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Abstract—Several graphene quantized Hall resistance (QHR) 

devices manufactured at the National Institute of Standards and 

Technology (NIST) were compared to GaAs QHR devices and a 

100 Ω standard resistor at the National Institute for Advanced 

Industrial Science and Technology (AIST). Measurements of the 

100 Ω resistor with the graphene QHR devices agreed within 

5 nΩ/Ω of the values for the 100 Ω resistor obtained through 

GaAs measurements. The electron density of the graphene 

devices was adjusted at AIST to restore device properties such 

that operation was possible at low magnetic flux densities of 4 T 

to 6 T. This adjustment was accomplished with a 

functionalization method utilized at NIST, allowing for consistent 

tunability of the graphene QHR devices with simple annealing. 

Such a method replaces older and less predictable methods for 

adjusting graphene for metrological suitability. The milestone 

results demonstrate the ease with which graphene can be used to 

make resistance comparison measurements among many 

National Metrology Institutes. 

 
Index Terms— quantized Hall resistance, epitaxial graphene, 

cryogenic current comparator, electron density, standard resistor 

 

I. INTRODUCTION 

HE development of graphene-based quantized Hall 

resistance (QHR) standards [1] over the past decade has 

provided an avenue for proliferation of quantum standards 

beyond National Metrology Institutes (NMIs) and several 

primary standards laboratories [2]. For ease of use and 

implementation, it is essential that graphene devices exhibit a 

tunable electron density in air. Historically, the storage of 

devices in an inert gas (argon) environment at the National 
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Institute of Standards and Technology (NIST) has been able to 

promote electron density stability in graphene devices. 

However, the problem of stability in ambient laboratory 

conditions remained an issue, warranting the pursuit of 

techniques to treat graphene devices such that they may 

exhibit stability in ambient air. Only then would international 

comparisons between devices be more easily viable.  

 To demonstrate the success of air-stable graphene devices, 

comparisons were made between NIST epitaxial graphene 

(EG) QHR devices and gallium arsenide (GaAs) QHR devices 

from the National Institute for Advanced Industrial Science 

and Technology (AIST) with accuracies of less than 5 nΩ/Ω. 

The comparison took place over a two-year period with one of 

the devices (N05) making two round-trips from NIST to 

AIST. 

 An older method for adjusting the electron density, namely 

the use of nitric acid vapors, was used initially for two devices 

(only one of which, N05, is shown) as a basis for assessment 

of the new method, functionalization of the EG surface with 

chromium tricarbonyl (Cr(CO)3) [3]. All devices were also 

used to determine the deviations of a 100 Ω resistor at AIST, 

and combined with similar data using the GaAs QHR devices, 

a complete set of consistency checks were obtained [4]. This 

paper is an extension of the corresponding proceedings paper 

and makes use of similar language [4] and further elaborates 

on one (N05) of the two devices previously reported. 

II. GRAPHENE GROWTH 

 EG growth is performed on the Si-face of silicon carbide 

(SiC) and involves the sublimation of Si atoms at high 

temperatures. The surface becomes enriched with carbon 

atoms that form a honeycomb lattice. Square SiC substrates 

diced from on-axis 4H-SiC(0001) semi-insulating wafers were 

used. The EG was grown using a combination of face-to-

graphite orientation and polymer-assisted-sublimation growth 

(PASG) [5]. Temperatures reach a maximum of 1900 °C in an 

argon atmosphere with the SiC (0001) facing a polished disk 

of glassy carbon. All EG devices were processed in the same 

graphite-lined resistive-element furnace, with the chamber 

first flushed with argon gas and filled with 100 kPa argon 

from a 99.999 % liquid argon source. Epitaxial growth occurs 

with heating and cooling rates of approximately 1.5 K/s and 

about 270 s annealing time at approximately 1900 °C.  

The graphene-based devices are prepared by similar 
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methods described rigorously in other work [6] – [8]. During 

device fabrication, the EG is protected by a layer of Pd-Au 

and later etched into a Hall bar geometry. Following the 

deposition of electrical contacts using photolithography, the 

EG device is functionalized with Cr(CO)3 and then mounted 

onto a transistor outline (TO-8) package [3]. Two devices 

from previous work and first used in the comparison were 

processed without Cr(CO)3 for initial measurements (mid-

2017) to demonstrate how the electron density can be adjusted 

with exposure to nitric acid vapor [4]. During the interim, the 

functionalization process was optimized so that measurements 

after 2017 could utilize a set of EG devices with easily 

adjustable electron densities (of which N05 was a member).  

III. MEASUREMENT SYSTEM AND INITIAL GRAPHENE 

MEASUREMENT 

 Prior to travel, several EG QHR devices were characterized 

at NIST and found to exhibit an onset of the i = 2 plateau 

(RK/2 ≈ 12906.4037 Ω) at magnetic flux densities (B-fields) 

within 3 T and 6 T.  After characterization, the EG QHR 

devices were then remounted onto TO-8 packages and were 

stored in a small vacuum canister backfilled with argon as an 

extra protective measure. The transport canister consisted of a 

metal-glass-metal tube of diameter 2.54 cm and length of 

7.62 cm with KF-25 flanges on the ends. The tube provided a 

transparent window if necessary for inspection during travel.  

At AIST, the devices were stored in the sealed transport 

canister until prepared for measurement. EG devices were 

placed in a dual sample probe for initial characterization. Two 

devices (N05, G19 [4]) were then cooled to about 0.5 K using 

a 
3
He wet refrigerator with a 15 T superconducting magnet for 

precision measurements, whereas the more recent D-series 

devices (D1, D2, D3), as well as N05 post-functionalization 

[4], were cooled with a cryogen-free, closed-loop, dilution 

refrigerator. B-fields up to 12 T were adequate for the EG and 

GaAs devices.  

A cryogenic current comparator (CCC) bridge, similar to 

the system described in reference [9], was used for these 

measurements. For the comparison of these devices with a 

100 Ω standard resistor, a winding ratio of 2065:16 was used. 

For the 1:1 comparison of QHR devices, 2065:2065 was used. 

In these comparisons, the balanced voltages were about 0.27 V 

and 0.35 V, respectively. During the initial testing, the EG 

device without Cr(CO)3 treatment exhibited higher electron 

densities, requiring a higher B-field of at least 10 T for the 

device to be quantized. The electron density was then adjusted 

at AIST, either with nitric acid vapor or a combination of 

functionalization and basic annealing, as described in the next 

sections for use at lower B-fields. 

IV. GRAPHENE ADJUSTMENT AND CHARACTERIZATION 

Historically, there have been several methods of adjusting EG 

devices, all with various advantages and disadvantages [10-

14]. In our case, the effectiveness of functionalization was 

highlighted by comparing it to the method of adjustment via 

exposure to nitric acid vapors. The black curves in Fig. 1 

 
 

Fig. 1. The relationship between ne and ρxx at room temperature is shown, with 

the dotted line representing the realistic transition between hole-dominated (p-

type) or electron-dominated (n-type) graphene. (a) The first method is nitric 

acid vapor exposure, which causes ne to drop suddenly within seconds (and ρxx 

to increase suddenly), as indicated by the orange dot approaching the Dirac 

point of graphene. Inset shows time-dependent monitoring of ρxx. (b) 

Functionalizing EG with Cr(CO)3 sets devices with an inherently lower ne, as 

indicated by the blue dot. With a simple, timed anneal on the order of 30 min, 

this method is more reliable and predictable than nitric acid treatment. 

Furthermore, it can be reset and readjusted with ease [3]. The inset shows two 

curves: the top blue curve is the monitored ρxx as that same device is subjected 

to the 350 K annealing whereas the bottom magenta is an example of a 

different device being monitored and annealed in the same way. The regions 

in light blue represent the range of ne that would enable lower B-field access 

to the QHR. 

 

represent typical relationships between the electron density 

(ne) and the longitudinal resistivity (ρxx). The dotted black 

curve near charge neutrality reflects the phenomenon of 

electrons and holes both existing within the device as it 

transitions from one charge polarity to another. If ne is too low 

(less than 10
11

 cm
-2

), the i = 2 Hall plateau begins to lose its 

flatness, rendering it useless for resistance metrology. 

In Fig. 1 (a), the effect on ne from exposing a device to 

nitric acid vapors is illustrated. Methods for treating the EG 

devices prior to measurement allow for easier access to the i = 

2 plateau (B < 6 T). The EG device, whose low initially-low 

longitudinal resistivity (orange dot) corresponded to the higher 

B-field requirement (approximately 10 T for the onset of i = 2 

plateau), had ne drop drastically after approximately 5 s of 

vapor exposure. Such determinations of ne can be made when 

ρxx is monitored at room temperature. This information is 

provided in the inset, with the 5 s exposure causing an 

increase in ρxx. The problem with this method is that it is not 

entirely controllable and requires a facility for safe handling of 

hazardous materials. The lack of control results in devices 

which are easily over-adjusted, requiring further processing to 

bring them to a useful range. In this case, the nitric acid did 
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not cause an overshoot in the desired ne, but rather, landed just 

within the range of a useful ne (shown as light blue on Fig. 1), 

where the “range of usefulness” indicates reliable access to the 

QHR with lower B-fields (between 4 T and 6 T).  

In Fig. 1 (b), a similar effect on ne is shown as a result of 

simply annealing the device at 350 K for 30 min. Though the 

process is slower than in (a), it is more controllable, allowing 

for a finer selection of desired ne. Furthermore, the principles 

of functionalization and adsorption ensure that the process for 

obtaining, resetting, and making new adjustments to ne are 

reproducible, reliable, and safer than methods like nitric acid 

vapor exposure. 

 

 
 

Fig. 2. The top and bottom panels show the longitudinal and Hall resistances, 

respectively, of an older device (N05). Red (short-dotted) and black (short-

dashed) curves were measured after functionalization of EG (using Cr(CO)3 as 

the stabilizing agent). After the initial blue (solid) curve showing an unusable 

QHR (due to the device being stored in air), ne remains stable and between 

approximately 1 × 1011 cm-2 and 3.5 × 1011 cm-2 for periods of at least 18 

months. The green, long-dashed curve was obtained 18 months after the initial 

measurement. 

 

A graphical representation of the advantages of using 

Cr(CO)3 as a stabilizing agent is presented in Fig. 2. The top 

and bottom panels show the longitudinal and Hall resistances, 

respectively, measured for the device labeled as N05 over a 

period of 18 months. N05 initially underwent nitric acid 

treatment due to its high ne (greater than 10
12

 cm
-2

). Starting in 

late 2017 (after the date of the blue curve), and after the return 

of N05 to NIST, all devices underwent semi-permanent 

functionalization, enabling an immediate stabilization of ne to 

lower values on the order of 10
11

 cm
-2

 (blue curve converting 

to red within 1 day). As long as the device was stored in an 

ambient laboratory environment, ne remained stable for low-B-

field access. Over the 18-month period, the device exhibited 

shifting in ne between approximately 1 × 10
11

 cm
-2

 and 3.5 × 

10
11

 cm
-2

 for (red curve to black curve to green curve), 

evidently requiring the functionalization process to be further 

optimized, as described in Reference [3]. 

 

 
 

Fig. 3. (a) Optical image of an EG device is shown along with an illustration 

of the precision measurements done after annealing. The numbers listed for an 

example device (D3 at 11 T) offer insight on the high quality of the QHR. 

Green and blue lines indicate the sides of the device at which ρxx is measured, 

with corresponding orange and pink lines for ground, respectively. All contact 

resistances in this case are below 1 Ω. (b) Hall and longitudinal voltage 

measurements are performed after basic annealing for functionalized devices 

and converted to resistances. The slope of Rxy is used at small B-fields to 

obtain ne. The longitudinal resistance is magnified to highlight excellent EG 

device quantization.  

 

By using the procedure developed at NIST, ne was lowered 

to restore the device properties so operation at lower B-fields 

was possible [15, 16]. The annealing procedure was applied to 

all functionalized devices, lowering the required B-field for 

the i = 2 plateau onset from 10 T to 5 T. One device’s 

characterization is summarized in Fig. 3. The typical device 
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Hall bar geometry is imaged in Fig. 3 (a) accompanied by an 

illustration of the characterization measurement. The top and 

bottom sides of the EG device have their ρxx measured at 12 T, 

with both being below 0.3 mΩ at 35 mK and 20 µA. For that 

device, all contact resistances were measured to be under 1 Ω. 

Fig. 3 (b) shows the Hall and longitudinal resistance 

measurements that verify the quality of the EG device. The 

example device shown started out with a low ne (due to 

functionalization) and was systematically annealed to obtain a 

plateau onset at lower B-fields. One main indication of 

excellent quantization comes from the measurement of the 

longitudinal resistance along the sides of the EG device, which 

should be at the same electric potential. The longitudinal 

resistances are less than 5 mΩ, indicating high-quality 

quantization. 

V. COMPARISON BETWEEN GRAPHENE, GAAS, AND A 

STANDARD RESISTOR 

A. Comparing Against a 100 Ω Resistor 

Initial measurements against a 100 Ω resistor were made 

using two EG devices [4], one of which was originally not 

functionalized (N05, represented by orange squares in Fig. 4, 

mid-2017), and yielded a difference of 4.4 nΩ/Ω. 

Measurements on the second early device (G19 [4]) also 

agreed. The N05 result agreed with the predicted value for that 

resistor, as shown in Fig 4, within the expanded uncertainty (k 

= 2) of 24 nΩ/Ω. The applied B-field for that measurement 

was 12.0 T. The graphene device for this measurement (N05) 

had its longitudinal resistance measured with a simple 

voltmeter without current reversal, yielding a quick upper 

bound of 0.1 mΩ. Contact resistances of less than 0.3 Ω were 

also measured using the 3-terminal method.  

Fig. 4 shows the long-term behavior of AIST’s SR102 100 

Ω resistor, primarily through the measurements made against 

several GaAs QHR devices from NMIJ. NIST EG devices are 

represented as orange and blue squares, with the former 

indicating the N05 device which underwent functionalization 

treatment after its first measurements in mid-2017. All newer 

NIST EG devices were labelled as the D-series and were 

functionalized after growth to stabilize ne for future use. The 

Type A uncertainties for the D-series devices ranged from 

0.85 nΩ/Ω to 1.60 nΩ/Ω. The inset provides measurement 

clarity for the previous two years.  

 

 
 
Fig. 4. Deviations from the nominal value of SR102, a 100 Ω resistor at AIST, 

were measured by the GaAs device from NMIJ over the span of 16 years 

(green squares). Orange squares are used to track the N05 EG device from 

NIST which initially (2017) was not functionalized. N05 is reused after 

functionalization one year later. Blue squares represent the D-series EG 

devices from NIST. The inset provides a clear view of the measurements 

taken within the previous two years, with the dotted teal box indicating the 

measurements in Table I. All error bars indicate Type A uncertainties, which 

in many recent measurements, become smaller than the data points.   

 

 

 

All QHR devices were measured in succession to obtain an 

overall summary of SR102’s deviations from nominal. The 

resulting numbers are shown in Table I. All of the 

measurements using EG QHR devices agreed with those 

obtained from the GaAs QHR device to within 5 nΩ/Ω. In the 

case of D1, the slightly larger value obtained can be ascribed 

to the abnormally high contact resistance present in two out of 

six contacts, with the values on the order of 100 Ω. A 

graphical representation of these data is presented in Fig. 5, 

with the blue points representing the GaAs QHR devices and 

the gray points representing all NIST EG QHR devices. The 

error bars indicate Type A uncertainties only. The Type B 

uncertainties are 1.5 nΩ/Ω. 

 

TABLE I 
UNCERTAINTY MEASUREMENTS 

Date Device 

Dev. From 
100 Ω Nominal 

(µΩ/Ω) 

Type A 

(µΩ/Ω) 

Difference from 

GaAs (µΩ/Ω) 

2019/01/18 GaAs 1.100 1 0.004 0 - 
2019/01/19 N05 1.101 7 0.001 4 0.000 3 
2019/01/21 D2 1.104 3 0.001 2 0.002 9 
2019/01/22 D3 1.102 7 0.000 8 0.001 3 
2019/01/23 D1 1.109 9 0.001 6 0.008 5 
2019/01/24 GaAs 1.102 6 0.000 6 - 
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Fig. 5. All QHR devices’ measurements against the SR102 resistor are 

compared here to show the agreement within 5 nΩ/Ω. D1 is slightly offset due 

to the contact resistance present in that device, as described in the main text. 

Blue and gray points represent the GaAs QHR and the NIST QHR devices, 

respectively. The error bars show the Type A uncertainties. 

 

 The compared QHR devices in Fig. 5, with the exception of 

D1, which was affected more strongly by contact resistances, 

agree within the limitations of the measurement system and 

the stability of the resistor, which together present potential 

deviations of 5 nΩ/Ω.  

B. Comparison Between QHR Devices 

The direct comparison of the N05 EG QHR and GaAs in 

October 2018 showed an absolute difference of 1.8 nΩ/Ω at 

11.1 T and 35 mK. A later comparison of an example NIST 

EG D-series device (D2) was performed against the same 

CryoJEMIC GaAs QHR device in January 2019, resulting in 

an agreement of 3.7 nΩ/Ω. Such measurements provided three 

consistency checks to ensure the validity of the NIST EG 

device functionality. 

VI. CONCLUSION 

All EG QHR devices were used to determine the deviations 

of a 100 Ω resistor at AIST, and combined with data obtained 

with GaAs QHR devices, self-consistent results were obtained. 

We have assessed those measurements as demonstrating the 

success of tunable EG devices for long-term shelf-life and 

demanding travel conditions. Provided those devices are 

properly functionalized, international comparisons will 

continue to become more easily viable. Comparisons were 

also made between NIST EG QHR devices and GaAs QHR 

devices from AIST with uncertainties of less than 5 nΩ/Ω.  
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