
� ��

CASFinder: Detecting Common Attack Surface

Mengyuan Zhang1 , Yue Xin1 , Lingyu Wang1, Sushil Jajodia2, and Anoop Singhal3

1 Concordia Institute for Information Systems Engineering, Concordia University
wang@ciise.concordia.ca

2 Center for Secure Information Systems, George Mason University
jajodia@gmu.edu

3 Computer Security Division, National Institute of Standards and Technology
anoop.singhal@nist.gov

Abstract. Code reusing is a common practice in software development due to its
various benefits. Such a practice, however, may also cause large scale security is-
sues since one vulnerability may appear in many different software due to cloned
code fragments. The well known concept of relying on software diversity for se-
curity may also be compromised since seemingly different software may in fact
share vulnerable code fragments. Although there exist efforts on detecting cloned
code fragments, there lack solutions for formally characterizing their specific im-
pact on security. In this paper, we revisit the concept of software diversity from
a security viewpoint. Specifically, we define the novel concept of common attack
surface to model the relative degree to which a pair of software may be sharing
potentially vulnerable code fragments. To implement the concept, we develop an
automated tool, CASFinder, in order to efficiently identify common attack surface
between any given pair of software with minimum human intervention. Finally,
we conduct experiments by applying our tool to real world open source software
applications. Our results demonstrate many seemingly unrelated software appli-
cations indeed share significant common attack surface.

1 Introduction

Code reusing is a common practice in today’s software industry due to the fact that it
may significantly accelerate the development process [6, 9]. However, such a practice
also has the potential of leading to large scale security issues because a vulnerability
may be shared by many different software applications due to the shared libraries or
code fragments. A well known example is the Heartbleed vulnerability in OpenSSL,
which caused widespread panic on the internet since the vulnerable library was shared
by many popular Web browsers, including Apache and Nginx [10]. In addition to shared
libraries, the reusing of existing code fragments may also lead to similar vulnerabili-
ties shared by different software applications. Unlike libraries, such reused codes are
typically not traced by any official documentation, which makes it more difficult to un-
derstand their security impact. Finally, this phenomenon may also compromise the well
known concept of relying on software diversity for security, since seemingly unrelated
software applications made by different vendors may in fact share common weaknesses.

� This work was completed when the author was a Ph.D. student at Concordia University.
�� This work was completed when the author was a M.Sc. student at Concordia University.

mailto:anoop.singhal@nist.gov
mailto:jajodia@gmu.edu
mailto:wang@ciise.concordia.ca

The issue of identifying and characterizing the security impact of shared code frag-
ments has received little attention (a more detailed review of the related work will be
given in Section 6). Most existing vulnerability detection tools focus on identifying vul-
nerabilities for a specific software application based on static and/or dynamic analysis,
with no indication whether different software may be sharing similar vulnerabilities
due to common libraries or reused codes [11]. On the other hand, existing efforts on
software clone detection mostly focus on identifying reused code fragments based on
either the textual similarity or functional similarity, with no indication of the security
impact [40]. Clearly, there exists a gap between the two, i.e., how can we leverage exist-
ing efforts on software clone detection to characterize the likelihood that given software
applications may share similar vulnerabilities?

In this paper, we address the above issue through defining the novel concept of com-
mon attack surface and developing an automated tool, CASFinder, to calculate the com-
mon attack surface of given software applications. Specifically, we first extend the well
known attack surface concept to model the relative degree to which a pair of software
may be sharing potentially vulnerable code fragments. Such a formal model enables the
quantification of software diversity from the security point of view, and its results may
be used as inputs to higher level diversity methods (e.g., network diversity [47] and
moving target defense [19]). Second, we develop CASFinder which is an automated
tool that takes the source code of two software applications as the input and outputs
their common attack surface result in an XML file or to a database. Third, we conduct
experiments by applying our tool to a large number of real world open source software
applications belonging to seven different categories from Github. More than 80,000
combinations of software applications are analyzed, and our results demonstrate many
seemingly unrelated software applications indeed share a significant level of common
attack surface. In summary, the contribution of this paper is threefold.

– First, to the best of our knowledge, this is the first effort on formally modeling
the security impact of reused code fragments. The common attack surface model
may serve as a foundation and provide quantitative inputs to higher level security-
through-diversity methods.

– Second, the CASFinder tool makes it feasible to evaluate the common attack surface
between open source software applications, which may have many practical use
cases, e.g., providing useful references for security practitioners to choose the right
combinations of software applications in order to maximize the overall software
diversity in their networks, and reusing the knowledge about existing vulnerabilities
in one software to potentially identify similar ones in other software.

– Third, our experimental results prove the possibility of similar vulnerabilities shared
by seemingly unrelated software applications made by different vendors. We be-
lieve such a finding may help attract more interest to re-examining the concept of
software diversity and its security implication.

The remainder of this paper is organized as follows. Section 2 provides a motivating
example and background information. Section 3 defines the common attack surface
model. Section 4 designs and implements the CASFinder tool. Section 5 evaluates the
tool through experiments using real open source software. Section 6 reviews related
work and Section 7 concludes the paper and provides future directions.

2

2 PRELIMINARIES

In this section, we first present a motivating example in Section 2.1 and then provide
background knowledge and highlight the challenge in Section 2.2.

2.1 Motivating Example

As an example, consider an enterprise network with Web servers running either the
Apache HTTP server (Apache) or the Nginx HTTP server (Nginx), as well as a Cyrus
IMAP server (Cyrus). Assume all three software applications are of the vulnerable ver-
sions that are affected by the Heartbleed vulnerability. This vulnerability has report-
edly affected an estimated 24-55% of popular websites and gave attackers accesses to
sensitive memory blocks on the affected servers, which potentially contain encryption
keys, usernames, passwords, etc. [10]). The vulnerability is discovered inside the pop-
ular OpenSSL library, which is an extension of many Web and email server software
applications for supporting the https connections.

Specifically, Figure 1 demonstrates how this vulnerability functions in relation to
the three software applications in our example. Those software simply hand the encryp-
tion tasks to the OpenSSL extension, and the vulnerability appears when the software
make external calls to the OpenSSL extension. In establishing the SSL connections,
the API invocation SSL CTX new(method) is a function for establishing SSL content,
SSL new() is for creating SSL sessions, and SSL connect() for launching SSL hand-
shakes. To exploit the Heartbleed vulnerability, attackers would craft a heartbeat request
with a special length and send it to the servers. This request would causes different soft-
ware applications to invoke the same library function memcpy() without any boundary
check enabling attackers to extract sensitive memory blocks from the servers.

The fact that this vulnerability exists inside the OpenSSL extension shared by all
three software means an attacker can compromise those different software in a similar
manner. This phenomenon is certainly not limited to this particular vulnerability. In this
example, since both the Apache and Nginx projects are Web servers developed in C
language, their similar functionality implies there is a high chance that the developers
of both projects would not only import the same libraries, but also reuse the same or
similar code fragments. In addition, as will be shown through our experimental results,
code reusing also exists among software applications with very different functionalities.
On the other hand, not all server software that use SSL connections are affected by this
vulnerability, e.g., Microsoft IIS and Jetty are both immune to the vulnerability [10].

Clearly, there exists a need for identifying the software applications which may
share such a common vulnerability, and for characterizing the level of such sharing
since some software may share more than one such vulnerability. Such a desirable ca-
pability may have many practical use cases. For instance, it may allow similar software
patches or fixes to be developed and applied to different software applications in order
to mitigate a common vulnerability, which may significantly reduce the time and effort
needed for developing such patches and fixes. This capability may also allow adminis-
trators to better judge the amount of software diversity in their networks, and to choose
the right combinations of software applications (e.g., Apache and IIS w.r.t. this particu-
lar vulnerability) to increase the diversity. Finally, this capability would lead to a more

3

https://www.apachesite.com

SSL_engine_init.c
...
ctx = SSL_CTX_new(method);
...
mod_ssl.c
/* Create a new SSL connection with the configured server
SSL context and

* attach this to the socket...
if (!(ssl = SSL_new(mctx->ssl_ctx))) { ...

ssl_engine_io.c
...
if ((n = SSL_connect(filter_ctx->pssl)) <= 0) { ...
...
SSL_do_handshake(ssl);
...

ngx_event_openssl.c
...
ngx_int_t ngx_ssl_create(ngx_ssl_t *ssl, ngx_uint_t protocols,
void *data)
{ ssl->ctx = SSL_CTX_new(SSLv23_method());
...
ngx_int_t ngx_ssl_create_connection(ngx_ssl_t *ssl,
ngx_connection_t *c, ngx_uint_t flags)
{ ngx_ssl_connection_t *sc;
 sc = ngx_pcalloc(c->pool, sizeof(ngx_ssl_connection_t));
...

sc->buffer = ((flags & NGX_SSL_BUFFER) != 0);
sc->connection = SSL_new(ssl->ctx);

...
ngx_int_t ngx_ssl_handshake(ngx_connection_t *c)
{ ...

ngx_ssl_clear_error(c->log);
 n = SSL_do_handshake(c->ssl->connection);

...
ctx=SSL_CTX_new(method);
// Create SSL content
...
SSL=SSL_new(ctx);
// create SSL session

...
SSL_connect(SSL);
// Launch SSL handshake

...

Heartbeat Request
123

Request Length = 30,000 bytes
Actual Length = 3 bytes

Heartbeat response
123

<...>mycertificatepassphrase<..
.>username&password,etc
Response Length =

30,000bytes

tls.c
...
#if (OPENSSL_VERSION_NUMBER >=
0x10100000L)

s_ctx =
SSL_CTX_new(TLS_server_method());
#else

s_ctx =
SSL_CTX_new(SSLv23_server_method());
...
tls_conn = (SSL *) SSL_new(s_ctx);
...
if ((sts = SSL_connect(tls_conn)) <= 0) {
...

Cyrus

https://www.nginxsite.com

Fig. 1. An Example of the Heartbleed Vulnerability

refined approach to moving target defense (MTD) [12] since it could potentially allow
us to quantify the amount of software diversity that is achieved by switching between
different software resources under a MTD mechanism.

2.2 Background

We take two steps towards measuring the potential impact of cloned codes on secu-
rity. The first step is to find similar code fragments in different software applications.
The second step is to characterize the security impact of such code fragments. We first
review some of the background concepts related to each step.

First, to detect similar code fragments between software, most clone detection meth-
ods are based on either the textual similarity or the functional similarity, and existing
tools are mostly based on text, token, tree, graph, or metrics [40, 41]. Among the exist-
ing tools, we have chosen CCFinder [22], a language-based source code clone detection
tool, to find cloned code fragments within given software. As one of the leading token-
based detection tools, CCFinder has received the Clone Award in 2002, and it supports
multiple languages, including C, C++, Java, and COBOL. CCFinder first divides the
given source code into tokens using a lexical analyzer. It then normalizes some of those
tokens by replacing identifiers, constants and other basic tokens with generic tokens
representing their language role. Finally, it uses a suffix-tree based sub-string matching
algorithm to find common subsequences corresponding to clone pairs and classes [22].
A key advantage of such a token-based tool is that it can tolerate minor code changes,
such as formatting, spacing and renaming, in the reused code.

However, the result from clone detection tools, including CCFinder, only reveals
similar code fragments between source codes, without indicating any security impact.

4

The primary challenge is therefore to model and quantify the potential impact of clone
detection on security in terms of leading to potential vulnerabilities. To this end, a
promising solution is to apply the attack surface concept [35], which is a well known
software security metric that measures the degree of software security exposure. The
measurement is taken as counts along three dimensions, the entry and exit points (i.e.,
methods calling I/O functions), channels (e.g., TCP and UDP), and untrusted data items
(e.g., registry entries or configuration files), and the counting results are then aggregated
through weighted summation. Attack surface measures the intrinsic properties of a soft-
ware application, e.g., how many times does each method invoke I/O functions (which
provides an estimate of security risks such as buffer overflow), regardless of external
factors such as the discovery of the vulnerability or the existence of exploit code. There-
fore, attack surface can potentially cover both known and unknown vulnerabilities.

Therefore, we will combine clone detection (i.e., CCFinder) with attack surface
to quantify the likelihood that cloned code fragments may lead to potentially similar
vulnerabilities shared between different software applications. For simplicity, we will
focus on entry and exit points in this paper, and will consider channels and untrusted
data items in our future work. We also note that, since it is not guaranteed that every
entry or exist point will map to a vulnerability, the attack surface concept is only in-
tended as an estimation of the relative abundance of vulnerabilities in software [35].
Consequently, our model and tool also inherit this limitation, and the results will only
indicate the potential, instead of the actual existence, of common vulnerabilities.

Combining the result of clone detection with the attack surface concept is not a
straightforward task. We discuss a key challenge in the following. In Figure 2, function
handle response() and function quicksand mime() are both entry points since they call
I/O functions fseek() and ftell (from the standard C library). A naive application of the
attack surface concept here would indicate each function count as one entry point and
hence both have the same security implication. However, such a coarse-grained applica-
tion ignores the exact number of I/O function calls (i.e., three calls in handle response()
and two in quicksand mime()) whose difference may be significant in practice. In our
model, we will take a more refined approach to address such issues.

1 fseek(fp, 0, SEEK END);
2 size = ftell(fp);
3 fseek(fp, 0, SEEK SET);
4 snprintf(fsize, 32, ”Content−Length: %d\r\n\r\n”, size);

1 long fsize = ftell(f);
2 fseek(f, 0, SEEK SET);
3 free(decoded mime);

Fig. 2. Examples of Entry Points: /Simple-Webserverche/server.c handle response() (Top) and
/quicksand lite/libqs.c quicksand mime() (Bottom)

5

�

3 The Model of Common Attack Surface

In this section, we model the security implication of cloned code fragments between
software applications through two novel security metrics, namely, the conditional com-
mon attack surface (ccas) and the probabilistic common attack surface (pcas). Those
two metrics are designed for different use cases as follows.

– The conditional common attack surface (ccas) is designed to be asymmetric for
use cases in which one software is of particular interest and evaluated against all
other software. For example, suppose a company has developed a new Web server
application and wants to understand any similarity between their product and other
existing Web servers such as Apache and Nginx. In such a case, the key is to rank
those other software applications based on the relative percentage of shared attack
surface, and the developer can apply the metric ccas for this purpose.

– Second, in a different scenario, suppose an administrator wants to understand the
level of software diversity between all the software applications inside the same
network. In such a case, both software in comparison are considered equally im-
portant, so the symmetric metric pcas would be more suitable, which will yield a
unique measurement of shared attack surface between any pair of software. The
following details the ccas and pcas metrics.

3.1 Conditional Common Attack Surface (CCAS) Metric

We first consider clone segments between two software applications identified using
CCFinder [22] through an example.

Example 1. Figure 3 demonstrates clone segments between a Web server application
SimpleWebserver and an ssh application SSHBen. In the figure, the Clone id is a unique
number labelling a group of related clones inside both software applications. For in-
stance, the code segments inside the solid line blocks indicate the clone segments with
the same Clone id 28, and the dashed line blocks are for Clone id 78. Note that the same
code may appear under different clone ids, e.g., line 146 and 147 in Simple-Webserver
appear under both clone ids. Also note that, for Clone id 78, the matching between the
two clone segments is inexact [22] since strcat does not exist in SSHBen.

From the above example, it is clear that the clone segments belonging to the same
Clone id are not identical between the two software applications. Therefore, the attack
surface would be asymmetric as well. First, we define the Common Attack Surface as
the collection of I/O function calls inside the clone segments as follows.

Defnition 1 (Common Attack Surface). Given two software applications A and B,
the common attack surface of A w.r.t. B (or that of B w.r.t. A) under the Clone id i
is defined as the multi-set (which preserves duplicates) of I/O function calls that exist
inside the clone segments of A under the Clone id i, denoted as casi(A|B) (or casi(B|A)).

Example 2. To follow our example, we have

– cas28(SimpleWebserver|SSHBen) = strcat, strcat, fopen∗,

6

�
�
�

/SSHBen/ssh/client.c client_copy()

Simple-Webserver/server.c
handle_response()

Clone id = 28
144 get_time_string(curr_time);
145 strcat(response, curr_time);(p)
146 strcat(response, "\nContent-Type:

text/html\r\n");
147 fp = fopen(page, "r");
148 fseek(fp, 0, SEEK_END);
149 size = ftell(fp);

131 strcat(user_name,"\t");
132 strcat(user_name,data1);
133 strcat(user_name,"\n");
134 fp=fopen("pass.txt","a");

Clone id = 78
95 send(sd,fname,sizeof(fname),0);
96 fp=fopen(fname,"rb");
97 fseek(fp,0L,SEEK_END);
98 m=ftell(fp);

158 {recv(connected,fname,sizeof(fname),0);
159 fp=fopen(fname,"rb");
160 fseek(fp, 0L, SEEK_END);
161 m = ftell(fp);

169 send(sd,fname,sizeof(fname),0);
170 fp=fopen(fname,"rb");
171 fseek(fp,0L,SEEK_END);
172 m=ftell(fp);

279 {recv(connected,fname,sizeof(fname),0);
280 fp=fopen(fname,"rb");
281 fseek(fp, 0L, SEEK_END);
282 m = ftell(fp);

/SSHBen/ssh/server.c build_header()

/SSHBen/ssh/client.c client_recv_udp_msg()

/SSHBen/ssh/server.c sendfiletosocket()

/SSHBen/ssh/server.c scheduler()

Fig. 3. An Example of Cloned Segments

– cas28(SSHBen|SimpleWebserver) = strcat, strcat, strcat, fopen∗,
– cas78(SimpleWebserver|SSHBen) = fopen, fseek, ftell∗, and
– cas78(SSHBen|SimpleWebserver) = fopen, fseek, ftell, fopen, fseek, ftell,
fopen, fseek, ftell, fopen, fseek, ftell∗.

Since the attack surface concept is based on the number of entry and exist points
(i.e., methods invoking I/O functions), we follow the similar approach to calculate the
size of common attack surface by counting the number of I/O function calls across
different Clone ids, with those appearing under different Clone ids counted only once.
We demonstrate this through an example.

Example 3. For Clone id 78, this gives three for Simple-Webserver and 12 for SSHBen.
As to Clone id 28, we have three for Simple-Webserver and four for SSHBen. Note that
fopen is considered under both Clone ids for Simple-Webserver, and hence we should
count it only once. Based on those discussions, we can calculate the total number of I/O
function calls for both Clone ids as five for Simple-Webserver and 16 for SSHBen.

Finally, we define the Conditional Common Attack Surface as the ratio between the
size of the common attack surface of a software application (w.r.t. to another software)
and the size of its entire attack surface (i.e., the total number of I/O function calls inside
that software). This ratio indicates the degree to which the software shares with others
similar I/O function calls (entry/exit points).

Defnition 2 (Conditional Common Attack Surface). Given two software applica-
tions A and B with totally n clone segments, and ASA and ASB as the total number of
I/O function calls inside A and B, respectively, the conditional common attack surface

7

�

�
�

of A w.r.t B (or that of B w.r.t. A), denoted as ccas(A|B) (or ccas(B|A)), is defined as:

�n | i=1 cas(A | B) |
ccas(A | B) =

ASA

�n | i=1 cas(B | A) |
ccas(B | A) =

ASB

Example 4. The attack surface (i.e., the total number of I/O function calls) of Simple-
Webserver and SSHBen are 16 and 182, respectively. We thus have ccas(SSHBen |

5 SimpleW ebserver) = = 0.3125 and ccas(SimpleW ebserver | SSHBen)= 16
16 = 0.029. The results show that SSHBen contains about 31% shared attack surface, 182

whereas SimpleWebserver contains only 2.9%. By comparing a software application
to many others, the developer of that application may gain useful insights from such
results in terms of vulnerability discovery and security patch management.

3.2 Probabilistic Common Attack Surface Metric

The conditional common attack surface metric ccas is designed for evaluating one soft-
ware application against others. We now take a different approach of defining a sym-
metric probabilistic common attack surface metric for two software applications. Such
a metric can be used to estimate the amount of effort that a potential attacker may reuse
while attempting to compromise both software applications. The nature of such a use
case implies the metric should be symmetric.

We apply Jaccard index for this purpose, which is commonly defined as J(A, B) =
A∩B and used for analyzing the similarity and diversity between the two sets. To apply A∪B
this metric in our case, we need to define both the intersection and union of the attack
surface of two software applications. The common attack surface defined in previous
section (Definition 1) can be considered as the intersection, but such a definition is not
sufficient here since it is asymmetric in nature. Instead, we will define the intersection
between the attack surface of two software applications using the standard multi-set
intersection operation [42], which is described below.

Defnition 3 (Intersection of Multi-Sets [42]). Given two multi-sets A = A, f∗ (where
f is the multiplicity function such that for any a ∈ A, f(a) gives the number of occur-
rences of a in the multiset) and B = A, g∗, then their intersection, denoted as A∩B, is
the multi-set A, s∗, where for all a ∈ A:

s(a) = min(f(a), g(a)).

Example 5. Assume U ={a,a,a,b} and V = {a,a,b,b}, if we apply the multi-set operation
as defined above, we have U∩V = {a,a,b}.

The union of the attack surface between two software applications can be defined
as ASA ∪ ASB = ASA + ASB − cas(B | A) ∩ cas(A | B). With both the union
and intersection operations defined, we can now define the probabilistic common attack
surface metric as follows.

8

�

Defnition 4 (Probabilistic Common Attack Surface Metric). Given two software
applications A and B, with their attack surface ASA and ASB and the common attack
surface cas(B|A) and cas(A|B), respectively, the probabilistic common attack surface of
A and B is defined as:

| cas(B | A) ∩ cas(A | B) |
pcas(A.B) = | ASA ∪ ASB |

Example 6. The size of attack surface in Simple-Webserver and SSHBen is 16 and
182, respectively. From our previous discussions, we have cas(SSHBen | Simple-
Webserver)∩cas(SimpleW ebserver | SSHBen) = strcat, strcat, fopen, fseek,

5 ftell∗ whose size is 5, and hence pcas(SSHBen.SimpleW ebserver) = = 16+182−5
2.6%. Intuitively, this result indicates that, among all the I/O function calls, about 2.6%
are shared between the two software applications. Such a result, when applied to all
pairs of software applications inside a network, may allow administrators to estimate
the degree of software diversity in the network from a security point of view.

4 Design and Implementation

To automate the evaluation of common attack surface between software applications,
we design and implement a tool, CASFinder. Figure 4 depicts the architecture of CAS-
Finder, which consists of three main components, the clone detection module, the
source code labeling module, and the visualization module. The following describes
those modules in more details.

Direct I/O

Token to Line Number

Binary to Token

Clone Detection

Binary Result

Final Result DB
Final Result

Fig. 4. The Architecture

– The Clone Detection Module As mentioned earlier, we choose CCFinder [22] as the
basis of our clone detection module. The following details challenges and solutions

9

for applying CCFinder. First, since our tool is developed and operated under Linux,
we apply only the back end of CCFinder. One challenge is that, since the default
Linux version of CCFinder is designed to work on Ubuntu 9, the newer versions
of many libraries are no longer valid for CCFinder. Therefore, several libraries
need to be installed separately, e.g., libboost-dev and libicu-dev, which will depend
on the specific version of the Linux system and can be determined based on the
warnings and errors produced by CCFinder. Second, various parameters can be
fine tuned in CCFinder to customize its execution mode [21]. In particular, the
most important parameters include b, the minimum length of the detected code
clones, and t, the minimum number of types of tokens involved. We have chosen
b = 20 and t = 8 based on experiences obtained through extensive experiments. In
addition, parameter w is used to determine whether CCFinder will perform inner-
file clone detection whose results contain clones between different parts of the same
software application, which is not our focus, and therefore w is set to be f-w-g+ to
focus on inter-file clones. Finally, the default output of the CCFinder is stored in a
binary file with .ccfd extension. Since we do not install any front end of CCFinder,
we apply the command ./$PATH/ccfx -p name.ccfd to translate the .ccfd file into
a human-readable version. The resultant file contains only the token information,
which cannot be directly mapped back to the source code files. Therefore, we have
developed a script, post-prettyprint.pl [37], to convert the token information into
corresponding line numbers in the source code.

– The Source Code Labeling Module As mentioned above, the converted output of
CCFinder provides only the file name and line number of the clone segments,
without information needed for mapping them back to the original source code.
For the purpose of generating traceable output with source code fragments, a map-
ping between the line number of the clone segments and the source code needs to
be established. This second module is designed for this purpose by automatically
retrieving a clone code segment from the source code according to the result of
CCFinder.

– The Visualization and CAS Calculation Module The visualization module gener-
ates the results of clone segments. The results include clone ID, file path, func-
tion name, clone segment, start line number, and end line number. The visualized
output is organized as an XML tree with labels. The label contents contains the
source clone segments from CCFinder outputs. Label funcname reveals the func-
tion names corresponding to the clone segments, and label io contains the common
I/O functions. To calculate the common attack surface, we first need to identify the
I/O functions. In our experiments, we have obtained the list of I/O functions from
the GNU C library [39] (glibc), which is the GNU project’s implementation of C
standard library, as the database for examining the entry/exit points. In total, 256
I/O functions are stored in our database, e.g., function memcpy() or strcpy, which
could take user inputs as the source, and copy them directly to the memory block
pointed to by the destination. Such functions have caused many serious security
flaws including CVE-2014-0160 (i.e., the Heartbleed bug [7]). The final result of
common attack surface is calculated based on the I/O functions shared among all
software applications, and can be stored either in a file or into the database.

10

http:post-prettyprint.pl

5 Experiments

This section presents experimental results on applying our tool CASFinder to real world
open source software.

5.1 Dataset

To study the common attack surface among real world software applications, we need
a large amount of open-source software to apply our tool. For this purpose, we have de-
veloped a script to automatically parse the download links at the open-source software
hosts. Our research shows that GitHub [14] provides the customized API for users to
search open-source software applications with customized requirements and to down-
load them automatically. The results are presented in json code, which contains the
download link of each application together with other information. In our experiments,
we have set the parameter language to C programs, and use parameters q, sort, and
order to specify the query conditions and to customize the sequence of results. We have
developed the script to parse the json format output from the GitHub automatically
and to store the information of the software download link, authors, publish time, size,
and other descriptions into our local database. All the download links for each soft-
ware application are stored separately. Since Github has a limitation with respect to the
maximum requests in a certain amount of time, we design the process to sleep for cer-
tain time after each query. Our experimental environment is a virtual machine running
Ubuntu 14.04, with the Intel core i3-4150 CPU and 8.0GB of RAM. We have applied
our tool to totally 293 different software applications belonging to seven categories.
The software applications belong to several categories as follows: 32 in Databases, 62
in Web servers, 25 in ssh servers, 79 in FTP servers, 41 in TFTP servers, 6 in IMAP � �

293 servers, and 48 in firewalls. Those amount to totally = 42778 pairs of software 2
applications tested using our tool in the experiments.

5.2 Cross-Category Common Attack Surface

In this section, we apply the two proposed common attack surface metrics to totally
42,778 pairs of real world software. The first set of experiments reveal the existence of
common attack surface between different categories of software applications. To con-
vert the results to a comparable scale, we have normalized the absolute value of com-
mon attack surface reported by CASFinder by the size of the software. Figure 5 shows
the existence of common attack surface across seven categories. The percentages on top
of the bars inside each figure indicate the level of common attack surface between the
category mentioned in the title of the figure and all the seven categories. We can observe
that common attack surface exists in all of the category combinations. For example, the
DB category has the highest level of common attack surface inside its own category
(between different software inside that category), 27.9%, and it also shares more than
9% common attack surface with any other category.

In summary, the results across all categories are shown in the heat map in Table 1
where a darker color indicates a larger CAS value between the pair of categories. A
visible diagonal with the darkest color in the heat map indicates the expected trend that

11

Fig. 5. Common Attack Surface across Categories

different software in the same category yield the highest level of common attack surface,
most likely due to their similar functionality, except for SSH. In fact, the category SSH
has the lowest level of common attack surface within its category. The reason is that the
SSH category only contains 25 software applications, which is not sufficiently large to
produce any reliable trend. Due to similar reasons, we have omitted the results from the
IMAP category in the heat-map.

FTP FireWall DB WebServer SSH TFTP
FTP

FireWall

DB

WebServer

SSH

TFTP

18.2 13.8 13.7 17.9 12.8 15.3

47.1 67.6 42.2 61.8 31.7 51.7

14.4 13.9 38.4 18.8 12.8 14.1

32.2 35.6 28.6 56.9 24.4 56.3

13.9 15.0 12.5 13.8 11.8 13.7

19.8 25.5 16.5 22.4 19.6 32.6

Table 1. HeatMap for Common Attack Surface in Different Categories

After understanding the general existence of common attack surface among the
seven categories of software applications, we aim to study more specific trends in our
second sets of experiments. The left chart in Figure 6 shows the accumulated number
of pairs of software applications in the absolute value of common attack surface. The
figure depicts only the results with a nonzero value, which include totally 9,852 pairs
(which amounts to about 1/8 of the total number of pairs). We can observe that the accu-
mulated number of pairs of software applications increases quickly before the value of
common attack surface reaches about 12 and afterwards the accumulation flattens out.
About 20% of software share common clone segments, and 56% of the clone segments
contain at least one common attack surface. The right chart in Figure 6 depicts the rela-
tionship between common attack surface and sizes of the software. We use the absolute
values of common attack surface in this experiment. For the sizes, we use the normal-
ized combined sizes log1000(A

B)/1000 when software A is compared with software B.
We can observe that, with increasing sizes of the software, the value of common attack
surface generally increases. This is as expected since the number of I/O functions would
be roughly proportional to the size of the software.

12

(a) (b)

Fig. 6. CAS in Accumulated Software Application Pairs(a), CAS Trend vs Size(b)

The left chart in Figure 7 compares the average number of I/O functions and the
average common attack surface over several years. The blue bars indicate the average
number of I/O functions used in the software applications tested in our experiments
based on the publishing year. The average number of I/O functions per software appli-
cation does not have a simple trend and is used as a baseline for comparison. We can
observe a clear downward trend in the average value of common attack surface over
time, with software published around 2010 having a much higher value of common at-
tack surface compared with more recent years, regardless of the number of average I/O
functions. We believe this trend shows that code reusing plays a major role in common
attack surface, since the trend can be easily explained by the backward nature of code
reusing (i.e., programmers can only reuse older code). The right chart in Figure 7 ex-
plores the trend of the probabilistic common attack surface metric versus the size. The
value of the probabilistic common attack surface metric decreases since the increase
of the number of I/O functions in software applications is faster than the increase of
common attack surface.

(a) (b)

Fig. 7. CAS Trend in Years(a) and The Probabilistic CAS Metric(b)

In fact, those results match the results of existing vulnerability discovery models,
which generally show that larger software applications typically have more vulnera-
bilities but a lower probability for having vulnerabilities per unit of software size. For

13

example, Google Chrome (with the number of lines at 14,137,145 [1]) has 1,453 vul-
nerabilities over nine years [8], while Apache (with the number of lines at 1,800,402)
has 815 over 19 years. However, the probability of having one vulnerability per unit of
software size per year is 1.15 10−3% for Chrome and 2.4 10−3% for Apache (i.e.,
the larger Chrome has less vulnerabilities per unit of software size).

5.3 Common Attack Surface in the Same Category

We study the trend of common attack surface between software within the same cate-
gory in this section. Figure 8 depicts the common attack surface for different sizes of
software in the category WebServer and FTP, respectively, represented in both scattered
and trending results. The orange scattered points and the dotted line indicate the result
and the red dotted line is the same trend borrowed from Figure 6for comparison. We
can observe that the trend of common attack surface in both categories increase with
the size, which follows a similar trend as the cross category result. However, the trend
of WebServer increases faster than the cross-category trend, which matches the results
shown in Table 1. On the other hand, the trend in the FTP category grows slightly slower
than the cross category trend, which can be explained by the fact that FTP shares a large
amount of common attack surface with WebServer and TFTP.

(a) (b)

Fig. 8. Size Trend in Same Category, WebServer (a) and FTP (b)

The left chart in Figure 9 depicts the trend of common attack surface over time
in the same category. Each blue bar represents the average number of I/O functions
in the years in the same category of the experiments. The red line shows the average
number of common attack surface in those years. Compared to Figure 7, the common
attack surface in the same category has higher values, which also match the previous
observations. The right chart in Figure 9 reveals the trend of the probabilistic common
attack surface metric versus the size in the same category, which shows a similar trend
as the cross category result, although the trend within the same category starts from a
higher value around 0.20 (in contrast, the cross-category metric starts from 0.06).

14

(a) (b)

Fig. 9. Common Attack Surface Over Time and vs Size

6 Related Work

There exist extensive research on clone code detection although many of these tools
are mainly for research purposes [41]. One of the popular tools in text-based clone
detection is the Dup [2]; if two lines of code are identical after removing all whites-
paces and comments, they are assigned as clone codes; the longest line matches are
the output, but the minimum length of the reported code can be customized accord-
ing to different needs. Another well-known approach [20] is applying the fingerprint
in order to identify the redundancy on a substring of the source code. The fingerprint-
ing calculation uses KARP-Rabins string matching approach [24, 25] to calculate the
length of all n substrings. Ducasse developed [9] duploc which was designed to be a
parsing free, language-independent tool which first reads the source file and sequences
of the lines, then removes all comments and whitespace to create a set of condensed
lines; afterward, a comparison is made based on the hash result, where scatter-plots in-
dicate the visualization of a cloned result. Token-based clone detection is also one of
the widely applied methods. One of the representative tools in token-based detection is
CCFinder [22], which is applied in our work. Bakers Dup [2, 3] implements a similar
approach as CCFinder. The detection process begins by tokenizing the source code,
then using a suffix-tree algorithm to compare tokens. Unlike CCFinder, Dup does not
apply transformation, but rather consistently renames the identifier. Raimar Falke [29]
develops a tool called iclones [15], which uses suffix-trees to find clones in abstract syn-
tax trees, which can operate in linear time and space. CP-Miner [31] as a well-designed
token-based clone detector, uses frequent subsequence mining algorithms to detect to-
kenized segments. RTF [5] is a token-based clone detector that uses string algorithms
for efficient detection; rather than using the more common suffix-tree, it utilizes more
memory-efficient suffix array.

One of the leading tools using AST-based algorithm is the CloneDR developed by
Baxter [6] which can detect exact and near-miss clone through applying hashing and
dynamic algorithm. The ccdiml [38] developed by Bauhaus is similar to the CloneDR
in the way of dealing with hash and code sequences, but instead of using AST, it ap-
plies IML algorithm in the comparing process. David and Nicholas [13] develop a tool
named Sim which uses a standard lexical analyzer to generate a parsing-tree of two

15

given software applications. The code similarity is determined by applying the maxi-
mum common subsequence and dynamic programming. One of the leading PDG-based
tools is PDG-DUP presented by Komondoor and Horwit [26] and Komondoor and Hor-
witz’s PDG-DUP [26] is another leading PDG-based detection tool, which identifies
clones together and keeping the semantics of the source code to reflect software. As to
metric-based clone detection, in [36] Mayrand uses the tool Darix to generate the metric
and the clone identification is based on four values, which are name, layout, expression
and control flow [36]. Kontogiannis [27] uses Markov models to compute the dissimi-
larity of the code by applying the abstract pattern matching. Five widely used metrics
are applied in a direct comparison in [28]. There are also some other approaches that
using hybrid clone detections. In [29], the authors apply the suffix trees to find clones
in AST; this approach can find clones in linear time and space.

The concept of attack surface is originally proposed for specific software, e.g., Win-
dows, and requires domain-specific expertise to formulate and implement [16]. Later
on, the concept is generalized using formal models and becomes applicable to all soft-
ware [34]. Furthermore, it is refined and applied to large scale software, and its calcula-
tion can be assisted by automatically generated call graphs [33, 32]. Attack surface has
attracted significant attentions over the years. It is used as a metric to evaluate Android’s
message-passing system [23], in kernel tailing [30], and also serves as a foundation in
Moving Target Defense, which basically aims to change the attack surface over time so
to make attackers’ job harder [18, 17]. The study on automating the calculation of attack
surface is another interesting domain, e.g., COPES uses static analysis from bytecode to
calculate attack surface and to secure permission-based software [4]. Stack traces from
user crash reports is used to approximate attack surface automatically [43]. The cor-
relation between attack surface and vulnerabilities has also been investigated, such as
using attack surface entry points and reachability to assess the risk of vulnerability [46].
A study about the relationship between attack surface and the vulnerability density is
given in [45], although the result is only based on two releases of Apache HTTP Server.
Despite such interest in attack surface, to the best of our knowledge, the common attack
surface between different software has attracted little attention.

7 Conclusion

In this paper, we have defined the concept of common attack surface and implemented
an automated tool for evaluating the common attack surface between given software ap-
plications. We have conducted experiments on real open source software and examined
the common attack surface both within and between software categories. Our results
have shown common attack surface to be pervasive among software. Our work still has
some limitations which will lead to our future work. First, since we rely on CCFinder
our tool also inherits its limitations, and one future direction is to explore other clone
detection tools. Second, we have focused on entry/exit points of attack surface, and one
future direction is to also consider channels and untrusted data items. Third, we have
focused on the C language in this work, and extending it to other languages with differ-
ent entry and exit libraries is an interesting future direction. Finally, we plan to extend
the effort on correlating between common attack surface and known vulnerabilities.

16

Disclaimer

Commercial products are identified in order to adequately specify certain procedures. In
no case does such identification imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the identified products are
necessarily the best available for the purpose.

References

1. Open hub. https://www.openhub.net/, 2017.
2. Brenda S Baker. A program for identifying duplicated code. Computing Science and Statis-

tics, pages 49–49, 1993.
3. Brenda S Baker. On finding duplication and near-duplication in large software systems.

In Reverse Engineering, 1995., Proceedings of 2nd Working Conference on, pages 86–95.
IEEE, 1995.

4. Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. Automatically se-
curing permission-based software by reducing the attack surface: An application to android.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software En-
gineering, pages 274–277. ACM, 2012.

5. Hamid Abdul Basit and Stan Jarzabek. Efficient token based clone detection with flexible to-
kenization. In Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering,
pages 513–516. ACM, 2007.

6. Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine Bier. Clone
detection using abstract syntax trees. In Software Maintenance, 1998. Proceedings., Inter-
national Conference on, pages 368–377. IEEE, 1998.

7. Marco Carvalho, Jared DeMott, Richard Ford, and David A Wheeler. Heartbleed 101. IEEE
security & privacy, 12(4):63–67, 2014.

8. CVE Community. Common vulnerabilities and exposures. https://cve.mitre.org/,
1999.

9. Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent approach
for detecting duplicated code. In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE
International Conference on, pages 109–118. IEEE, 1999.

10. Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey, Frank
Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, et al. The matter of
heartbleed. In Proceedings of the 2014 Conference on Internet Measurement Conference,
pages 475–488. ACM, 2014.

11. Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A survey. ACM Comput-
ing Surveys (CSUR), 50(4):56, 2017.

12. AK Ghosh, D Pendarakis, and WH Sanders. Moving target defense co-chairs report-national
cyber leap year summit 2009. Tech. Rep., Federal Networking and Information Technology
Research and Development (NITRD) Program, 2009.

13. David Gitchell and Nicholas Tran. Sim: a utility for detecting similarity in computer pro-
grams. In ACM SIGCSE Bulletin, volume 31, pages 266–270. ACM, 1999.

14. GitHub.Inc. A web-based hosting service for version control using git. https://
github.com.

15. Nils Göde and Rainer Koschke. Incremental clone detection. In Software Maintenance and
Reengineering, 2009. CSMR’09. 13th European Conference on, pages 219–228. IEEE, 2009.

17

http:github.com
http:https://cve.mitre.org
http:https://www.openhub.net

16. M. Howard, J. Pincus, and J. Wing. Measuring relative attack surfaces. In Workshop on
Advanced Developments in Software and Systems Security, 2003.

17. S. Jajodia, A.K. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang, and X.S. Wang. Moving
Target Defense II: Application of Game Theory and Adversarial Modeling. Springer, 2012.

18. S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, and X.S. Wang. Moving Target Defense:
Creating Asymmetric Uncertainty for Cyber Threats. Springer, 1st edition, 2011.

19. Sushil Jajodia, Anup K Ghosh, Vipin Swarup, Cliff Wang, and X Sean Wang. Moving target
defense: creating asymmetric uncertainty for cyber threats, volume 54. Springer Science &
Business Media, 2011.

20. J Howard Johnson. Substring matching for clone detection and change tracking. In ICSM,
volume 94, pages 120–126, 1994.

21. Toshihiro Kamiya. Tutorial of cli tool ccfx. http://www.ccfinder.net/doc/10.
2/en/tutorial-ccfx.html, 2008.

22. Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions on Soft-
ware Engineering, 28(7):654–670, 2002.

23. David Kantola, Erika Chin, Warren He, and David Wagner. Reducing attack surfaces for
intra-application communication in android. In Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices, pages 69–80. ACM, 2012.

24. Richard M Karp. Combinatorics, complexity, and randomness. Commun. ACM, 29(2):97–
109, 1986.

25. Richard M Karp and Michael O Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

26. Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in source
code. In International Static Analysis Symposium, pages 40–56. Springer, 2001.

27. K Kontogiannis, M Galler, and R DeMori. Detecting code similarity using patterns. In
Working Notes of 3rd Workshop on AI and Software Engineering, volume 6, 1995.

28. Kostas A Kontogiannis, Renator DeMori, Ettore Merlo, Michael Galler, and Morris Bern-
stein. Pattern matching for clone and concept detection. Automated Software Engineering,
3(1-2):77–108, 1996.

29. Rainer Koschke, Raimar Falke, and Pierre Frenzel. Clone detection using abstract syntax
suffix trees. In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages
253–262. IEEE, 2006.

30. Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin Rothberg,
Andreas Ruprecht, Wolfgang Schr¨ udiger Kapitza. oder-Preikschat, Daniel Lohmann, and R¨
Attack surface metrics and automated compile-time os kernel tailoring. In NDSS, 2013.

31. Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: Finding copy-paste
and related bugs in large-scale software code. IEEE Transactions on software Engineering,
32(3):176–192, 2006.

32. P. Manadhata and J. Wing. An attack surface metric. Technical Report CMU-CS-05-155,
2005.

33. P. Manadhata and J. Wing. An attack surface metric. IEEE Trans. Softw. Eng., 37(3):371–
386, May 2011.

34. Pratyusa Manadhata and Jeannette Wing. Measuring a system’s attack surface. Technical
Report CMU-CS-04-102, 2004.

35. Pratyusa K Manadhata and Jeannette M Wing. An attack surface metric. IEEE Transactions
on Software Engineering, 37(3):371–386, 2011.

36. Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In icsm, volume 96, page 244, 1996.

37. Petersenna. Ccfinder core. https://github.com/petersenna/
ccfinderx-core.

18

https://github.com/petersenna
http://www.ccfinder.net/doc/10

38. Aoun Raza, Gunther Vogel, and Erhard Plödereder. Bauhaus-a tool suite for program analy-
sis and reverse engineering. In Ada-Europe, volume 4006, pages 71–82. Springer, 2006.

39. Trevis Rothwell. The gnu c reference manual. https://www.gnu.org/software/
gnu-c-manual/, 2006.

40. Chanchal K Roy, James R Cordy, and Rainer Koschke. Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of computer program-
ming, 74(7):470–495, 2009.

41. Chanchal Kumar Roy and James R Cordy. A survey on software clone detection research.
Queens School of Computing TR, 541(115):64–68, 2007.

42. Apostolos Syropoulos. Mathematics of multisets. In Workshop on Membrane Computing,
pages 347–358. Springer, 2000.

43. Christopher Theisen, Kim Herzig, Patrick Morrison, Brendan Murphy, and Laurie Williams.
Approximating attack surfaces with stack traces. In Proceedings of the 37th International
Conference on Software Engineering-Volume 2, pages 199–208. IEEE Press, 2015.

44. David A. Wheeler. A program that examines c/c++ source code and reports possible security
weaknesses. https://www.dwheeler.com/flawfinder/.

45. Awad A Younis and Yashwant K Malaiya. Relationship between attack surface and vul-
nerability density: A case study on apache http server. In Proceedings on the Interna-
tional Conference on Internet Computing (ICOMP), page 1. The Steering Committee of
The World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2012.

46. Awad A Younis, Yashwant K Malaiya, and Indrajit Ray. Using attack surface entry points
and reachability analysis to assess the risk of software vulnerability exploitability. In High-
Assurance Systems Engineering (HASE), 2014 IEEE 15th International Symposium on,
pages 1–8. IEEE, 2014.

47. Mengyuan Zhang, Lingyu Wang, Sushil Jajodia, Anoop Singhal, and Massimiliano Al-
banese. Network diversity: a security metric for evaluating the resilience of networks against
zero-day attacks. IEEE Transactions on Information Forensics and Security, 11(5):1071–
1086, 2016.

Appendix

Common Attack Surface and Vulnerabilities

We study the correlation between the common attack surface of two software applica-
tions and their shared vulnerabilities. Although, as mentioned earlier in Section 2.2, the
concept of attack surface is not intended as a one-to-one mapping to actual vulnerability,
the size of attack surface can still provide a rough indicator for the relative abundance of
vulnerabilities, since entry and exit points represent the interfaces exposed by the soft-
ware for accepting inputs from (or sending outputs to) the outside environment. Conse-
quently, the common attack surface may also indicate shared vulnerabilities. Therefore,
we study this correlation through experiments.

To evaluate the correlation between common attack surface and vulnerabilities, we
examine pairs of software applications with respect to the results of a vulnerability
scanner called flawfinder [44]. Flawfinder is an open-source tool that can be used to
scan C and C++ source code and report potential vulnerabilities [44]. It is regarded
as an effective tool for detecting misused functions with ranked risks. For the purpose

19

https://www.dwheeler.com/flawfinder
https://www.gnu.org/software

of verifying the relationship between common attack surface and vulnerabilities, we
manually compare our results with the results of flawfinder.

Our findings indicate that common vulnerabilities may indeed to some extent be
correlated with common attack surface. For example, we examined the two software
SSH and simple-webserverche, which are of the category SSH and Webserver applica-
tions, respectively. In SSH, the main file uses function strcat to copy data to an internal
parameter user name, and those data are applied without any boundary check. The same
thing happens in the application simple-webserverche where a file named server.c calls
function handle response() to apply function strcat. The source parameter curr time is
applied before the boundary checking. Our tool successfully detects these code frag-
ments as a common attack surface, while flawfinder reports that both have the potential
to lead to similar buffer overflow vulnerabilities.

To further evaluate the extent of such correlation, we compare the outputs of flawfinder
and the results of our tool, and Table 2 shows the level of correlation between the two.
As the results show, in every category of software applications, there exist a certain
percentage of vulnerabilities which correlate to the common attack surface.

FTP 4.07% FireWall 3.74% DB 3.40% WebServer 4.08% SSH 3.37% TFTP 3.10% IMAP 6.52%

Table 2. Percentage of Detected Vulnerabilities Which Correlate to Reported Common Attack
Surface

20

