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Abstract—Much of the information processing performed by a
biological neuron occurs in the dendritic tree. For artificial neural
systems using light for communication, it is advantageous to convert
signals to the electronic domain at synaptic terminals, so dendritic
computation can be performed with electrical circuits. Here, we
present circuits based on Josephson junctions and mutual inductors
that act as dendrites, processing signals from synapses receiving
single-photon communication events with superconducting detec-
tors. We show simulations of circuits performing basic temporal
filtering, logical operations, and nonlinear transfer functions. We
further show how the synaptic signal from a single photon can fan
out locally in the electronic domain to enable the dendrites of the
receiving neuron to process a photonic synapse event or pulse train
in multiple different ways simultaneously. Such a technique makes
efficient use of photons, energy, space, and information.

Index Terms—Neural systems, superconducting electronics,
integrated photonics.

I. INTRODUCTION

ABIOLOGICAL neuron is a complex information process-
ing device [1], integrating signals from thousands of inputs

and producing pulses when those signals reach threshold. These
neuronal firing events consume the most energy of any operation
performed by a neuron. To optimize spatial, temporal, and
energy efficiency, the neurons receiving the signals must extract
as much information as possible from each pulse [2]. Neurons
accomplish this through processing occurring in synapses and
dendrites. Because neural information is based on sequences of
pulses, the relevant processing involves applying temporal and
logical filters to extract relevant data. For example, synapses
perform temporal filtering of pulse trains to identify rising
edges and to identify pulse trains exceeding some duration or
number of pulses [3]. Dendrites receive and further process
synaptic signals. The operations performed by dendrites include
leaky integration [4]; logical operations [5]; identification of
coincidences [5] and sequences [6], [7] between synapses from
different neurons; and nonlinear thresholding transfer functions
on signals from groups of synapses [8]. Inhibitory neurons in
the network can temporarily suppress the activity of a dendrite
to dynamically direct attention to information of interest [9],
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thereby adapting the structural network into myriad functional
networks [10].

Within a point-neuron model [4], each neuron performs leaky
integration of the synaptic activities with a single decay time
constant, τ . Thus, a neuron is capable of answering the question,
“Is the sum of activity across all synapses in the last τ seconds
greater than threshold?” If the answer is yes, the neuron pro-
duces a pulse. While such a model may be useful for certain
neuromorphic computations, the functionality of this neuron
model is significantly reduced in comparison to its biological
referent. Computations occurring at synapses and dendrites in
biological neurons allow those neurons to answer subtle and
varied questions such as, “How long has it been since neuron
i last produced a pulse?” “How many pulse trains have begun
and then ceased on neuron i in the last τi seconds?” “How many
times have neurons i and j fired within τij seconds of each other
in the last τq seconds?” “Have five or more of the neurons in
cluster x fired in the last τx seconds?”

The present work is concerned with artificial hardware capa-
ble of neural information processing. Such hardware is antici-
pated to be used both in the scientific study of the mechanisms
of neural information processing as well as in technological
applications that benefit from neuromorphic computing. In pre-
vious studies, we have considered artificial hardware based on
superconducting optoelectronic circuits to achieve point-neuron
functionality [11]–[13]. The present work builds on those circuit
concepts, introducing new superconducting electronic circuitry
to perform functions associated with dendritic processing in
biological systems. For hardware to be efficient for neural in-
formation processing, synaptic and dendritic operations must
be efficiently manifest in constituent devices. We have argued
elsewhere that light is promising for communication in neural
systems because it enables the fan-out and energy efficiency
necessary for large neural systems, and that utilization of super-
conducting single-photon detectors enables communication at
the lowest possible light levels [11]. Subsequent work consid-
ered specific synaptic and neuronal circuits suitable for point-
neuron behavior, introducing circuits capable of transducing
single-photon communication events to the electronic domain
for further information processing [12], [13]. References 12 and
13 discussed basic synaptic functionality, plasticity, neuronal
integration, thresholding, and the production of light during a
neuronal firing event—all functions necessary for point neurons
implemented with superconducting optoelectronic hardware.
Due to the prominent role of flux storage loops, these circuits
are referred to as loop neurons. The significance of light and
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Fig. 1. Schematic of the neuron under consideration. Optical signals are
represented by wavy, colored arrows, while electrical signals are represented
by straight, black arrows. The complex structure consists of excitatory and in-
hibitory synapses (Se and Si) that feed into dendrites (D). Each dendrite performs
computations on the inputs and communicates the result to other dendrites for
further processing or on to the cell body of the neuron (N). The neuron itself
acts as the final thresholding stage, and when its threshold is reached, light
is produced by the transmitter (T), which is routed to downstream synaptic
connections. Multiple photons with different colors are shown to emanate from
the transmitter, indicating the potential to use different frequencies of light for
different operations [13].

superconductors for scaling was analyzed in [14]. Other work
has investigated photonics [15]–[19] and superconducting elec-
tronics [20]–[25] for neuromorphic computation, but to our
knowledge none of this work has pursued dendritic process-
ing beyond point neurons or the integration of photonics with
superconducting electronics to leverage their complementary
strengths for communication and computation.

The purpose of this paper is to consider specific circuits imple-
menting a more elaborate model for superconducting optoelec-
tronic neural information processing in which the dendritic tree
extracts significantly more information about synaptic activities
than a simple sliding average. The model is illustrated schemati-
cally in Fig. 1, and three elemental circuits that serve as building
blocks to perform many synaptic and dendritic functions are
shown in Fig. 2. The model involves synapses, dendrites, and a
neuron cell body. We define these terms below. These elements
are envisioned to operate in the context of networks of su-
perconducting optoelectronic loop neurons described elsewhere
[12], [13].

In the present article, we work with the following compo-
nent definitions. A synapse is a circuit that receives photons
with a superconducting nanowire single-photon detector and
transduces the signal to an electrical current circulating in a
storage loop. Specifically, Fig. 2(a) is the circuit diagram of a
synapse. A dendrite is a circuit that receives as input a signal
proportional to the electrical output of one or more synapses
and/or dendrites, performs a transfer function on the sum of
the inputs, and produces an electrical current circulating in a
storage loop as the output. Specifically, Fig. 2(b) is the circuit
diagram of a dendrite. A neuron cell body receives as input
a signal proportional to the electrical output of one or more

Fig. 2. Diagrams of the circuits under consideration. (a) Synaptic transducer.
A photonic communication event with one or more photons diverts current from
the single-photon detector (SPD) to the synaptic firing junction (Ispd to Jsf ). A
series of fluxons is produced, and these fluxons traverse the Josephson transmis-
sion line (Jjtl) and result in an integrated current in the synaptic integration loop
(Isi). This synaptic signal is communicated to a dendritic receiving (DR) loop
through a mutual inductor. (b) Dendritic circuit. The dendritic receiver loop sums
the signals from afferent synapses, and upon reaching the threshold established
by the dendritic firing junction (Jdf ), one or a series of fluxons is generated.
Inhibitory (IH) or rapid query (RQ) synapses can also be established on the DR
loop. The generated signal is communicated to other dendritic receiving loops
or to the neuronal receiving (NR) loop of the neuron cell body. While drawn in
the same place, either IH or RQ will be present on a given dendrite, and these
loops require opposite signs of mutual inductance. (c) Fluxon pulse splitter.
This circuit is used to make electronic copies of the information generated by
a synapse or a dendrite, and the amplitudes of the current pulses at the outputs
are restored to the input level.

synapses and/or dendrites, performs a threshold operation on the
sum of the inputs, and produces as output a pulse of photons if
the threshold is exceeded. Following the production of a pulse,
the neuron cell body experiences a refractory period wherein
threshold is temporarily significantly elevated, making subse-
quent pulses temporarily unlikely or impossible. The circuits
that accomplish the thresholding and electrical-to-optical trans-
duction are discussed in Refs. 12 and 13. Based on this defintion,
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the components N and T in the schematic of Fig. 1 comprise the
analog to the cell body, although it is more biologically accurate
to associate the transmitter T in this hardware with the axon
hillock of a biological neuron.

A dendrite can behave similarly to a neuron cell body in that
both can perform a nonlinear threshold function on their inputs.
However, dendrites and neurons are very different with respect to
both physics and functions. In the context of the hardware under
consideration we make the distinction that a dendrite produces
an electrical output that is to be communicated locally, while a
neuron cell body produces an optical output that is to be commu-
nicated to synapses that may be spatially distant. Additionally,
dendrites are more appropriately conceived as nonlinear filters,
with different dendrites performing different transfer functions.
In contrast, all neuron cell bodies are envisioned to perform
only the thresholding function leading to spike production. It
follows that the outputs from dendrites are functions with analog
amplitude and a continuous temporal envelope, while the outputs
from neuron cell bodies are stereotypical spike events wherein
the amplitude is intended to be constant across spikes and the
temporal envelope is intended to approximate a delta function.
The amplitude of the output from a neuron cell body carries no
information, and all information output from the neuron cell
body is encoded in the timing of the spikes. The flexibility
to implement nonlinear transformations in the electrical do-
main relatively easily in comparison to optical implementations
motivates these hardware design choices.

The term dendritic tree refers collectively to all the synapses
and dendrites that feed into a neuron cell body. Figure 1 is
intended to illustrate the potential complexity and diversity of
the dendritic tree. The output optical signals from a neuron
cell body reach downstream synapses through a network of
dielectric waveguides, optical fibers, and free-space intercon-
nects, as described in [13] and [26]–[28]. These optical paths
are collectively referred to as the axonal tree and are not shown
in the schematic diagram. We define a neuron to be a system
comprising a dendritic tree, a neuron cell body, and an axonal
tree.

This article is focused on the dendritic tree, the circuits that
comprise it, and some of the functions these circuits can perform.
The functions considered here are leaky integration, temporal
filtering of afferent pulse trains, logical operations, detection
of coincidences between activities of input neurons, inhibition,
and power-law memory retention of synaptic activity. In bio-
logical systems, these functions occur through nonlinearities
resulting from dendritic conductances and arbor morphology
[5], [6]. The Josephson circuits presented here are not intended
to quantitatively reproduce biological behaviors, but rather to
perform logical, temporal, and nonlinear functions in the spirit
of synaptic and dendritic processing. Josephson circuits are
remarkably capable of these operations due to the nonlinearity
established by the existence of a critical current; the avoidance
of cross talk and current leakage pathways enabled by coupling
through mutual inductors; and the ability to establish essen-
tially arbitrary time constants across many orders of magnitude
by choosing the inductance and resistance of current storage
loops.

This work is based on time-domain circuit simulations of the
three elemental circuits shown in Fig. 2 when combined in vari-
ous configurations. In Section II we review the basic operations
of a synapse that transduces a single-photon communication
event to the superconducting electronic domain for information
processing, and in Section III we consider operations performed
on pulse trains at a single synapse, usually associated with
short-term plasticity and synaptic computation. In Section IV
we consider the detection of coincidences between two or more
synapses, and we show how the same circuits can be used with
broken temporal symmetry to identify sequences of activity. For
these various fragments of information to be utilized only when
relevant, inhibition can be used to silence specific dendrites at
appropriate times, as discussed in Section V. A central premise
of the work in Refs. [11]–[14], [28] is that scalable neural sys-
tems will benefit from the fan-out and efficiency of few-photon
communication. Yet when superconducting electronic circuits
are employed for computation, even few-photon communication
events represent a significant energy expense relative to the
extremely low energy per operation of the superconducting
circuits. In Section VI we discuss the use of superconducting
splitters to make copies of photonic synapse events so that
answers to all of the questions listed above can be simultaneously
present in the dendritic tree through processing of the signal from
a single photon. Section VII contains a discussion of the results.

II. PHOTON-TO-FLUXON TRANSDUCTION AT A SYNAPSE

Analysis of fluxonic processing of photonic synapse events
begins with consideration of the circuit that transduces a single-
photon detection event to the superconducting electronic do-
main in the form of a series of fluxons. The circuit that ac-
complishes this is shown in Fig. 2(a). This circuit was first
introduced in [12] and described in more detail in [13]. The cir-
cuit comprises an initial receiver/transducer section, consisting
of a superconducting-nanowire single-photon detector (SPD)
[29]–[32] in parallel with a Josephson junction (JJ) [33]–[35]. In
the steady state, the SPD (drawn as a variable resistor in series
with an inductor) has zero resistance, and thus its entire bias
current flows directly through it to ground. The synaptic firing
junction,Jsf , is biased below its critical current (Ic) by the synap-
tic bias current, Isy. Upon absorption of a photon, the variable re-
sistor of the SPD switches temporarily to a high-resistance state
(5 kΩ) for a short duration (200 ps) [36]. The current through the
SPD is diverted across a resistor (Ispd across rspd in Fig. 2(a))
and to Jsf . At this point, the sum of the currents across Jsf ex-
ceeds Ic, and the junction produces a series of fluxons [33]–[35].
These fluxons propagate along the Josephson transmission line
[34], [35], and are stored in the synaptic integration (SI) loop.
The Josephson transmission line serves to isolate the activity
of the receiver portion of the circuit from the integration loop,
allowing their circuit parameters to be optimized independently.
After the 200 ps photon detection event, the bias current returns
to the SPD with the time constant of τspd = Lspd/rspd. This
time constant has a minimum functional value determined by the
electro-thermal properties of the nanowire [36], and throughout
this work this time constant is fixed at τsi = 10 ns, and the bias
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Fig. 3. Basic operation of the photon-to-fluxon synaptic transducer. (a) Tem-
poral activity of the circuit in Fig. 2(a) during a synaptic firing event. The traces
are color-coded with the currents and voltages labeled in Fig. 2(a), and all
traces have been independently normalized for display on the same plot. (b)
Demonstration of variable synaptic weight. The number of fluxons generated
during a synaptic firing event (nf ) is plotted as a function of the synaptic bias
current (Isy). A fit to a second-order polynomial is also shown.

to the SPD is fixed at 10 μA. The number of fluxons created
during a synaptic firing event depends on the net current across
Jsf as well as the duration during which Jsf is biased above Ic.
With τsi and the bias to the SPD fixed, the number of fluxons,
and thus the synaptic weight, are dynamically adaptable by
changing the synaptic bias current, Isy. More details regard-
ing Isy and the associated plasticity mechanisms are given in
[13].

The temporal activity of the circuit in Fig. 2(a) during a
synaptic firing event is shown in Fig. 3(a). Throughout this work,
WRSpice [37] has been used to simulate all circuits. All JJs
have Ic = 40 μA and βc = 0.95. The yellow trace in Fig. 3(a)
shows the current diverted from the SPD after a photon has been
received. The blue trace shows the voltage pulses as the fluxons
enter the SI loop. As each fluxon enters the loop, it introduces
a discrete, fixed value of current given by Iφ = Φ0/Lsi, where
Φ0 ≈ 2 × 10−15 Wb is the magnetic flux quantum, and Lsi is
the inductance of the synaptic integration loop. We assume the
value of Lsi is chosen by design independently for each synapse
and set in hardware at the time of fabrication. The green trace in
Fig. 3(a) shows the increase in current as the fluxons enter the
SI loop during a synaptic firing event. The discrete steps with
each fluxon are evident, and the total amount of current added
to the SI loop during a synaptic firing event depends on both the
number of fluxons generated during the firing event (controlled

dynamically by Isy) and the inductance of the SI loop (set in
hardware as Lsi).

The role of Isy is to adapt the synaptic weight by chang-
ing the number of fluxons generated during a synaptic firing
event. In Fig. 3(b) we show the number of fluxons generated
during a synaptic firing event as a function of Isy. The fit
shows close agreement with a quadratic function. This method
of establishing and adapting the synaptic weight has several
important properties. First, it is slowly varying, so small changes
in Isy result in small changes in the synaptic weight. Second,
the function is monotonic, so increases in Isy always result in
increased synaptic efficacy, while decreases in Isy always result
in decreases in synaptic efficacy. This is necessary to enable
activity-based plasticity mechanisms [38], [39], which have been
explored in the context of these circuits in [13]. Third, the bias
Isy can be bounded so synaptic strength never exceeds a certain
limit, and runaway activity is not possible. Finally, the integer
number of fluxons generated can be made to cover a broad
range so that analog synapses of relatively high bit depth can
be achieved. Figure 3(b) shows that over eight bits (256 levels)
can be utilized, and throughout this work we find the range of
eight to 10 bits to be a comfortable working range for the circuits
under consideration. This is much lower than the 64-bit proces-
sors used for high-arithmetic-depth numerical calculations. Yet
neural computation benefits from performing lower-resolution
operations with high efficiency; accuracy is achieved through
redundancy and parallelism. Additionally, effects of noise due
to operation at finite temperature will further reduce the ability
to resolve distinct synaptic weight values. The effects of this
noise will be investigated in future work.

From Fig. 3, we can also gain some insight into the manu-
facturability of these circuits. With this technology, we aspire
to achieve large-scale systems capable of advanced cognitive
computing. Such systems will potentially comprise billions
of synapses and 10 times as many JJs. These JJs will have
a statistical distribution of critical currents due to fabrication
variations. During operation, the biases delivered to the junctions
will also have a statistical distribution. The data in Fig. 3(b)
inform us that synapses with a broad range of bias conditions
will contribute signal upon receiving synaptic events. Here we
show that synapses will be operational if the bias current varies
by 8 μA around 38 μA, giving a margin of 20%. When the
system is initially fabricated and turned on, variations in junction
critical currents and biases will result in a statistical distribution
of synaptic weights. Over time, as the system operates and
learns, these bias currents will be finely adjusted based on
the activity-dependent plasticity mechanisms described in [13],
mitigating any deleterious effects of fabrication variations.

After a photonic communication event has been detected, the
synaptic weight has been set as the number of fluxons created,
and current has been added to the SI loop, further processing
ensues. The electrical current generated by the synapse event can
be stored for a chosen amount of time. This is determined by the
leak rate of the SI loop, selected by design and set in hardware
with the time constant τsi = Lsi/rsi. Note that τsi is entirely
independent of τspd, and because we consider superconducting
circuits, memory of a synaptic event can persist indefinitely.
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Also note that while the amount of current added to the SI loop
during a synaptic firing event depends on Lsi, rsi can be chosen
independently from Lsi, thereby enabling the amount of current
and its storage time to be separately selected. The current can be
released quickly, on the order of the SPD reset time of 10 ns, or
it can be stored 10 or 100 times longer to retain a memory of the
event for as long as required. In this work we mainly consider
decay times spanning two orders of magnitude, from τsi = 10 ns
to τsi = 1 μs.

The reason for focusing on these time scales is as follows. In
biological neural systems, processing among local clusters of
neurons occurs primarily through fast activity in the range of
gamma frequencies (30 Hz–80 Hz) [40], [41]. This frequency
range emerges because it reaches the upper limit of speed for the
excitatory pyramidal neurons participating in the activity. In the
superconducting optoelectronic hardware under consideration,
this upper speed limit is in the tens of megahertz, limited by
the reset time of the SPDs in the synapses and of the trans-
mitter circuits that generate neuronal firing events [13]. Here
we take the upper firing rate to be 100 MHz for numerical
simplicity. Therefore, we expect the neurons under consider-
ation to demonstrate behavior similar to gamma oscillations,
bursting with inter-spike intervals on the order of 10 ns. Simi-
larly, biological neural systems process information across the
network as a whole through slower activity at theta frequencies
(4 Hz–8 Hz) [40], [41]. Mapping this scaling onto the system
under consideration, we pay particular attention to gamma os-
cillations occurring at 100 MHz as well as theta oscillations
occurring at 10 MHz. It is for this reason that we consider τsi
ranging from 10 ns to 1 μs and spike trains in the 50 MHz to
100 MHz range.

In addition to signal decay from a synaptic integration loop,
we must also consider saturation, as shown in Fig. 4. As stated
above, the current associated with a fluxon being generated in
a loop of inductance L is Iφ = Φ0/L. This current circulates in
the direction opposing the applied bias to the JJ. The number of
fluxons that can enter the loop before the cumulative opposing
bias equals Ic is given by Ic/Iφ = LIc/Φ0 = βL/2π, where βL

is a common parameter quantifying the flux storage capacity
of a superconducting loop. βL/2π gives an estimate for how
many fluxons a given SI loop will be able to store before
saturation, and the exact number also depends on the applied
bias. In Fig. 4 we show the integrated current in an SI loop as
a function of time in response to a periodic train of pulses with
20 ns inter-spike interval. Here we fix τsi = ∞ and vary the
inductance of the loop. In these simulations, the value of Isy
was fixed at 38 μA, so 129 flux quanta (> 27) are generated
during each synaptic firing event until the loop nears saturation,
at which point the effective synaptic weight is suppressed,
demonstrating a simple form of short-term plasticity. With a
small value of Lsi, the quantity βL/2π = LsiIc/Φ0 = 150, and
the loop saturates after a single synaptic firing event. With an
intermediate value of Lsi = 77.5 nH, βL/2π = 1.5× 103, and
seven synaptic firing events fill the loop. With a large value
of Lsi = 775 nH, βL/2π = 1.5× 104, and the loop can hold
the activity from nearly 100 synaptic firing events with this
value of Isy. All these values of inductance are straightforward

Fig. 4. Filling of the SI loop in response to a pulse train. The upper panel
shows the current pulses generated by detection events at the SPD. The lower
panel shows time traces of Isi. Here τsi = ∞ to focus attention on the manner
in which the SI loop fills with current, rather than how it decays. A loop with
small inductance (Lsi = 7.75 nH) will saturate after a single photon detection
event, while a loop with large inductance (Lsi = 775 nH) can store the signals
from many synaptic firing events.

to achieve with high-kinetic-inductance materials. Note that in
digital superconducting electronics βL/2π = 1.5, so a loop can
hold a single fluxon to represent a bit. Figure 4 shows the control
one has in design over the capacity of the SI loop. The loop can
operate as a binary device switching from a low to high state with
each synapse event, or it can act as an analog device capable of
representing many synapse events with distinct values of current.
This saturation is a simple form of nonlinearity present in the
synapse.

As we have described, the two basic degrees of freedom of
the SI loop are the signal storage time and storage capacity.
We now proceed to explore the use of such synapses to extract
information from pulse trains.

III. OPERATIONS ON PULSE TRAINS AT A SINGLE SYNAPSE

As an example of one form of processing that can be per-
formed using the synaptic circuit of Fig. 2(a), Fig. 5 considers
the operation of rate-to-current conversion. The first term of
the Volterra expansion of a spike train corresponds to the time-
averaged spike rate [4], so a neuron must be able to decode
this information. This can be accomplished with the synaptic
transducer of Fig. 2(a) when the SI loop is given a leak rate,
as discussed above. The circuit behaves as a standard leaky
integrator modeled as İsi = α− Isi/τsi, where α is the rate
of current added to the SI loop by synaptic firing events. The
leaky integrator model has the steady-state solution Isi = ατsi,
indicating that the current in the loop is proportional to the rate
of input spikes. In Fig. 5(a) we show temporal traces of the
current Isi in the presence of afferent activity at various rates
for a loop with τsi = 100 ns and Lsi = 77.5 nH, and it can be
seen that the time-averaged value of Isi reaches steady-state. In
Fig. 5(b) we show the time-averaged current, Īsi, as a function
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Fig. 5. Rate-to-current conversion at a synaptic transducer. (a) Isi as a function
of time as pulse trains of various frequencies are incident upon the synapse.
(b) Systematic analysis of rate-to-current mapping for SI loops of three decay
time constants. To obtain these curves, temporal traces like those of (a) have
been analyzed once the steady state has been reached. Each data point in (b)
results from time-averaging a trace such as those in (a) over a single interspike

interval: Īsi = (t2 − t1)
−1

∫ t2

t1
Isi(t)dt, where t1 and t2 are arrival times of

consecutive photons at the synapse after the steady state has been reached.

of the synaptic firing rate for three values of τsi. With the value
τsi = 50 ns, the response is linear across the entire range of
gamma and theta frequencies. Linear rate-to-current conversion
holds as long as the integration time of the loop is short enough
to avoid saturation, that is, ατsi < Isatsi . With τsi = 200 ns, the
loop reaches saturation, and higher input frequencies do not
code unique information. If linear operation is desired, one must
choose the time constant of the loop to be commensurate with the
frequencies to be detected, or if nonlinear saturation is desired,
longer integration times can be utilized. If increased dynamic
range is advantageous, one can utilize the splitter of Fig. 2(c) to
activate multiple SI loops with different time constants from the
same photonic synapse, as described in Section VI.

The synaptic transducer and SI loop of Fig. 2(a) on its own
can achieve straightforward rate-to-current conversion to make
use of rate-coded neuronal information. Yet when Isi is coupled
to the circuit of Fig. 2(b) through a mutual inductor, significantly
more functionality can be achieved, as we will discuss shortly.
Let us first describe the basic operation of the circuit in Fig. 2(b),
which we refer to as a dendritic processing circuit or dendrite.
The dendritic processing circuit of Fig. 2(b) is similar to the
synaptic transducer circuit of Fig. 2(a). Unlike the synapse,

which receives photonic input, the dendrite receives input as
flux coupled through mutual inductors. In the steady state, all
junctions are biased below Ic. Afferent input to the dendritic
receiving (DR) loop from one or more SI loops during a time
window established by the synaptic time constants, τsi, increases
the bias to the dendritic firing junction (Jdf ). When the net bias
to Jdf exceeds Ic, one or more fluxons will be produced, they
will traverse the JTL, and they will add flux to the dendritic
integration (DI) loop, just as in the case of the synapse. The
role of the dendritic reset junction (Jdr) is to release the flux
generated by Jdf from the DR loop, thereby resetting the loop
to the state prior to firing. The signal integrated in the DI loop is
coupled either to the DR loop of another dendrite or the neuronal
receiving (NR) loop of the neuron cell body.

The use of mutual inductors is advantageous for coupling
multiple synapses to a single dendrite because mutual inductors
reduce cross talk between synapses to a very low level. In
general, SI loops have a self-inductance of at least 1 nH, and
possibly up to 10 μH. The mutual inductors considered here are
asymmetric with the inductor in the SI loop being on the order
of 100 pH and the coupled inductor in the DR loop being on
the order of 10 pH. The total inductance of the DR loop is on
the order of 100 pH. Thus, when current is circulating in one
SI loop, appreciable current is coupled to the DR loop, while
the parasitic current coupled into other SI loops is significantly
smaller. Using typical numbers from the circuits studied in this
work, the parasitic current coupled to an adjacent SI loop is
roughly one thousandth the current induced in the DR loop, with
Idr being on the order of microamps. More generally, in the limit
that Lsi � Msy, this induced current scales as Msy/(NsyLsi),
where Nsy is the number of synaptic loops coupled to the DR
loop. For typical values of Msy and Lsi, this quantity is on the
order of 10−3 for Nsy = 1 and decreases as synapses are added
to the loop. The ratio of parasitic current induced in adjacent
SI loops to the intended current induced in the DR loop is
independent of Nsy, and in the same limit of Lsi � Msy we
find this ratio is Msy/Lsi, which again is on the order of 10−3

for typical circuit parameters.
The dendritic circuit under consideration is reminiscent of

a standard circuit from flux quantum logic that converts a DC
pulse to a single flux quantum (DC-to-SFQ converter) [34], [35].
The circuit is also similar to the neuron circuit presented in [21].
The main computational attributes of the dendrite come from
the biasing conditions and interplay between Jdf and Jdr. If the
biases are established such that when Jdf produces a fluxon,
the current added to Jdr is insufficient to switch Jdr until the
added biases from the SI loop(s) decay, the device acts like a
DC-to-SFQ converter. Jdf will produce exactly one fluxon, and
the DR loop will then be inactivated until the counter bias across
Jdr due to the SI loop(s) decays, at which point Jdr will produce
a fluxon countering the one produced by Jdf , and the loop will
be reset. In this configuration, the dendritic receiver has a binary
character.

The circuit can also operate in an analog mode, wherein the
dendrite can produce a continuous stream of fluxons, much like
the synaptic transducer. To achieve this operation, Jdr is biased
closer to Ic so that a fluxon generated by Jdf is sufficient to
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switch Jdr. Thus, each time Jdf produces a fluxon, it is rapidly
canceled by Jdr, and the DR loop is reset with no net flux. Jdf
will continue to produce fluxons as long as it is held above Ic, and
in the presence of synaptic activation (current in one or more SI
loops), a stream of fluxons will be generated by Jdf and stored in
the DI loop. This stream may contain a large number of fluxons
until the DI loop saturates, so we consider this an analog mode
of operation.

Whether operating in binary or analog, the effect of the
dendrite is to perform a nonlinear transfer function on its inputs
and provide the output signal to the DI loop in the form of
supercurrent. Just as in the SI loop, the DI loop can be configured
to saturate rapidly (small βL) or store the signal from many
threshold events (large βL), and the loop can be configured with
a decay time constant (τdi = Ldi/rdi) spanning a broad range,
from time scales shorter than a gamma interspike interval to as
long as superconductivity can be maintained. With these basic
operating principles in mind, we proceed to consider examples
of dendritic processing with this circuit.

We first consider operations usually associated with synaptic
computation [3], namely short-term-facilitating and short-term-
depressing plasticity. Some synapses are observed to provide
no response or very weak response to the first pulse of a train,
with the efficacy of the synapse increasing as the pulse train
proceeds. This behavior is referred to as short-term-facilitating
plasticity, and it can be due to dynamics within the synapse
itself or to the conductance properties of a dendrite or series of
dendritic compartments. Here we simulate analogous behavior
with a single synaptic transducer (Fig. 2(a)) coupled to a single
dendritic processing circuit (Fig. 2(b)).

To achieve short-term-facilitating plasticity, we design an SI
loop that can store the signals from multiple synaptic firing
events before saturation, and we bias Jdf so that the additional
current induced by the first few synaptic firing events does not
push the junction over Ic, but after multiple synaptic firing
events, Ic is exceeded and flux is added to the DI loop. We
design the dendrite in analog mode for this behavior. Circuit
simulations of short-term-facilitating plasticity are shown in
Fig. 6. Figure 6(a) shows the afferent pulse train. The first pulse
occurs at 5 ns, and the interspike interval is 20 ns. Figures 6(b)
and (c) show the accumulated current in the DI loop as a
function of time. In Fig. 6(b) the effect of the synaptic bias
current, Isy is shown. The primary effect of the dynamically
reconfigurable bias current is to shift the curve left or right.
With a stronger synaptic weight, more current will be added
to the SI loop with each synaptic firing event, and therefore
more current will be induced by the mutual inductor into the DR
loop. Thus, fewer synaptic firing events are required to reach
threshold in the dendritic compartment. In this example, Isy can
shift the threshold from three to eight synaptic firing events. In
Fig. 6(c), the synaptic bias current is fixed at 38 μA, while the
dendritic bias current, Ide, is varied. Change in Ide has less of an
effect on the number of pulses required to reach threshold, but it
significantly affects the number of fluxons generated by Jdf each
time a synaptic firing event occurs, which is related to the slope of
the traces in Fig. 6(c). The effect of the dendritic bias current, Ide,
is therefore analogous to the effect of the synaptic bias current,

Fig. 6. Short-term-facilitating plasticity. With a single synapse coupled to a
dendrite, a nonlinearity can be induced wherein multiple synaptic firing events
are required to generate a signal. (a) The afferent pulse train. (b) The current
in the DI loop, Idi, as a function of time for several values of the synaptic bias
current, Isy. (c) Idi for several values of the dendritic bias current, Ide. The blue
curve is the same in (b) and (c). The vertical lines spanning (a)–(c) represent the
times of the synaptic firing events.

Isy, during a synaptic firing event. We therefore anticipate that
Ide will provide a dynamically reconfigurable circuit parameter
that can be used to establish a “dendritic weight” and can be
used for long-term plasticity and learning.

As mentioned above in the context of synapses, we wish to
anticipate how fabrication imperfections in JJ critical currents
as well as variations in bias conditions will affect circuit op-
eration. The data in Fig. 6 show that the dendritic response
is quantitatively sensitive to the value of the bias currents, or
similarly the junction critical current. However, the qualita-
tive nature of the response is consistent across a useful range
of operating parameters. In large-scale systems, the intention
is not to precisely control the response of each dendrite or
synapse quantitatively at the time of fabrication, but rather to
fabricate a complex network with a statistical distribution of
device parameters and to employ adaptive plasticity functions
that finely adjust biasing conditions through activity-dependent
feedback, as discussed in [13], to adapt the circuits to operating
points useful for network computation. Such adaptation over
time through synaptic and dendritic plasticity are in the spirit
of biological neural systems that cannot be constructed with
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specific values for each synaptic weight or precise dendritic
morphology. Nevertheless, it remains to be seen if Josephson
circuits can be manufactured with tight enough tolerances to
enable the functions proposed here. This question is one of
the most pertinent to determining the feasibility of large-scale
superconducting optoelectronic networks.

While facilitating behavior effectively strengthens a synapse
as a pulse train proceeds, short-term-depressing plasticity gives
the opposite behavior. In an extreme form, this mechanism can
be used to convey only the onset of a pulse train, while blocking
subsequent spikes. To demonstrate this behavior, we consider the
dendritic processing circuit in binary mode. Circuit simulations
are shown in Fig. 7. Consider first the upper panel, Fig. 7(a–c).
The current pulses from the SPD due to the afferent spike train
are shown in Fig. 7(a), and the resulting current in the SI loop
is shown in Fig. 7(b). The activity consists of two groups of
three spikes. The current in the DI loop is shown in Fig. 7(c). A
single pulse enters the DI loop at the onset of the first spike in
the train. In Fig. 7(b), we have marked with a red line the value
of Isi below which reset occurs in the DR loop. We see that the
first spike of the second group of three occurs just before Isi
drops below the reset value. The second group of pulses is not
identified as a new spike train, so no additional signal is added,
and Idi continues decaying with τdi. By contrast, in the lower
panel (Fig. 7(d–f)), the onset of the second group of pulses occurs
20 ns later than in the upper panel, giving the current in the SI
loop (and therefore the DR loop) time to decay below the reset
value. In this case, when the second group of pulses begins, it is
identified as a new train, and additional signal is added to the DI
loop, again in the form of a single fluxon. The reset delay can be
established in hardware across a broad range of values through
τsi and can be adjusted over a smaller range dynamically through
Ide. The dendritic receiving loop does not have any resistance
of its own, so the current decay time constants in that loop are
entirely determined by the SI loops.

While we refer to this operation of the dendritic processing
circuit as binary, this term refers to the all-or-nothing response
of the DR loop. The DI loop may be independently configured
to store anywhere from one to many fluxons, so the output of
the circuit can be chosen independently to represent either a
binary signal or to give an analog representation of the number
of afferent pulse trains occurring within a time period set by τdi.
If the DI loop is configured with large βL and τdi on the order
of theta time scales, the dendrite will keep track of how many
gamma-frequency pulse trains have occurred, thereby keeping
track of oscillations on theta time scales. Because the maximum
signal level in the DI loop can be made the same as in an SI or DI
loop keeping track of gamma activity, such dendritic processing
is capable of representing gamma and theta information with
equal weight. Alternatively, using the same circuit configuration
except employing an SI loop with a time constant close to τspd
will cause the DI loop to receive a single fluxon each time the
synapse receives a photon. In this mode of operation, the circuit
achieves single-photon-to-single-fluxon transduction, convert-
ing each photon detection event to an identical, binary signal.
If synaptic weighting is not required, and dendritic weights
alone can suffice, the signal from a photon-detection event

Fig. 7. Short-term-depressing plasticity. With a single synapse coupled to a
dendrite, the first pulse of a train can generate signal in the DI loop, and the
response of the synapse is depressed for subsequent pulses until the signal in the
SI loop decays below a certain level, resulting in reset. (a) Afferent activity. (b)
The resulting signal in the SI loop. The red line shows the reset level, which is not
quite reached before the second series of three pulses occurs. (c) The signal in the
DI loop, Idi. Only a single pulse enters the DI loop because the break between
the pulse trains was not long enough to achieve reset. (d) Afferent activity with
a slightly longer delay between the two pulse trains. (e) The signal in the SI
loop, dropping briefly below the reset threshold. (f) The resulting current, Idi,
showing two pulses generated as the dendrite recognized these as two separate
pulse trains.

can immediately be converted to a single fluxon, and energy
efficiency can be gained.

To summarize the operations we have investigated so far, the
synaptic firing circuit on its own can accomplish rate-to-current
conversion, reporting a temporal average of recent activity. By
coupling the synaptic firing circuit to a dendritic processing
circuit, we can construct a dendrite that generates signal only
when a pulse train persists for a certain duration. We can use
the same circuits with slightly different biasing configuration
to construct a dendrite that generates signal only when a pulse
train begins after a certain period of rest. All of these opera-
tions correspond to temporal filters performed on spike trains
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occurring at a single synapse. Yet an important function of
dendritic processing is to identify coincidences and sequences
between the activities of multiple neurons. We now consider this
task.

IV. DETECTING COINCIDENCES BETWEEN NEURONS

The second term in a Volterra expansion of the activities
of two neurons corresponds to coincidences between the two
neurons [4]. We can use the same dendritic processing circuit
of Fig. 2(b) to detect coincidences, provided two SI loops are
coupled to the DR loop through mutual inductors. In the simplest
case, we wish to know whether two synapses have fired within
a certain time period of each other. This can be achieved by
giving both SI loops the same value of τsi. The response of such
a circuit is shown in Fig. 8(a), where the current induced in
the DI loop is shown as a function of the time delay between
the two synaptic firing events for several values of Ide with
τsi = 100 ns. For the two lower values of Ide, the circuit can be
thought of as an AND gate with an analog extension to the time
domain: if synapse i AND synapse j fire within a time period
set by τsi, a signal dependent on the time difference is added
to the DI loop. For larger values of Ide, the circuit performs
an OR operation, because for arbitrarily large Δt, the current
in one SI loop alone is sufficient to switch Jdf and generate
some signal in the DI loop. A similar coincidence detection
circuit was proposed in [13] based on two SPDs. The advantage
of the circuit presented here is that the computation occurs in
the electronic domain, bringing the advantage of energy effi-
ciency as well as the ability to perform multiple dendritic oper-
ations simultaneously through the use of fluxonic pulse splitters
(Section VI).

The dendritic tree may benefit from the ability to detect
not just coincidences, but also the specific sequence in which
synapse events occurred [7]. This can be achieved by breaking
the symmetry between the two synapses with τsi1 � τsi2. We
consider this scenario in Fig. 8(b). Here, τsi1 is still 100 ns, but
τsi2 is much shorter (2.5 ns–10 ns), and we again plot the current
added to the DI loop as a function of Δt = t2 − t1, where ti is
the time of a synapse event on synapse i. In this case, the response
function is skewed towardΔt > 0. It is probable that any current
induced in the DI loop is due to an event on synapse one followed
by an event on synapse two. Yet with this design, the contribution
from Δt < 0 does not vanish completely. We have plotted the
response for three values of τsi2. We see that as we decrease
τsi2, the error due to current added when Δt < 0 decreases as
τsi2 decreases. Thus, we can tighten the timing tolerance by
decreasing τsi2. With τsi2 = 2.5 ns, errors do not occur if t2 is
prior to t1 by 8 ns, less than the interspike interval of a gamma
sequence, rendering this circuit capable of providing reliable
information regarding the temporal order of activity between
two synapses.

The coincidence and sequence operations of the dendritic
processing circuit provide information regarding activity at two
synapses. We would like to extend this to perform nonlinear
operations on groups of multiple synapses. This can be straight-
forwardly achieved by coupling multiple synapses to a single

Fig. 8. Multiple synapses from different neurons coupled to a single DI loop.
(a) Two synapses with the same time constant. The current induced in the DI
loop (Idi) is plotted as a function of the time between the two synapse events
(Δt) for four values of the dendritic bias current (Ide). (b) Two synapses with
significantly different time constants. Idi is plotted versus Δt for three values
of the fast synaptic time constant (τsi2). (c) Ten synapses from different neurons
coupled to a single DI loop. The current generated in the DI loop is plotted as a
function of the number of synapses firing simultaneously for three values of the
dendritic bias current, Ide.

dendrite, using the same circuits we have been discussing so far.
In Fig. 8(c) we show the value of Ide resulting from a variable
number of synapses firing simultaneously, with 10 total synapses
coupled to a DR loop. We have chosen the circuit parameters so
the bias added to Jdf by a single synapse event is insufficient to
exceed Ic. The transfer function of the circuit is highly nonlinear,
approximating a sigmoidal activation function. Thus, the current
generated in the DI loop is not the sum of independent SI currents
(see [4, p. 101]). The threshold number of active synapses can
be set in design across a broad range, and as the three traces
reveal, this number can be dynamically adjusted with Ide. In
both Fig. 8(a) and Fig. 8(c) we see that Ide can be used in a
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Fig. 9. The effect of inhibition. A single excitatory synapse and a single
inhibitory synapse are coupled to a DR loop. The upper panel shows the signal
from an afferent pulse train as well as the single inhibitory pulse. The lower panel
shows the current generated in the DI loop (Idi) with and without the inhibitory
pulse. In this example, the circuit has been configured so that following the
inhibitory pulse, no amount of activity on the excitatory synapse can drive Jdf
above Ic, and the dendrite is completely suppressed until the signal in the IH
loop has decayed.

manner analogous to the synaptic bias current, pointing again
to the potential for reconfigurable efficacy and learning. While
Fig. 8(c) only considers simultaneous synaptic activity, the true
response of the dendrite would convolve the temporal responses
of the constituent synapses. Similar principles to those demon-
strated in Figs. 8(a) and (b) shape the net dendritic contribution.

All operations discussed thus far are excitatory. We now turn
our attention to inhibition of the dendritic response.

V. INHIBITION AND RAPID QUERY

The dendritic tree offers the most information to the neuron
when it can be dynamically adapted into diverse functional
networks. Inhibition can enable such adaptation (as well as many
additional functions [42]) by temporarily silencing specific den-
drites or entire branches of the dendritic tree. To accomplish
this with the dendritic processing circuit under consideration,
we couple an additional loop to the DR, except with mutual
inductor of reverse coupling to oppose the bias to Jdf . We refer
to this as an inhibitory (IH) loop, as shown in Fig. 2(b). The
circuit parameters can be chosen so that following a synaptic
event on the inhibitory synapse no amount of activity on the
excitatory synapses can drive Jdf above Ic. As discussed above,
the AND/OR logical operations become coincidence detections
when extended to the time domain [5], and when the previously
considered AND circuit is augmented with an inhibitory input,
the logical operation becomes AND-NOT [5].

Simulated operation of a dendrite with a single excitatory and
single inhibitory synapse is shown in Fig. 9. The upper panel
shows a temporal trace of excitatory activity, which consists
of a pulse train at 50 MHz. A single inhibitory synapse event
occurs shortly after the third pulse of the excitatory train. The
lower panel shows the current circulating in the DI loop as

a function of time for cases with and without the inhibitory
synapse event. Without inhibition, current is added to and decays
from the DI loop, as expected. When inhibition occurs, the effect
of excitation is immediately quenched. Following the inhibitory
synapse event, Idi begins decaying with time constant τdi. In-
hibition decays with a completely independent time constant,
τih = Lih/rih, just as all other loops discussed thus far. When
the inhibitory current has decayed sufficiently, the effect of the
excitatory pulse train resumes.

The duration over which the dendrite is inhibited is controlled
by τih, and for the network to be rapidly adaptable under the
influence of inhibition, this time constant will be as short as a
gamma-range interspike interval. If inhibition is required over
theta time scales, repeated activity on the inhibitory neuron can
keep the dendrite suppressed. However, this may not be the most
energy-efficient mode of operation. Given the circuits under
consideration, we can utilize a mode of operation complimentary
to inhibition. In this configuration, the mutual inductors and
bias to the DR loop are chosen so that even with all afferent
SI loops saturated, the current across Jdf cannot exceed Ic.
Only when an additional, unique synapse fires does the current
exceed Ic.

We refer to these unique synapses as rapid query synapses,
and we explain their function as follows. The role of a rapid
query synapse is complimentary to the role of an inhibitory
synapse. In the typical operation of a dendrite, the response of
the dendrite depends on the activities of the input excitatory
synapses, and the role of inhibition is to effectively cancel the
excitatory inputs. In one sense, the function of a rapid query
synapse is the opposite of the function of an inhibitory synapse.
With rapid query, a dendrite is designed so that the sum of all
excitatory synaptic responses is insufficient to evoke a dendritic
response. However, the function of the rapid query synapse is to
drive the dendrite right up to its threshold, and therefore any
excitatory input present at the time the rapid query synapse
fires evokes a dendritic response. The circuit implementing this
unique synapse is identical to all synapses considered thus far
(Fig. 2(a)), but the function is unique. This synapse is designed to
saturate with each synapse event and to decay rapidly, providing
an identical response to each synapse event and no synaptic
weight variation. The action of this synapse is to allow Jdf to
quickly sample the value of Idr at a given instant in time. A
dendrite with one or more excitatory synapses and a single rapid
query synapse behaves as if it were always under the influence of
inhibition until the rapid query synapse fires, briefly releasing it
from inhibition. When the rapid query synapse fires, the current
generated in the DI loop provides an answer to the question,
“How much current is in the DR loop?”

As stated above, the function of a rapid query synapse is the
opposite of the function of an inhibitory synapse. However, in
another sense the objective is the same. A primary function of
inhibition in neural systems is to dynamically adapt a given
structural network into multiple functional networks. When
inhibition is applied to a dendrite, the dendrite is functionally
disconnected from the neuron cell body. Similarly, with rapid
query, a dendrite is functionally disconnected from the neuron
cell body at all times except when a rapid query synapse has
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fired. Rapid query operation provides another means to rapidly
adapt the structural network into myriad functional networks,
and rapid query is likely to be more energy efficient than inhi-
bition when information stored in certain dendrites need not be
accessed frequently. In biological neural systems, a given neuron
either makes inhibitory connections or excitatory connections,
but not both. This is referred to as Dale’s law. It may be a
consequence of physiological limitations, or it may be due to an
information-processing advantage resulting from differentiating
the responsibility of excitatory neurons that spread information
and inhibitory neurons that adapt the functional network. We
anticipate that such differentiation will be advantageous in su-
perconducting optoelectronic networks as well, in which case
neurons dedicated to inhibition will make only inhibitory synap-
tic connections, and neurons dedicated to rapid query will form
only rapid query synapses. We refer to these neurons as rapid
query neurons. The role of a rapid query neuron is to quickly
cause the information stored in a collection of dendrites to be
communicated from those dendrites further along the respective
dendritic trees toward the neuron cell bodies, thereby rapidly
functionally connecting those dendrites to the active network.

Figure 10 considers rapid query operation. The circuit under
consideration comprises a single excitatory synapse and a single
rapid query synapse coupled to a DR loop in the configuration
of Fig. 2(b). In the present example, three excitatory synapse
events occur, as seen in the upper panel of Fig. 10(a). Two rapid
query synapse events are also shown in that panel. The first rapid
query event follows the first excitatory pulse by 30 ns, and with
τsi = 20 ns, only a small amount of current is added to the DI
loop. The second excitatory event is not followed by a rapid
query event, and no current is added to DI. The third excitatory
event is followed by a rapid query event with 10 ns delay, and
significantly more current is induced in the DI loop.

The behavior of this circuit is summarized more systemati-
cally in Fig. 10(b). Here we plot the current induced in the DI
loop as a function of the time delay between the rapid query and
excitatory events for two values of τsi. We see that the signal
generated by rapid query follows the exponential decay of the
SI loop, thus providing an accurate mapping of Isi to Idi at the
time rapid query was performed.

We plot the exponential functions of Fig. 10(b) on a log-log
graph to emphasize that each SI loop provides information over
a single time scale determined by τsi. It would be desirable to
find a means by which a memory trace may be extended across
multiple time scales from a single photonic synapse event. This
increased temporal dynamic range is one example of what can
be achieved if electronic copies of photonic synapse events are
produced. This fluxonic fan-out is the subject of the next section.

VI. FLUXONIC FAN-OUT FROM PHOTONIC SYNAPSES

In neural systems using light for communication, generation
and detection of photons are likely to consume the most en-
ergy. We have described several example operations that can be
performed in the electronic domain to extract information from
photonic pulse trains and their synaptic reception. We would
like to perform them all simultaneously without requiring an
additional photonic synapse for each. We can straightforwardly

Fig. 10. Rapid query. (a) Temporal response of a single excitatory synapse
and a single rapid query synapse coupled to a DR loop. The upper panel shows
the pulses resulting from photon detection events on the excitatory and rapid
query synapses, while the lower panel shows the the current generated in the DI
loop by the two rapid query events. (b) Systematic quantification of the result of
rapid query activity following a single excitatory pulse. The current generated in
the DI loop, Idi, is plotted as a function of the time delay between the excitatory
synapse event and the rapid query synapse event. All simulations in this figure
were conducted with τrq = 10 ns.

copy fluxons with a pulse splitter, a common means of achieving
fan-out of flux-quantum signals [43]. We can therefore simply
copy the output signals from a single photonic synapse to
multiple independent SI loops that can each perform different
temporal filters and feed into different dendrites. We refer to
these as electronic synapses, and we anticipate that each pho-
tonic synapse will feed multiple electronic synapses.

The circuit for splitting pulses is shown in Fig. 2(c). A fluxon
enters from the left, and when it switches the initial junction,
the current of the resulting fluxon is split to two subsequent
junctions. These junctions are biased such that the amount of
current is sufficient to exceed Ic, thus producing fluxons at both
junctions with restored signal level. For the application at hand,
the splitter of Fig. 2(c) can be placed following Jjtl in Fig. 2(a) or
Fig. 2(b). Thus, signals produced by synapses or dendrites can be
copied and processed independently to extract distinct informa-
tion through multiple temporal filters and logical operations. The
circuit of Fig. 2(c) achieves direct one-to-two fan-out. If a greater
number of copies is desired, the same circuit can be repeated in a
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tree. The limits of this fan out will depend on one’s tolerance for
circuit complexity. We speculate that in mature systems, a given
photonic synapse may split to as many as 10 electronic synapses.
The axonal arbor could implement one-to-one-thousand fan-out
with branching photonic waveguides across a broad spatial range
and an additional one-to-ten fan-out from each photon detector
to electronic synapses across a much more limited spatial range.
Total fan-out would then be one-to-ten-thousand, comparable to
biological neurons in many regions of the brain [44].

As a simple example of the utility of pulse splitting, we con-
sider one photonic synapse feeding into two electronic synapses
with different time constants. Figure 11(a) summarizes the mo-
tivation for employing two different time constants. Instead of
retaining a memory trace of a synapse event over only a single
temporal scale, as occurs in a single SI loop with exponential
decay with one time constant, we would prefer a signal with
a power-law decay, so that information across temporal scales
can be accessed. In Fig. 11(a) we compare f(t) ∝ t−q to
g(t) ∝ e−t/τ for three values of τ , taking the power-law
exponent to be q = 1. This figure illustrates the principle that
a power-law temporal decay represents information across
multiple orders of magnitude in time, while an exponential
function only has a single time constant, and therefore only
represents information across roughly one order of magnitude.
For example, in Fig. 11(a), the power-law decay has an
appreciable signal spanning two orders of magnitude in time.
By contrast, the smallest value of τ provides no information
past its cutoff, and the signal from the largest value of τ is nearly
constant initially across more than an order of magnitude. The
middle value gives a poor representation at the start and the end.
However, we can obtain a suitable approximation to the power
law function by superposing a small number of exponentials
[45], as shown in Fig. 11(b). Here we represent a power law
with unity exponent (q = 1), mapping two orders of magnitude
in time to two orders of magnitude in signal. Convergence
is shown in the inset. The error is improved by an order of
magnitude when using two exponentials instead of one, and
there is little advantage to using more than three for this task.

We implement this principle with the circuits under consid-
eration by copying the signal from a photonic synapse to two
electronic synapses coupled to a common passive superconduct-
ing loop via mutual inductors. We choose the time constants
and couplings of the two SI loops to approximate the fitting
technique employed to produce Fig. 11(b). Figure 11(c) shows
the current in each of the SI loops as well as the common output
loop. A power law with q = 1.1 is shown for comparison. This
power-law temporal extension can be used in conjunction with
many of the other operations discussed thus far, with the objec-
tive to use cheap fluxonic operations to extend the memory trace
of expensive photonic activity across extra orders of magnitude
in time. Such an operation performs a power-law mapping of
a temporal signal to the dynamic range of the firing junction
and allows a single dendrite to retain and access information
regarding both gamma and theta frequencies.

This example of using pulse splitting to access broader time
spans is a straightforward extension of the behavior of a single SI
loop. Additional functionality can be envisioned by combining

Fig. 11. Approximation of power-law temporal decay. (a) Illustration of the
differences between power-law and exponential decay on a log-log plot. The
functions plotted are f(t) ∝ t−q and g(t) ∝ e−t/τ , referred to generally as
“Signal”. (b) Approximating power-law decay through the superposition of
multiple exponentials. A power law function with unity exponent is shown,
as are approximations composed of one to three exponentials. Amplitudes and
time constants were adjusted for best fit, and convergence is shown in the inset.
(c) Approximating power-law decay with two SI loops coupled to a common
DR loop. The time constants and mutual inductances have been chosen to
approximate a power law using the same fitting algorithm that generated (b).

pulse splitting with many of the functions discussed in this
paper. Most importantly, by copying the output from a photonic
synapse, each of the operations discussed here can be performed
concurrently. With a single photon, the dendritic tree can be
provided with information regarding the synapse’s average firing
rate across multiple temporal scales; the time since the last
synaptic firing; various quantities regarding initiation and dura-
tion of pulse trains; coincidences and sequences with synapses
from multiple other neurons; and inhibition and rapid query
applied independently to each of these pieces of information.
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VII. SUMMARY AND DISCUSSION

We have described several synaptic and dendritic operations
achieved with Josephson junctions and mutual inductors. These
include various logical operations, temporal filters, and nonlin-
ear transfer functions applied to one or more synapses. The oper-
ations performed here are all accomplished with configurations
of the building blocks shown in Fig. 2. We envision the dendritic
tree to be comprised of a complex network of synapses and
dendrites performing a multitude of computations on signals that
fan in from photonic synapses, traverse the dendritic tree, and
feed the neuron’s final thresholding compartment, which triggers
the production of light. A network will comprise many neurons,
and each neuron is itself a network. We have described the
dynamic functional adaptation of the dendritic network through
inhibition and rapid query. Inhibitory activity nullifies targeted
portions of the tree, while rapid query obtains local fragments
of information and passes them along the tree. We have also
described how electronic copies of photonic synapse events can
enable several of these operations to be performed with the
information from the detection of a single photon.

This work provides additional support for the hypothesis
that superconducting computation is complimentary to photonic
communication for achieving large-scale neural systems. While
photons can achieve fan-out, they lack the required nonlinearities
required for computation, especially at the low light levels
required for energy efficiency. Further, photon motion cannot
be halted to enable memory retention. Additionally, generating
photons is more expensive than generating fluxons, and therefore
only the minimum number of photons required for communi-
cation should be generated. Superconducting circuits are com-
plimentary to photonic circuits in these regards. The proposed
hardware may achieve greater than one-to-one-thousand fan-out
in the photonic domain from each neuron to its connections [14],
and subsequently, at each neuronal terminal an additional factor
of roughly one-to-ten fan-out in the electronic domain, providing
each receiving neuron with the capability of analyzing much
more information about synaptic activity than would be available
from a single synapse alone. Fan-in is envisioned to occur in the
electronic domain as the dendritic tree computes and feeds its
signals into the neuron cell body, ultimately resulting in a binary
decision of whether or not to fire. Superconducting-nanowire
single-photon detectors enable binary communication in that
the response is nearly identical whether one or more photons are
detected, and all computations—including synaptic weighting,
nonlinear processing, and temporal integration—occur in su-
perconducting electronic circuits with sub-nanosecond response
times, native nonlinearities, and the potential for signal retention
with no dissipation.

In mature superconducting optoelectronic circuits, system-
level considerations will inform decisions regarding trade-offs
between energy consumption and performance. One could re-
duce energy and area consumption by omitting dendritic pro-
cessing entirely, but this would leave out important information
processing. We do not attempt to fully address these trade-
offs here, but we briefly consider the energy expended on
synaptic, dendritic, and neuronal operations. At the physical

level, these operations require light production during neuronal
firing, photon detection during synapse events, and fluxonic
processing in the dendritic tree. We would like the energy
expended on light production, photon detection, and fluxonic
processing to be roughly equal. Such an operating point is
appealing because it indicates a global optimum wherein im-
provements to any one aspect of the system provide little added
benefit, as other contributions become limiting factors. We can
estimate where this operating point may reside by considering
the three primary contributions to energy consumption. Simi-
lar analysis can be conducted regarding area. Production of a
fluxon requires Ej = IcΦ0/2π = 1.3× 10−20 J for the junc-
tions considered here, while production of a photon requires
Ep = hν/η = 1.6×10−19

η J, where η is the photon production
efficiency, and we consider operation at λ = 1.22 μm [46].
Light generation is expensive because η is unlikely to ever
exceed 0.1 and may be limited to 0.01 or worse. Likewise,
photon detection requires Ed = LspdI

2
spd/2 = 1.3× 10−17 J

for the superconducting-nanowire single-photon detector de-
signs presented here. Due to the requirement of engineering
reset dynamics in the detector, Lspd cannot be reduced below a
certain value without decreasing the normal-state resistance of
Jsf , which requires increasing Ic, which increases Ej. Similarly,
Ispd cannot decrease without using either junctions with smaller
Ic or operating them in a noisy regime with bias close to Ic, and
would result in reduction of the dynamic range of the synaptic
weight. This space of trade-offs is complex, and we make no
attempt to identify the optimum in this work. We simply note
that if η = 0.01, Ispd = 10 μA, Lspd = 250 nH, Ic = 40 μA,
and full analog processing of each synapse event generates
103 fluxons on average, then light generation, detection, and
fluxonic processing each contribute roughly equally to energy
consumption. Full optoelectronic integration with few-photon
binary communication and superconducting electronic analog
computation offers a route to balance the energy budget while
enabling the requisite communication and repertoire of compu-
tational functions for large-scale artificial cognitive systems.

One emphasis in this work has been on the interaction of in-
hibitory and rapid query neurons with dendrites to enable diverse
functional networks. Inhibition is central to neural computation
[42], with a key role being the formation and synchronization of
adaptive neuronal modules that operate as task-specific proces-
sors [47], [48]. With inhibition, branches of the dendritic tree are
functionally responsive by default and are selectively silenced by
inhibitory synapse events. Inhibition can lead to synchronization
by opening brief temporal windows when groups of neurons
can fire [41]. With rapid query, branches of the dendritic tree
are silent by default and are only functionally connected if rapid
query synapse events occur. If the information in a given dendrite
need not be accessed regularly, rapid query will be more energy
efficient than continually performing inhibition. Like inhibition,
rapid query may be useful for inducing synchronization. We do
not propose rapid query instead of inhibition, but rather in addi-
tion. Both inhibition and rapid query may be leveraged to enable
sub-threshold oscillations to be sampled only when required by
the network, as occurs in biological neural systems to direct at-
tention and amplify relevant information [9]. We posit the utility
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of a dedicated class of rapid query neurons in superconducting
optoelectronic networks even though, to our knowledge, there is
no such class of neurons in the biological domain. This may be
due to a computational inadequacy of rapid query that we have
overlooked, or it may be that the circuits under consideration
are more amenable to such a mode of operation, which requires
a degree of control over competing circuit parameters. There
are dozens of different, specialized neurons in the mammalian
brain, with multiple types of inhibitiory neurons playing specific
roles [41], [42]. Superconducting optoelectronic networks take
significant inspiration from the brain, but hardware discrepan-
cies will inevitably lead to deviations in computation. Perhaps
rapid query neurons are one such departure.

There are multiple possible extensions of the functions con-
sidered here as well as further details to be considered. XOR may
be achieved with pulse splitting and lateral inhibition between
dendrites. We have only considered binary inhibition, but weaker
or multiple IH loops could be coupled to a DR loop to achieve
partial inhibition. The neural operations considered here tend
toward analog operation of the superconducting circuits, and
we have presented circuits capable of representing signals with
eight to 10 bits of resolution based on the βL values chosen for
the integration loops. However, this resolution is only available
if noise is sufficiently low, so further investigation is required
to determine a suitable tradeoff between loop inductance, sig-
nal resolution, and operating temperature. Future work may
find different optimal values for different operations, and an
improved balance between information capacity and hardware
demands might be discovered. We have primarily considered
signal storage loops with retention times on the order of what we
suspect will be the gamma and theta frequencies of the system,
but further research may find advantages of retaining fading
memories for much longer than this or may reveal that even
theta retention times are gratuitous.

In several instances we have indicated that the dendritic bias
current Ide can be used to adjust circuit operation, pointing to
a means of achieving learning and plasticity between synapses
and dendrites [7] or between two dendrites. This subject deserves
further investigation, but at present we simply note that similar
circuits used for spike-timing-dependent plasticity in [13] can be
used to implement such activity-based weight update functions.

We have only considered the first layer of dendritic hierarchy,
but the same dendritic building block of Fig. 2(b) can be tiled
essentially arbitrarily. The depth of this tree is enabled by the
logic-level restoration occurring in the basic circuit. Design
of the DI loop is independent of the DR loop, and regardless
of the configuration of the inputs to the DR loop, as long as
threshold can be reached, flux can be added to the DR loop, and
a restored current level can be attained with as few as one fluxon.
In this work, that current level is around 10 μA, but it could
be designed to be higher or lower as needed. This logic-level
restoration enables a many-compartment dendritic tree to be as
deep as needed for the desired information processing, pointing
to numerous theoretical questions. At the base of the tree is the
soma, or cell body. The soma receives signals just as any of
the other dendrites, but its output feeds into an amplifier chain
that leads to the production of light [13]. Because nanowire

single-photon detectors have a binary response, each neuron-to-
synapse communication event also results in logic-level restora-
tion, but between neurons and synapses rather than dendrites.

Beyond specifics related to the superconducting optoelec-
tronic hardware implementation, this work touches on important
theoretical questions regarding neural information. We have
based circuit designs around the hypothesis that incorporating
significant dendritic structure beyond the point-neuron model
is important for neural processing. Quantification of dendritic
information processing is difficult in biological experiments due
to the length scales involved, the sensitivity of the neurons and
dendrites under study, and the inability to design or control
the circuits being investigated. The circuits presented here can
be precisely designed, fabricated, manipulated, and measured,
potentially leading to traction on theoretical models of dendritic
processing. The goal of the dendritic tree is to provide as much
information as possible about the temporal activity on a neuron’s
afferent synapses. Proper design will maximize knowledge in
the dendritic tree and the arbor’s ability to communicate that
information to the cell body. Versatile hardware implementa-
tions of neurons with various dendritic processing capabilities
may serve to elucidate the important functions of dendrites in
biological and artificial neural systems.
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