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Abstract

We compute the vapor-liquid critical coordinates of a model of helium in which

nuclear quantum effects are absent. We employ highly accurate ab initio pair and three-

body potentials and calculate the critical parameters rigorously in two ways. First, we

calculate the virial coefficients up to the seventh and find the point where an isotherm

satisfies the critical conditions. Second, we use Gibbs Ensemble Monte Carlo (GEMC)

to calculate the vapor-liquid equilibrium, and extrapolate the phase envelope to the

critical point. Both methods yield results that are consistent within their uncertainties.
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The critical temperature of “classical helium” is 13.0 K (compared to 5.2 K for real

helium), the critical pressure is 0.93 MPa, and the critical density is 28.4 mol·L−1, with

expanded uncertainties (corresponding to a 95% confidence interval) on the order of

0.1 K, 0.02 MPa, and 0.5 mol·L−1, respectively. The effect of three-body interactions on

the location of the critical point is small (lowering the critical temperature by roughly

0.1 K), suggesting that we are justified in ignoring four-body and higher interactions in

our calculations. This work is motivated by the use of corresponding-states models for

mixtures containing helium (such as some natural gases) at higher temperatures where

quantum effects are expected to be negligible; in these situations, the distortion of

the critical properties by quantum effects causes problems for the corresponding-states

treatment.

Keywords: critical parameters; Gibbs ensemble simulation; helium; nuclear quantum

effects; thermodynamic properties; virial coefficients

Introduction

Helium is an important fluid in science and technology. Its primary terrestrial source is in

certain natural gases, from which it is extracted. It is therefore necessary to include helium

in thermophysical property models for natural gas. Unfortunately, helium is notoriously dif-

ficult to include in mixture equation-of-state (EOS) models or corresponding-states models.

The reason is that these models combine the critical parameters for each pure component

(typically the critical temperature, Tc, and critical pressure, Pc; sometimes the critical den-

sity ρc or the critical compressibility factor Zc ≡ Pc

ρcRTc
is also used, where R is the molar

gas constant) to produce a thermodynamic surface for the mixture. For helium, the critical

point is at such a low temperature (Tc is approximately 5.2 K) that it is significantly altered

by quantum effects. These quantum effects largely vanish at the higher temperatures at

which gas production and processing take place. Therefore, mixture models that use the

measured critical parameters of helium tend to require extra adjustable parameters to make
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up for this distortion.

This problem has led researchers to develop “effective” critical parameters that can be

used for helium in mixture calculations. The first such attempt appears to be that of New-

ton.1 The best-known approach in chemical engineering thermodynamics was developed by

Prausnitz and coworkers,2,3 who developed a set of temperature-dependent effective critical

parameters for hydrogen, helium, and neon.

Recently, motivated by the inconvenience of temperature-dependent critical parameters

for engineering calculations, Rowland et al.4 developed a single set of effective critical con-

stants for helium for use in calculations for natural gas mixtures. The new parameters (criti-

cal temperature Tc = 11.73 K, critical pressure Pc = 0.568 MPa) were obtained by examining

mixture phase-equilibrium data for helium with methane, as modeled by the Peng-Robinson

EOS, and were shown to improve Peng-Robinson predictions for other helium-containing

mixtures. It is not yet clear whether these effective parameters are useful only in the context

of the Peng-Robinson equation, or whether they might also be useful for other approaches

such as the GERG-2008 EOS5 that is commonly used for natural gas. The possible depen-

dence of the effective critical parameters on the EOS used may limit the applicability of the

approach of Rowland et al.4

We take a complementary approach to this problem by determining from molecular prop-

erties what the critical parameters would be for hypothetical “classical” helium. While in the

past such an approach would have had to rely on empirical mapping of experimental data for

helium onto a non-quantum fluid such as argon (which is approximately what Gunn et al.2

did over 50 years ago), today the development of highly accurate two-body6 and three-body7

intermolecular potentials for helium allows more rigorous calculation of the classical critical

point.

In this work, we will examine three approaches to calculating the critical constants of

classical helium from the intermolecular forces. First, we will briefly examine simple methods

based only on the pair potential. Second, we will use rigorous calculations of the virial
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coefficients, including three-body contributions but not nuclear quantum effects, to estimate

the critical point. Third, we will estimate the critical point from molecular simulation

of the phase equilibria using Gibbs Ensemble Monte Carlo (GEMC). In addition, we will

perform the virial and the molecular simulation calculations for the case where only two-

body interactions are considered; this will tell us the relative importance of the three-body

interactions. If the effect of the three-body interactions is small, this will provide justification

for ignoring four-body and higher effects.

Potentials

Przybytek et al.6 recently reported a state-of-the-art pair potential for helium that improves

on the already excellent potential of Cencek et al.8,9 It incorporates highly accurate results

not only for the potential energy in the Born-Oppenheimer (BO) approximation, but also for

the most important post-BO effects (adiabatic, relativistic, and quantum electrodynamics).

The potential of Cencek et al. was used to obtain values for the second virial coefficient

B2(T ) and for the low-density limits of the viscosity and thermal conductivity with much

smaller uncertainty than any existing experiment.9

However, pair potentials alone cannot quantitatively describe real fluids except at low

densities. For condensed phases, often even the addition of three-body forces is not enough

for quantitative accuracy; for example, Schwerdtfeger et al. showed that four-body forces

were required for accurate description of solid argon.10 However, for smaller, less polarizable

species, there is reason to think that three-body forces are sufficient. Schwerdtfeger and

Hermann showed that two-and three-body forces could describe solid neon.11 For helium,

three-body energies are on the order of a percent or less of the two-body contributions7

and make only a small (on the order of 1%) contribution to the third virial coefficient

B3(T ),12 suggesting that the multibody expansion converges quickly and that four-body

and higher energies will be negligible. We use the three-body potential developed at the full-
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configuration-interaction (FCI) level by Cencek et al.7 The uncertainty of the three-body

potential, which accounts for nonadditivity in both the attractive and repulsive forces, is

estimated by the authors to be 2%.

The uncertainties reported herein are only numerical uncertainties associated with the

virial calculations and molecular simulations themselves,13 i.e., they do not account for the

uncertainties in the underlying two- or three-body potentials. Because of the extremely

small uncertainty of the pair potential,6 we expect the uncertainties in the virial coefficients

to be dominated by the uncertainty in the three-body potential. By contrast, the uncer-

tainties that arise from the two- and three-body potentials are likely negligible compared

with the relatively large GEMC statistical uncertainties and uncertainties associated with

extrapolation to the critical point.

Calculations Based on the Pair Potential

Before we turn to more rigorous calculations of the critical properties based on the pair and

three-body potentials, we examine three simpler methods that use only the pair potential.

Because of the small magnitude of multibody forces in helium, it is plausible that simple

pair-based calculations will produce reasonable results. Perhaps the simplest approach is

to map helium onto the well-known Lennard-Jones (LJ) model. In their thorough study

of the LJ fluid critical properties, Dinpajooh et al.14 reported reduced critical parameters

T ∗c ≡ TckB/ε = 1.3128(16), P ∗c ≡ Pcσ
3/ε = 0.1274(13), and ρ∗c ≡ ρcσ

3 = 0.316(4) (quoting

k = 2 expanded uncertainties), where ε and σ are the LJ energy and size parameters,

respectively, and kB is the Boltzmann constant. For the effective LJ parameters of helium,

we adopt the values from a recent evaluation by Weaver and Alexeenko:15 ε/kB = 9.8725 K

and σ = 0.25238 nm. This produces Tc = 12.96 K, Pc = 1.08 MPa, and ρc = 32.4 mol·L−1.

A second approach involves matching the classical second virial coefficient B2(T ) to that

of a “simple” fluid (acentric factor ω = 0) in the widely used Pitzer acentric factor system.
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The function B2(T ) for such fluids was described by Tsonopoulos.16 A convenient way to

estimate the critical temperature is given by the Boyle temperature where B2 crosses zero;

this is at a reduced temperature T/Tc of approximately 2.7 in the Tsonopoulos correlation.

The high-accuracy pair potential of Przybytek et al.6 produces a classical Boyle temperature

just below 34 K, resulting in Tc = 12.75 K. The critical pressure can then be estimated by

adjusting Pc until the B2(T ) function of Tsonopoulos matches that calculated from the pair

potential. This is somewhat subjective since the curves do not have exactly the same shape;

we estimated Pc = 0.94 MPa.

Finally, we can employ the approach of Song and Mason,17 who used an EOS they had

successfully developed for nonpolar fluids18 that requires only the pair potential. They used

an early, less accurate helium potential,19 and unfortunately they did not report the critical

parameters for their EOS. We therefore repeated their calculations with the potential of

Przybytek et al.6 To find the critical point, we calculated isotherms P (ρ) and found the

isotherm that had a horizontal inflection point. The resulting critical point is Tc = 13.05 K

and Pc = 0.91 MPa.

All three methods based on the pair potential give relatively consistent results, with

critical temperatures between 12.75 K and 13.05 K and critical pressures between 0.91 MPa

and 1.08 MPa. These rough estimates provide a range of expected values for the more

rigorous methods that are presented in the following sections.

Calculation from Virial Expansion

Virial coefficients

The virial equation of state20 expresses the pressure as a power series in the molar density:

P

kBT
= ρ+B2(T )ρ2 +B3(T )ρ3 + . . . (1)
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The coefficients Bn are the virial coefficients and depend only on temperature. In practice

the series is truncated at order n (that is, retains terms up to and including Bnρ
n), and

we designate the nth-order virial equation of state as VEOSn. The virial coefficients can

be expressed rigorously for a given molecular model in terms of a so-called cluster integral,

which we write generally as:

Bn =
1− n
n!

∫
fB (rn) drn−1 (2)

Here, fB is a function of the configuration of the n atoms, as indicated by rn, and the

integral is performed over the coordinates of n−1 of them, while one atom defines the origin

in an otherwise infinite volume. The fB function is often expressed as a sum of biconnected

graphs with bonds representing the Mayer f -function; however, this formulation applies only

to pairwise additive potentials and a more general expression is needed when multibody

interactions are relevant, such as the present case. Regardless, fB can be computed using

the algorithm of Wheatley,21 because it applies also to multibody potentials.22 Normally,

one must apply corrections to Eq. (2) to capture nuclear quantum effects. At not-too-

low temperatures, this can be done using a semi-classical approximation,23 but at the low

temperatures of interest to the critical point, path-integral methods are needed. Coefficients

Bn have been computed this way and reported for n = 2−5,12,24–26 but of course the present

study explicitly excludes quantum effects, so path-integral calculations were not performed

in this work.

The coefficient B2 and the additive component of B3 were computed according to Eq.

(2), using quadrature and Fourier transforms respectively, for the pair potential specified by

Przybytek et al.6 These coefficients were evaluated at temperatures from 10 K to 16 K in

steps of 0.1 K with a tolerance of 10−8 (Å3/molecule)n−1, where 1 Å ≡ 10−10 m. They were

then fit using a polynomial in β ≡ 1/kBT .

All other coefficients—that is, all coefficients excluding B2 and the additive component of
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B3—were evaluated via Mayer sampling Monte Carlo (MSMC)27 with overlap sampling.28,29

The integrand in Eq. (2) was computed by employing the recursion developed by Wheatley.21

This recursion enables the evaluation of the temperature derivatives of the virial coefficients

on-the-fly for almost no added computational cost.22

In an attempt to improve the efficiency of the calculations, the reported values for B4

to B7 were computed in stages. As mentioned above, the targeted coefficient Bn is based

on the 2017 pair potential of Przybytek et al.6 with three-body interactions given according

to Cencek et al.;7 here we denote this coefficient using the notation Bn[e, 3]. Rather than

compute this directly, we first compute the coefficient Bn[c, 2], which does not include the

three-body potential, and which describes pair interactions not with the computationally

expensive (denoted e) 2017 potential,6 but using the computationally cheap (denoted c)

potential previously given in 2010 by Przybytek et al.8 with more detail provided by Cencek

et al.9 From this starting point, we arrive at Bn[e, 3] by adding results from three more

cluster-integral calculations:

Bn[e, 3] = Bn[c, 2] + ∆Ba
n + ∆Bb

n + ∆Bc
n (3a)

where the differences are defined as follows. First:

∆Ba
n = Bn[e, 2]−Bn[c, 2] (3b)

This quantity is for coefficients based on only the pair potentials, differencing the computa-

tionally expensive and cheap versions. Second:

∆Bb
n = Bn[c, 3]−Bn[c, 2] (3c)

This is the contribution of the non-additive potential7 to the virial coefficient, based on the
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cheap8,9 pairwise model. Finally,

∆Bc
n = {Bn[e, 3]−Bn[e, 2]} − {Bn[c, 3]−Bn[c, 2]} (3d)

This is the non-additive contribution differenced between the computationally expensive and

cheap pair models. The advantage of computing the coefficient Bn[e, 3] this way instead of

directly is that each of the terms given by Eqs. (3b), (3c), and (3d) is relatively small, so

they can each be computed with less sampling to achieve a given precision. Each term is

evaluated in a single MSMC calculation according to Eq. (2), but with an integrand that is

the respective difference in fB functions. In practice, we find that building up to the expensive

2017 pair potential from the cheap 2010 version has limited value for this application—for

B4 the computational savings are about a factor of 2, while for B7 the approach does not

provide any improvement in efficiency. This is because the largest part of the calculation

time is spent on the Wheatley recursion, which is performed on a configuration after the

potential function has been used.

Calculations were run at 10 K, 13 K, and 16 K and yielded the coefficient along with its

first three temperature derivatives. The differences ∆Ba
n and ∆Bc

n were run for 106 steps and

are very precise. The coefficients Bn[c, 2] were run for 1010 steps for n = 4, 109 steps for n =

5 and 6, and 108 steps for n = 7, while ∆Bb
n were run for 109 steps for n = 3 and 4, and 108

steps for n = 5, 6, and 7. Both Bn[c, 2] and ∆Bb
n were found to be given with significantly

less precision than ∆Ba
n and ∆Bc

n, so additional sampling was performed, allocating effort

in amounts that depend on the ratios of their respective difficulties (D ≡ ut1/2, where u is

the uncertainty obtained with computational effort t).30 All contributions to Bn[e, 3] were

combined according to Eq. (3) and fit using a polynomial in Y ≡ exp(a/kBT )−1, where a is a

fitting parameter (along with the polynomial coefficients). Uncertainties in the fits have been

obtained by bootstrapping, based on uncertainties in the virial coefficients (which themselves

are obtained as the standard deviation of the mean of uncorrelated block averages). All virial
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coefficient values and fitting coefficients are recorded in the Supporting Information.

Critical properties

The VEOS can be applied to estimate the critical point by searching for the temperature and

density where Eq. (1) exhibits a positive horizontal inflection point, i.e., dP/dρ = d2P/dρ2 =

0 and d3P/dρ3 > 0 at Tc, ρc. One can do this for increasing order of the series, i.e., using

equation of state VEOSn, and observe whether the estimates of the critical properties appear

to converge. We found31,32 that for the LJ potential, this approach yields values of Tc and Pc

that are in very good agreement with molecular simulation; effective convergence appears to

occur at n = 6 (see Fig. 1). However, the critical density given this way is systematically too

small. It is likely that this is a consequence of the singular nature of the critical point, which

cannot be described using an analytical EOS. The critical isotherm approaches the critical

density as P ∼ Pc + A (ρc − ρ)δ, where the critical exponent δ is approximately 4.8.33,34

As a remedy, we formulated in Reference 35 an approximant that captures the non-analytic

approach to the critical point while providing behavior consistent with the virial series at low

density.35 The critical density can be computed for a given Tc and Pc using the approximant,

and in application to the LJ model we obtained35 a value for ρc this way that is consistent

with the best estimates based on molecular simulation.

Critical properties determined from VEOSn, n = 3 to 7, are presented in Table 1. The

table includes values of the critical density both from the inflection-point calculation and

from the approximant; all approximant values of ρc use Tc and Pc as given by VEOS6. As

shown in Fig. 1, the critical temperature appears to be converging with increasing series

order, approaching a value between about 13.0 K and 13.5 K. The effect of including B7 is

to add more noise than to improve convergence—the coefficient is going through zero in the

close vicinity of Tc, so it is difficult to determine a value that is as precise as its effect on

Tc. In retrospect, we might have obtained a more useful result by evaluating the coefficient

within a narrower range about the estimated Tc.
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Additionally, in Table 1 and Fig. 1 we include calculations of the critical properties for

the helium model using only the pairwise-additive contribution, omitting the three-body po-

tential. We see that the effect of the non-pairwise contributions is to lower Tc by about 0.1 K,

suggesting that the three-body potential is effectively repulsive at these temperatures. This

is consistent with the finding of Garberoglio and Harvey12 that the three-body contribution

to B3 is positive below approximately 170 K.

Extrapolation to n→∞

The oscillatory form of the critical properties with 1/n makes it difficult to extrapolate to

1/n → 0 in a methodical or precise way. However, the similarity of the helium behavior to

that exhibited by the LJ model suggests that we can leverage the known behavior of the

LJ model32,36,37 to aid with the extrapolation of the helium VEOS results. In particular,

if we assume that THe
c (n)/T LJ

c (n) (where the n argument indicates the property computed

using VEOSn) has regular behavior with 1/n, we can extrapolate this ratio to 1/n→ 0 and

multiply by the critical temperature of LJ known from molecular simulation38,39 (designated

T LJ
c (Sim)) to estimate the helium critical temperature. This is demonstrated in Fig. 1, with

the result included in Table 1.

We are wary of extrapolating a quantity that we do not know to have a particular

behavior in the limit of n → ∞, and more specifically we do not feel justified in applying

an extrapolation any more complicated than a linear form. A χ2 analysis indicates that a

linear fit that includes n = 3 does not match the values to within their uncertainties, so

we omit the n = 3 point from the fit. The n = 6 and n = 7 values do not fit particularly

well, but they have larger uncertainties, and a bootstrap analysis indicates that they have

significant correlation with each other (see Supporting Information). When these factors are

considered, the data for n = 4 to 7 can (barely, p = 0.02) be described via a straight-line fit,

which we extrapolate to estimate the critical temperature for 1/n→ 0.

The Supporting Information includes corresponding plots for the critical pressure and
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density, along with other details of the analysis. The extrapolated values are included in

Table 1. We find that Tc based on the two-body potential alone cannot be similarly fit within

uncertainties by a straight line, so we do not report 1/n→ 0 extrapolated properties for this

case.

He LJ VEOS

He 2-body VEOS

He (2+3)-body VEOS

(
Tc

He (n)

Tc
LJ (n)

)Tc
LJ(Sim)

8 7 6 5 4 3∞

12.5

13.0

13.5

14.0

14.5

n

T
c
(K
)

Figure 1: Critical temperature as given by the VEOSn as a function of series order n
(presented against 1/n, so the converged value would be represented by the y-intercept).
Values are shown for the classical helium model (up to n = 7) both with and without the
three-body potential, and for the Lennard-Jones (LJ) model (up to n = 8), using virial
coefficients reported in previous work,32 and using LJ size and energy parameters15 ε/kB =
9.8725 K and σ = 0.25238 nm. The dashed line is a linear fit of the black squares (excluding
n = 3), which is the LJ-assisted extrapolation construct described in the text; the n → ∞
extrapolated value is shown by the open black square. Error bars represent 95% confidence
intervals, which are approximately equivalent to an expanded uncertainty with coverage
factor k = 2.
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Table 1: Critical properties based on virial coefficients to the indicated order n. ρac is based
on a critical isotherm approximant using Tc and Pc as given here for n = 6. The n = ∞
predictions for Tc, Pc and ρc are based on Lennard-Jonesian extrapolation as described in the
text. Numbers in parentheses indicate the expanded uncertainty (95% confidence) in the last
digit(s) of the tabulated value; these errors are propagated from the stochastic uncertainty in
the virial coefficients, and do not include any effects of inaccuracy in the two- and three-body
potentials.

(2+3)-body two-body
n Tc / K Pc / MPa ρc / mol·L−1 ρac / mol·L−1 Tc / K Pc / MPa ρc / mol·L−1 ρac / mol·L−1

3 14.09240(8) 1.23325(2) 31.5758(4) 33(1) 14.36(0) 1.30(0) 32.78(0) 33(1)
4 12.7416(4) 0.86147(10) 23.142(2) 32(2) 12.8847(4) 0.88633(10) 23.476(2) 32(1)
5 12.682(6) 0.8464(16) 22.73(4) 31(2) 12.794(6) 0.8632(15) 22.86(4) 31(1)
6 13.08(9) 0.97(3) 28(6) 31(2) 13.19(7) 0.98(3) 28(4) 31(1)
7 13.2(2) 1.02(8) 29(3) 30(2) 13.4(2) 1.06(7) 29(2) 30(2)
∞ 13.00(4) 0.928(13) 28.3(4) - - - - -

Calculation from Gibbs Ensemble Simulation

Simulation methods

Gibbs Ensemble Monte Carlo (GEMC) is a common, fast, and simple molecular simulation

approach for computing vapor-liquid phase equilibria with a given potential.40 We perform

GEMC simulations at reduced temperatures (Tr ≡ T/Tc) between approximately 0.7 and

0.95. These subcritical simulation results are subsequently extrapolated to the critical point,

as described in the next section. A summary of the GEMC simulation specifications is

provided in Table 2.

Table 2: Gibbs Ensemble Monte Carlo simulation specifications.

Number of molecules, N 800, 1400, 2800
Temperature, T (K) 9.0 to 12.5 (∆T = 0.5)

Long-range cut-off distance, rcut (nm) 1.0, 1.4, 1.8
Short-range cut-off distance, rinter (nm) 0.15

Number of replicates, Nreps 4
Pre-equilibration Monte Carlo steps, MCSpre 1×105

Equilibration Monte Carlo steps, MCSeq 3×107

Production Monte Carlo steps, MCSprod 1×108

Probability of translation move, Prtrans 0.877
Probability of volume move, Prvol 0.003
Probability of swap move, Prswap 0.12
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GEMC simulations couple two simulation boxes that correspond to the vapor and liquid

phases. Three types of Monte Carlo moves are required to perform GEMC simulations of a

single-site molecule that lacks rotational and torsional degrees of freedom, such as helium.

Translation, volume, and particle swap Monte Carlo moves ensure thermal, pressure, and

chemical equilibrium between the two phases, respectively. Translation moves displace one of

the N particles (helium atoms) in a random direction by a random fraction of the prescribed

maximum displacement. Volume moves exchange volume between the two boxes, where the

magnitude of the volume exchange is a random fraction of the prescribed maximum volume

change. Particle swap moves randomly delete a particle from one of the two boxes (chosen

at random) and insert that particle into the other box at a random position.

All simulations are performed utilizing a customized form of the Cassandra v1.2 open-

source parallelized Monte Carlo package.41 Extension of the Cassandra code was necessary

to implement the two- and three-body potentials. This was accomplished by first converting

the Fortran77 code (available in References 7 and 8) for computing energies and forces into

Fortran90 modules compatible with Cassandra. Furthermore, because the native Cassandra

code stores an N × N pair-interactions matrix to avoid recomputing all interactions for

translation and swap moves, our three-body extension of Cassandra stores an N × N × N

triplet-interactions matrix.

Simulations are divided into three stages. First, the liquid and vapor boxes are treated

independently as de-coupled NVT (constant number of molecules, volume, and temperature)

systems. Only translation moves are proposed during this pre-equilibration stage. This is

followed by an equilibration stage, where all three types of moves are proposed, but the size

of the maximum translation displacement and the maximum volume exchange is adjusted to

meet a predetermined target acceptance rate of 50% (as prescribed by the native Cassandra

code). This is followed by the production stage, where the sizes of the maximum translation

displacement and maximum volume exchange are held constant. The number of Monte Carlo

steps (MCS) for the pre-equilibration, equilibration, and production stages are recorded in
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Table 2.

The probabilities (Pr) used during the equilibration and production stages for attempt-

ing a translation, volume, and particle swap Monte Carlo move are also given in Table 2.

The low probability for attempting expensive volume moves is especially important for the

simulations that include three-body effects, because volume moves require that the positions

of all particles be scaled and the energies recomputed “from scratch.” However, our Prvol

value is still consistent with the state-of-the-art GEMC protocol of 1 accepted volume move

per N Monte Carlo moves (for N = 800).42

Four replicate simulations (Nreps = 4) are performed at each temperature. To ensure

independence between replicates, the entire sequence of pre-equilibration, equilibration, and

production stages is repeated for each replicate. Replicate simulations are obtained by utiliz-

ing different random seeds for the initial configuration, move proposals, and move acceptance.

The initial simulation box configurations are constructed using Cassandra’s internal ini-

tialization function. The initial densities for the liquid and vapor boxes are obtained from

previous exploratory GEMC simulations. The initial numbers of molecules in each box

are such that between 10% and 20% are in the vapor box, consistent with recent GEMC

recommended practice.14,42

Analytic long-range tail corrections are included for the two-body potential for both

energy and pressure, while long-range three-body interactions are neglected. Both the two-

and three-body potentials utilize the same cut-off distance (rcut). A three-body interaction

is considered to be within the cut-off only when each atom of the triad is within rcut of the

other two atoms, i.e., rij < rcut, rik < rcut, and rjk < rcut. For computational reasons, the

three-body simulations only utilize the shorter cut-off distance of 1.0 nm.

An internal cut-off (rinter) of 0.15 nm is also employed to improve computational efficiency

by automatically rejecting any move that results in near overlap between two atoms, i.e., a

proposed MC move is rejected when any pair distance is less than rinter. Each attempted

particle swap move considers 12 independent target locations in parallel, where a relatively
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short long-range cut-off is utilized (rcut = 0.65 nm) when computing the corresponding

Rosenbluth weights.

To reduce computational time, three-body forces are not included in the virial pressure

calculation. This simplification does not affect the vapor-liquid coexistence densities, be-

cause the GEMC acceptance criteria for translation, volume, and particle swap moves do

not depend on pressure. Previous studies suggest that three-body repulsive and dispersive

terms essentially cancel out in the vapor phase, such that excluding three-body forces should

not significantly affect the vapor pressure calculations either.43,44 We verified this by using

VEOS6 (with three-body terms included in calculating the virial coefficients) to indepen-

dently calculate the pressure at the GEMC coexisting vapor densities; the differences were

much smaller than the uncertainty of the simulations (see Supporting Information). There-

fore, any discrepancies between the two-body and (2+3)-body P sat values should instead be

attributed to differences in the vapor densities.

Reference 14 demonstrates that finite-size effects are negligible for GEMC simulations

of the Lennard-Jones fluid at near-critical conditions for systems of 800 particles and rcut =

3.5σ. To verify that their findings apply to our system of interest, we also perform GEMC

simulations with 800, 1400, and 2800 helium atoms and rcut = 1 nm, rcut = 1.4 nm, and

rcut = 1.8 nm. These distances correspond to approximately 4σ, 5.5σ, and 7σ, where σ

is the distance at which the helium two-body energy is zero (σ ≈ 0.26 nm). Because the

helium two-body potential decays to zero at a faster rate than the Lennard-Jones potential,

the magnitude of the long-range contribution to energy and pressure is even less than that

of the LJ potential for the same reduced cut-off distance.

Note that the GEMC simulations of the Lennard-Jones fluid performed in Reference 14

utilized larger system sizes (e.g., 5500), longer cut-offs (e.g., 8σ), and longer simulations

(e.g., equilibration and production periods of 8.8×108 and 5.3×109 MCS, respectively) than

those specified here. The primary reason for this difference is that the two- and three-body

potentials utilized in the present study are significantly more expensive than the Lennard-
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Jones potential. Furthermore, Reference 14 focuses on simulations at temperatures between

0.95Tc and Tc. By limiting our study to subcritical state points, finite-size effects are less

significant and longer simulations are unnecessary.

To validate the two-body results obtained with the modified Cassandra code, additional

two-body simulations are also performed with the native tabulated potential in the Towhee

MCCCS code version 7.2.0.45 Results obtained with Cassandra and Towhee are statistically

indistinguishable (see Supporting Information). The Cassandra and Towhee simulations uti-

lize the L’Ecuyer46 and DX-1597-2-747 pseudo-random number generators, respectively. All

necessary files to replicate the Cassandra simulations are provided as Supporting Information

and at https://github.com/ramess101/Helium ab initio.

Post-simulation analysis

The critical temperature and critical density are obtained indirectly from GEMC results

by simultaneously fitting the saturated liquid densities (ρsatliq ) and saturated vapor densities

(ρsatvap) to the law of rectilinear diameters and density scaling law:48,49

ρr ≡
ρsatliq + ρsatvap

2
= ρc + A(Tc − T ) (4)

ρs ≡ ρsatliq − ρsatvap = B(Tc − T )β (5)

where ρr is the rectilinear diameters density, ρs is the scaling density, ρc, Tc, A, and B are

fitting parameters, and β is assigned to a constant value of 0.355, which is a typical “effective”

critical exponent when covering a wider range than the immediate critical region.50

The critical pressure is obtained by fitting the GEMC saturated vapor pressures (P sat)

to the Antoine equation48

log10

(
P sat

1 MPa

)
= a0 +

a1
a2 + T sat

(6)
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where ai are fitting constants, a1 and a2 have units of K, and a1 is constrained to be negative.

Pc is equal to P sat in Eq. 6 evaluated at T sat = Tc with the optimal values of ai.

Because the uncertainties in ρsatliq , ρsatvap, and P sat increase near the critical point, Eqs. 4,

5, and 6 are fit using a weighted least-squares regression, where the weights are set equal

to the inverse variance for ρr, ρs, and log10

(
P sat

1 MPa

)
, respectively. The variance (equal to

the square of the standard deviation) can be computed using several different methods, e.g.,

block averaging or replicates. Due to the low number of replicates (4) utilized in this study,

we instead compute the variances using correlations found in Reference 51 for the standard

deviation of ρr, ρs, and ρsatvap. Note that, by assuming an ideal gas (linear) relationship

between P sat and ρsatvap, the standard deviation for log10

(
P sat

1 MPa

)
is calculated as the standard

deviation of ρsatvap multiplied by log10(e)
ρsatvap

. As Eqs. 4, 5, and 6 are most reliable in the near-

critical region, only GEMC results for Tr ≥ 0.75 (i.e., T ≥ 10 K) are included in the fitting

procedure.

The uncertainties in the critical constants are obtained with bootstrap resampling. Specif-

ically, Eqs. 4, 5, and 6 are refit thousands of times to random subsets of the GEMC simulation

data. In addition, to account for the uncertainty in the scaling parameter β, each fit utilizes

a different random value of β selected from a uniform distribution between 0.325 and 0.385.

The 95% confidence intervals are estimated from the bootstrapped distribution of critical

constant values. Recall that these uncertainties do not reflect the uncertainties in the two- or

three-body potentials, which are assumed to be negligible compared to the GEMC numerical

uncertainties.

GEMC simulation results

Figure 2 presents the two- and (2+3)-body GEMC results, where the top and bottom pan-

els contain the vapor-liquid coexistence curves and Clausius-Clapeyron plots, respectively.

Subcritical simulation results and critical constants are plotted as open and closed symbols,

respectively, while Eqs. 4, 5, and 6 are included as lines. For comparison, the (2+3)-body
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virial critical constants for n→∞ are also depicted in Figure 2. Excellent agreement is ob-

served between GEMC and virial critical constant values. Critical constant values obtained

with Eqs. 4, 5, and 6 are reported in Table 3, while Table 4 provides tabulated GEMC

subcritical coexistence densities, vapor pressures, and vapor compressibility factors.

Table 3: GEMC critical constants. Two-body and (2+3)-body results for N = 1400 were
obtained with rcut = 1.4 nm and rcut = 1.0 nm, respectively. Expanded uncertainties (95%
confidence intervals) are obtained with bootstrap resampling.

Potential Tc (K) ρc (mol·L−1) Pc (MPa) Zc

Two-body 13.12(10) 28.6(2) 0.94(4) 0.300(12)
(2+3)-body 13.01(9) 28.6(3) 0.93(4) 0.300(11)

Table 4: GEMC saturation densities, pressure, and vapor compressibility factor. Two-body
and (2+3)-body results for N = 1400 were obtained with rcut = 1.4 nm and rcut = 1.0 nm,
respectively. Expanded uncertainties (95% confidence intervals) are calculated from four
independent replicate simulations.

T sat (K) ρsatliq (mol·L−1) ρsatvap (mol·L−1) P sat (MPa) Zsat
vap

Two-body
9 68.51(2) 1.222(9) 0.0832(5) 0.909(2)

9.5 66.37(1) 1.816(7) 0.1263(4) 0.881(1)
10 64.03(5) 2.55(3) 0.180(2) 0.848(3)

10.5 61.51(2) 3.550(10) 0.2502(4) 0.808(2)
11 58.73(4) 4.83(2) 0.336(1) 0.761(5)

11.5 55.56(2) 6.53(2) 0.443(1) 0.711(1)
12 51.93(3) 8.88(4) 0.573(2) 0.648(3)

12.5 46.91(9) 12.15(8) 0.720(3) 0.570(4)
(2+3)-body

9.0 68.76(5) 1.29(2) 0.0874(14) 0.907(2)
9.5 66.409(10) 1.844(7) 0.1277(4) 0.8789(10)
10.0 64.00(4) 2.66(1) 0.1861(4) 0.841(2)
10.5 61.28(4) 3.66(5) 0.256(3) 0.801(2)
11.0 58.41(5) 5.06(2) 0.348(2) 0.7524(10)
11.5 55.10(5) 6.90(3) 0.460(2) 0.697(2)
12.0 51.16(8) 9.43(10) 0.592(5) 0.629(2)
12.5 45.7(2) 13.08(11) 0.747(3) 0.550(3)

The somewhat large uncertainties in Tc and, by consequence, Pc are due primarily to the
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Figure 2: GEMC results for two- and (2+3)-body simulations compared with (2+3)-body
virial-extrapolated (VEOS∞) critical constants. Top and bottom panels contain vapor-liquid
coexistence curves and Clausius-Clapeyron plots, respectively. Lines represent optimal fits
using Eqs. 4, 5, and 6. Open and filled symbols correspond to subcritical GEMC simulation
values and critical constants, respectively. Two-body (red circles, solid line) and (2+3)-
body (blue squares, dashed line) results for N = 1400 were obtained with rcut = 1.4 nm and
rcut = 1.0 nm, respectively. Error bars represent 95% confidence intervals and are typically
less than one symbol size.

wide range of β values (0.325 to 0.385) considered in Eq. 5 and the high sensitivity of Tc

to β. Therefore, the uncertainties in the critical constants would not diminish significantly
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by including additional state points, increasing the number of replicates, performing longer

simulations, or simulating larger systems. However, we believe that considering a wide range

of β values is important to capture the extrapolatory uncertainty of the fitting process,

whereas assuming a fixed β value would greatly underestimate the “true” uncertainty in the

critical constants.

The two- and (2+3)-body vapor-liquid ρsatliq values are nearly indistinguishable at low

temperatures (Tr < 0.95). By contrast, a noticeable shift exists between the two- and (2+3)-

body P sat values. Because three-body forces are not included in the pressure calculation,

the larger P sat values for the (2+3)-body case are a direct result of the increase in ρsatvap and,

for this reason, the vapor-phase compressibility factor (Zsat
vap ≡ P sat

ρsatvapRT
sat ) is equivalent for the

two- and (2+3)-body results. Although the critical constants for the two- and (2+3)-body

cases agree within their combined uncertainties, this is again because we have investigated

a large range of β values. By contrast, for a fixed value of β, the (2+3)-body Tc value is

approximately 0.1 K less than the two-body Tc value.

Our investigation of finite-size effects demonstrates that the GEMC simulation results

are indistinguishable between the 800, 1400, and 2800 molecule systems and the 1.0, 1.4,

and 1.8 nm cut-off distances (see Supporting Information). These findings are consistent

with those of Reference 14, where they concluded that finite-size effects were negligible

for GEMC simulations with between 800 and 5500 Lennard-Jones particles and for cut-off

distances between 3.5σ and 8σ. Recall that a 1.0 nm cut-off is approximately equal to 4σ

and that the helium two-body potential decays to zero more rapidly than the Lennard-Jones

potential. Therefore, it is not surprising that we do not observe significant finite-size effects.

In a further attempt to validate the quality of our subcritical GEMC ρsatvap and P sat

values, we confirm that Zsat
vap follows a physically realistic trend and converges to 1 at low

temperatures (see Supporting Information).52
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Discussion and Conclusions

We have used the highly accurate information available on the intermolecular forces of helium

to estimate the critical point of a hypothetical “classical” helium in which quantum effects

are absent. The resulting vapor-pressure curve and critical point are shifted dramatically

from those of real helium (which has a critical temperature near 5.2 K and a critical pressure

near 0.23 MPa),53 as illustrated in Fig. 3.

Three relatively simple approaches for classical helium, based only on the pair potential,

yield critical temperatures between 12.75 K and 13.05 K, with critical pressures between

0.91 MPa and 1.08 MPa. These values are in surprisingly good agreement with our more

rigorous results.

Based on two- plus three-body potentials, we estimated the critical point from a virial

expansion (calculated to seventh order and extrapolated to infinite order) and from GEMC

simulation. Both results are in excellent agreement, producing a critical temperature of

13.0 K, a critical pressure of 0.93 MPa, and a critical density of 28.4 mol·L−1, with 95%

confidence intervals on the order of 0.1 K for Tc, 0.02 MPa for Pc, and 0.5 mol·L−1 for

ρc. The effect of three-body interactions is small; they lower the critical temperature by

approximately 0.1 K compared to calculations that use only two-body interactions. This

strongly suggests that we are justified in ignoring four-body and higher interactions.

Our results indicate that the true critical temperature and pressure of “classical” helium

are somewhat larger than the values proposed by Rowland et al.4 This may be because

Rowland et al. optimized their effective critical parameters based on experimental data for

helium with methane below 190 K; at these temperatures quantum effects on helium would

not be insignificant. Our classical results might be thought of as a high-temperature limit

and therefore as upper bounds for the effective Tc and Pc in any given situation, although

for process temperatures of 300 K or above the quantum effects should be small.

In principle, our GEMC results could be improved by more detailed simulations and

analysis in the critical region, such as that in Ref. 14. Alternatively, more sophisticated
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Figure 3: Comparison of vapor-pressure curves for real helium (calculated from the reference
equation of state of Ortiz-Vega et al.53) and classical helium (from the GEMC results in this
work). Critical points are marked with ×.

approaches designed specifically to explore the critical region, such as finite-size scaling,54

could be used. These methods would, however, be quite expensive for the computationally

complex potentials used in this study, and our uncertainties are already small enough for our

purpose of providing effective classical values for engineering use. Further, the adequacy of

our approach is supported by the good agreement with the critical properties given by the

VEOS.

The same approach could be applied to other fluids for which quantum effects are sig-

nificant at the critical temperature. For neon, two-body55 and three-body11 potentials exist

that, while not of the exquisite accuracy of their helium counterparts, would probably be

adequate for these purposes. However, Gunn et al.2 estimated the critical temperature for

classical neon to be 45.5 K, compared to the true critical temperature of 44.4 K, such a

small difference that molecular estimation of the classical critical parameters is probably not

justified (especially given the limited engineering applications of mixtures with neon). A bet-

ter candidate would be molecular hydrogen, with its strong quantum effects (half the mass

of helium) and a critical temperature near 33 K. A high-accuracy pair potential exists,56

but Garberoglio57 found that the existing three-body potentials for H2 were insufficiently
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accurate for quantitative calculations of the third virial coefficient. Because of the many

applications of hydrogen, knowledge of its effective classical critical point would be useful,

but it appears this must wait until a better three-body potential is developed.

Acknowledgement

We are grateful to Eliseo Marin-Rimoldi of the Molecular Sciences Software Institute for

invaluable support in modifying the Cassandra code, and to Alta Fang of NIST for a careful

reading of the manuscript. Support for University at Buffalo authors is provided by the

U.S. National Institute of Standards and Technology, Award # 70NANB17H334, and by

the U.S. National Science Foundation, Grant CBET-1510017. This research was performed

while Richard A. Messerly held a National Research Council (NRC) Postdoctoral Research

Associateship at NIST.

Supporting Information Available

Results of virial coefficients we calculated in this work are tabulated in a separate supplemen-

tary file. This information is available free of charge via the Internet at http://pubs.acs.org/.

Supporting information contains plots for finite-size effects of GEMC simulations, the

vapor-phase compressibility factor trend, validation for neglecting three-body forces in the

GEMC pressure calculation, and a comparison of Cassandra and Towhee GEMC results.

24



Literature Cited

(1) Newton, R. H. Activity Coefficients of Gases. Ind. Eng. Chem. 1935, 27, 302–306.

(2) Gunn, R. D.; Chueh, P. L.; Prausnitz, J. M. Prediction of thermodynamic properties

of dense gas mixtures containing one or more of the quantum gases. AIChE J. 1966,

12, 937–941.

(3) Chueh, P. L.; Prausnitz, J. M. Vapor-Liquid Equilibria at High Pressures. Vapor-Phase

Fugacity Coefficients in Nonpolar and Quantum-Gas Mixtures. Ind. Eng. Chem. Fun-

dam. 1967, 6, 492–498.

(4) Rowland, D.; Hughes, T. J.; May, E. F. Effective Critical Constants for Helium for

Use in Equations of State for Natural Gas Mixtures. J. Chem. Eng. Data 2017, 62,

2799–2811.

(5) Kunz, O.; Wagner, W. The GERG-2008 Wide-Range Equation of State for Natural

Gases and Other Mixtures: An Expansion of GERG-2004. J. Chem. Eng. Data 2012,

57, 3032–3091.

(6) Przybytek, M.; Cencek, W.; Jeziorski, B.; Szalewicz, K. Pair Potential with Submil-

likelvin Uncertainties and Nonadiabatic Treatment of the Halo State of the Helium

Dimer. Phys. Rev. Lett. 2017, 119, 123401.

(7) Cencek, W.; Patkowski, K.; Szalewicz, K. Full-configuration-interaction calculation of

three-body nonadditive contribution to helium interaction potential. J. Chem. Phys.

2009, 131, 064105.

(8) Przybytek, M.; Cencek, W.; Komasa, J.; Lach, G.; Jeziorski, B.; Szalewicz, K. Rela-

tivistic and Quantum Electrodynamics Effects in the Helium Pair Potential. Phys. Rev.

Lett. 2010, 104, 183003.

25



(9) Cencek, W.; Przybytek, M.; Komasa, J.; Mehl, J. B.; Jeziorski, B.; Szalewicz, K.

Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair

potential and thermophysical properties of helium. J. Chem. Phys. 2012, 136, 224303.

(10) Schwerdtfeger, P.; Steenbergen, K. G.; Pahl, E. Relativistic coupled-cluster and density-

functional studies of argon at high pressure. Phys. Rev. B 2017, 95, 214116.

(11) Schwerdtfeger, P.; Hermann, A. Equation of state for solid neon from quantum theory.

Phys. Rev. B 2009, 80, 064106.

(12) Garberoglio, G.; Harvey, A. H. First-Principles Calculation of the Third Virial Coeffi-

cient of Helium. J. Res. Nat. Inst. Stand. Technol. 2009, 114, 249–262.

(13) Messerly, R. A.; Knotts, T. A.; Wilding, W. V. Uncertainty quantification and prop-

agation of errors of the Lennard-Jones 12-6 parameters for n-alkanes. J. Chem. Phys.

2017, 146, 194110.

(14) Dinpajooh, M.; Bai, P.; Allan, D. A.; Siepmann, J. I. Accurate and precise determi-

nation of critical properties from Gibbs ensemble Monte Carlo simulations. J. Chem.

Phys. 2015, 143, 114113.

(15) Weaver, A. B.; Alexeenko, A. A. Revised Variable Soft Sphere and Lennard-Jones Model

Parameters for Eight Common Gases up to 2200 K. J. Phys. Chem. Ref. Data 2015,

44, 023103.

(16) Tsonopoulos, C. An empirical correlation of second virial coefficients. AIChE J. 1974,

20, 263–272.

(17) Song, Y.; Mason, E. A. Equation of state for “classical” helium. Phys. Rev. E 1993,

47, 2193–2196.

(18) Song, Y.; Mason, E. A. Statistical-mechanical theory of a new analytical equation of

state. J. Chem. Phys. 1989, 91, 7840–7853.

26



(19) Aziz, R. A.; Slaman, M. J. An examination of ab initio results for the helium potential

energy curve. J. Chem. Phys. 1991, 94, 8047–8053.

(20) Hansen, J.-P.; McDonald, I. Theory of Simple Liquids, 4th ed.; Academic Press, London,

2013.

(21) Wheatley, R. J. Calculation of High-Order Virial Coefficients with Applications to Hard

and Soft Spheres. Phys. Rev. Lett. 2013, 110, 200601.

(22) Wheatley, R. J.; Schultz, A. J.; Do, H.; Gokul, N.; Kofke, D. A. A framework for cluster

integrals compatible with realistic molecular models. (in preparation).

(23) Shaul, K. R. S.; Schultz, A. J.; Kofke, D. A.; Moldover, M. R. Semiclassical fifth virial

coefficients for improved ab initio helium-4 standards. Chem. Phys. Lett. 2012, 531,

11–17.

(24) Garberoglio, G.; Harvey, A. H. Path-integral calculation of the third virial coefficient

of quantum gases at low temperatures. J. Chem. Phys. 2011, 134, 134106.

(25) Shaul, K. R. S.; Schultz, A. J.; Kofke, D. A. Path-integral Mayer-sampling calculations

of the quantum Boltzmann contribution to virial coefficients of helium-4. J. Chem.

Phys. 2012, 137, 184101.

(26) Schultz, A. J.; Kofke, D. A. Virial coefficients of helium-4 from ab initio-based molecular

models. J. Chem. Eng. Data 2019, (in press).

(27) Singh, J. K.; Kofke, D. A. Mayer sampling: Calculation of cluster integrals using free-

energy perturbation methods. Phys. Rev. Lett. 2004, 92, 220601.

(28) Benjamin, K. M.; Schultz, A. J.; Kofke, D. A. Gas-phase molecular clustering of TIP4P

and SPC/E water models from higher-order virial coefficients. Ind. Eng. Chem. Res.

2006, 45, 5566–5573.

27



(29) Benjamin, K. M.; Singh, J. K.; Schultz, A. J.; Kofke, D. A. Higher-order virial coeffi-

cients of water models. J. Phys. Chem. B 2007, 111, 11463–11473.

(30) Schultz, A. J.; Kofke, D. A. Quantifying Computational Effort Required for Stochastic

Averages. J. Chem. Theory Comput. 2014, 10, 5229–5234.

(31) Barlow, N. S.; Schultz, A. J.; Kofke, D. A.; Weinstein, S. J. Critical Isotherms from

Virial Series Using Asymptotically Consistent Approximants. AIChE J. 2014, 60, 3336–

3349.

(32) Schultz, A. J.; Kofke, D. A. Sixth, seventh and eighth virial coefficients of the Lennard-

Jones model. Mol. Phys. 2009, 107, 2309–2318.

(33) Pelissetto, A.; Vicari, E. Critical phenomena and renormalization-group theory. Phys.

Rep. 2002, 368, 549–727.

(34) Behnejad, H.; Sengers, J. V.; Anisimov, M. A. In Applied Thermodynamics of Fluids ;

Goodwin, A. R. H., Sengers, J. V., Peters, C. J., Eds.; Royal Society of Chemistry,

2010; Chapter 10, pp 321–367.

(35) Barlow, N. S.; Schultz, A. J.; Weinstein, S. J.; Kofke, D. A. Communication: Analytic

continuation of the virial series through the critical point using parametric approxi-

mants. J. Chem. Phys. 2015, 143, 071103.

(36) Schultz, A. J.; Barlow, N. S.; Chaudhary, V.; Kofke, D. A. Mayer Sampling Monte

Carlo calculation of virial coefficients on graphics processors. Mol. Phys. 2013, 111,

535–543.

(37) Feng, C.; Schultz, A. J.; Chaudhary, V.; Kofke, D. A. Eighth to sixteenth virial coeffi-

cients of the Lennard-Jones model. J. Chem. Phys. 2015, 143, 044504.
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