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Abstract. Code reusing is a common practice in software development due to its 
various benefits. Such a practice, however, may also cause large scale security is-
sues since one vulnerability may appear in many different software due to cloned 
code fragments. The well known concept of relying on software diversity for se-
curity may also be compromised since seemingly different software may in fact 
share vulnerable code fragments. Although there exist efforts on detecting cloned 
code fragments, there lack solutions for formally characterizing their specific im-
pact on security. In this paper, we revisit the concept of software diversity from 
a security viewpoint. Specifically, we define the novel concept of common attack 
surface to model the relative degree to which a pair of software may be sharing 
potentially vulnerable code fragments. To implement the concept, we develop an 
automated tool, CASFinder, in order to efficiently identify common attack surface 
between any given pair of software with minimum human intervention. Finally, 
we conduct experiments by applying our tool to real world open source software 
applications. Our results demonstrate many seemingly unrelated software appli-
cations indeed share significant common attack surface. 

1 Introduction 

Code reusing is a common practice in today’s software industry due to the fact that it 
may significantly accelerate the development process [6, 9]. However, such a practice 
also has the potential of leading to large scale security issues because a vulnerability 
may be shared by many different software applications due to the shared libraries or 
code fragments. A well known example is the Heartbleed vulnerability in OpenSSL, 
which caused widespread panic on the internet since the vulnerable library was shared 
by many popular Web browsers, including Apache and Nginx [10]. In addition to shared 
libraries, the reusing of existing code fragments may also lead to similar vulnerabili-
ties shared by different software applications. Unlike libraries, such reused codes are 
typically not traced by any official documentation, which makes it more difficult to un-
derstand their security impact. Finally, this phenomenon may also compromise the well 
known concept of relying on software diversity for security, since seemingly unrelated 
software applications made by different vendors may in fact share common weaknesses. 
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The issue of identifying and characterizing the security impact of shared code frag-
ments has received little attention (a more detailed review of the related work will be 
given in Section 6). Most existing vulnerability detection tools focus on identifying vul-
nerabilities for a specific software application based on static and/or dynamic analysis, 
with no indication whether different software may be sharing similar vulnerabilities 
due to common libraries or reused codes [11]. On the other hand, existing efforts on 
software clone detection mostly focus on identifying reused code fragments based on 
either the textual similarity or functional similarity, with no indication of the security 
impact [40]. Clearly, there exists a gap between the two, i.e., how can we leverage exist-
ing efforts on software clone detection to characterize the likelihood that given software 
applications may share similar vulnerabilities? 

In this paper, we address the above issue through defining the novel concept of com-
mon attack surface and developing an automated tool, CASFinder, to calculate the com-
mon attack surface of given software applications. Specifically, we first extend the well 
known attack surface concept to model the relative degree to which a pair of software 
may be sharing potentially vulnerable code fragments. Such a formal model enables the 
quantification of software diversity from the security point of view, and its results may 
be used as inputs to higher level diversity methods (e.g., network diversity [47] and 
moving target defense [19]). Second, we develop CASFinder which is an automated 
tool that takes the source code of two software applications as the input and outputs 
their common attack surface result in an XML file or to a database. Third, we conduct 
experiments by applying our tool to a large number of real world open source software 
applications belonging to seven different categories from Github. More than 80,000 
combinations of software applications are analyzed, and our results demonstrate many 
seemingly unrelated software applications indeed share a significant level of common 
attack surface. In summary, the contribution of this paper is threefold. 

– First, to the best of our knowledge, this is the first effort on formally modeling 
the security impact of reused code fragments. The common attack surface model 
may serve as a foundation and provide quantitative inputs to higher level security-
through-diversity methods. 

– Second, the CASFinder tool makes it feasible to evaluate the common attack surface 
between open source software applications, which may have many practical use 
cases, e.g., providing useful references for security practitioners to choose the right 
combinations of software applications in order to maximize the overall software 
diversity in their networks, and reusing the knowledge about existing vulnerabilities 
in one software to potentially identify similar ones in other software. 

– Third, our experimental results prove the possibility of similar vulnerabilities shared 
by seemingly unrelated software applications made by different vendors. We be-
lieve such a finding may help attract more interest to re-examining the concept of 
software diversity and its security implication. 

The remainder of this paper is organized as follows. Section 2 provides a motivating 
example and background information. Section 3 defines the common attack surface 
model. Section 4 designs and implements the CASFinder tool. Section 5 evaluates the 
tool through experiments using real open source software. Section 6 reviews related 
work and Section 7 concludes the paper and provides future directions. 
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2 PRELIMINARIES 

In this section, we first present a motivating example in Section 2.1 and then provide 
background knowledge and highlight the challenge in Section 2.2. 

2.1 Motivating Example 

As an example, consider an enterprise network with Web servers running either the 
Apache HTTP server (Apache) or the Nginx HTTP server (Nginx), as well as a Cyrus 
IMAP server (Cyrus). Assume all three software applications are of the vulnerable ver-
sions that are affected by the Heartbleed vulnerability. This vulnerability has report-
edly affected an estimated 24-55% of popular websites and gave attackers accesses to 
sensitive memory blocks on the affected servers, which potentially contain encryption 
keys, usernames, passwords, etc. [10]). The vulnerability is discovered inside the pop-
ular OpenSSL library, which is an extension of many Web and email server software 
applications for supporting the https connections. 

Specifically, Figure 1 demonstrates how this vulnerability functions in relation to 
the three software applications in our example. Those software simply hand the encryp-
tion tasks to the OpenSSL extension, and the vulnerability appears when the software 
make external calls to the OpenSSL extension. In establishing the SSL connections, 
the API invocation SSL CTX new(method) is a function for establishing SSL content, 
SSL new() is for creating SSL sessions, and SSL connect() for launching SSL hand-
shakes. To exploit the Heartbleed vulnerability, attackers would craft a heartbeat request 
with a special length and send it to the servers. This request would causes different soft-
ware applications to invoke the same library function memcpy() without any boundary 
check enabling attackers to extract sensitive memory blocks from the servers. 

The fact that this vulnerability exists inside the OpenSSL extension shared by all 
three software means an attacker can compromise those different software in a similar 
manner. This phenomenon is certainly not limited to this particular vulnerability. In this 
example, since both the Apache and Nginx projects are Web servers developed in C 
language, their similar functionality implies there is a high chance that the developers 
of both projects would not only import the same libraries, but also reuse the same or 
similar code fragments. In addition, as will be shown through our experimental results, 
code reusing also exists among software applications with very different functionalities. 
On the other hand, not all server software that use SSL connections are affected by this 
vulnerability, e.g., Microsoft IIS and Jetty are both immune to the vulnerability [10]. 

Clearly, there exists a need for identifying the software applications which may 
share such a common vulnerability, and for characterizing the level of such sharing 
since some software may share more than one such vulnerability. Such a desirable ca-
pability may have many practical use cases. For instance, it may allow similar software 
patches or fixes to be developed and applied to different software applications in order 
to mitigate a common vulnerability, which may significantly reduce the time and effort 
needed for developing such patches and fixes. This capability may also allow adminis-
trators to better judge the amount of software diversity in their networks, and to choose 
the right combinations of software applications (e.g., Apache and IIS w.r.t. this particu-
lar vulnerability) to increase the diversity. Finally, this capability would lead to a more 
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SSL_engine_init.c 
... 
ctx = SSL_CTX_new(method); 
... 
mod_ssl.c 
/* Create a new SSL connection with the configured server 
SSL context and 

* attach this to the socket... 
if (!(ssl = SSL_new(mctx->ssl_ctx))) { ... 

ssl_engine_io.c 
... 
if ((n = SSL_connect(filter_ctx->pssl)) <= 0) { ... 
... 
SSL_do_handshake(ssl); 
... 

ngx_event_openssl.c 
... 
ngx_int_t  ngx_ssl_create(ngx_ssl_t *ssl, ngx_uint_t protocols, 
void *data) 
{  ssl->ctx = SSL_CTX_new(SSLv23_method()); 
... 
ngx_int_t  ngx_ssl_create_connection(ngx_ssl_t *ssl, 
ngx_connection_t *c, ngx_uint_t flags) 
{  ngx_ssl_connection_t  *sc;
    sc = ngx_pcalloc(c->pool, sizeof(ngx_ssl_connection_t)); 
... 

sc->buffer = ((flags & NGX_SSL_BUFFER) != 0); 
sc->connection = SSL_new(ssl->ctx); 

... 
ngx_int_t ngx_ssl_handshake(ngx_connection_t *c) 
{  ... 

ngx_ssl_clear_error(c->log);
    n = SSL_do_handshake(c->ssl->connection); 

... 
ctx=SSL_CTX_new(method); 
// Create SSL content 
... 
SSL=SSL_new(ctx); 
// create SSL session 

... 
SSL_connect(SSL); 
// Launch SSL handshake 

... 

Heartbeat Request 
123 

Request Length = 30,000 bytes 
Actual Length = 3 bytes 

Heartbeat response 
123 

<...>mycertificatepassphrase<.. 
.>username&password,etc 
Response Length = 

30,000bytes 

tls.c 
... 
#if (OPENSSL_VERSION_NUMBER >= 
0x10100000L) 

s_ctx = 
SSL_CTX_new(TLS_server_method()); 
#else 

s_ctx = 
SSL_CTX_new(SSLv23_server_method()); 
... 
tls_conn = (SSL *) SSL_new(s_ctx); 
... 
if ((sts = SSL_connect(tls_conn)) <= 0) { 
... 

Cyrus 

https://www.nginxsite.com 

Fig. 1. An Example of the Heartbleed Vulnerability 

refined approach to moving target defense (MTD) [12] since it could potentially allow 
us to quantify the amount of software diversity that is achieved by switching between 
different software resources under a MTD mechanism. 

2.2 Background 

We take two steps towards measuring the potential impact of cloned codes on secu-
rity. The first step is to find similar code fragments in different software applications. 
The second step is to characterize the security impact of such code fragments. We first 
review some of the background concepts related to each step. 

First, to detect similar code fragments between software, most clone detection meth-
ods are based on either the textual similarity or the functional similarity, and existing 
tools are mostly based on text, token, tree, graph, or metrics [40, 41]. Among the exist-
ing tools, we have chosen CCFinder [22], a language-based source code clone detection 
tool, to find cloned code fragments within given software. As one of the leading token-
based detection tools, CCFinder has received the Clone Award in 2002, and it supports 
multiple languages, including C, C++, Java, and COBOL. CCFinder first divides the 
given source code into tokens using a lexical analyzer. It then normalizes some of those 
tokens by replacing identifiers, constants and other basic tokens with generic tokens 
representing their language role. Finally, it uses a suffix-tree based sub-string matching 
algorithm to find common subsequences corresponding to clone pairs and classes [22]. 
A key advantage of such a token-based tool is that it can tolerate minor code changes, 
such as formatting, spacing and renaming, in the reused code. 

However, the result from clone detection tools, including CCFinder, only reveals 
similar code fragments between source codes, without indicating any security impact. 
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The primary challenge is therefore to model and quantify the potential impact of clone 
detection on security in terms of leading to potential vulnerabilities. To this end, a 
promising solution is to apply the attack surface concept [35], which is a well known 
software security metric that measures the degree of software security exposure. The 
measurement is taken as counts along three dimensions, the entry and exit points (i.e., 
methods calling I/O functions), channels (e.g., TCP and UDP), and untrusted data items 
(e.g., registry entries or configuration files), and the counting results are then aggregated 
through weighted summation. Attack surface measures the intrinsic properties of a soft-
ware application, e.g., how many times does each method invoke I/O functions (which 
provides an estimate of security risks such as buffer overflow), regardless of external 
factors such as the discovery of the vulnerability or the existence of exploit code. There-
fore, attack surface can potentially cover both known and unknown vulnerabilities. 

Therefore, we will combine clone detection (i.e., CCFinder) with attack surface 
to quantify the likelihood that cloned code fragments may lead to potentially similar 
vulnerabilities shared between different software applications. For simplicity, we will 
focus on entry and exit points in this paper, and will consider channels and untrusted 
data items in our future work. We also note that, since it is not guaranteed that every 
entry or exist point will map to a vulnerability, the attack surface concept is only in-
tended as an estimation of the relative abundance of vulnerabilities in software [35]. 
Consequently, our model and tool also inherit this limitation, and the results will only 
indicate the potential, instead of the actual existence, of common vulnerabilities. 

Combining the result of clone detection with the attack surface concept is not a 
straightforward task. We discuss a key challenge in the following. In Figure 2, function 
handle response() and function quicksand mime() are both entry points since they call 
I/O functions fseek() and ftell (from the standard C library). A naive application of the 
attack surface concept here would indicate each function count as one entry point and 
hence both have the same security implication. However, such a coarse-grained applica-
tion ignores the exact number of I/O function calls (i.e., three calls in handle response() 
and two in quicksand mime()) whose difference may be significant in practice. In our 
model, we will take a more refined approach to address such issues. 

1 fseek(fp, 0, SEEK END); 
2 size = ftell(fp); 
3 fseek(fp, 0, SEEK SET); 
4 snprintf(fsize, 32, ”Content−Length: %d\r\n\r\n”, size); 

1 long fsize = ftell(f); 
2 fseek(f, 0, SEEK SET); 
3 free(decoded mime); 

Fig. 2. Examples of Entry Points: /Simple-Webserverche/server.c handle response() (Top) and 
/quicksand lite/libqs.c quicksand mime() (Bottom) 
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3 The Model of Common Attack Surface 

In this section, we model the security implication of cloned code fragments between 
software applications through two novel security metrics, namely, the conditional com-
mon attack surface (ccas) and the probabilistic common attack surface (pcas). Those 
two metrics are designed for different use cases as follows. 

– The conditional common attack surface (ccas) is designed to be asymmetric for 
use cases in which one software is of particular interest and evaluated against all 
other software. For example, suppose a company has developed a new Web server 
application and wants to understand any similarity between their product and other 
existing Web servers such as Apache and Nginx. In such a case, the key is to rank 
those other software applications based on the relative percentage of shared attack 
surface, and the developer can apply the metric ccas for this purpose. 

– Second, in a different scenario, suppose an administrator wants to understand the 
level of software diversity between all the software applications inside the same 
network. In such a case, both software in comparison are considered equally im-
portant, so the symmetric metric pcas would be more suitable, which will yield a 
unique measurement of shared attack surface between any pair of software. The 
following details the ccas and pcas metrics. 

3.1 Conditional Common Attack Surface (CCAS) Metric 

We first consider clone segments between two software applications identified using 
CCFinder [22] through an example. 

Example 1. Figure 3 demonstrates clone segments between a Web server application 
SimpleWebserver and an ssh application SSHBen. In the figure, the Clone id is a unique 
number labelling a group of related clones inside both software applications. For in-
stance, the code segments inside the solid line blocks indicate the clone segments with 
the same Clone id 28, and the dashed line blocks are for Clone id 78. Note that the same 
code may appear under different clone ids, e.g., line 146 and 147 in Simple-Webserver 
appear under both clone ids. Also note that, for Clone id 78, the matching between the 
two clone segments is inexact [22] since strcat does not exist in SSHBen. 

From the above example, it is clear that the clone segments belonging to the same 
Clone id are not identical between the two software applications. Therefore, the attack 
surface would be asymmetric as well. First, we define the Common Attack Surface as 
the collection of I/O function calls inside the clone segments as follows. 

Defnition 1 (Common Attack Surface). Given two software applications A and B, 
the common attack surface of A w.r.t. B (or that of B w.r.t. A) under the Clone id i 
is defined as the multi-set (which preserves duplicates) of I/O function calls that exist 
inside the clone segments of A under the Clone id i, denoted as casi(A|B) (or casi(B|A)). 

Example 2. To follow our example, we have 

– cas28(SimpleWebserver|SSHBen) = strcat, strcat, fopen∗, 
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/SSHBen/ssh/client.c client_copy() 

Simple-Webserver/server.c  
handle_response() 

Clone id = 28 
144 get_time_string(curr_time); 
145 strcat(response, curr_time);( p ) 
146 strcat(response, "\nContent-Type: 

text/html\r\n"); 
147 fp = fopen(page, "r"); 
148 fseek(fp, 0, SEEK_END); 
149 size = ftell(fp); 

131 strcat(user_name,"\t"); 
132 strcat(user_name,data1); 
133 strcat(user_name,"\n"); 
134 fp=fopen("pass.txt","a"); 

Clone id = 78 
95 send(sd,fname,sizeof(fname),0); 
96 fp=fopen(fname,"rb"); 
97 fseek(fp,0L,SEEK_END); 
98 m=ftell(fp); 

158 {recv(connected,fname,sizeof(fname),0); 
159 fp=fopen(fname,"rb"); 
160 fseek(fp, 0L, SEEK_END); 
161 m = ftell(fp); 

169 send(sd,fname,sizeof(fname),0); 
170 fp=fopen(fname,"rb"); 
171 fseek(fp,0L,SEEK_END); 
172 m=ftell(fp); 

279 {recv(connected,fname,sizeof(fname),0); 
280 fp=fopen(fname,"rb"); 
281 fseek(fp, 0L, SEEK_END); 
282 m = ftell(fp); 

/SSHBen/ssh/server.c build_header() 

/SSHBen/ssh/client.c client_recv_udp_msg() 

/SSHBen/ssh/server.c sendfiletosocket() 

/SSHBen/ssh/server.c scheduler() 

Fig. 3. An Example of Cloned Segments 

– cas28(SSHBen|SimpleWebserver) = strcat, strcat, strcat, fopen∗, 
– cas78(SimpleWebserver|SSHBen) = fopen, fseek, ftell∗, and 
– cas78(SSHBen|SimpleWebserver) = fopen, fseek, ftell, fopen, fseek, ftell, 
fopen, fseek, ftell, fopen, fseek, ftell∗. 

Since the attack surface concept is based on the number of entry and exist points 
(i.e., methods invoking I/O functions), we follow the similar approach to calculate the 
size of common attack surface by counting the number of I/O function calls across 
different Clone ids, with those appearing under different Clone ids counted only once. 
We demonstrate this through an example. 

Example 3. For Clone id 78, this gives three for Simple-Webserver and 12 for SSHBen. 
As to Clone id 28, we have three for Simple-Webserver and four for SSHBen. Note that 
fopen is considered under both Clone ids for Simple-Webserver, and hence we should 
count it only once. Based on those discussions, we can calculate the total number of I/O 
function calls for both Clone ids as five for Simple-Webserver and 16 for SSHBen. 

Finally, we define the Conditional Common Attack Surface as the ratio between the 
size of the common attack surface of a software application (w.r.t. to another software) 
and the size of its entire attack surface (i.e., the total number of I/O function calls inside 
that software). This ratio indicates the degree to which the software shares with others 
similar I/O function calls (entry/exit points). 

Defnition 2 (Conditional Common Attack Surface). Given two software applica-
tions A and B with totally n clone segments, and ASA and ASB as the total number of 
I/O function calls inside A and B, respectively, the conditional common attack surface 
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of A w.r.t B (or that of B w.r.t. A), denoted as ccas(A|B) (or ccas(B|A)), is defined as: 

�n | i=1 cas(A | B) | 
ccas(A | B) =  

ASA 

�n | i=1 cas(B | A) | 
ccas(B | A) =  

ASB 

Example 4. The attack surface (i.e., the total number of I/O function calls) of Simple-
Webserver and SSHBen are 16 and 182, respectively. We thus have ccas(SSHBen | 

5 SimpleW ebserver) = = 0.3125 and ccas(SimpleW ebserver | SSHBen)= 16 
16 = 0.029. The results show that SSHBen contains about 31% shared attack surface, 182 

whereas SimpleWebserver contains only 2.9%. By comparing a software application 
to many others, the developer of that application may gain useful insights from such 
results in terms of vulnerability discovery and security patch management. 

3.2 Probabilistic Common Attack Surface Metric 

The conditional common attack surface metric ccas is designed for evaluating one soft-
ware application against others. We now take a different approach of defining a sym-
metric probabilistic common attack surface metric for two software applications. Such 
a metric can be used to estimate the amount of effort that a potential attacker may reuse 
while attempting to compromise both software applications. The nature of such a use 
case implies the metric should be symmetric. 

We apply Jaccard index for this purpose, which is commonly defined as J(A, B) =  
A∩B and used for analyzing the similarity and diversity between the two sets. To apply A∪B 
this metric in our case, we need to define both the intersection and union of the attack 
surface of two software applications. The common attack surface defined in previous 
section (Definition 1) can be considered as the intersection, but such a definition is not 
sufficient here since it is asymmetric in nature. Instead, we will define the intersection 
between the attack surface of two software applications using the standard multi-set 
intersection operation [42], which is described below. 

Defnition 3 (Intersection of Multi-Sets [42]). Given two multi-sets A = A, f∗ (where 
f is the multiplicity function such that for any a ∈ A, f(a) gives the number of occur-
rences of a in the multiset) and B = A, g∗, then their intersection, denoted as A∩B, is 
the multi-set A, s∗, where for all a ∈ A: 

s(a) =  min(f(a), g(a)). 

Example 5. Assume U ={a,a,a,b} and V = {a,a,b,b}, if we apply the multi-set operation 
as defined above, we have U∩V = {a,a,b}. 

The union of the attack surface between two software applications can be defined 
as ASA ∪ ASB = ASA + ASB − cas(B | A) ∩ cas(A | B). With both the union 
and intersection operations defined, we can now define the probabilistic common attack 
surface metric as follows. 
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Defnition 4 (Probabilistic Common Attack Surface Metric). Given two software 
applications A and B, with their attack surface ASA and ASB and the common attack 
surface cas(B|A) and cas(A|B), respectively, the probabilistic common attack surface of 
A and B is defined as: 

| cas(B | A) ∩ cas(A | B) | 
pcas(A.B) =  | ASA ∪ ASB | 

Example 6. The size of attack surface in Simple-Webserver and SSHBen is 16 and 
182, respectively. From our previous discussions, we have cas(SSHBen | Simple-
Webserver)∩cas(SimpleW ebserver | SSHBen) = strcat, strcat, fopen, fseek, 

5 ftell∗ whose size is 5, and hence pcas(SSHBen.SimpleW ebserver) =  = 16+182−5 
2.6%. Intuitively, this result indicates that, among all the I/O function calls, about 2.6% 
are shared between the two software applications. Such a result, when applied to all 
pairs of software applications inside a network, may allow administrators to estimate 
the degree of software diversity in the network from a security point of view. 

4 Design and Implementation 

To automate the evaluation of common attack surface between software applications, 
we design and implement a tool, CASFinder. Figure 4 depicts the architecture of CAS-
Finder, which consists of three main components, the clone detection module, the 
source code labeling module, and the visualization module. The following describes 
those modules in more details. 

Direct I/O 

Token to Line Number 

Binary to Token 

Clone Detection 

Binary Result 

Final Result DB 
Final Result 

Fig. 4. The Architecture 

– The Clone Detection Module As mentioned earlier, we choose CCFinder [22] as the 
basis of our clone detection module. The following details challenges and solutions 
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for applying CCFinder. First, since our tool is developed and operated under Linux, 
we apply only the back end of CCFinder. One challenge is that, since the default 
Linux version of CCFinder is designed to work on Ubuntu 9, the newer versions 
of many libraries are no longer valid for CCFinder. Therefore, several libraries 
need to be installed separately, e.g., libboost-dev and libicu-dev, which will depend 
on the specific version of the Linux system and can be determined based on the 
warnings and errors produced by CCFinder. Second, various parameters can be 
fine tuned in CCFinder to customize its execution mode [21]. In particular, the 
most important parameters include b, the minimum length of the detected code 
clones, and t, the minimum number of types of tokens involved. We have chosen 
b = 20 and t = 8 based on experiences obtained through extensive experiments. In 
addition, parameter w is used to determine whether CCFinder will perform inner-
file clone detection whose results contain clones between different parts of the same 
software application, which is not our focus, and therefore w is set to be f-w-g+ to 
focus on inter-file clones. Finally, the default output of the CCFinder is stored in a 
binary file with .ccfd extension. Since we do not install any front end of CCFinder, 
we apply the command ./$PATH/ccfx -p name.ccfd to translate the .ccfd file into 
a human-readable version. The resultant file contains only the token information, 
which cannot be directly mapped back to the source code files. Therefore, we have 
developed a script, post-prettyprint.pl [37], to convert the token information into 
corresponding line numbers in the source code. 

– The Source Code Labeling Module As mentioned above, the converted output of 
CCFinder provides only the file name and line number of the clone segments, 
without information needed for mapping them back to the original source code. 
For the purpose of generating traceable output with source code fragments, a map-
ping between the line number of the clone segments and the source code needs to 
be established. This second module is designed for this purpose by automatically 
retrieving a clone code segment from the source code according to the result of 
CCFinder. 

– The Visualization and CAS Calculation Module The visualization module gener-
ates the results of clone segments. The results include clone ID, file path, func-
tion name, clone segment, start line number, and end line number. The visualized 
output is organized as an XML tree with labels. The label contents contains the 
source clone segments from CCFinder outputs. Label funcname reveals the func-
tion names corresponding to the clone segments, and label io contains the common 
I/O functions. To calculate the common attack surface, we first need to identify the 
I/O functions. In our experiments, we have obtained the list of I/O functions from 
the GNU C library [39] (glibc), which is the GNU project’s implementation of C 
standard library, as the database for examining the entry/exit points. In total, 256 
I/O functions are stored in our database, e.g., function memcpy() or strcpy, which 
could take user inputs as the source, and copy them directly to the memory block 
pointed to by the destination. Such functions have caused many serious security 
flaws including CVE-2014-0160 (i.e., the Heartbleed bug [7]). The final result of 
common attack surface is calculated based on the I/O functions shared among all 
software applications, and can be stored either in a file or into the database. 
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5 Experiments 

This section presents experimental results on applying our tool CASFinder to real world 
open source software. 

5.1 Dataset 

To study the common attack surface among real world software applications, we need 
a large amount of open-source software to apply our tool. For this purpose, we have de-
veloped a script to automatically parse the download links at the open-source software 
hosts. Our research shows that GitHub [14] provides the customized API for users to 
search open-source software applications with customized requirements and to down-
load them automatically. The results are presented in json code, which contains the 
download link of each application together with other information. In our experiments, 
we have set the parameter language to C programs, and use parameters q, sort, and 
order to specify the query conditions and to customize the sequence of results. We have 
developed the script to parse the json format output from the GitHub automatically 
and to store the information of the software download link, authors, publish time, size, 
and other descriptions into our local database. All the download links for each soft-
ware application are stored separately. Since Github has a limitation with respect to the 
maximum requests in a certain amount of time, we design the process to sleep for cer-
tain time after each query. Our experimental environment is a virtual machine running 
Ubuntu 14.04, with the Intel core i3-4150 CPU and 8.0GB of RAM. We have applied 
our tool to totally 293 different software applications belonging to seven categories. 
The software applications belong to several categories as follows: 32 in Databases, 62 
in Web servers, 25 in ssh servers, 79 in FTP servers, 41 in TFTP servers, 6 in IMAP � � 

293 servers, and 48 in firewalls. Those amount to totally = 42778 pairs of software 2 
applications tested using our tool in the experiments. 

5.2 Cross-Category Common Attack Surface 

In this section, we apply the two proposed common attack surface metrics to totally 
42,778 pairs of real world software. The first set of experiments reveal the existence of 
common attack surface between different categories of software applications. To con-
vert the results to a comparable scale, we have normalized the absolute value of com-
mon attack surface reported by CASFinder by the size of the software. Figure 5 shows 
the existence of common attack surface across seven categories. The percentages on top 
of the bars inside each figure indicate the level of common attack surface between the 
category mentioned in the title of the figure and all the seven categories. We can observe 
that common attack surface exists in all of the category combinations. For example, the 
DB category has the highest level of common attack surface inside its own category 
(between different software inside that category), 27.9%, and it also shares more than 
9% common attack surface with any other category. 

In summary, the results across all categories are shown in the heat map in Table 1 
where a darker color indicates a larger CAS value between the pair of categories. A 
visible diagonal with the darkest color in the heat map indicates the expected trend that 
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Fig. 5. Common Attack Surface across Categories 

different software in the same category yield the highest level of common attack surface, 
most likely due to their similar functionality, except for SSH. In fact, the category SSH 
has the lowest level of common attack surface within its category. The reason is that the 
SSH category only contains 25 software applications, which is not sufficiently large to 
produce any reliable trend. Due to similar reasons, we have omitted the results from the 
IMAP category in the heat-map. 

FTP FireWall DB WebServer SSH TFTP 
FTP 

FireWall 

DB 

WebServer 

SSH 

TFTP 

18.2 13.8 13.7 17.9 12.8 15.3 

47.1 67.6 42.2 61.8 31.7 51.7 

14.4 13.9 38.4 18.8 12.8 14.1 

32.2 35.6 28.6 56.9 24.4 56.3 

13.9 15.0 12.5 13.8 11.8 13.7 

19.8 25.5 16.5 22.4 19.6 32.6 

Table 1. HeatMap for Common Attack Surface in Different Categories 

After understanding the general existence of common attack surface among the 
seven categories of software applications, we aim to study more specific trends in our 
second sets of experiments. The left chart in Figure 6 shows the accumulated number 
of pairs of software applications in the absolute value of common attack surface. The 
figure depicts only the results with a nonzero value, which include totally 9,852 pairs 
(which amounts to about 1/8 of the total number of pairs). We can observe that the accu-
mulated number of pairs of software applications increases quickly before the value of 
common attack surface reaches about 12 and afterwards the accumulation flattens out. 
About 20% of software share common clone segments, and 56% of the clone segments 
contain at least one common attack surface. The right chart in Figure 6 depicts the rela-
tionship between common attack surface and sizes of the software. We use the absolute 
values of common attack surface in this experiment. For the sizes, we use the normal-
ized combined sizes log1000(A

B )/1000 when software A is compared with software B. 
We can observe that, with increasing sizes of the software, the value of common attack 
surface generally increases. This is as expected since the number of I/O functions would 
be roughly proportional to the size of the software. 
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(a) (b) 

Fig. 6. CAS in Accumulated Software Application Pairs(a), CAS Trend vs Size(b) 

The left chart in Figure 7 compares the average number of I/O functions and the 
average common attack surface over several years. The blue bars indicate the average 
number of I/O functions used in the software applications tested in our experiments 
based on the publishing year. The average number of I/O functions per software appli-
cation does not have a simple trend and is used as a baseline for comparison. We can 
observe a clear downward trend in the average value of common attack surface over 
time, with software published around 2010 having a much higher value of common at-
tack surface compared with more recent years, regardless of the number of average I/O 
functions. We believe this trend shows that code reusing plays a major role in common 
attack surface, since the trend can be easily explained by the backward nature of code 
reusing (i.e., programmers can only reuse older code). The right chart in Figure 7 ex-
plores the trend of the probabilistic common attack surface metric versus the size. The 
value of the probabilistic common attack surface metric decreases since the increase 
of the number of I/O functions in software applications is faster than the increase of 
common attack surface. 

(a) (b) 

Fig. 7. CAS Trend in Years(a) and The Probabilistic CAS Metric(b) 

In fact, those results match the results of existing vulnerability discovery models, 
which generally show that larger software applications typically have more vulnera-
bilities but a lower probability for having vulnerabilities per unit of software size. For 
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example, Google Chrome (with the number of lines at 14,137,145 [1]) has 1,453 vul-
nerabilities over nine years [8], while Apache (with the number of lines at 1,800,402) 
has 815 over 19 years. However, the probability of having one vulnerability per unit of 
software size per year is 1.15   10−3% for Chrome and 2.4   10−3% for Apache (i.e., 
the larger Chrome has less vulnerabilities per unit of software size). 

5.3 Common Attack Surface in the Same Category 

We study the trend of common attack surface between software within the same cate-
gory in this section. Figure 8 depicts the common attack surface for different sizes of 
software in the category WebServer and FTP, respectively, represented in both scattered 
and trending results. The orange scattered points and the dotted line indicate the result 
and the red dotted line is the same trend borrowed from Figure 6for comparison. We 
can observe that the trend of common attack surface in both categories increase with 
the size, which follows a similar trend as the cross category result. However, the trend 
of WebServer increases faster than the cross-category trend, which matches the results 
shown in Table 1. On the other hand, the trend in the FTP category grows slightly slower 
than the cross category trend, which can be explained by the fact that FTP shares a large 
amount of common attack surface with WebServer and TFTP. 

(a) (b) 

Fig. 8. Size Trend in Same Category, WebServer (a) and FTP (b) 

The left chart in Figure 9 depicts the trend of common attack surface over time 
in the same category. Each blue bar represents the average number of I/O functions 
in the years in the same category of the experiments. The red line shows the average 
number of common attack surface in those years. Compared to Figure 7, the common 
attack surface in the same category has higher values, which also match the previous 
observations. The right chart in Figure 9 reveals the trend of the probabilistic common 
attack surface metric versus the size in the same category, which shows a similar trend 
as the cross category result, although the trend within the same category starts from a 
higher value around 0.20 (in contrast, the cross-category metric starts from 0.06). 
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(a) (b) 

Fig. 9. Common Attack Surface Over Time and vs Size 

6 Related Work 

There exist extensive research on clone code detection although many of these tools 
are mainly for research purposes [41]. One of the popular tools in text-based clone 
detection is the Dup [2]; if two lines of code are identical after removing all whites-
paces and comments, they are assigned as clone codes; the longest line matches are 
the output, but the minimum length of the reported code can be customized accord-
ing to different needs. Another well-known approach [20] is applying the fingerprint 
in order to identify the redundancy on a substring of the source code. The fingerprint-
ing calculation uses KARP-Rabins string matching approach [24, 25] to calculate the 
length of all n substrings. Ducasse developed [9] duploc which was designed to be a 
parsing free, language-independent tool which first reads the source file and sequences 
of the lines, then removes all comments and whitespace to create a set of condensed 
lines; afterward, a comparison is made based on the hash result, where scatter-plots in-
dicate the visualization of a cloned result. Token-based clone detection is also one of 
the widely applied methods. One of the representative tools in token-based detection is 
CCFinder [22], which is applied in our work. Bakers Dup [2, 3] implements a similar 
approach as CCFinder. The detection process begins by tokenizing the source code, 
then using a suffix-tree algorithm to compare tokens. Unlike CCFinder, Dup does not 
apply transformation, but rather consistently renames the identifier. Raimar Falke [29] 
develops a tool called iclones [15], which uses suffix-trees to find clones in abstract syn-
tax trees, which can operate in linear time and space. CP-Miner [31] as a well-designed 
token-based clone detector, uses frequent subsequence mining algorithms to detect to-
kenized segments. RTF [5] is a token-based clone detector that uses string algorithms 
for efficient detection; rather than using the more common suffix-tree, it utilizes more 
memory-efficient suffix array. 

One of the leading tools using AST-based algorithm is the CloneDR developed by 
Baxter [6] which can detect exact and near-miss clone through applying hashing and 
dynamic algorithm. The ccdiml [38] developed by Bauhaus is similar to the CloneDR 
in the way of dealing with hash and code sequences, but instead of using AST, it ap-
plies IML algorithm in the comparing process. David and Nicholas [13] develop a tool 
named Sim which uses a standard lexical analyzer to generate a parsing-tree of two 
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given software applications. The code similarity is determined by applying the maxi-
mum common subsequence and dynamic programming. One of the leading PDG-based 
tools is PDG-DUP presented by Komondoor and Horwit [26] and Komondoor and Hor-
witz’s PDG-DUP [26] is another leading PDG-based detection tool, which identifies 
clones together and keeping the semantics of the source code to reflect software. As to 
metric-based clone detection, in [36] Mayrand uses the tool Darix to generate the metric 
and the clone identification is based on four values, which are name, layout, expression 
and control flow [36]. Kontogiannis [27] uses Markov models to compute the dissimi-
larity of the code by applying the abstract pattern matching. Five widely used metrics 
are applied in a direct comparison in [28]. There are also some other approaches that 
using hybrid clone detections. In [29], the authors apply the suffix trees to find clones 
in AST; this approach can find clones in linear time and space. 

The concept of attack surface is originally proposed for specific software, e.g., Win-
dows, and requires domain-specific expertise to formulate and implement [16]. Later 
on, the concept is generalized using formal models and becomes applicable to all soft-
ware [34]. Furthermore, it is refined and applied to large scale software, and its calcula-
tion can be assisted by automatically generated call graphs [33, 32]. Attack surface has 
attracted significant attentions over the years. It is used as a metric to evaluate Android’s 
message-passing system [23], in kernel tailing [30], and also serves as a foundation in 
Moving Target Defense, which basically aims to change the attack surface over time so 
to make attackers’ job harder [18, 17]. The study on automating the calculation of attack 
surface is another interesting domain, e.g., COPES uses static analysis from bytecode to 
calculate attack surface and to secure permission-based software [4]. Stack traces from 
user crash reports is used to approximate attack surface automatically [43]. The cor-
relation between attack surface and vulnerabilities has also been investigated, such as 
using attack surface entry points and reachability to assess the risk of vulnerability [46]. 
A study about the relationship between attack surface and the vulnerability density is 
given in [45], although the result is only based on two releases of Apache HTTP Server. 
Despite such interest in attack surface, to the best of our knowledge, the common attack 
surface between different software has attracted little attention. 

7 Conclusion 

In this paper, we have defined the concept of common attack surface and implemented 
an automated tool for evaluating the common attack surface between given software ap-
plications. We have conducted experiments on real open source software and examined 
the common attack surface both within and between software categories. Our results 
have shown common attack surface to be pervasive among software. Our work still has 
some limitations which will lead to our future work. First, since we rely on CCFinder 
our tool also inherits its limitations, and one future direction is to explore other clone 
detection tools. Second, we have focused on entry/exit points of attack surface, and one 
future direction is to also consider channels and untrusted data items. Third, we have 
focused on the C language in this work, and extending it to other languages with differ-
ent entry and exit libraries is an interesting future direction. Finally, we plan to extend 
the effort on correlating between common attack surface and known vulnerabilities. 
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Disclaimer 

Commercial products are identified in order to adequately specify certain procedures. In 
no case does such identification imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor does it imply that the identified products are 
necessarily the best available for the purpose. 
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Appendix 

Common Attack Surface and Vulnerabilities 

We study the correlation between the common attack surface of two software applica-
tions and their shared vulnerabilities. Although, as mentioned earlier in Section 2.2, the 
concept of attack surface is not intended as a one-to-one mapping to actual vulnerability, 
the size of attack surface can still provide a rough indicator for the relative abundance of 
vulnerabilities, since entry and exit points represent the interfaces exposed by the soft-
ware for accepting inputs from (or sending outputs to) the outside environment. Conse-
quently, the common attack surface may also indicate shared vulnerabilities. Therefore, 
we study this correlation through experiments. 

To evaluate the correlation between common attack surface and vulnerabilities, we 
examine pairs of software applications with respect to the results of a vulnerability 
scanner called flawfinder [44]. Flawfinder is an open-source tool that can be used to 
scan C and C++ source code and report potential vulnerabilities [44]. It is regarded 
as an effective tool for detecting misused functions with ranked risks. For the purpose 
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of verifying the relationship between common attack surface and vulnerabilities, we 
manually compare our results with the results of flawfinder. 

Our findings indicate that common vulnerabilities may indeed to some extent be 
correlated with common attack surface. For example, we examined the two software 
SSH and simple-webserverche, which are of the category SSH and Webserver applica-
tions, respectively. In SSH, the main file uses function strcat to copy data to an internal 
parameter user name, and those data are applied without any boundary check. The same 
thing happens in the application simple-webserverche where a file named server.c calls 
function handle response() to apply function strcat. The source parameter curr time is 
applied before the boundary checking. Our tool successfully detects these code frag-
ments as a common attack surface, while flawfinder reports that both have the potential 
to lead to similar buffer overflow vulnerabilities. 

To further evaluate the extent of such correlation, we compare the outputs of flawfinder 
and the results of our tool, and Table 2 shows the level of correlation between the two. 
As the results show, in every category of software applications, there exist a certain 
percentage of vulnerabilities which correlate to the common attack surface. 

FTP 4.07% FireWall 3.74% DB 3.40% WebServer 4.08% SSH 3.37% TFTP 3.10% IMAP 6.52% 

Table 2. Percentage of Detected Vulnerabilities Which Correlate to Reported Common Attack 
Surface 
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