlapped on average across the samples. Out of these the vast754

majority (7315.25 SVs) are deletions followed by 3453.75 translocations. The latter were ignored for the sub-755

sequent analysis since they are often associated with false positives5. On average we identified 1921.4062756

SVs per sequencing reaction that overlapped with the GIAB consortium released HG002 SV call set (v0.6).757

Structural Variant Variability Stratification758

Sources of Variability: Supplementary Table 7 shows the identifiable SVs across all sequenced samples759

and the variability of SV call sets between different samples. Not surprisingly, the variability is impacted by760

multiple factors such as SVs caller, sequencing platforms, biological and replicates (see Supplementary Ta-761

ble 8). Subsequently, the variability observed among the data sets was analyzed in greater detail to highlight762

the false positive (i.e. artificial SV calls) vs. false negative (i.e. often missed SV calls) rates per variability.763

For this, the GIAB high confidence regions and SV call sets [25] was used.764

765

Variability Due to SV Callers: For HG002, the variability attributed to SV callers was estimated while stratify-766

ing for variability from platforms (HiSeqX10, HiSeq2000 and HiSeq4000), replicates, and centers. To stratify767

for other variabilities, calls were merged across platforms, replicates, and then centers, requiring that SVs768

be concordant at each step between the SV call sets respectively. The stratification strategy is seen in Fig-769

ure S12A. SURVIVOR was used for each step, requiring SVs to be of the same type, have a pairwise overlap770

smaller than 1kbp and the length of the SV larger than 30bp. In the last step, a union merge was performed771

using SURVIVOR across the different SV callers (Manta, Lumpy, Delly), requiring SVs to be larger than 50bp.772

The SV call set was then filtered using the GIAB high confidence regions and compared to the SV calls from773

GIAB (Figure S12B). After stratification for other sources of variability and filtering, the resulting set had a774

total of 2303 SVs that showed variability due to the SV callers. The majority of these SV calls were deletions775
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(72.12%), most of which were between 100-1000bp in size (Figure S12C). Other SVs were spuriously called,776

including translocations (13.59%), insertions (4.95%), duplications (5.17%), and inversions (4.17%). The SV777

call set was further filtered to only include deletions and insertions, for a total of 1,775 SVs. Thismade the SV778

call set comparable to HG002 reference SV set and eased the interpretation of the majority of SVs observed779

to be variable due to the SV caller.780

Next, the overlapwith GIAB SV calls was investigated to identify potential false positives (i.e. identified by781

a SV caller but absent in HG002 reference SV set) vs. false negatives (i.e. missed by one or more SV callers782

but present in HG002 reference SV set). A total of 527 (29.69%) insertions and deletions were observed that783

were unique to a single SV caller. Interestingly, the majority of these unique SVs in the short read SV call784

set (82.54%) overlapped with the HG002 reference SV set. This indicates that the majority of unique SVs785

were false negatives that were missed in the SV call sets of different SV callers. Additionally, 17.46% of the786

unique SV call set did not overlap with HG002 reference SV set and were likely sequencing artifacts (i.e.787

false positives). Specifically, Manta (582) was observed to have the most unique SV calls, followed by Delly788

(171) and Lumpy (128). Of the SV call sets, 44.44% (unique by Delly), 66.41% (unique by Lumpy), and 48.97%789

(unique by Manta) of these overlapped with the HG002 reference SV set. Thus, it is interesting to note that790

a large fraction of SV calls that are specific to Delly or Manta are in fact true positives. In parallel to this, it791

is evident that most false positives from SV caller variability are attributed to SV calls from Lumpy, followed792

by Delly and Manta. Further, most non-unique SVs called were found to be concordant with the GIAB SVs793

call set. On average, these are 77.55% concordant with HG002 reference SV set compared to unique caller794

SVs (55.62%).795

796

Variability Due to Sequencing Platforms: For HG002, the variability attributed to different short read se-797

quencing platforms (HiSeqX10, HiSeq2000 and HiSeq4000) was investigated while stratifying for variability798

from SV callers, replicates, and sequencing centers. SV call sets were merged across SV callers per se-799

quencing run, requiring agreement of two or more SV callers for an SV to pass (Figure S13A). Stratification800

was then performed by center and replicate variability by merging sequentially, requiring SVs to be concor-801

dant in each merge respectively. SURVIVOR was used for each step, requiring SVs to be of the same type,802

have pairwise overlap smaller than 1kbp and be > 30 bp in size. A final SV call set was then created using a803

union merge across platforms followed by GIAB high confidence regions filter.804

A total of 4319 SVs was observed in the GIAB filtered SV call set, including 2578 deletions, 271 duplica-805

tions, 314 inversions, 0 insertion and 1156 translocations. For this SV call set, the HiSeqX10 had the highest806

number of SVs (3751 SVs), followed by HiSeq4000 (3714 SVs), and HiSeq2500 (3294 SVs.) Tthe overlap be-807

tween the sequencing platforms and GIAB SV call set can be seen in Figure S12B, while the sizes and types808
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of SVs that were observed can be seen in Figure S12C. Across platforms, 54.07% of HiSeqX10 (52.41%),809

HiSeq4000 (52.61%), and HiSeq2500 (57.19%) SV call sets overlapped with HG002 reference SV set. Most810

non-unique SV calls (54.70%) overlapped the HG002 reference SV set. Thus, 45.30% of non-unique SVswere811

false positives in the SV call set, while the remaining majority are true positives or false negatives missed812

by a platform’s SV call set. HiSeqX10 was seen to produce the largest number of unique false positive SVs813

(249), followed by HiSeq4000 (223), and HiSeq2500 (208). Interestingly, 14.43% (42) of unique HiSeqX10814

SVs were false negatives compared to HiSeq4000 13.90% (36) and HiSeq2500 8.77% (20).815

The SV call set was further filtered to include only insertions and deletions overlapping wiht the GIAB816

SV call set. The majority of SVs in the filtered set were deletions sized between 100-1000bp, which is com-817

parable to other studies including GIAB. A total of 237 insertions and deletions were observed that were818

supported by a single platform, 95 (40.08%) of which overlap the HG002 reference SV set. This is consis-819

tent with the SVs being false negatives missed by the two other platforms respectively. 59.92% of SV calls820

do not overlap HG002 reference SV set and were thus false positives due to individual platforms.821

In the analysis so far, only platforms that included replicates and were used by all centers were consid-822

ered. The overlap of all the sequencing platforms with each other can be seen in Figure S12D. An increase in823

translocations and overall variability was observed, likely due to the relaxed filtering strategy (Figure S12E).824

825

Variability Among Sequencing Replicates: The variability among replicates for HG002 was investigated826

(using HiSeqX10, HiSeq2000 and HiSeq4000 SV call sets) after stratifying for variability from SV callers,827

platforms and centers (Figure S14A). SV call sets were filtered across SV callers per sequencing run, requir-828

ing agreement of greater than two for an SV to pass. Subsequently, these SV sets were merged across the829

three platforms, requiring the SVs to be concordant to stratify for platform variability. The SV call sets were830

then merged across centers, requiring an overlap between all three to stratify for center variability. A union831

merge using SURVIVOR was used across resulting replicates SV call sets with 50bp as the cutoff for SV size832

while maintaining previously described parameters. The SV call set was then filtered using the GIAB high833

confidence regions and overlapped with GIAB SV call set (Figure S14B).834

A total of 2435SVswere identified, including 1975 deletions, 107 duplications, 127 inversions, 0 insertions,835

and 226 translocations (Figure S14C).The SV call sets were filtered to only include insertions and deletions836

(1975 SVs) for comparisons with HG002 reference SV set. A total of 226 SVs were supported by a single837

replicate, of which 177 SVs (78.32%) overlap with the HG002 reference SV set. The majority of the variability838

observed is thus due to false negatives in other replicate SV call sets compared to the individual one that839

captured a variant. 21.68% of unique replicate SVs were designated false positives that were not concordant840

with HG002 reference SV set. Overall, 73.17% of non-unique SVs overlapped with HG002 reference SV set,841
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indicating a smaller number of false positives and high concordance between the replicates.842

Structural Variant Clustering across the Genome843

A subsequent analysis was performed to look for an enrichment of outlier SVs in certain regions. For each844

stratification strategy, only the unique SVs that were supported only by one SV caller (blue), one replicate845

(gray) or one sequencing platform (yellow) were considered (Figure 5E). The number of SVs starting in846

100kbp windows was counted across the genome in the GIAB high confidence regions. Overall, no sig-847

nificant clustering was observed, further supporting that the majority of the unique calls were often true848

positives rather than false positives. Only very few SVs seem to cluster together, likely a result of techni-849

cal noise. Only one window showed eight SVs unique to a certain SV caller that clustered together within850

100kbp.851

Factors Impacting Structural Variant Calling852

Previous components investigated variability with respect to SV caller, platform, and replicates. However,853

variant SV calling (or more specifically SV calling) is often discussed to be impacted by coverage, read854

length (e.g. impacting the mappability) and insert size of the paired end reads. Thus, the contribution of855

these three factors on SVs calling was investigated specifically across multiple replicates and with respect856

to true positive calls based on GIAB.857

First, the impact of varying coverage on the ability to detect SVs was investigated. For this, the mean858

coverage along the genome (as well as the standard deviation) was computed and compared both to the859

number of SVs (Figure S15 top row), and true positives based on GIAB SV calls (Figure S16 top row). In-860

creased coverage has a clear positive effect on the number of SVs detected (Figure S15 top row). This is861

also reflected in the number of true positives based on the GIAB SV calls, but not as clearly as the overall862

calls. While it is obvious why the true positive increases with the average coverage, given more evidence863

can be found to support each SV, it is not clear how and if the standard deviation for coverage has a direct864

impact on the SV calling. This can be explained by the improvement in calling of SVs from paired-end reads865

with higher coverage.866

Next, the possible impact of insert size (and variability of the insert size) was analyzed for SV detection.867

It was hypothesized that the variability of insert sizes plays an important role for the detection of SVs, since868

SV callers leverage the abnormal spacing of paired end reads to detect deletions. However, there was no869

evidence to support this within the SV data, neither with respect to mean insert size nor for standard devia-870

tion of insert sizes (Figure S15 middle row). No trend was observed when focusing only on the true positive871
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SVs based on the overlap with the GIAB SV call set (Figure S16 middle row). Thus, the insert size variability872

does not seem to impact the ability of an SV caller to identify SVs, likely due to the ability of the SV callers873

to leverage split read information.874

Finally, the impact of read lengthwas analyzed. It was hypothesized that an increase in read length, better875

confidence in mapping, and the ability of the mapper to characterize a split in the alignment should improve876

overall SV calling. The bottom row of Figure S15 shows the trend observed with respect to the average877

read length and the standard deviation. Since these are all Illumina short read data sets with fixed read878

lengths, the standard deviation of the read length was ignored. For the average read length, three categories879

(100bp, 150bp and 250bp) were available. Interestingly, there was no cle pattern for the total number of SVs880

identified based on the average read length (Figure S15 bottom row). Nevertheless, when filtered for the881

GIAB SV calls, a clear improvement for true positive SV calls compared to the increase in read length can be882

seen (Figure S16 bottom row).883
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Supplementary Figures884
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Figure S1: The insert Size distribution of every replicate, stratified by sequencing instrument.
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Figure S5: Precision and sensitivity scores as derived from rtg vcfeval analysis, stratified by regions in (a)
the CLINVAR database and (b) the OMIM database. For each of the cell lines, genes from each database
were overlapped with high confidence regions for variant calling.
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Figure S6: Precision and sensitivity scores as derived from rtg vcfeval analysis, stratified by regions in the
exome, as defined by the AmpliSeq target capture regions file. For each of the cell lines, exomic regions
were overlapped with high confidence regions for variant calling.

S-13



Genome
Platform
Lab
Rep

GT
0
0.5
1

Genome
Father
Mother
Son

Platform
BGISEQ500
HiSeq2500
HiSeq4000
HiSeqX10
MGISEQ2000
NovaSeq2x150
NovaSeq2x250
PacBio
PromethION

Lab
LAB01
LAB02
LAB03

Rep
REP01
REP02
REP03

Figure S7: Heatmapof genotype (GT) of variant alleles on chromosome 1, across all human replicates across
within sequencing platforms, as measured against the Genome in a Bottle high confidence variant call sets
for each genome. Heterozygous variant alleles are shaded in orange (0.5), homozygous variants in red (1),
missing data in blue (0), and inapplicable sites (sites outside of the GIAB high confidence region in one cell
line but present in another) in gray. Hierarchical clustering reveals strong grouping by cell line, followed by
less clear grouping within platforms and inter- and intra-lab replicates.
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Figure S8: UpSet intersections of Mendelian violations. Each plot is stratified by variant type (SNPs on top,
followed by INDELs; INS_5 = insertions 0-5bp in size, INS_6to15 = insertions 6 to 15bp in size, INS_15 =
insertions >15bp in size; same for deletions, "DEL"). Events were recorded within high confidence regions for
the Ashkenazi Son (HG002).
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Figure S9: Comparison between the identified SVs in the six samples showing agreement of 6,980 SVs
between samples (green column).
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Figure S10: Identified SVs between samples.
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Figure S11: (a) Heatmap showing the distribution of read counts per library (rows) by GC content (columns)
across bacterial genomes and the metagenomic mixtrue. Read count values are normalized by total reads
per replicate, such that a value of 1 matches maximum value for a given replicate. Annotation tracks on the
right indicate the sequencing platform and cell line genome for that replicate. (b) Calculations of entropy
per genome/metagenomic mixture. Entropy was measured across all GC windows for all replicates for a
given sample, rowSums(−(p ∗ log(p)).
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Figure S12: Insights into SV variability by caller. (a) The strategy used to examine SV caller variability after
stratifying for platforms, replicates and centers variability. (b) Shows SV call set sizes and overlap with the
GIABSV call set for the SV caller variability set of HG002. (c) Types and sizes of SVs in the SV caller variability
set of HG002 (translocations are set to size 50 by default in the SURVIVOR parameters for visualization
purposes)
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Figure S13: Insights into SV variability by platform. Diagrams (a,b,c) utilize sequencing runs from HiSeqX10,
HiSeq2000 and HiSeq4000 whereas (d,e) characterize all platforms available. (a) The strategy used to ex-
amine platform variability after stratifying for SV callers, centers and replicates variability. (b) SV call set
sizes and overlaps with the GIAB SV call set for the platform variability SV call set of HG002. (c) Types and
sizes of SVs in the platform variability SV call set of HG002. Panels (d) and (e) includeHiSeqX10, HiSeq2000,
HiSeq4000, NovaSeq, BGIS, and MGI for visualization purposes. The NovaSeq, BGI, and MGI SV call sets
were not integrated into the analyses strategy because sequencing runs with replicates for each sample at
different centers on different platforms were not available. (d) SV call set sizes and overlap with the GIAB
SV call set for the platform variability SV call set of HG002. (e) Types and sizes of SVs in the platform vari-
ability SV call set of HG002. (Translocations are set to size 50 by default in the SURVIVOR parameters for
visualization purposes)
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Figure S14: Insights into SV variability by replciate. Diagrams (a,b,c) utilize sequencing runs from HiSeqX10,
HiSeq2000 and HiSeq4000. (A) The strategy used to examine replicate variability after stratifying for SV
callers, platforms and centers variability. (b) SV call set sizes and overlap with the GIAB SV call set for the
replicate variability SV call set of HG002. (c) Shows the types and sizes of SVs in the replicate variability SV
call set of HG002 (translocations are set to size 50 by default in the SURVIVOR parameters for visualization
purposes).
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Figure S15: Coverage, insert size, and read lengthmean and standard deviation across total SVs in sequenc-
ing runs.
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Figure S16: Coverage, insert size, and read length mean and standard deviation across true positives (over-
lapping with the HG002 reference SV set) in sequencing runs.
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