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1. Summary 

pyMCR is a new open-source software library for performing multivariate curve resolution (MCR) 
analysis with an alternating regression scheme (MCR-AR). MCR is a chemometric method for elucidating 
measurement signatures of analytes and their relative abundance from a series of mixture measurements, 
without any knowledge of these values a priori. This software library, written in Python, enables users to 
perform MCR analysis with their choice of error functions for minimization, constraints, and regressors. 
Further, users can apply different constraints and regressors for signature and abundance calculations. 
Finally, this library enables users to develop their own constraints, regressors, and error functions or import 
them from existing libraries. 
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2. Software Specifcations 

NIST Operating Unit Material Measurement Laboratory, Biosystems and Biomaterials Division, Bio-
materials Group 

Category Chemometrics 
Targeted Users Users who wish to separate signature (such as spectra) and relative concentration 

from multiple measurements of mixtures with unknown or known signatures and 
concentrations. 

Operating Systems Cross-Platform 
Programming Language Python 3.x with NumPy and SciPy. Scikit-learn is optional. Sphinx is necessary 

to build local versions of the documentation. 
Inputs/Outputs This software is a command-line tool; thus, users will need to write their own 

code/methods to interface input data with pyMCR. The output is two NumPy 
arrays: signature of components, and relative concentration of each component. 

Documentation https://pages.nist.gov/pyMCR 
Accessibility N/A 
Disclaimer https://www.nist.gov/director/licensing 

3. Background 

Multivariate curve resolution (MCR), also known as self-modeling mixture analysis (SMMA), is a 
chemometric method for analyzing data collected from mixtures, extracting the relative abundances and 
signatures of the pure analytes [1] (a process known as “endmember extraction”). One of the most common 
uses of MCR is for spectroscopy (and spectroscopic imaging) [2, 3], in which MCR is utilized to extract 
spectra and [relative] concentrations from series of chemical mixture spectra. In this context, endmember 
extraction is often referred to as “spectral unmixing”. MCR has been applied to a variety of spectroscopies 
such as spontaneous and coherent Raman [2–5], infrared [2], ultraviolet-visible (UV-Vis) [6], near-infrared 
(NIR) [7], mass spectrometry [8], and utilized for a myriad of applications from liquid chromatography [9] 
and injection fow analysis [6] to biological/biomedical imaging [3–5]. 

Mathematically, the series of mixture measurements is described by a matrix D ∈ Um,n, where m is the 
number of independent measurements, n is the number elements for a single measurement (e.g., spectral 
frequency bins), and U indicates the universal set of numbers, which may be real, imaginary, or complex. 
MCR aims to fnd a solution to (i.e. builds a model for): 

D = CST + ε (1) 

where C ∈ Um,p is the abundance matrix of p-analytes, S ∈ Un,p is the signatures of the p-analytes, and 
ε ∈ Um,n describes noise, error, or aspects of the mixture not captured by the model. One should note that, 
besides D, the user provides the number of analytes, p. The pyMCR package currently does not provide rank 
estimation methods to solve for p, which is an active area of research in many felds [10]. 

This software library uses an iterative alternating regression (AR) scheme to fnd a solution to Eq. (1), 
fxing C and performing multivariate multiple regression for S and vice versa, described mathematically as: 

C[k+1] = argmin QC(C[k],S[k]) (2) 
C[k] 

S[k+1] QS(C[k+1],S[k])= argmin (3) 
S[k] 
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where k is the iteration number, and QC and QS are objective functions (for the C-solve and S-solve 
iteration, respectively) to be minimized as will be described below. The iterations continue until a breaking 
condition, LB, is met: a) the number of iterations meets a preset maximum, b) an error function (e.g., 
mean-squared error [MSE]) exceeds a defned value (or a number of iterations exceeding such a value), c) 
the relative change of the error function after each iteration does not reach a certain value, or d) a new local 
minimum for the error function is not met within a certain number of iterations. Algorithm 1 provides 
pseudocode of the main pyMCR optimization routine, where in addition to the previously described 
parameters, LC and LS are the constraint functions applied to C and S matrices (respectively). It should be 
noted that the Q-objective functions are applied implicitly by selection of regression methods. For example, 
ordinary least-squares (OLS) regression imparts an L2-norm (residual sum-of-squares) objective function, 
which is constrained to non-negative values when selecting a non-negativity constrained least-squares 
(NNLS) regressor. Other methods, such as ridge and Lasso regressions, also use an L2-norm in conjunction 
with regularization terms. 

Algorithm 1 Multivariate Curve Resolution - Alternating Regression (MCR-AR) 

Inputs: C[0] or S[0]; D; Q; LC; LS; LB 

1: for k ← 0 to kmax do 
2: if k > 0 or S[0] inputted then 
3: C[k+1] ← argmin Q(C[k],S[k]) 

C[k] 

C[k+1] ← LC{C[k+1]}4: � � 
C[·],S[·]5: if LB is TRUE then 

6: break 
7: end if 
8: else 

C[k+1] ← C[k]9: 

10: end if 
11: S[k+1] ← argmin Q(C[k+1],S[k]) 

S[k] 

S[k+1] ← LS{S[k+1]}12: � � 
C[·],S[·]13: if LB is TRUE then 

14: break 
15: end if 
16: end for 

It should be noted that the most common implementation of MCR uses an alternating least-squares 
approach and is referred to as “multivariate curve resolution-alternating least squares” (MCR-ALS) [2, 11]. 
These implementations use either OLS or NNLS regressors. Other examples include MCR-LASSO, which 
uses Lasso regression [12], or a penalized least-squares method (P-ALS) [13]. The pyMCR library, though, 
is more general thus we will refer to its implementation as “multivariate curve resolution-alternating 
regression” (MCR-AR). Additionally, as previously described, different regressors may be applied to 
calculating C and S solutions. Of note, another popular analysis method, “non-negative matrix 
factorization” (NMF) [14], is fundamentally the same as MCR when MCR applies non-negativity 
constraints to all solutions. 
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4. Methods for Validation 

All functions and methods in the pyMCR library are validated by test fles (i.e., unit testing, available in 
the repository “pymcr/tests” directory). Currently, unit test coverage is > 98%. 

5. Example Results 

The following MCR implementations are meant to highlight some of the utility and fexibility of 
pyMCR. The source code used to generate the following examples is available within a Jupyter notebook in 
the “pymcr/Examples” folder of the repository. All examples use the following, simple dataset with each 
spectrum being composed of a single Gaussian waveform with a constant offset as shown in Fig. 1 (a), and 
concentration maps shown in Figs. 1 (b-d). The total concentration at each pixel as summed across the 3 
components is 1 [Fig. 1 (e)], the so-called sum-to-one constraint (STO). Additionally, additive white 
Gaussian noise is applied at a level of ≈2 % of maximum. The spectra and concentration maps are combined 
as in Eq. (1) to form a hyperspectral image (HSI). D is formed by unraveling the spatial axes of the HSI. 
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Fig. 1. Simulated dataset. au: arbitrary units. (a) Spectra of the 3 unique components. (b-d) Pseudocolor relative 
concentration maps. (e) Pseudocolor total relative concentration map (every pixel equals 1.0). All concentration maps 
are the same dimensions (50 pixels x 100 pixels) with the coloration depicting relative concentration (no units). 

MCR methods require an initial guess for either C or S. Various strategies exist, such as random 
initialization, matrix decomposition [15], or expert input. In these examples, initial spectra (S[0]) are seeded 
from the absolute values of the frst 3 right singular vectors from singular value decomposition (SVD), as 
shown in Fig. 2. 
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Fig. 2. All examples are spectrally seeded with the absolute values of the frst 3 right singular vectors from SVD scaled 
by the maximum of the input dataset. au: arbitrary units. 

In this manuscript, 5 different MCR-AR models were constructed, all with the STO constraint applied to 
C and non-negativity applied to C and S: 

1. MCR-ALS: OLS regressors for S and C. 

2. MCR-NNLS: NNLS regressors for S and C. 

3. MCR-Gauss: MCR-NNLS with the additional constraint that spectra are Gaussian with a 
constant-valued baseline. 

4. MCR-Ridge: S solved via ridge regression and C via OLS. 

5. MCR-Lasso: S solved by OLS and C solved via positive Lasso regression. 

Note that the use of “MCR-Lasso” above is just a short descriptor of the model and not the same 
implementation of MCR-Lasso provided in Ref. [12]. Each test serves to demonstrate different 
opportunities for using pyMCR. MCR-Gauss, for example, demonstrates the use of ad hoc constraints that 
can be constructed from an abstract “Constraint” class within pyMCR, in this case, using the LMFIT Python 
library [16] to ft a Gaussian lineshape with a constant baseline to each retrieved spectrum at each iteration. 
This is a potent method of enforcing a priori expert knowledge on the model as, in this case, one knows the 
spectra are each single Gaussians. MCR-Ridge and MCR-Lasso demonstrate native support for using 
regression methods directly imported from the scikit-learn Python library [17]. 

Under all tests, the error function was set to MSE and the breaking conditions were set to 1000 
maximum iterations and a minimum change in MSE of 10−14. All other conditions, such as increases in 
MSE, were disabled. 

Figure 3 presents the results of the MCR-AR ftting using the aforementioned designs. Figs. 3 (a-c) 
provide box plots calculated over all pixels and frequencies, which quantify the differences between the 
actual (known) and retrieved values. For each box plot, the whiskers detail the full span of values (no 
outliers), the flled box shows the interquartile range (IQR, 25th to 75th percentile), and the horizontal line 
identifes the median. In Figs. 3 (a,b), MCR-Gauss has the most optimal median and IQR; though, it has 
some larger extrema values than MCR-Lasso. The next most optimal methods are MCR-LASSO and 
MCR-NNLS. In Fig. 3 (c), however, MCR-NNLS is closest to 0 in all metrics save maximum extremum, 
with MCR-Lasso and MCR-Gauss being within 1 % for maximum extremum and IQR, and within 5 % for 
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minimum extremum. MCR-Lasso is within 5 % of MCR-NNLS for median value. Figure 3 (d) presents the 
MSE at each iteration for each implementation. MSE is calculated within the MCR-AR method at each 
iteration and refects the ability of the model to capture the data, i.e. ∑ |D − C[k](S[k])T |2. Calculating the 
MSE of D with and without noise provides the “Ideal” level. MCR-ALS and MCR-Ridge terminated before 
1000 iterations due to MSE changes of less than 10−14 per iteration. MCR-NNLS has the smallest MSE 
≈1.1 % above ideal, followed by MCR-Lasso and MCR-Gauss at ≈1.8 % and ≈3.5 % above ideal, 
respectively. Figure 3 (e) describes the computational time to calculate each iteration and Fig. 3 (f) shows 
the number of iterations to reach the minimum MSE. To prevent terminating on local minima, there was no 
breaking condition set for increasing MSE; thus, the MSE at the fnal iteration could be larger than at 
previous iterations. pyMCR retains a copy of C and S matrices corresponding to the minimum error function 
even if continuing to iterate. For completeness, retrieval results for all methods are provided in the Appendix 
(Figs. 4-8). 
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Fig. 3. Comparison of results across 5 MCR-AR models. Box plots comparing (a) per-analyte, per-frequency spectral 
differences ΔS, (b) per-pixel, per-analyte relative concentration differences ΔC, and (c) per-pixel, per-frequency spectral 
differences of the hyperspectral dataset ΔD. Box plot whiskers cover full range of values, box height spans IQR, and 
horizontal black line is the median. (d) MSE at each iteration for each method, which describes the ability of a model to 
capture the data. (e) The time per iteration (in seconds) for each method. (f) The number of iterations each method 
performed before reaching a local minimum or a breaking condition. 
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Fig. 3 indicate that MCR-Gauss, MCR-NNLS, or MCR-Lasso are likely optimal methods across the 
presented examples; though, MCR-NNLS and MCR-Gauss are signifcantly faster per iteration. Further 
improvement to MCR-Lasso could be attained, potentially, with optimization of the regularization weighting 
term (current value, α=1). It should be emphasized that the optimal method(s) in these examples are rather 
particular to the dataset and the input spectral guesses. Improved initial spectra inputs could dramatically 
alter the outcomes as could different types of input data. 

6. Appendix 

0 3200

Frequency (au)

0

2500

5000

7500

10000

In
te

n
s
it

y
(a

u
)

(a)
Spect ral

Com ponents

0

1

2

(b)
Com ponent  0

0.0

0.5

1.0

(c)
Com ponent  1

0.0

0.5

1.0

(d)
Com ponent  2

0.0

0.5

1.0

(e)
Total Conc.

0.9

1.0

1.1

MCR-ALS

Fig. 4. Retrieved dataset using MCR-ALS. au: arbitrary units. (a) Retrieved spectra of the 3 unique components. (b-d) 
Pseudocolor relative concentration maps. (e) Pseudocolor total relative concentration map. All images are the same 
spatial dimensions (50 pixels x 100 pixels) with the coloration depicting concentration in arbitrary units. 
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Fig. 5. Retrieved dataset using MCR-NNLS. au: arbitrary units. (a) Retrieved spectra of the 3 unique components. (b-d) 
Pseudocolor relative concentration maps. (e) Pseudocolor total relative concentration map. All images are the same 
spatial dimensions (50 pixels x 100 pixels) with the coloration depicting concentration in arbitrary units. 
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Fig. 6. Retrieved dataset using MCR-Gauss which enforces a single Gaussian ft with constant baseline per spectrum ft. 
au: arbitrary units. (a) Retrieved spectra of the 3 unique components. (b-d) Pseudocolor relative concentration maps. (e) 
Pseudocolor total relative concentration map. All images are the same spatial dimensions (50 pixels x 100 pixels) with 
the coloration depicting concentration in arbitrary units. 
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Fig. 7. Retrieved dataset using MCR-Ridge which performs ridge regression on spectra (S). au: arbitrary units. (a) 
Retrieved spectra of the 3 unique components. (b-d) Pseudocolor relative concentration maps. (e) Pseudocolor total 
relative concentration map. All images are the same spatial dimensions (50 pixels x 100 pixels) with the coloration 
depicting concentration in arbitrary units. 
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Fig. 8. Retrieved dataset using MCR-Lasso which performs Lasso regression on concentration (C). au: arbitrary units. 
(a) Retrieved spectra of the 3 unique components. (b-d) Pseudocolor relative concentration maps. (e) Pseudocolor total 
relative concentration map. All images are the same spatial dimensions (50 pixels x 100 pixels) with the coloration 
depicting concentration in arbitrary units. 

Acknowledgments 

The author would like to acknowledge the contributions of the open-source community for fnding bugs, 

9 https://doi.org/10.6028/jres.124.018 

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018


           
                     

         

                 
           
 

                
         

                    
              

     
               

        

                 
        

                 
           

 
                

    
              
       

                     
         

                   
       

                 
        

                

                
  

                
 

                    
                  

       

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018 

Journal of Research of National Institute of Standards and Technology 

improving documentation, and hastening the adoption of pyMCR. Additionally, the author wishes to thank 
Nancy Lin and Young Jong Lee of NIST for their helpful discussion and critiques of the manuscript. 

7. References 

[1] Lawton WH, Sylvestre EA (1971) Self Modeling Curve Resolution. Technometrics 13(3):617. https://doi.org/10.2307/1267173 
[2] Felten J, Hall H, Jaumot J, Tauler R, De Juan A, Gorzsás A (2015) Vibrational spectroscopic image analysis of biological material 

using multivariate curve resolution-alternating least squares (MCR-ALS). Nature Protocols 10(2):217–240. 
https://doi.org/10.1038/nprot.2015.008 

[3] Zhang D, Wang P, Slipchenko MN, Ben-Amotz D, Weiner AM, Cheng JX (2013) Quantitative vibrational imaging by 
hyperspectral stimulated raman scattering microscopy and multivariate curve resolution analysis. Analytical Chemistry 
85(1):98–106. https://doi.org/10.1021/ac3019119 

[4] Ando M, Hamaguchi Ho (2013) Molecular component distribution imaging of living cells by multivariate curve resolution 
analysis of space-resolved Raman spectra. Journal of Biomedical Optics 19(1):011016. 
https://doi.org/10.1117/1.JBO.19.1.011016 

[5] Patel II, Trevisan J, Evans G, Llabjani V, Martin-Hirsch PL, Stringfellow HF, Martin FL (2011) High contrast images of uterine 
tissue derived using Raman microspectroscopy with the empty modelling approach of multivariate curve resolution-alternating 
least squares. The Analyst 136(23):4950–9. https://doi.org/10.1039/c1an15717e 

[6] Saurina J, Hernández-Cassou S (2001) Quantitative determinations in conventional flow injection analysis based on different 
chemometric calibration statregies: a review. Analytica Chimica Acta 438(1):335–352. 
https://doi.org/10.1016/S0003-2670(01)00862-5 

[7] Azzouz T, Tauler R (2008) Application of multivariate curve resolution alternating least squares (mcr-als) to the quantitative 
analysis of pharmaceutical and agricultural samples. Talanta 74(5):1201–1210. https://doi.org/10.1016/j.talanta.2007.08.024 
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