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COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES
EQUATIONS, USING A STABILIZED EXPLICIT FINITE

DIFFERENCE SCHEME MARCHING BACKWARD IN TIME

ALFRED S. CARASSO∗

Abstract. This paper constructs an unconditionally stable explicit finite difference scheme,
marching backward in time, that can solve an interesting but limited class of ill-posed, time-reversed,
2D incompressible Navier-Stokes initial value problems. Stability is achieved by applying a compen-
sating smoothing operator at each time step to quench the instability. This leads to a distortion away
from the true solution. However, in many interesting cases, the cumulative error is sufficiently small
to allow for useful results. Effective smoothing operators based on (−∆)p, with real p > 2, can be
efficiently synthesized using FFT algorithms. Similar stabilizing techniques were successfully applied
in other ill-posed evolution equations. The analysis of numerical stabilty is restricted to a related
linear problem. However, extensive numerical experiments indicate that such linear stability results
remain valid when the explicit scheme is applied to a significant class of time-reversed nonlinear 2D
Navier-Stokes initial value problems.

Several reconstruction examples are included, based on the stream function-vorticity formulation,
and focusing on 256 × 256 pixel images of recognizable objects. Such images, associated with non-
smooth underlying intensity data, are used to create severely distorted data at time T > 0. Successful
backward recovery is shown to be possible at parameter values exceeding expectations.

Key words. 2D Navier-Stokes equations backward in time. High Reynolds numbers. Stabilized
explicit marching difference scheme. Numerical experiments.

AMS subject classifications. 35Q30, 35R25, 65M12, 65M30.

1. Introduction. Significant applications in science and engineering have gen-
erated considerable interest in the development of effective computational techniques
for solving ill-posed time-reversed evolution equations. In Environmental Forensics,
much success has been achieved using backward parabolic equations to locate sources
of both groundwater and atmospheric contaminant plumes [1–3]. In Geophysics, the
inverse problem of thermal evolution of the Earth interior is of major interest [4, 5].
In Image Science, time-reversed fractional and logarithmic diffusion equations have
been successfully applied to deblur nanoscale scanning electron micrographs, as well
as galactic scale Hubble space telescope imagery [6–8]. In Aerodynamics, backward
Burgers’ equations play a central role in questions of inverse design associated with
minimizing aircraft sonic boom [9–11]. Backward Burgers’ equations are also of prime
interest in data assimilation studies in Geophysical Fluid Dynamics [12,13].

Continuing the line of work developed in [14–19], the present self-contained paper
constructs an unconditionally stable explicit finite difference scheme, marching back-
ward in time, that can solve an interesting but limited class of ill-posed time-reversed
2D incompressible Navier-Stokes initial value problems. Stability is achieved by ap-
plying a compensating smoothing operator at each time step to quench the instability.
Eventually, this leads to a distortion away from the true solution. However, in many
interesting cases, the cumulative effect of these errors is sufficiently small to allow for
useful results. Effective smoothing operators based on (−∆)p, with real p > 2, can
be efficiently synthesized using FFT algorithms. Similar stabilizing techniques were
successfully applied in various other ill-posed equations, [14–19]. As was the case
in these papers, the analysis of numerical stabilty given in Sections 5 and 6 below,
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2 A. S. CARASSO

is restricted to a related linear problem. However, extensive numerical experiments
indicate that these linear stability results remain valid when the explicit scheme is
applied to a significant class of nonlinear problems.

Indeed, in the documented experiments discussed in Section 7, it is noteworthy
that notwithstanding its limitations, the stabilized explicit scheme can produce useful
reconstructions at parameter values far exceeding what would seem feasible, based on
well-known uncertainty estimates for backward in time Navier-Stokes solutions.

In recent years, important new discretization methods have been developed for
solving forward 2D incompressible Navier-Stokes equations, as well as other dissi-
pative problems. See e.g., [20–28] and the references therein. Provided appropriate
stabilizing operators can be constructed and applied at every time step tn = n∆t, sev-
eral such methods may possibly be marched backward in time, and produce valuable
new computational tools for solving ill-posed time-reversed evolution equations.

2. 2D Navier-Stokes equations. Let Ω be the unit square in R2 with bound-
ary ∂Ω. Let < , > and ‖ ‖2, respectively denote the scalar product and norm
on L2(Ω). We shall study the 2D problem in stream function-vorticity formula-
tion [20, 21]. Here, the flow is governed by a stream function ψ(x, y, t) which defines
the velocity components u(x, y, t) ≡ ψy, v(x, y, t) ≡ −ψx, together with the vorticity
ω(x, y, t) ≡ vx − uy = −∆ψ. In this exploratory initial paper, we restrict attention
to stream functions ψ defined on the unit square Ω, which, for the limited duration
0 ≤ t ≤ T, of the flow, vanish together with all their derivatives near the bound-
ary ∂Ω. However, ψ(x, y, t) will generally have large spatial derivatives away from
the boundary. Given such a ψ(x, y, 0) and a kinematic viscosity ν > 0, the forward
Navier-Stokes initial value problem takes the form

ωt + uωx + vωy − ν∆ω = 0, ∆ψ = −ω, (x, y, t) ∈ Ω× (0, T ],

u(x, y, 0) = ψy, v(x, y, 0) = −ψx, ω(x, y, 0) = −∆ψ,

u(x, y, t) = v(x, y, t) = ω(x, y, t) = 0, (x, y, t) ∈ ∂Ω× [0, T ].

(2.1)

Solving the system in Eq. (2.1) may be visualized as a marching computation as
follows. Given the initial values, the evolution equation for ω allows advancing ω
forward one time step ∆t > 0. The Poisson equation ∆ψ = −ω is then solved to
obtain ψ(x, y,∆t), which leads to u(x, y,∆t), v(x, y,∆t). This now allows advancing
ω to the next time step through the evolution equation, and so on.

With A the area of the flow domain, define Umax and the Reynolds number RE
as follows

Umax = supΩ{u2(x, y, 0) + v2(x, y, 0)}1/2,

RE = (
√
A/ν)Umax.

(2.2)

As in [14–19], our numerical experiments will involve 256×256 pixel gray scale im-
ages. These images, defined by highly non-smooth underlying intensity data, present
significant challenges to any ill-posed reconstruction algorithm. At the same time, us-
ing images of recognizable objects is highly instructive, as it enables immediate visual
appreciation of the amount of distortion produced by the forward evolution, together
with the subsequent partial undoing of that distortion by marching backward in time.
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In [14–19], image intensity data were used directly to represent actual primary vari-
ables such as displacement, velocity, temperature, etc. In the present paper, image
data are used to construct non-smooth stream functions ψ(x, y), and the primary
variables u, v, ω, in Eq. (2.1) are derived by taking first and second derivatives of ψ.
In particular, larger values of the Reynolds number RE are to be expected.

3. Feasibility of backward in time Navier-Stokes reconstruction. In dis-
sipative evolution equations, there is a necessary uncertainty in backward in time
reconstructions from imprecise data given at some positive time T . That uncertainty
is a function of how quickly the given evolution equation forgets the past as time
advances. This is a deep subject, explored in such publications as [30–38], and the
references therein.

We now contemplate the feasibility of solving the system in Eq. (2.1), backward in
time, from approximately known values. Let {ũ(x, y, t), ṽ(x, y, t), ω̃(x, y, t)} , be the
solution on Ω× [0, T ) corresponding to approximate data {ũ(·, T ), ṽ(·, T ), ω̃(·, T )} ,
at a given positive time T , and let {u(x, y, t), v(x, y, t), ω(x, y, t)} be the unique
solution associated with the true data {u(·, T ), v(·, T ), ω(·, T )} at time T . Define
w(x, y, t) on Ω× [0, T ], and F (t) on [0, T ], as follows

(w(x, y, t))2 = {u(x, y, t)− ũ(x, y, t)}2 + {v(x, y, t)− ṽ(x, y, t)}2,

F (t) =‖ w(·, t) ‖22=
∫

Ω
(w(x, y, t))2dxdy.

(3.1)

For a given small ε > 0, assume that |w(x, y, T )| is small enough that F (T ) ≤ ε .
What constraints must be placed on the solutions of Eq. (2.1) to ensure that F (t)
will remain small for 0 ≤ t < T ? This is the backward stability problem for the
Navier-Stokes equations in the L2(Ω) norm. The best known results in this direction
were obtained by Knops and Payne using logarithmic convexity arguments [32,33,35].

Let P, Q, be prescribed positive constants. A velocity field {u(x, y, t), v(x, y, t)}
is said to belong to the class P if

sup
(x,t)∈Ω×[0,T ]

{
(u2 + v2)

}
≤ P 2, (3.2)

while it belongs to the class Q if

sup
(x,t)∈Ω×[0,T ]

{
(u2 + v2) + ω2 + (u2

t + v2
t )
}
≤ Q2. (3.3)

Define a, b, c, µ(t), K, as follows,

a = 2(P 2 + 1)/ν, b = Q2(1 + a/ν),

c = b/a, µ(t) = (eat − 1)/(eaT − 1), 0 ≤ t ≤ T,

K ≡ K(P,Q, ν, t, T ) = exp{c(t− µ(t)T )}, 0 ≤ t ≤ T.

(3.4)

If {u(x, y, t), v(x, y, t)} ∈ P and {ũ(x, y, t), ṽ(x, y, t)} ∈ Q, it is shown in [32,33]
that then

F (t)F ′′(t)− (F ′(t))2 ≥ aF (t)F ′(t)− bF 2(t), (3.5)
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JOAN CRAWFORD  STREAM FUNCTION DATA

Stream function           Intensity data plot

 Stream Contours          Vorticity Contours

Fig. 3.1. Non-smooth Joan Crawford data leads to challenging ill-posed Navier-Stokes recon-
struction problem. Here, Umax = 114, RE = 11400, supΩ{|ω(x, y, 0)|} = 1.0 × 105. Theoretical
uncertainty estimates indicate backward recovery of above data from distorted values at T > 0, would
be feasible provided T ≤ 1.0× 10−9.

from which, as will be shown below, it follows that

F (t) ≤ e{c(t−µ(t)T )} {F (0)}1−µ(t) {F (T )}µ(t)
, 0 ≤ t ≤ T. (3.6)

With log x denoting the natural logarithm of x > 0, we establish Eq. (3.6) by repro-
ducing the convexity arguments developed in [30, p. 18] and [31, p. 34]. We may
assume that F (t) > 0, 0 ≤ t ≤ T , since, as was shown in [29], if F (t†) = 0 for any t† in
[0, T ], then F (t) ≡ 0 on [0, T ], and Eq. (3.6) is trivially true in that case. Multiplying
both sides of Eq. (3.5) by e−at/F 2(t), we find

(e−atF ′/F )′ ≥ −be−at. (3.7)

Let s = eat, and change variables from t to s in Eq. (3.7). With G(s) = F (t), we
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then have F ′(t) = (dG/ds)(ds/dt) = as(dG/ds). Hence, from Eq. (3.7),

(e−atF ′/F )′ = sa2 d/ds{(dG/ds)/G} ≥ −b/s. (3.8)

Therefore, with s1 = 1, s2 = eaT ,

d2/ds2{logG(s)} ≥ −b/(a2s2) = −d2/ds2{log(s−b/a
2

)}, s1 ≤ s ≤ s2,

d2/ds2{log(G(s)s−b/a
2

)} ≥ 0, s1 ≤ s ≤ s2.

(3.9)

The last inequality implies that log(G(s)s−b/a
2

) is a convex function of s on [s1, s2].
Hence, on that same interval,

G(s)s−b/a
2

≤
{
G(s1)s

−b/a2
1

}(s2−s)/(s2−s1) {
G(s2)s

−b/a2
2

}(s−s1)/(s2−s1)

. (3.10)

Returning to the original t variable, Eq. (3.10) translates into Eq. (3.6). QED.

Next, in Eq. (3.1), let M be an a-priori bound for F (0) =‖ w(·, 0) ‖22. With
F (T ) ≤ ε, we then obtain from Eq. (3.6)

‖ w(·, t) ‖22= F (t) ≤ e{c(t−µ(t)T )}M1−µ(t)εµ(t), 0 ≤ t ≤ T. (3.11)

However, as the example below indicates, even with small ε > 0, ‖ w(·, t) ‖2 need
not be small for t < T , because the factor K = exp{c(t− µ(t)T )} may be extremely
large, unless T is extremely small.

3.1. An example: the Joan Crawford stream function. The 256 × 256
pixel gray-scale Joan Crawford image, shown in Figure 3.1, is defined by highly non
smooth intensity data, with integer values ranging between 0 and 255. Here, these
values are multiplied by 0.0025 to create an array ψ(x, y) of non negative numbers
ranging from 0 to 0.6375. We now consider ψ(x, y) as a candidate initial stream
function, defined on the unit square Ω. Contour plots of ψ(x, y, 0) and of the associated
vorticity ω(x, y, 0) = −∆ψ, are also shown in Figure 3.1. However, even though
0 ≤ ψ(x, y, 0) ≤ 0.6375, one must expect large values for its derivatives. Indeed, with
Umax as in Eq. (2.2), we find

Umax ≈ 114, sup
Ω
{|ω(x, y, 0)|)} ≈ 1.0× 105. (3.12)

Using ψ(x, y, 0) in Figure 3.1 together with ν = 0.01 in the forward problem in
Eq. (2.1), and using A = 1 in Eq. (2.2), leads to a Reynolds number RE ≈ 11400.
Without the above rescaling, these critical values would be 400 times larger.

We now assess the feasibility of reconstructing the initial values shown in Figure
1, from the data at time T . From Eqs. (3.2, 3.3, 3.4), we have

P 2 > U2
max ≈ 13000, Q2 > 1.0× 1010,

a ≈ 2.6× 106, b ≈ 2.6× 1018, c ≈ 1.0× 1012,

µ(t) = (eat − 1)/(eaT − 1), K = e{c(t−µ(t)T )}.

(3.13)
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With T = 1.0 × 10−9, and t = T/2, we find µ(T/2) = 0.499675, and K ≈ 1.4.
However, with T = 1.0 × 10−8, and t = T/2, we now find µ(T/2) = 0.49675, and
K ≈ 1.3× 1014. Thus, if T ≥ 1.0× 10−8, the reconstruction uncertainty at t = T/2,
given in Eq. (3.11), is much too large for any realistic value of the data error ε at
time T .

Rigorous uncertainty estimates, such as the Knops-Payne result in Eq. (3.11),
must necessarily reflect worse-case error propagation scenarios, and may be too pes-
simistic in some cases. In Section 7 below, several backward recovery experiments are
discussed and documented. In these experiments, the kinematic viscosity ν = 0.01,
and the associated Reynolds numbers RE, vorticities |ω|, and speeds Umax, are
of magnitudes comparable to those found in the Joan Crawford stream function in
Figure 3.1, resulting in parameter values very similar to those displayed in Eqs. (3.12)
and (3.13). Nevertheless, using the stabilized explicit scheme discussed in Eq. (4.8)
below, remarkably good recovery at t = 0 is found possible from approximate data at
values of T on the order of 1.0 × 10−3. However, at larger values of T , the resulting
image blur becomes too severe and precludes useful reconstruction.

4. Stabilized explicit schemes for the 2D Navier-Stokes Equations. For
well-posed initial value problems, explicit stepwise marching schemes are quite useful,
but often require restrictive Courant stability conditions. Some explicit schemes, such
as Richardson’s leapfrog scheme, are unconditionally unstable for parabolic problems,
[39, p. 190]. For ill-posed initial value problems, all consistent stepwise marching
schemes, whether explicit or implicit, are necessarily unconditionally unstable [39,
p. 59]. It is an important fact that one can stabilize explicit marching schemes, and
render them unconditionally stable marching forward or backward in time, but at the
cost of making them slightly inconsistent.

Consider the following 2D Navier-Stokes system for (x, y) ∈ Ω,

ωt = L†ω ≡ ν∆ω − uωx − vωy, ∆ψ = −ω, 0 < t ≤ T, (4.1)

together with homogeneous boundary conditions on ∂Ω, and the initial values

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), ω(x, y, 0) = ω0(x, y). (4.2)

The well-posed forward initial value problem in Eq. (4.1) becomes ill-posed if the
time direction is reversed, and one wishes to recover u(x, y, 0)), v(x, y, 0), ω(x, y, 0),
from given approximate values for u(x, y, T ), v(x, y, T ), ω(x, y, T ). We contemplate
such time-reversed computations by allowing for possible negative time steps ∆t in the
explicit time-marching finite difference scheme described below. With a given positive
integer N , let |∆t| = T/(N + 1) be the time step magnitude, and let ũn(x, y) ≡
ũ(x, y, n∆t), n = 0, 1, · · · , N + 1, denote the intended approximation to u(x, y, n∆t),
and likewise for ṽn(x, y), ω̃n(x, y). It is helpful to consider Fourier series expansions
for ω̃n(x, y), on the unit square Ω,

ω̃n(x, y) =

∞∑
j,k=−∞

ω̃nj,k exp{2πi(jx+ ky)}, (4.3)

with Fourier coefficients {ω̃nj,k} given by

ω̃nj,k =

∫
Ω

ω̃n(x, y) exp{−2πi(jx+ ky)}dxdy, (4.4)
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Since ω satisfies Eq. (4.1), ∆ω exists and is continuous. Hence, the Fourier series
in Eq. (4.3) is expected to be well-behaved. In the error analyses discussed below,
ωtt, ωttt, ωtttt, will be assumed to exist and be continuous. From Eq. (4.1), this
implies that

‖ (ν∆)mω ‖2<∞, m = 1, 4, 0 ≤ t ≤ T. (4.5)

With given fixed γ > 0 and real p with 1 < p ≤ 3, define λj,k, σj,k, as follows

λj,k = 4π2ν(j2 + k2), σj,k = exp{−2γ|∆t|λpj,k}. (4.6)

For functions ω̃n(x, y) satisfying Eq. (4.5), define the linear operators P and S as
follows

Pω̃n =
∑∞
j,k=−∞ λpj,kω̃

n
j,k exp{2πi(jx+ ky)},

Sω̃n =
∑∞
j,k=−∞ σj,kω̃

n
j,k exp{2πi(jx+ ky)}.

(4.7)

As in [14–19], the operator S is used as a stabilizing smoothing operator at each
time step. With the operator L† as in Eq (4.1), let L†ω̃n ≡ ν∆ω̃n − ũnω̃nx − ṽnω̃ny .
Consider the following explicit time-marching difference scheme for the system in
Eq (4.1), in which only the time variable is discretized, while the space variables
remain continuous,

ω̃n+1 = Sω̃n + ∆tS(L†ω̃n), ∆ψ̃n+1 = −ω̃n+1. (4.8)

As already noted, we allow for negative time steps ∆t in Eq. (4.8). The above
semi-discrete problem is highly nonlinear. In the operator L†, the coefficients ũn =
ψ̃ny , ṽ

n = −ψ̃nx , are defined in terms of ω̃n, which is needed to obtain ψ̃n by solving

the Poisson problem ∆ψ̃n = −ω̃n. The analysis presented in Sections 5 and 6 below, is
relevant to the above semi-discrete problem. The Lemmas and Theorems presented in
these two sections are results previously obtained in [19], in connection with 2D Burg-
ers’ equation. They are reproduced here and adapted to 2D Navier-Stokes equations
for the convenience of the reader. In Section 7, where actual numerical computations
are discussed, the space variables are also discretized, and FFT algorithms are used
to synthesize the smoothing operator S.

5. Fourier stability analysis in linearized problem. As in [19], useful in-
sight into the behavior of the nonlinear scheme in Eq. (4.8), can be gained by analyz-
ing a related linear problem with constant coefficients. From a naive computational
perspective, we may view L† in Eq. (4.1), as a linear operator with time-dependent co-
efficients u(x, y, t), v(x, y, t), which need to be evaluated at every time step t = n∆t,
through an independent subsidiary calculation. If |u(x, y, t)| ≤ a, |v((x, y, t)| ≤ b,
with positive constants a, b, the numerical stability of the evolution equation ω̃n+1 =
Sω̃n + ∆tS(L†ω̃n) in Eq. (4.8), may be investigated by considering the constant co-
efficient linear operator Lω̃n ≡ ν∆ω̃n − aω̃nx − bω̃ny , in lieu of L†ω̃n. Accordingly, we
examine the following evolution equation

ωt = Lu ≡ ν∆ω − aωx − bωy, 0 < t ≤ T,

ω(x, y, 0) = ω0(x, y),
(5.1)
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together with periodic boundary conditions on ∂Ω. Unlike the case in Eq. (4.8), the
stabilized marching scheme

ω̃n+1 = Sω̃n + ∆tSLω̃n, n = 0, 1, · · · , N, (5.2)

with the linear operator L, is susceptible to Fourier analysis. If Lω̃n = fn(x, y), then
the Fourier coefficients {fnj,k} satisfy fnj,k = gj,kω̃

n
j,k, where

gj,k = −{4π2ν(j2 + k2) + 2πi(aj + bk)}. (5.3)

Let R be the linear operator R = S + ∆tSL. Then,

ω̃n+1 = Rω̃n =

∞∑
j,k=−∞

ω̃nj,k{1 + ∆tgj,k}σj,k,

‖ ω̃n+1 ‖22 = ‖ Rω̃n ‖22 ≤
∞∑

j,k=−∞

|ω̃nj,k|2{1 + |∆t||gj,k|}2σ2
j,k, (5.4)

on using Parseval’s formula.

Lemma 1. Let λj,k, σj,k, be as in Eq. (4.6), and let gj,k be as in Eq. (5.3).
Choose a positive integer J such that if λJ = 4π2νJ , we have

max(j2+k2)≤J {|gj,k|} ≤ 2λJ , |gj,k| ≤ 2λj,k, ∀ (j2 + k2) > J. (5.5)

With p > 1, choose γ ≥ (λJ)1−p in Eq. (4.6). Then,

σj,k (1 + |∆t||gj,k|) ≤ 1 + 2|∆t|λJ . (5.6)

Hence, from Eq. (5.4),

‖ R ‖2≡ sup{06=‖ω̃n‖2}{‖ Rω̃
n ‖2 / ‖ ω̃n ‖2} ≤ 1 + 2|∆t|λJ ≤ exp{2|∆t|λJ},

‖ Rm ‖2≤‖ R ‖m2 ≤ exp{2m|∆t|λJ}, m ≥ 1,
(5.7)

and, for n = 1, 2, · · · , N + 1,

‖ ω̃n ‖2=‖ Rnω0 ‖2≤ exp{2n|∆t|λJ} ‖ ω0 ‖2 . (5.8)

Therefore, with this choice of (γ, p), the explicit linear scheme in Eq. (5.2) is uncon-
ditionally stable, marching forward or backward in time.

Proof : We first show how to find a positive integer J such that Eq. (5.5) is valid. We
have |gj,k|2 = λ2

j,k + 4π2(aj + bk)2 ≤ λ2
j,k + (2c2/ν)λj,k, where 0 < c = max(a, b).

Choose a positive integer J such that λJ = 4π2νJ > (2c2/ν). Then, ∀ (j, k), |gj,k|2 ≤
λ2
j,k + λJλj,k, which implies Eq. (5.5). Next, the inequality in Eq. (5.6) is valid

whenever (j2 + k2) ≤ J , since σj,k ≤ 1. For (j2 + k2) > J, we have λJ < λj,k and
|gj,k| ≤ 2λj,k. Hence

σj,k = exp{−2γ|∆t|λpj,k} ≤ exp{−2γ|∆t|λj,kλp−1
J } ≤ exp{−2|∆t|λj,k}, (5.9)
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since γλp−1
J ≥ 1. Also, exp{−2|∆t|λj,k} ≤ (1 + 2|∆t|λj,k)

−1
, since 1 +x ≤ ex for real

x. Hence, with |gj,k| ≤ 2λj,k for (j2 +k2) > J, we find σj,k (1 + |∆t||gj,k|) ≤ 1. Thus,
Eq. (5.6) is valid ∀ (j, k). Next, using Eq. (5.6) in Eq. (5.4), together with Parseval’s
formula, leads to Eqs. (5.7) and (5.8). QED.

For functions h(x, y, t) on Ω× [0, T ], define the norm |||h|||2,∞ as follows

|||h|||2,∞ ≡ sup
0≤t≤T

{‖ h(·, t) ‖2}. (5.10)

Lemma 2. Let ωn(x, y) ≡ ω(x, y, n∆t), assumed to satisfy Eq. (4.5), be the
exact solution in Eq. (5.1). Let γ, p, λj,k, σj,k, be as in Eq. (4.6). Let P and S
be as in Eq. (4.7), and let L be the linear operator in Eq. (5.1). Then, ωn+1 =
ωn + ∆tLωn + τn, where τn is the truncation error. With the norm definition in
Eq (5.10), and 0 ≤ n ≤ N ,

‖ τn ‖2 ≤ 1/2(∆t)2 |||L2ω|||2,∞,
‖ ωn − Sωn ‖2 ≤ 2γ|∆t| |||Pω|||2,∞,

|∆t| ‖ Lωn − SLωn ‖2 ≤ 2γ(∆t)2 |||PLω|||2,∞. (5.11)

Proof : The inequality for the truncation error τn in Eq. (5.11) follows naturally from
a truncated Taylor series expansion. Since the linear operator L in Eq. (5.1) has
constant coefficients, and ωt = Lω, we have ωtt = Lωt = L2ω. Hence,

ωn+1 = ωn + ∆tωnt + (1/2)(∆t)2ωntt +O(∆t)3,

ωn+1 = ωn + ∆tLωn + (1/2)(∆t)2(L2ω),
(5.12)

where (L2ω) denotes the value of L2ω at an intermediate time t, lying between n∆t
and (n + 1)∆t. This proves the first inequality in Eq. (5.11). Using the inequality
1− e−x ≤ x for all real x, together with Parseval’s formula, we have

‖ ωn − Sωn ‖22 =

∞∑
j,k=−∞

|ωnj,k|2(1− σj,k)2 ≤ (2γ|∆t|)2 |||Pω|||22,∞. (5.13)

This proves the second inequality in Eq. (5.11). The last inequality is a corollary of
the second. QED.

In Lemma 1, the finite difference approximation ω̃n(x, y) ≡ ω̃(x, y, n∆t) satisfies
Eq. (5.2), whereas the exact solution ωn(x, y) ≡ ω(x, y, n∆t) in Eq. (5.1), satisfies
ωn+1 = ωn + ∆tLωn + τn, where τn is the truncation error. We need to estimate the
error errn(x, y) = ωn(x, y)− ω̃n(x, y), n = 0, 1, · · · , N + 1.

Theorem 1. With ∆t > 0, let ωn(x, y), assumed to satisfy Eq. (4.5), be the
unique solution of Eq. (5.1) at t = n∆t. Let ω̃n(x, y) be the corresponding solution
of the forward explicit scheme in Eq. (5.2), and let p, λJ , γ, be as in Lemma 1. If
errn(x, y) = ωn(x, y)− ω̃n(x, y), denotes the error at t = n∆t, n = 1, 2, · · · , N + 1,
we have

‖ errn ‖2≤ e2tλJ ‖ err0 ‖2 +
{
γ(e2tλJ − 1)/λJ

}
|||Pω|||2,∞

+
{

(e2tλJ − 1)/2λJ
}{

2γ∆t |||PLω|||2,∞ + (∆t/2) |||L2ω|||2,∞
}
. (5.14)
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Proof : Let hn = τn + (ωn − Sωn) + ∆t(Lωn − SLωn). Let R be the linear operator
in Eq. (5.4). Then, ωn+1 = Rωn + hn, while ω̃n+1 = Rω̃n. Therefore

errn+1 = Rwn + hn = Rn+1err0 + ∆t

n∑
j=0

Rn−jhj/(∆t). (5.15)

Let |||h|||2,∞ ≡ max0≤n≤N+1{hn}. Using Eq. (5.7) in Lemma 1, and letting t =
(n+ 1)∆t,

‖ errn+1 ‖2≤ e2tλJ ‖ err0 ‖2 + {|||h|||2,∞/∆t}∆t

n∑
j=0

‖ Rn−j ‖2 . (5.16)

We have ∆t
∑n
j=0 ‖ Rn−j ‖2≤

∑n
j=0Aj, in Eq. (5.16), where, for each j, Aj =

∆t exp{2λJ(n−j)∆t}. Notice that with t = (n+1)∆t, A0 is less than the area under
the curve z(s) = exp{2λJ(t − s)} on the interval 0 ≤ s ≤ ∆t. Indeed, (

∑n
j=0Aj) is

less than the total area under that curve on the interval 0 ≤ s ≤ t. Hence, from Eq.
(5.16),

‖ errn+1 ‖2 ≤ e2tλJ ‖ err0 ‖2 + {|||h|||2,∞/∆t}
∫ t

0

e2λJ (t−s)ds

= e2tλJ ‖ err0 ‖2 + {|||h|||2,∞/∆t} (e2tλJ − 1)/2λJ . (5.17)

Next, using Lemma 2 to estimate {|||h|||2,∞/∆t}, one obtains Eq. (5.14) from Eq.
(5.17). QED.

6. The stabilization penalties in the forward and backward linearized
problem in Eq. (5.1). The stabilizing smoothing operator S in the explicit scheme
in Eq. (5.2) leads to unconditional stability, but at the cost of introducing a small
error at each time step. We now assess the cumulative effect of that error.

In the forward problem in Theorem 1, we may assume the given initial data
ω0(x, y) to be known with sufficiently high accuracy that one may set ‖ err0 ‖2= 0 in
Eq. (5.14). Choosing γ = (λJ)1−p in Lemma 1, and putting t = n∆t ≤ T , Eq.(5.14)
reduces to

‖ errn ‖2≤ (λJ)−p(e2tλJ − 1) |||Pω|||2,∞ + O(∆t), n = 1, 2, · · · , N + 1. (6.1)

Therefore, when using the explicit scheme in Eq.(5.2), there remains the non-vanishing
residual error (λJ)−p(e2tλJ−1) |||Pω|||2,∞, as ∆t ↓ 0. This is the stabilization penalty,
which results from smoothing at each time step, and grows monotonically as t ↑ T .
Recall that λJ must be chosen large enough to satisfy Eq. (5.5) in Lemma 1. Clearly,
if T = (N +1)∆t is large, the accumulated distortion may become unacceptably large
as t ↑ T , and the stabilized explicit scheme is not useful in that case. On the other
hand, if T is small, as is the case in problems involving small values of t, it may
be possible to choose p > 2 and sufficiently large λJ , yet with small enough λJT
that (λJ)−p(e2λJT − 1) is quite small. In that case, the stabilization penalty remains
acceptable on 0 ≤ t ≤ T . As an example, with T = 2.0 × 10−4, p = 3.25, and
λJ = 5.0 × 104, we find (λJ)−p(e2λJT − 1) < 2.6 × 10−7. This often leads to an
acceptable L2 relative error (‖ errn ‖2 / ‖ ωn ‖2).
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For this important but limited class of problems, the absence of restrictive Courant
conditions on the time step ∆t in the explicit scheme in Eq.(5.2), provides a significant
advantage in well-posed forward computations of two dimensional problems on fine
meshes.

However, there is an additional penalty in the ill-posed problem of marching back-
ward from t = T , in that solutions exist only for a restricted class of data satisfying
certain smoothness and other constraints. These data are seldom known with suffi-
cient precision. We shall assume that the given data ω̃0(x, y) at t = T , differ from
such unknown exact data by small errors κ(x, y):

ω̃0(x, y) = ω(x, y, T ) + κ(x, y), ‖ κ ‖2≤ ε. (6.2)

Theorem 2. With ∆t < 0, let ωn(x, y), assumed to satisfy Eq. (4.5), be the
unique solution of the forward well-posed problem in Eq. (5.1) at s = T − n|∆t|. Let
ω̃n(x, y) be the corresponding solution of the backward explicit scheme in Eq. (5.2),
with initial data ω̃0(x, y) = ω(x, y, T ) +κ(x, y) as in Eq. (6.2). Let p, λJ , γ, be as in
Lemma 1. If errn(x, y) ≡ ωn(x, y)−ω̃n(x, y), denotes the error at s = T−n|∆t|, n =
0, 1, 2, · · · , N + 1, we have, with ε as in Eq.(6.2),

‖ errn ‖2≤ εe2n|∆t|λJ + (γ/λJ)
{

(e2n|∆t|λJ − 1)
}
|||Pω|||2,∞

+
{

(e2n|∆t|λJ − 1)/λJ

}{
γ|∆t| |||PLω|||2,∞ + (|∆t|/2) |||L2ω|||2,∞

}
. (6.3)

Proof : Let hn = τn + (ωn − Sωn) + ∆t(Lωn − SLω‘n). Let R be the linear operator
in Eq. (5.4). Then, ωn+1 = Rωn + hn, while ω̃n+1 = Rω̃n. Therefore

errn+1 = R errn + hn = Rn+1err0 + |∆t|
n∑
j=0

Rn−jhj/(|∆t|). (6.4)

Let |||h|||2,∞ ≡ max0≤n≤N+1{hn}. Using Lemma 1, and letting r = (n + 1)|∆t|, we
find, as in the case of Eq. (5.16),

‖ errn+1 ‖2 ≤ εe2rλJ + {|||h|||2,∞/|∆t|} |∆t|
n∑
j=0

‖ Rn−j ‖2,

≤ εe2rλJ + {|||h|||2,∞/|∆t|}
∫ r

0

e2λJ (r−s)ds,

= εe2rλJ {|||h|||2,∞/|∆t|} {e2rλJ − 1}/2λJ . (6.5)

As in the preceding Theorem, we may now use Lemma 2 to estimate {|||h|||2,∞/|∆t|}
and obtain Eq. (6.3) from Eq.(6.5). QED.

It is instructive to compare the results in the well-posed case in Eq.(6.1), with the
ill-posed results implied by Eq.(6.3). For this purpose, we must reevaluate Eq.(6.3)
at the same t values that are used in Eq. (6.1). With ∆t > 0, t = k∆t, and
ωk(x, y) = ω(x, y, k∆t), let ω̃k(x, y) now denote the previously computed backward
solution evaluated at t = k∆t. With T = (N + 1)∆t, let errk(x, y) = ωk(x, y) −
ω̃k(x, y), k = 0, 1, 2, · · · , N + 1, denote the error at t = k∆t. Again, choosing
γ = (λJ)1−p, we get from Eq. (6.3),

‖ errk ‖2 ≤ (λJ)−p {exp[2λJ(T − t)]− 1} |||Pω|||2,∞
+ ε exp{2λJ(T − t)}+ O(∆t), 0 ≤ t ≤ T. (6.6)
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Here, the stabilization penalty is augmented by an additional term, resulting from
amplification of the errors κ(x, y) in the given data at t = T, as indicated in Eq. (6.2).
Both of the first two terms on the right in Eq. (6.6) grow monotonically as t ↓ 0,
reflecting backward in time marching from t = T .

Let the exact solution ω(x, y, 0) at t = 0, satisfy a prescribed L2 bound,

‖ ω0 ‖2≤M. (6.7)

Again, with large T , and λJ large enough to satisfy Eq. (5.5) in Lemma 1, the non-
vanishing residuals in Eq. (6.6) lead to large errors, and the backward explicit scheme
is not useful in that case. However, if T is small enough that

2λJT ≤ log(M/ε), (6.8)

with (ε,M) as in Eqs. (6.2) and (6.7), we find, with t = k∆t, and µ(t) = t/T ,

‖ errk ‖2 ≤ (λJ)−p {exp[2λJ(T − t)]− 1} |||Pω|||2,∞
+ M1−µ(t)εµ(t) + O(∆t), 0 ≤ t ≤ T. (6.9)

The second term on the right in Eq. (6.9) represents the fundamental uncer-
tainty in ill-posed backward continuation from noisy data, for solutions satisfying the
prescribed bounds (ε,M) in Eqs. (6.2) and (6.7). That uncertainty is known to be
best-possible in the case of autonomous selfadjoint problems. Therefore, in a limited
but potentially significant class of problems, the stabilized backward explicit scheme
for the linearized problem in Eq. (5.1), can produce results differing from what is
best-possible only by a small stabilization penalty as ∆t ↓ 0.

For example, with parameter values such as T = 10−3, M = 104, ε = 10−3,
we have M/ε = 107 = exp{2λJT}, and λJ ≥ 8059. Hence, with p = 3.0, we find
(λJ)−p < 1.91× 10−12. With t = k∆t, we would then obtain from Eq. (6.9),

‖ errk ‖2 ≤M1−µ(t) εµ(t)

+ (1.91× 10−5) |||Pω|||2,∞ + O(∆t), 0 ≤ t ≤ T, (6.10)

which may lead to an acceptable L2 relative error
(
‖ errk ‖2 / ‖ ωk ‖2

)
.

Remark. In most applications of time-reversed problems, the values of M and ε
in Eq. (6.10), are seldom known accurately. In most cases, interactive adjustment of
the parameter pair (γ, p) in Eqs. (4.6, 4.7), in the definition of the smoothing operator
S, based on prior knowledge about the exact solution, is necessary to obtain useful
reconstructions. This process is similar to the manual tuning of an FM station, or
the manual focusing of binoculars, and likewise requires user recognition of a ‘correct’
solution. There may be several possible good solutions. Typical values of (γ, p) lie in
the ranges 10−12 ≤ γ ≤ 10−7, 2.5 ≤ p ≤ 3.5.

7. Behavior in the nonlinear stabilized explicit scheme in Eq. (4.8).
It remains to be seen whether the linear analysis in Sections 5 and 6 is indicative
of actual numerical behavior in the nonlinear system in Eq. (4.8). Four instructive
backward recovery experiments will be presented and discussed. With the operator
L† as in Eq (4.1), we now use second order accurate centered finite differencing for
the space variables in the fully discrete non linear scheme

ω̃n+1 = Sω̃n + ∆tS(L†ω̃n), ∆ψ̃n+1 = −ω̃n+1. (7.1)
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Fast Fourier Transform (FFT) algorithms are used to synthesize the smoothing oper-
ator S defined in Eq. (4.7), and an efficient multigrid Poisson solver is used at every
time step to solve ∆ψ̃n+1 = −ω̃n+1.

All four experiments involve 256 × 256 pixel gray scale images, defined by non-
smooth underlying intensity data, with integer values ranging between zero and 255.
These images have zero intensities on and near the boundary. In each case, the image
intensity data are multiplied by 0.0025 to create the initial stream function ψ(x, y, 0),
with 0 ≤ ψ ≤ 0.6375. The kinematic viscosity ν = 0.01 in all four cases, and
Umax, RE, are as defined in Eq. (2.2). The initial values for the forward problem,
u(x, y, 0), v(x, y, 0), ω(x, y, 0), are obtained by numerical differentiation of ψ(x, y, 0).
All of these quantities are assumed defined on the unit square Ω, and to vanish on
∂Ω for the duration of the flow.

USAF Resolution Chart. This is illustrated in Figure 8.1, and documented
in Table 1. The USAF Chart initial data are shown in the leftmost column of Figure
8.1 as the original sharp image, contour plots of the velocity component u(x, y, 0),
and contour plots of the vorticity ω(x, y, 0). We have Umax = 115, RE = 11500, and
supΩ{|ω(x, y, 0)|} = 1.25 × 105. With ∆t = 1.0 × 10−6, the fully discrete scheme in
Eq. (7.1) was solved forward in time for 1000 time steps to create the data at time
T = 1.0×10−3, shown in the middle column of Figure 8.1. In this forward calculation,
the operator S was chosen as the identity operator. No compensation was required,
as the explicit scheme was found stable with such small ν∆t.

Evidently, considerable change has occurred at time T = 1.0× 10−3. Substantial
erosion and disorganization of the sharp features in the leftmost column, is now ap-
parent in the middle column of Figure 8.1. Moreover, as Table 1 indicates, the L2(Ω)
norms of the velocity components u, v, are reduced to about 2/3 of their initial values,
while the L2 norm of the vorticity ω is reduced to about 1/4 of its initial value.

The computed data at time T are affected by accumulated discretization and
roundoff errors, exacerbated by repeated application of the elliptic solver. Using
these data, and solving the fully discrete scheme in Eq. (7.1) backward in time for
1000 time steps, requires use of the smoothing operator S, with an appropriate choice
of the parameters γ and p. Here, as is always the case in ill-posed reconstruction, a
priori knowledge about the true solution is fundamental in arriving at useful values
interactively. The explicit nature of the scheme in Eq. (7.1), together with its uncon-
ditional stability, allows for fast trial restorations using a relatively large time step
|∆t|. Upon locating promising parameter values, a more refined search is undertaken
with smaller |∆t|. With γ = 1.0 × 10−12, p = 2.75, the stabilized explicit scheme
produced the results shown in the rightmost column of Figure 8.1.

The recovery from the blurred data is surprisingly good. In Table 1, the restored
values for the L2 norms of u, v, ω, are close to the original values. More significantly,
the L2 relative errors range from 12% to 14%.

Significantly less successful reconstruction would result from more severely blurred
data at a value of T three to five times larger.

Elizabeth Taylor. Illustrated in Figure 8.2 and documented in Table 2, this
experiment has T = 2.0×10−3, Umax = 103, RE = 10300, and supΩ{|ω(x, y, 0)|} =
1.25 × 105. As in Figure 8.1, the leftmost column contains the original sharp image,
contour plots of the velocity component u(x, y, 0), and contour plots of the vortic-
ity ω(x, y, 0). With ∆t = 1.0 × 10−6, the fully discrete scheme in Eq. (7.1) was
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solved forward in time for 2000 time steps to create the data at time T, shown in
the middle column of Figure 8.2. As in the preceding experiment, S was chosen as
the identity operator. More erosion of the initial data is now apparent in the middle
column in Figure 8.2, and Table 2 indicates that the L2 norms of u, v, have been
reduced to 55% of their initial values, while the L2 norm of ω was reduced to less
than 12% of its initial value. Nevertheless, very good recovery is still possible with
γ = 1.0 × 10−12, p = 2.75, leading to L2 relative errors less than 5%. Larger values
of T would lead to unsatisfactory reconstructions.

The previous two experiments used images of familiar objects, leading to easily
grasped contour plots in Figures 8.1 and 8.2. The next two experiments involve im-
ages of complicated vortex flows actually found in nature. This results in the more
complex contour plots shown in Figures 8.3 and 8.4.

Kármán Vortex Street in clouds off Heard Island. This is illustrated
in Figure 8.3, and documented in Table 3. Here, Umax = 98, RE = 9800, and
supΩ{|ω(x, y, 0)|} = 1.11× 105. With ∆t = 1.0× 10−6, and S the identity operator,
the fully discrete scheme in Eq. (7.1) was solved forward in time for 2000 time steps
to create the data at time T = 2.0 × 10−3, shown in the middle column of Figure
8.3. Evidently, dissipation has caused significant disorganization and erosion of sharp
features, with the L2 norms of u, v, reduced to half their initial values, while the
L2 norm of ω was reduced to less than 10% of its original value. Remarkably, the
stabilized explicit scheme run backward with γ = 1.0 × 10−12, p = 2.75, produced
high quality reconstructions, with L2 relative errors less than 6%. Significantly less
accurate reconstructions would result from blurred data at larger values of T .

The original image in Figure 8.3 was taken by NASA’s Aqua satellite on Novem-
ber 2 2015. Heard Island is located in the far south Indian Ocean, close to Antarctica.

Twin Hurricanes over Hawaii. Illustrated in Figure 8.4 and documented
in Table 4, this experiment has T = 2.0 × 10−3, Umax = 85, RE = 8500, and
supΩ{|ω(x, y, 0)|} = 1.14 × 105. As in the previous experiment, the leftmost col-
umn contains the original sharp image, contour plots of the velocity component
u(x, y, 0), and contour plots of the vorticity ω(x, y, 0). With S the identity opera-
tor, and ∆t = 1.0 × 10−6, the fully discrete scheme in Eq. (7.1) was solved forward
in time for 2000 time steps to create the data at time T, shown in the middle column
of Figure 8.4. As before, there is considerable dissipation and substantial erosion of
sharp features, with the L2 norms of u, v, reduced to 38% of their initial values,
while the L2 norm of ω was reduced to less than 7% of its initial value. Again,
successful reconstruction of u(x, y, 0), v(x, y, 0), ω(x, y, 0), was found possible with
γ = 1.0× 10−12, p = 2.75, in the stabilized explicit scheme in Eq. (7.1). Here, the L2

relative errors were less than 4%. At larger values of T, the blurring is too severe to
permit useful recovery.

The original image in Figure 8.4 was obtained by NASA on August 31 2016, using
the Suomi National Polar Orbiting Weather Satellite.

Reconstructions with additional noise. In each of the above experiments,
the stream functions ψ(x, y, T ), computed using the forward Navier-Stokes equations,
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contain an appreciable amount of noise originating from accumulated discretization
and roundoff errors. Such stream functions generated the data u, v, ω at time T
that were used as input in the backward problem, and that are shown in the mid-
dle columns in Figures 8.1–8.4. However, further experiments were conducted with
ψ(x, y, T ) replaced by ψ†(x, y, T ) ≡ ψ(x, y, T )+0.02 φ(x, y, T ), where φ(x, y, T ) is the
forward computed Navier-Stokes stream function associated with a different image.
Quality reconstructions were still obtained with such noisier input data ψ†(x, y, T ),
albeit with larger L2 relative errors than are reported in Tables 1–4.

8. Concluding remarks. To the author’s knowledge, work on numerical al-
gorithms for solving Navier-Stokes equations backward in time, has not previously
appeared in the research literature. The primary aim in this paper was to open
doors, and demonstrate the possibility of useful reconstruction in a class of problems
generally considered intractable. Given the discussion in Section 3 following the re-
sults in Eqs. (3.12, 3.13), and the fact that Umax ≥ 85, supΩ{|ω(x, y, 0)|} ≥ 1.0×105,
in all four experiments in Section 7, the successful recoveries in each of these exper-
iments from data at T ≥ 1.0 × 10−3, were quite unexpected. Moreover, high quality
reconstruction from similar T values was found possible in numerous other images.
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Stream Function at t = 0      Stream F unction at t = T       Reconstruction at t = 0

Velocity Contours a t t = 0    Velocity  Contours at t = T     Reconstruction a t t = 0

Vorticity Contours at t = 0   Vorticit y Contours at t = T     Reconstruction at t = 0

   BACKWARD NAVIER− STOKES ON USAF CHAR T

      MAX SPEED = 115,  RE= 11500,  T= 1.0E−3

Fig. 8.1. Backward recovery in USAF Resolution Chart image, with ν = 0.01, Umax =
115, RE = 11500, supΩ{|ω(x, y, 0)|} = 1.25 × 105, T = 1.0 × 10−3. Using data shown in mid-
dle column, stabilized explicit scheme seeks to reconstruct initial data shown in leftmost column.
Actually recovered data, shown in rightmost column, are documented in Table 1.
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Stream Function at t = 0      Stream F unction at t = T       Reconstruction at t = 0

Velocity Contours a t t = 0      Veloci ty Contours at t = T   Reconstruction at t = 0

Vorticity Contours at t = 0   Vorticit y Contours at t = T     Reconstruction at t = 0

     BACKWARD NAVIE R−STOKES ON LIZ TAY LOR

      MAX SPEED = 103,  RE= 10300,  T= 2.0E−3
               

Fig. 8.2. Backward recovery in Elizabeth Taylor image, with ν = 0.01, Umax = 103, RE =
10300, supΩ{|ω(x, y, 0)|} = 1.25×105, T = 2.0×10−3. Using data shown in middle column, stabi-
lized explicit scheme seeks to reconstruct initial data shown in leftmost column. Actually recovered
data, shown in rightmost column, are documented in Table 2.
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Stream Function at t = 0      Stream F unction at t = T       Reconstruction at t = 0

Velocity Contours a t t = 0   Velocity Contours at t = T      Reconstruction a t t = 0

Vorticity Contours at t = 0    Vorticity Contours at t = T    Reconstruction  at t = 0

BACKWARD NAVIER−STO KES ON  VORTEX STREET

      MAX SPEED = 98,  RE= 9800,  T= 2.0E−3

Fig. 8.3. Backward recovery in November 2 2015 NASA Aqua satellite image of Kármán Vortex
Street in clouds off Heard Island. Here, ν = 0.01, Umax = 98, RE = 9800, supΩ{|ω(x, y, 0)|} =
1.11 × 105, T = 2.0 × 10−3. Using data shown in middle column, stabilized explicit scheme seeks
to reconstruct initial data shown in leftmost column. Actually recovered data, shown in rightmost
column, are documented in Table 3.
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Stream Function at t = 0      Stream F unction at t = T       Reconstruction at t = 0

Velocity Contours a t t = 0   Velocity Co ntours at t = T      Reconstruction at  t = 0

Vorticity Contours at t = 0    Vorticity Contours at t = T    Reconstruction  at t = 0

BACKWARD NAVIER−STO KES ON TWO HURRICANES

      MAX SPEED = 85,  RE= 8500,  T= 2.0E−3

Fig. 8.4. Backward recovery in August 31 2016 NASA Suomi weather satellite image of
twin hurricanes Madeline and Lester over Hawaii. Here, ν = 0.01, Umax = 85, RE =
8500, supΩ{|ω(x, y, 0)|} = 1.14× 105, T = 2.0× 10−3. Using data shown in middle column, stabi-
lized explicit scheme seeks to reconstruct initial data shown in leftmost column. Actually recovered
data, shown in rightmost column, are documented in Table 4.
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TABLE 1
USAF Chart image at RE=11500

L2(Ω)-norm behavior in backward recovery from data at T = 1× 10−3

Variable L2 norm at 0 L2 norm at T Recovered at 0 L2 rel err at 0
u = ψy 23.6 14.6 23.6 11.9 %
v = −ψx 21.2 14.0 21.2 13.1 %
ω = −∆ψ 15882 4009 15774 13.9%

TABLE 2
Elizabeth Taylor image at RE=10300

L2(Ω)-norm behavior in backward recovery from data at T = 2× 10−3

Variable L2 norm at 0 L2 norm at T Recovered at 0 L2 rel err at 0
u = ψy 9.6 5.3 9.5 3.3 %
v = −ψx 9.5 5.3 9.4 3.3 %
ω = −∆ψ 7806 895 7694 4.7 %

TABLE 3
Kármán Vortex Street image at RE=9800

L2(Ω)-norm behavior in backward recovery from data at T = 2× 10−3

Variable L2 norm at 0 L2 norm at T Recovered at 0 L2 rel err at 0
u = ψy 10.6 5.2 10.5 4.4 %
v = −ψx 11.5 5.5 11.4 4.3 %
ω = −∆ψ 10668 1005 10522 5.8 %

TABLE 4
Twin Hurricanes image at RE=8500

L2(Ω)-norm behavior in backward recovery from data at T = 2× 10−3

Variable L2 norm at 0 L2 norm at T Recovered at 0 L2 rel err at 0
u = ψy 12.3 4.7 12.1 3.7 %
v = −ψx 12.7 4.8 12.6 3.6 %
ω = −∆ψ 14301 965 14093 3.9 %
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