
Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

pyMCR: A Python Library for
MultivariateCurve Resolution Analysis
with Alternating Regression (MCR-AR)

Charles H. Camp Jr.

National Institute of Standards and Technology,
Gaithersburg, MD 20899 USA

charles.camp@nist.gov

Software DOI: https://doi.org/10.18434/M32064

Key words: chemometrics; endmember extraction; multivariate curve resolution; quantitative analysis; spectral unmixing.

Accepted: June 18, 2019

Published: June 24, 2019

https://doi.org/10.6028/jres.124.018

1. Summary

pyMCR is a new open-source software library for performing multivariate curve resolution (MCR)
analysis with an alternating regression scheme (MCR-AR). MCR is a chemometric method for elucidating
measurement signatures of analytes and their relative abundance from a series of mixture measurements,
without any knowledge of these values a priori. This software library, written in Python, enables users to
perform MCR analysis with their choice of error functions for minimization, constraints, and regressors.
Further, users can apply different constraints and regressors for signature and abundance calculations.
Finally, this library enables users to develop their own constraints, regressors, and error functions or import
them from existing libraries.

1 How to cite this article:
Camp CH (2019) pyMCR: A Python Library for MultivariateCurve Resolution Analysis with Alternating Regression

(MCR-AR). J Res Natl Inst Stan 124:124018. https://doi.org/10.6028/jres.124.018.

https://doi.org/10.6028/jres.124.018
charles.camp@nist.gov
https://doi.org/10.18434/M32064
https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

2. Software Specifcations

NIST Operating Unit Material Measurement Laboratory, Biosystems and Biomaterials Division, Bio-
materials Group

Category Chemometrics
Targeted Users Users who wish to separate signature (such as spectra) and relative concentration

from multiple measurements of mixtures with unknown or known signatures and
concentrations.

Operating Systems Cross-Platform
Programming Language Python 3.x with NumPy and SciPy. Scikit-learn is optional. Sphinx is necessary

to build local versions of the documentation.
Inputs/Outputs This software is a command-line tool; thus, users will need to write their own

code/methods to interface input data with pyMCR. The output is two NumPy
arrays: signature of components, and relative concentration of each component.

Documentation https://pages.nist.gov/pyMCR
Accessibility N/A
Disclaimer https://www.nist.gov/director/licensing

3. Background

Multivariate curve resolution (MCR), also known as self-modeling mixture analysis (SMMA), is a
chemometric method for analyzing data collected from mixtures, extracting the relative abundances and
signatures of the pure analytes [1] (a process known as “endmember extraction”). One of the most common
uses of MCR is for spectroscopy (and spectroscopic imaging) [2, 3], in which MCR is utilized to extract
spectra and [relative] concentrations from series of chemical mixture spectra. In this context, endmember
extraction is often referred to as “spectral unmixing”. MCR has been applied to a variety of spectroscopies
such as spontaneous and coherent Raman [2–5], infrared [2], ultraviolet-visible (UV-Vis) [6], near-infrared
(NIR) [7], mass spectrometry [8], and utilized for a myriad of applications from liquid chromatography [9]
and injection fow analysis [6] to biological/biomedical imaging [3–5].

Mathematically, the series of mixture measurements is described by a matrix D ∈ Um,n, where m is the
number of independent measurements, n is the number elements for a single measurement (e.g., spectral
frequency bins), and U indicates the universal set of numbers, which may be real, imaginary, or complex.
MCR aims to fnd a solution to (i.e. builds a model for):

D = CST + ε (1)

where C ∈ Um,p is the abundance matrix of p-analytes, S ∈ Un,p is the signatures of the p-analytes, and
ε ∈ Um,n describes noise, error, or aspects of the mixture not captured by the model. One should note that,
besides D, the user provides the number of analytes, p. The pyMCR package currently does not provide rank
estimation methods to solve for p, which is an active area of research in many felds [10].

This software library uses an iterative alternating regression (AR) scheme to fnd a solution to Eq. (1),
fxing C and performing multivariate multiple regression for S and vice versa, described mathematically as:

C[k+1] = argmin QC(C[k],S[k]) (2)
C[k]

S[k+1] QS(C[k+1],S[k])= argmin (3)
S[k]

2 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://pages.nist.gov/pyMCR
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

where k is the iteration number, and QC and QS are objective functions (for the C-solve and S-solve
iteration, respectively) to be minimized as will be described below. The iterations continue until a breaking
condition, LB, is met: a) the number of iterations meets a preset maximum, b) an error function (e.g.,
mean-squared error [MSE]) exceeds a defned value (or a number of iterations exceeding such a value), c)
the relative change of the error function after each iteration does not reach a certain value, or d) a new local
minimum for the error function is not met within a certain number of iterations. Algorithm 1 provides
pseudocode of the main pyMCR optimization routine, where in addition to the previously described
parameters, LC and LS are the constraint functions applied to C and S matrices (respectively). It should be
noted that the Q-objective functions are applied implicitly by selection of regression methods. For example,
ordinary least-squares (OLS) regression imparts an L2-norm (residual sum-of-squares) objective function,
which is constrained to non-negative values when selecting a non-negativity constrained least-squares
(NNLS) regressor. Other methods, such as ridge and Lasso regressions, also use an L2-norm in conjunction
with regularization terms.

Algorithm 1 Multivariate Curve Resolution - Alternating Regression (MCR-AR)

Inputs: C[0] or S[0]; D; Q; LC; LS; LB

1: for k ← 0 to kmax do
2: if k > 0 or S[0] inputted then
3: C[k+1] ← argmin Q(C[k],S[k])

C[k]

C[k+1] ← LC{C[k+1]}4: � �
C[·],S[·]5: if LB is TRUE then

6: break
7: end if
8: else

C[k+1] ← C[k]9:

10: end if
11: S[k+1] ← argmin Q(C[k+1],S[k])

S[k]

S[k+1] ← LS{S[k+1]}12: � �
C[·],S[·]13: if LB is TRUE then

14: break
15: end if
16: end for

It should be noted that the most common implementation of MCR uses an alternating least-squares
approach and is referred to as “multivariate curve resolution-alternating least squares” (MCR-ALS) [2, 11].
These implementations use either OLS or NNLS regressors. Other examples include MCR-LASSO, which
uses Lasso regression [12], or a penalized least-squares method (P-ALS) [13]. The pyMCR library, though,
is more general thus we will refer to its implementation as “multivariate curve resolution-alternating
regression” (MCR-AR). Additionally, as previously described, different regressors may be applied to
calculating C and S solutions. Of note, another popular analysis method, “non-negative matrix
factorization” (NMF) [14], is fundamentally the same as MCR when MCR applies non-negativity
constraints to all solutions.

3 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

4. Methods for Validation

All functions and methods in the pyMCR library are validated by test fles (i.e., unit testing, available in
the repository “pymcr/tests” directory). Currently, unit test coverage is > 98%.

5. Example Results

The following MCR implementations are meant to highlight some of the utility and fexibility of
pyMCR. The source code used to generate the following examples is available within a Jupyter notebook in
the “pymcr/Examples” folder of the repository. All examples use the following, simple dataset with each
spectrum being composed of a single Gaussian waveform with a constant offset as shown in Fig. 1 (a), and
concentration maps shown in Figs. 1 (b-d). The total concentration at each pixel as summed across the 3
components is 1 [Fig. 1 (e)], the so-called sum-to-one constraint (STO). Additionally, additive white
Gaussian noise is applied at a level of ≈2 % of maximum. The spectra and concentration maps are combined
as in Eq. (1) to form a hyperspectral image (HSI). D is formed by unraveling the spatial axes of the HSI.

0 3200

Frequency (au)

2000

4000

6000

8000

10000

In
te

n
s
it

y
(a

u
)

(a)
Spect ral

Com ponents

0

1

2

(b)
Com ponent 0

0.0

0.5

1.0

(c)
Com ponent 1

0.0

0.5

1.0

(d)
Com ponent 2

0.0

0.5

1.0

(e)
Total Conc.

0.9

1.0

1.1

Fig. 1. Simulated dataset. au: arbitrary units. (a) Spectra of the 3 unique components. (b-d) Pseudocolor relative
concentration maps. (e) Pseudocolor total relative concentration map (every pixel equals 1.0). All concentration maps
are the same dimensions (50 pixels x 100 pixels) with the coloration depicting relative concentration (no units).

MCR methods require an initial guess for either C or S. Various strategies exist, such as random
initialization, matrix decomposition [15], or expert input. In these examples, initial spectra (S[0]) are seeded
from the absolute values of the frst 3 right singular vectors from singular value decomposition (SVD), as
shown in Fig. 2.

4 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

1000 2000 3000
Frequency (au)

0

5000

10000

In
te

ns
ity

 (a
u)

Initial Spectra
Spectrum 0
Spectrum 1
Spectrum 2

Fig. 2. All examples are spectrally seeded with the absolute values of the frst 3 right singular vectors from SVD scaled
by the maximum of the input dataset. au: arbitrary units.

In this manuscript, 5 different MCR-AR models were constructed, all with the STO constraint applied to
C and non-negativity applied to C and S:

1. MCR-ALS: OLS regressors for S and C.

2. MCR-NNLS: NNLS regressors for S and C.

3. MCR-Gauss: MCR-NNLS with the additional constraint that spectra are Gaussian with a
constant-valued baseline.

4. MCR-Ridge: S solved via ridge regression and C via OLS.

5. MCR-Lasso: S solved by OLS and C solved via positive Lasso regression.

Note that the use of “MCR-Lasso” above is just a short descriptor of the model and not the same
implementation of MCR-Lasso provided in Ref. [12]. Each test serves to demonstrate different
opportunities for using pyMCR. MCR-Gauss, for example, demonstrates the use of ad hoc constraints that
can be constructed from an abstract “Constraint” class within pyMCR, in this case, using the LMFIT Python
library [16] to ft a Gaussian lineshape with a constant baseline to each retrieved spectrum at each iteration.
This is a potent method of enforcing a priori expert knowledge on the model as, in this case, one knows the
spectra are each single Gaussians. MCR-Ridge and MCR-Lasso demonstrate native support for using
regression methods directly imported from the scikit-learn Python library [17].

Under all tests, the error function was set to MSE and the breaking conditions were set to 1000
maximum iterations and a minimum change in MSE of 10−14. All other conditions, such as increases in
MSE, were disabled.

Figure 3 presents the results of the MCR-AR ftting using the aforementioned designs. Figs. 3 (a-c)
provide box plots calculated over all pixels and frequencies, which quantify the differences between the
actual (known) and retrieved values. For each box plot, the whiskers detail the full span of values (no
outliers), the flled box shows the interquartile range (IQR, 25th to 75th percentile), and the horizontal line
identifes the median. In Figs. 3 (a,b), MCR-Gauss has the most optimal median and IQR; though, it has
some larger extrema values than MCR-Lasso. The next most optimal methods are MCR-LASSO and
MCR-NNLS. In Fig. 3 (c), however, MCR-NNLS is closest to 0 in all metrics save maximum extremum,
with MCR-Lasso and MCR-Gauss being within 1 % for maximum extremum and IQR, and within 5 % for

5 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

minimum extremum. MCR-Lasso is within 5 % of MCR-NNLS for median value. Figure 3 (d) presents the
MSE at each iteration for each implementation. MSE is calculated within the MCR-AR method at each
iteration and refects the ability of the model to capture the data, i.e. ∑ |D − C[k](S[k])T |2. Calculating the
MSE of D with and without noise provides the “Ideal” level. MCR-ALS and MCR-Ridge terminated before
1000 iterations due to MSE changes of less than 10−14 per iteration. MCR-NNLS has the smallest MSE
≈1.1 % above ideal, followed by MCR-Lasso and MCR-Gauss at ≈1.8 % and ≈3.5 % above ideal,
respectively. Figure 3 (e) describes the computational time to calculate each iteration and Fig. 3 (f) shows
the number of iterations to reach the minimum MSE. To prevent terminating on local minima, there was no
breaking condition set for increasing MSE; thus, the MSE at the fnal iteration could be larger than at
previous iterations. pyMCR retains a copy of C and S matrices corresponding to the minimum error function
even if continuing to iterate. For completeness, retrieval results for all methods are provided in the Appendix
(Figs. 4-8).

−2000

0

2000

4000
(a)

−0.25

0.00

0.25

(b)

M
C
R
-A

LS

M
C
R
-N

N
LS

M
C
R
-G

au
ss

M
C
R
-R

id
ge

M
C
R
-L

as
so

−2000

0

2000

(c)

0 1000
2

N Iterations

105

106

M
S

E
 (

a
u

)

(d)

0.0

0.2

0.4

T
im

e
 p

e
r

It
e

r.
 (

s
)

(e)

M
C
R
-A

LS

M
C
R
-N

N
LS

M
C
R
G
au

ss

M
C
R
-R

id
ge

M
C
R
-L

as
so

0

250

500

750

N
 I

te
ra

ti
o

n
s

(f)

Δ
S

(a
u

)

A
c
tu

a
l-

 R
e

tr
.

Δ
C

(a
u

)

A
c
tu

a
l-

 R
e

tr
.

Δ
D

(a
u

)

A
c
tu

a
l-

 R
e

tr
.

MCR-ALS

MCR-NNLS

MCR-Gauss

MCR-Ridge

MCR-Lasso

Ideal

Fig. 3. Comparison of results across 5 MCR-AR models. Box plots comparing (a) per-analyte, per-frequency spectral
differences ΔS, (b) per-pixel, per-analyte relative concentration differences ΔC, and (c) per-pixel, per-frequency spectral
differences of the hyperspectral dataset ΔD. Box plot whiskers cover full range of values, box height spans IQR, and
horizontal black line is the median. (d) MSE at each iteration for each method, which describes the ability of a model to
capture the data. (e) The time per iteration (in seconds) for each method. (f) The number of iterations each method
performed before reaching a local minimum or a breaking condition.

6 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

Fig. 3 indicate that MCR-Gauss, MCR-NNLS, or MCR-Lasso are likely optimal methods across the
presented examples; though, MCR-NNLS and MCR-Gauss are signifcantly faster per iteration. Further
improvement to MCR-Lasso could be attained, potentially, with optimization of the regularization weighting
term (current value, α=1). It should be emphasized that the optimal method(s) in these examples are rather
particular to the dataset and the input spectral guesses. Improved initial spectra inputs could dramatically
alter the outcomes as could different types of input data.

6. Appendix

0 3200

Frequency (au)

0

2500

5000

7500

10000

In
te

n
s
it

y
(a

u
)

(a)
Spect ral

Com ponents

0

1

2

(b)
Com ponent 0

0.0

0.5

1.0

(c)
Com ponent 1

0.0

0.5

1.0

(d)
Com ponent 2

0.0

0.5

1.0

(e)
Total Conc.

0.9

1.0

1.1

MCR-ALS

Fig. 4. Retrieved dataset using MCR-ALS. au: arbitrary units. (a) Retrieved spectra of the 3 unique components. (b-d)
Pseudocolor relative concentration maps. (e) Pseudocolor total relative concentration map. All images are the same
spatial dimensions (50 pixels x 100 pixels) with the coloration depicting concentration in arbitrary units.

7 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

0 3200

Frequency (au)

0

2500

5000

7500

10000

12500

In
te

n
s
it

y
(a

u
)

(a)
Spect ral

Com ponents

0

1

2

(b)
Com ponent 0

0.0

0.5

1.0

(c)
Com ponent 1

0.0

0.5

1.0

(d)
Com ponent 2

0.0

0.5

1.0

(e)
Total Conc.

0.9

1.0

1.1

MCR-NNLS

Fig. 5. Retrieved dataset using MCR-NNLS. au: arbitrary units. (a) Retrieved spectra of the 3 unique components. (b-d)
Pseudocolor relative concentration maps. (e) Pseudocolor total relative concentration map. All images are the same
spatial dimensions (50 pixels x 100 pixels) with the coloration depicting concentration in arbitrary units.

0 3200

Frequency (au)

2500

5000

7500

10000

12500

In
te

n
s
it

y
(a

u
)

(a)
Spect ral

Com ponents

0

1

2

(b)
Com ponent 0

0.0

0.5

1.0

(c)
Com ponent 1

0.0

0.5

1.0

(d)
Com ponent 2

0.0

0.5

1.0

(e)
Total Conc.

0.9

1.0

1.1

MCR-Gauss

Fig. 6. Retrieved dataset using MCR-Gauss which enforces a single Gaussian ft with constant baseline per spectrum ft.
au: arbitrary units. (a) Retrieved spectra of the 3 unique components. (b-d) Pseudocolor relative concentration maps. (e)
Pseudocolor total relative concentration map. All images are the same spatial dimensions (50 pixels x 100 pixels) with
the coloration depicting concentration in arbitrary units.

8 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

0 3200

Frequency (au)

0

2500

5000

7500

10000

In
te

n
s
it

y
(a

u
)

(a)
Spect ral

Com ponents

0

1

2

(b)
Com ponent 0

0.0

0.5

1.0

(c)
Com ponent 1

0.0

0.5

1.0

(d)
Com ponent 2

0.0

0.5

1.0

(e)
Total Conc.

0.9

1.0

1.1

MCR-AR Ridge

Fig. 7. Retrieved dataset using MCR-Ridge which performs ridge regression on spectra (S). au: arbitrary units. (a)
Retrieved spectra of the 3 unique components. (b-d) Pseudocolor relative concentration maps. (e) Pseudocolor total
relative concentration map. All images are the same spatial dimensions (50 pixels x 100 pixels) with the coloration
depicting concentration in arbitrary units.

0 3200

Frequency (au)

0

2500

5000

7500

10000

In
te

n
s
it

y
(a

u
)

(a)
Spect ral

Com ponents

0

1

2

(b)
Com ponent 0

0.0

0.5

1.0

(c)
Com ponent 1

0.0

0.5

1.0

(d)
Com ponent 2

0.0

0.5

1.0

(e)
Total Conc.

0.9

1.0

1.1

MCR-Lasso

Fig. 8. Retrieved dataset using MCR-Lasso which performs Lasso regression on concentration (C). au: arbitrary units.
(a) Retrieved spectra of the 3 unique components. (b-d) Pseudocolor relative concentration maps. (e) Pseudocolor total
relative concentration map. All images are the same spatial dimensions (50 pixels x 100 pixels) with the coloration
depicting concentration in arbitrary units.

Acknowledgments

The author would like to acknowledge the contributions of the open-source community for fnding bugs,

9 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.6028/jres.124.018

Volume 124, Article No. 124018 (2019) https://doi.org/10.6028/jres.124.018

Journal of Research of National Institute of Standards and Technology

improving documentation, and hastening the adoption of pyMCR. Additionally, the author wishes to thank
Nancy Lin and Young Jong Lee of NIST for their helpful discussion and critiques of the manuscript.

7. References

[1] Lawton WH, Sylvestre EA (1971) Self Modeling Curve Resolution. Technometrics 13(3):617. https://doi.org/10.2307/1267173
[2] Felten J, Hall H, Jaumot J, Tauler R, De Juan A, Gorzsás A (2015) Vibrational spectroscopic image analysis of biological material

using multivariate curve resolution-alternating least squares (MCR-ALS). Nature Protocols 10(2):217–240.
https://doi.org/10.1038/nprot.2015.008

[3] Zhang D, Wang P, Slipchenko MN, Ben-Amotz D, Weiner AM, Cheng JX (2013) Quantitative vibrational imaging by
hyperspectral stimulated raman scattering microscopy and multivariate curve resolution analysis. Analytical Chemistry
85(1):98–106. https://doi.org/10.1021/ac3019119

[4] Ando M, Hamaguchi Ho (2013) Molecular component distribution imaging of living cells by multivariate curve resolution
analysis of space-resolved Raman spectra. Journal of Biomedical Optics 19(1):011016.
https://doi.org/10.1117/1.JBO.19.1.011016

[5] Patel II, Trevisan J, Evans G, Llabjani V, Martin-Hirsch PL, Stringfellow HF, Martin FL (2011) High contrast images of uterine
tissue derived using Raman microspectroscopy with the empty modelling approach of multivariate curve resolution-alternating
least squares. The Analyst 136(23):4950–9. https://doi.org/10.1039/c1an15717e

[6] Saurina J, Hernández-Cassou S (2001) Quantitative determinations in conventional flow injection analysis based on different
chemometric calibration statregies: a review. Analytica Chimica Acta 438(1):335–352.
https://doi.org/10.1016/S0003-2670(01)00862-5

[7] Azzouz T, Tauler R (2008) Application of multivariate curve resolution alternating least squares (mcr-als) to the quantitative
analysis of pharmaceutical and agricultural samples. Talanta 74(5):1201–1210. https://doi.org/10.1016/j.talanta.2007.08.024

[8] Peré-Trepat E, Tauler R (2006) Analysis of environmental samples by application of multivariate curve resolution on fused high-
performance liquid chromatography–diode array detection mass spectrometry data. Journal of Chromatography A
1131(1):85–96. https://doi.org/10.1016/j.chroma.2006.07.047

[9] Tauler R, Barceló D (1993) Multivariate curve resolution applied to liquid chromatography—diode array detection. TrAC Trends
in Analytical Chemistry 12(8):319–327. https://doi.org/10.1016/0165-9936(93)88015-W

[10] Bioucas-dias JM, Nascimento JJMP, Bioucas Dias JM, Nascimento JJMP (2008) Hyperspectral Subspace Identification. IEEE
Transactions on Geoscience and Remote Sensing 46(8):2435–2445. https://doi.org/10.1109/TGRS.2008.918089

[11] Jaumot J, Gargallo R, De Juan A, Tauler R (2005) A graphical user-friendly interface for MCR-ALS: A new tool for multivariate
curve resolution in MATLAB. Chemometrics and Intelligent Laboratory Systems 76(1):101–110.
https://doi.org/10.1016/j.chemolab.2004.12.007

[12] Pomareda V, Calvo D, Pardo A, Marco S (2010) Hard modeling multivariate curve resolution using lasso: Application to ion
mobility spectra. Chemometrics and Intelligent Laboratory Systems 104(2):318–332.
https://doi.org/10.1016/j.chemolab.2010.09.010

[13] Gemperline PJ, Cash E (2003) Advantages of soft versus hard constraints in self-modeling curve resolution problems. Alternating
least squares with penalty functions. Analytical Chemistry 75(16):4236–4243. https://doi.org/10.1021/ac034301d

[14] Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–91. https://
doi.org/10.1038/44565

[15] Boutsidis C, Gallopoulos E (2008) SVD based initialization: A head start for nonnegative matrix factorization. Pattern
Recognition 41(4):1350–1362. https://doi.org/10.1016/j.patcog.2007.09.010

[16] Newville M, Stensitzki T, Allen DB, Ingargiola A (2014) LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for
Python. https://doi.org/10.5281/zenodo.2620617

[17] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12:2825–2830. Available at
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

About the author: Charles H. Camp Jr. is an electrical engineer within the Biomaterials Group of the
Biosystems and Biomaterials Division at NIST. His primary research focuses on the development of
biological and chemical imaging modalities using nonlinear optics, primarily broadband coherent
anti-Stokes Raman scattering (BCARS) microspectroscopy. The National Institute of Standards and
Technology is an agency of the U.S. Department of Commerce.

10 https://doi.org/10.6028/jres.124.018

https://doi.org/10.6028/jres.124.018
https://doi.org/10.2307/1267173
https://doi.org/10.1038/nprot.2015.008
https://doi.org/10.1021/ac3019119
https://doi.org/10.1117/1.JBO.19.1.011016
https://doi.org/10.1039/c1an15717e
https://doi.org/10.1016/S0003-2670(01)00862-5
https://doi.org/10.1016/j.talanta.2007.08.024
https://doi.org/10.1016/j.chroma.2006.07.047
https://doi.org/10.1016/0165-9936(93)88015-W
https://doi.org/10.1109/TGRS.2008.918089
https://doi.org/10.1016/j.chemolab.2004.12.007
https://doi.org/10.1016/j.chemolab.2010.09.010
https://doi.org/10.1021/ac034301d
https://doi.org/10.1038/44565
https://doi.org/10.1016/j.patcog.2007.09.010
https://doi.org/10.5281/zenodo.2620617
http://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://doi.org/10.6028/jres.124.018

	Summary
	Software Specifications
	Background
	Methods for Validation
	Example Results
	Appendix
	References

