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Abstract

While ubiquitous, energy redistribution remains
a poorly understood facet of the nonequilibrium
thermodynamics of biomolecules. At the molec-
ular level, finite–size e↵ects, pronounced nonlin-
earities, and ballistic processes produce behavior
that diverges from the macroscale. Here, we show
that transient thermal transport reflects macro-
molecular energy landscape architecture through
the topological characteristics of molecular con-
tacts and the nonlinear processes that mediate
dynamics. While the former determines trans-
port pathways via pairwise interactions, the lat-
ter reflects frustration within the landscape for lo-
cal conformational rearrangements. Unlike trans-
port through small–molecule systems, such as
alkanes, nonlinearity dominates over coherent
processes at even quite short time– and length–
scales. Our exhaustive all–atom simulations and
novel local–in–time and space analysis, applica-
ble to both theory and experiment, permit dis-
section of energy migration in biomolecules. The
approach demonstrates that vibrational energy
transport can probe otherwise inaccessible as-
pects of macromolecular dynamics and interac-
tions that underly biological function.

Introduction

Biological systems are characterized by a persistent
nonequilibrium state, maintained by the open metabolic
reactions that drive self–replication. Directed redistribu-
tion of energy is an intrinsic feature, serving to generate
mechanical motion [1, 2], mediate allosteric communi-
cation [3–5], and drive bioenergetic processes [6–8]. The
physical scales of these processes can be surprising: Com-
mon enzymatic reactions liberate up to 2 eV of heat re-
peatedly over micro– to milli–second catalytic cycles [8].
This energy is redistributed throughout the surround-
ing protein sca↵old within picoseconds and is either dis-
sipated to mitigate thermally–induced stress, leveraged
to induce mechanical motion, or employed to promote
further catalytic activity. Irrespective of the endpoint,
e�cient and directed energy transport is critical to the
function of these nanoscale machines.

At the macroscale, Fourier’s law, J = �rT and
its time–dependent version capture di↵usive heat flow,

given by the flux J , in response to a temperature gradi-
ent rT . Those two quantities are related by the ther-
mal conductivity  (or the di↵usivity D), which can be
anisotropic. This situation is more complicated at the
nanoscale, where competing ballistic and di↵usive trans-
port pathways impede a universal description [9, 10]. In
this context, ballistic wavepackets propagate at the speed
of sound in a given vibrational band, up the vibrational
mean free path, even without the local thermal gradients
required for di↵usive transport.

Despite the ubiquity of energy distribution and flow
in biomolecular systems, experiments are di�cult [6, 12–
16]. In a pioneering work, Botan et al. [13] developed
an approach to monitor real–time heat migration in a
polypeptide of 2–aminoisobutyric acid (Aib). The ap-
proach employs a photoexcitable azobenzene tag as a
heater and backbone carbonyl modes as local vibrational
thermometers. The results are complex, suggesting a ‘dy-
namical transition’ temperature above which transport is
enhanced [17–20]. Quantum and nonequilibrium molecu-
lar dynamics (NEMD) simulations support the presence
of a transition in transport properties, and also suggest
that a classical description is realistic [21–24] (unlike for
small molecules [25–29]). However, both the nature of the
transition and mechanism of transport remain unclear,
with theory giving conflicting accounts [13, 17, 21, 22, 30].

In this work, we utilize molecular dynamics simula-
tions and a new space– and time–local analysis method
to explore energy propagation in a paradigmatic polypep-
tide. We find that Fourier behavior captures the bulk of
transient energy flow, provided that one accounts for the
fact that fluxes and di↵usivities are temperature depen-
dent. Departures from a simple realization of Fourier’s
law happen at large temperature gradients, beyond about
15 K/residue, even though transport is still di↵usive. The
identification of these regimes is not possible through all-
atom molecular dynamics alone [21–24, 31–33] or normal-
mode analysis (even when treating anharmonicity as a
correction) [34–40]. The former does not unravel the
atomic–scale mechanisms of transport and the latter re-
flects dynamics only at potential energy minima [37].
Within this context, we further demonstrate how the
graph–theoretic topology of molecular contacts can de-
fine directed pathways for molecular energy redistribu-
tion.
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FIG. 1. Free energy landscapes, topology, and energy transport. (a) Conformational clusters within the Aib10 free
energy landscape at the solvent bath temperature TB = 230.0 K. The size of a data point reflects the relative population
of a k–means structural cluster at 2.6 nm root–mean–square deviation (RMSD) cuto↵. States for a right–handed helix are
colored from blue (more chiral) to green (less chiral), while those of a left–handed helix are uniformly grey. Helicity parameters
and ensemble determinations follow Ref. [11]; (b) Major conformers in the Aib10 structural ensemble. The C–terminal heater
residue is denoted by a red asterisk (*), and hydrogen bonds are colored green; (c) Thermal transport profile from NEMD
simulations, characterized as a per–residue kinetic temperature elevation �TB,j(t) = hTj(t)i � TB with respect to the solvent
bath. The dashed, white line demarcates the ballistic front; (d) Di↵erential heat transport between a full structural ensemble
and those (�T�

B,j) containing only � = helical, hairpin, or unstructured populations. Upper and lower temperature elevation
(e.g., �TB,j) bounds are a cuto↵ for all values lying above or below the bound, respectively.

Results

Topology and energy propagation pathways. We
initiate our investigations using a series of replica–
exchange molecular dynamics (REMD) simulations, as
the lack of symmetries, granularity, and high-dimensional
free energy landscapes of biomolecules necessitate an
exhaustive exploration of conformational space [41–43].

Our simulation system is a ten–residue Aib he-
lix (Aib10) solvated by chloroform, similar to exper-
imental e↵orts [13, 17–20]. We previously generated
temperature–dependent free energy landscapes for Aib10
at high resolution with replica–exchange simulations [11].
From the resulting conformational ensemble, we extract
4000 conformers for each environmental (bath) temper-
ature TB according to a Boltzmann distribution. This
includes structures from both left– and right–handed
folding funnels, ensuring a uniform distribution of con-
figurations (Fig. 1a,b). We initiate NEMD simulations
in a manner that mimics photoexcitation, distributing
⇡ 1.6 eV of energy between designated vibrational de-
grees of freedom in each conformer. This is achieved by
thermostatting the C–terminal residue to a temperature
T 0 = TB + �T , with �T = 670 K, while holding the
remainder of the system at TB. The simultaneous heat-
ing of all vibrational degrees of freedom in the heater
residue is well–founded, as it yields thermal transport
profiles that are indistinguishable from mode–selective
heating [13, 21]. This excess energy then propagates

freely within the microcanonical ensemble (i.e., without
thermostatting).

The conformational ensemble of Aib10 comprises three
general structural motifs (Fig. 1b) corresponding to (i)
310–/↵–helical conformers (⇡ 45 % of ensemble) with
hydrogen bonding between residue j and residue j + 3
or j + 4, respectively; (ii) hairpin–like configurations,
with hydrogen bonds between the first and last residues
of Aib10 (⇡ 15%); and (iii) unstructured or extended
conformers that have no consistent hydrogen bonding
(⇡ 40%) [11]. We index these subensembles with �. This
partition is defined by the underlying free energy land-
scape, and is thus independent of our thermal transport
simulations [11].

In Fig. 1c,d, we present transport profiles for Aib10
versus the ensemble–averaged temperature elevation
�TB,j(t) = hTj(t)i � TB of the jth residue, or �T�

B,j �
�TB,j for subensemble �. The full-ensemble profile ex-
hibits a weak thermal front that traverses the peptide
within 2 ps, which is also apparent in the helical ensemble
(Fig. 1d). This corresponds to backbone propagation at
v = 1.7 nm ps�1, approaching ballistic transport veloc-
ities in biomolecular materials and alkyl chains [13, 26–
28, 44]. While this channel is weak, additional ballistic
pathways may exist at lower group velocities in di↵erent
vibrational bands [44, 45], though these will inevitably be
obscured by more prominent di↵usive features. There is
also rapid transport with both ballistic and di↵usive char-
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FIG. 2. Benchmarks for thermal transport. (a) Heat
di↵usivity D along the major axis of helical Aib10 at increas-
ing bath temperatures TB. Di↵usivities are derived from the
time tmax to reach the maximal temperature at each residue
following a model tmax = d2/D, where d is the distance from
the heater site. Colored regions denote low– (blue) and high–
temperature (red) regimes (error bars are plus/minus one
standard error). (b) Net heat Q(t) transferred from residue
two to three versus simulation time and bath temperature, fol-
lowing the scheme of Equation (1). Error bands for the max-
imal cumulative integration error, as well as net heat transfer
between other residues, are in Supplementary Figures 1–9.

acteristics across hydrogen-bonded regions, which can be
seen in the helical and hairpin conformers (see discussion
below).

While a ballistic pathway exists, the majority of energy
transport is nonetheless di↵usive — yielding a broad pro-
file that is sensitive to both temperature and molecular
conformation. We separate di↵usive and ballistic behav-
ior by coarse–graining in time (into 100 fs bins), averag-
ing away signatures of very fast dynamics, but retain spa-
tial coarse–graining into individual amino acid residues.
We will develop time–dependent quantitative methods
to extract di↵usivities, free energies, and other charac-
teristics from temperature–based data. However, to fa-
cilitate comparison with prior theory and experiment,
we initially calculate di↵usivities via the time to reach
the maximal temperature for each residue. Considering
just the helical subensemble for fitting, the temperature-
dependent thermal di↵usivity D(TB) has distinct low–
and high–temperature regimes (Fig. 2a), which are also
reflected in the net heat transfer (Fig. 2b). This qual-
itative behavior agrees with experimental [13, 18, 20]
and theoretical [13, 21, 22] e↵orts. These, though, re-
port di↵usivities of 0.02 nm2 ps�1 and 0.1 nm2 ps�1,
respectively. Theoretical D(TB) from this type of esti-
mate consistently exceed experimental values for Aib10
but are comparable to bulk materials [28] and other pro-
teins [40]. Force-field parameterization likely contributes
to this discrepancy in part. We will see, through an al-
ternate analysis, that residual ballistic components also
play a role. The crossover near 270 K is consistent with
prior e↵orts, which ascribe this behavior to a glass–like
dynamical transition [13, 18, 20, 21]. We will return to
this point.

Given this diverse ensemble, it is natural to ask how

transport behaves in di↵erent conformers. This ques-
tion was not addressed by prior computational e↵orts,
as they remained below the timescale for structural in-
terconversion in forming their ensemble, sampling only
helical configurations and thus a fixed secondary con-
nectivity [13, 21]. Figure 1d shows the transport profile
of the full Aib10 ensemble compared to ensembles that
contain only helical motifs, hairpin motifs, or randomly
oriented conformers without fixed secondary structure.
On a residue–by-residue basis, helical conformers prop-
agate heat more readily than the full ensemble. This is
evidenced by less energy retention at the heater site for
t  25 ps, commensurate with enhanced transfer to its
hydrogen–bonded contacts at early times (mostly site 4
for the helix). The randomly oriented conformers trans-
port heat less e�ciently, underscored by enhanced energy
localization at the first three residues for short times and,
later, a rate of energy migration that lies slightly be-
low the full ensemble. We expect a dominant backbone
contribution in this case, as longer range contacts are
sporadic. Hairpin configurations are intermediate with
enhanced transport to certain hydrogen bond contacts
(site 10), in turn reducing the amount of heat transport
through others (to the fourth site). It should be noted
that, while hydrogen bonding can lead to more e�cient
heat transport for certain conformers, backbone channels
always carry the majority of heat. Changes in energy mi-
gration are not due to local solvent heating, as the mean
temperature of the first two solvation shells increases by
at most 5 K over the entire simulation. While the overall
cooling rate involves an interplay between heat di↵usiv-
ity and surface area–dependent solvent coupling, these
e↵ects are minor for the systems considered herein (see
the Supplementary Discussion).
These observations indicate that topologically non-

trivial configurations yield e�cient pathways for vibra-
tional energy migration. The importance of secondary
and tertiary contacts has been previously invoked when
describing transport within a single conformer of HP36
[33, 40]. We extend this observation, demonstrating that
representative heat transport characteristics can be ob-
tained only when the conformational landscape is com-
prehensively sampled. This is particularly important for
metrologies, where insu�cient sampling can lead to erro-
neous di↵usivities and the misidentification of transport
pathways. Moreover, changing conditions (temperature,
pH, presence of denaturants, etc.) can shift the conforma-
tional ensemble, particularly near structural transitions.
This will be detected by the energy transport, including
the capture of additional information about underlying
interactions [46–48].
Heat fluxes and energy landscape topography.

While molecular connectivity clearly determines trans-
port pathways, NEMD simulations and existing anal-
ysis frameworks a↵ord no immediate means to recon-
cile temperature–dependent features with microscopic
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processes and the underlying free energy landscape.
To directly address this, we analyze the intermediate–
timescale dynamics of NEMD trajectories – restricting
to helical Aib10 conformers for both structural hetero-
geneity and consistency with prior work – using a master
equation for the kinetic energy Ej of the jth residue in
the peptide:

Ėj(t) =
X

i

[kij(t)Ei(t)� kji(t)Ej(t)]

� ks,j(t)[Es,j(t)� Ej(t)]. (1)

In this case, kij(t) is a rate constant for energy transfer
from residue i to residue j and kji(t) is a distinct rate
for the reverse process (see Methods), ks,j(t) is the rate
of heat transfer to the solvent bath, and Es,j(t) is the
kinetic energy density of the solvent surrounding the jth

residue (scaled to match the residue degrees of freedom).
We diverge from earlier work by treating the kij(t) as
parameters that depend on both position and time —
thereby implying a temperature dependence. This ac-
commodation is key to our subsequent analysis. Given
this arrangement, one can identify two distinct intra–
peptide couplings: (i) direct transfer between nearest–
neighbors in the peptide backbone (kj,j+1 and kj,j�1) and
(ii) a long distance coupling between hydrogen bonding
partners (kj,j+3, kj,j+4 for ideal 310– and ↵–helices, re-
spectively). With additional approximations, the system
in Equation (1) becomes well–posed and solvable at all
times (see Methods). This diverges from existing master
equation analyses which assume rate constants that are
time– and space–independent, and thus independent of
the local temperatures and gradients [33]. These prior
works nonetheless treat a broad network of nonlocal con-
tacts, which combined with the analysis here would con-
stitute a logical extension of our methods.

Our remaining discussion is driven by the pairwise
heat fluxes Ji,j(tn) = �ki,j(tn)[Ei(tn) � (fj/fi)Ej(tn)]
and rate constants between coupled residues. Here fj
is the number of degrees of freedom for residue j and
tn indexes the time domain coarse–graining of the sim-
ulation trajectory into n  N bins via block averag-
ing. This approach is a finite di↵erence decomposition
of the di↵usion equation Ė(x, t) = Dr2E(x, t) at the
timescale �t = tn+1 � tn and a length-scale �x de-
fined by the distance between adjacent residues. The
fluxes come from the finite di↵erence decomposition of
J(x, t) = �DrE(x, t).

The rate constants ki,j(tn) = D(tn)/(�x)2, in partic-
ular, capture biomolecular heat di↵usivity D(tn) while
giving a metric for energy landscape features. We
are interested in the distribution of barriers between
low–lying conformational minima, specifically those con-
nected by the energy–transmitting structural displace-
ments that are associated with vibrational energy prop-
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FIG. 3. Flux and thermal gradient distributions. (a)
Backbone flux distributions (JBB) for helical Aib10 conform-
ers. Fluxes are parameterized by the e↵ective temperature
gradient�ijTe↵ between adjacent residues, and a positive flux
corresponds to flow away from the heater along the backbone.
Transport regimes are labeled parallel to the text (A through
D) and with orange lines for visibility. (b) The JBB distribu-
tion may be partitioned into low–temperature (blue; 230 K to
270 K) and high–temperature (red; 290 K to 330 K) regimes.
(c) Distribution of local temperature gradients �ijTe↵ versus
average elevation �TB,j(t) = hTj(t)i � TB over the bath tem-
perature and (d) versus simulation time t for the ensemble
of MD trajectories. Labels (A–D) correspond to the regimes
described in the text. Time series data from MD simulation
is averaged with �t = 100 fs for fits to the master equation,
Equation (1), and the resulting fluxes are block averaged in
1.0 K bins. The error bars are plus/minus one standard error.

agation. This latter property is reflected by the local,
activated conformational changes underlying transport
ki,j = ⌦i,j exp[��Gi,j/kBT ], where �Gi,j is the free
energy barrier between heat–accepting microstates and
(⌦i,j)�1 is an e↵ective timescale for free di↵usion, in-
fluenced by both the protein and its environmental cou-
pling. While each pair of microstates is characterized by
a distinct �Gi,j , these values evolve during heat trans-
port — commensurate with changes in the free energy
landscape.

We employ this kinetic approach with an intermedi-
ate timescale (�t = 100 fs), long enough to average over
most coherent motion but short enough not to obscure
the evolution of energy in time. The distribution of back-
bone fluxes JBB is parameterized by an e↵ective tempera-
ture gradient �ijTe↵ = 2[Ei � (fj/fi)Ej ]/3NkB between
residues i and j, where the flux is incident on a residue
containing N atoms. While transport is explicitly quan-
tified through JBB for simplicity, the e↵ect of hydrogen
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bonding is present when fitting the backbone flux distri-
bution at hydrogen bonding sites. The results for JBB

are presented in Fig. 3a. A complimentary analysis for
JHB and a validation of fitting methods are presented in
Supplementary Figures 10–15.

Region A. The forward flux JBB has a linear re-
gion for small �ijTe↵ (less than about 15 K), although
it does not go to zero at �ijTe↵ = 0. Purely di↵u-
sive transport will not a↵ord a heat flux in the absence
of a local temperature gradient. Thus, a finite JBB at
�ijTe↵ = 0 is a signature of ballistic/coherent behav-
ior. Supporting this interpretation, we find that the
zero–gradient flux to decrease with increasing �t during
coarse–graining, while only exhibiting small error bands
at all scales (thus it is not due to short–timescale fluc-
tuations). A linear fit to this regime gives an e↵ective
di↵usivity of De↵,A = 2.3 ⇥ 10�2 nm2 ps�1 (or conduc-
tivity e↵,A = 3.9⇥10�3 eV K�1 ps�1). Fitting for small
�ijTe↵, while ignoring the residual ballistic contribution
right around �ijTe↵ = 0, removes high rate constant
artifacts. Encouragingly, the magnitude of the resulting
di↵usivity is consistent with experimental values [13, 17].
Employing the time to reach the maximum temperature,
as done in prior theoretical work (see discussion above),
a↵ords much higher di↵usivities. This linear regime has
the same slope regardless of whether the lattice is in the
low– or high–temperature regime (Fig. 3b).

The lack of a dependence on temperature indicates
that this regime of transport occurs in a lightly corru-
gated landscape — that is, with low–lying barriers sep-
arating the minima associated with thermal transport.
In this case, the characteristic barrier scale is below 15
meV, and thus the mean energy at the lowest background
temperature (TB = 230 K) is above the landscape corru-
gation. Lower temperature observations are necessary to
identify the precise scale, requiring an accurate treatment
of quantum e↵ects and di↵erent experimental protocols.
Stated more succinctly, the equality of the low– and high–
temperature di↵usivity indicates that the characteristic
time ⌦�1 is the same and no free energy barrier exists at
this level of landscape hierarchy.

Region B. As �ijTe↵ goes above 15 K, the flux de-
creases with the increasing temperature gradient. This
suggests the appearance of a vibrational mismatch be-
tween adjacent residues due to nonlinearity. That is,
adjacent residues separated by a su�ciently large tem-
perature gradient will see di↵erent tiers of the energy
landscape hierarchy and thus access di↵erent vibrational
mode structures. As a consequence, the molecular con-
formation is pushed into an activated region of the free
energy landscape where the energy barrier is larger than
the available kinetic energy and increases with �ijTe↵.
Moreover, the average temperature elevation does not
substantially change for �ijTe↵ in region B where the
flux dips (Fig. 3c). Thus, barrier crossing is not aided
by energy remaining from the initial deposition. This is
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FIG. 4. Transport barriers and kinetic parameters. (a)
E↵ective free energy barriers �F corresponding to di↵erent
regions of the JBB flux profile. Region A has nearly no bar-
rier, but as the gradient becomes large, a barrier starts to
form and increases in region B. In C, this barrier decreases
until in D it is zero to within statistical errors (albeit, the un-
certainty is large in this last region due to the limited number
of samples for large temperature gradients, which occur only
at short times). (b) Backbone rate distributions (kBB) for he-
lical Aib10 conformers. Rate constants are parameterized by
the temperature gradient �ijTe↵ between adjacent residues
and (c) partitioned into low–temperature (blue; 230 K to 270
K) and high–temperature (red; 290 K to 330 K) regimes. The
error bars are plus/minus one standard error.

further supported by the separation of low– and high–
temperature curves, indicating that transport increases
with temperature — a signature of a free energy bar-
rier. The characteristic barriers can be estimated from
the ratio of high– and low–temperature fluxes (or rates),
JH/JL ⇡ 1.2 ⇡ exp(��F/kBTH+�F/kBTL), giving val-
ues of �F that span from 28 meV to 167 meV when
we use the average temperature in each regime (i.e.,
TL = 250 K and TH = 310 K). These e↵ective barriers
are precisely the energy scale leading to conformational
changes that restore e�cacious vibrational coupling.

Region C. As �ijTe↵ increases beyond 30 K, there
is a substantial increase in flux for both low– and high–
temperature structures. In this case, a large �ijTe↵ im-
plies a larger average temperature elevation for a given
residue pair (Fig. 3c), as large gradients are primarily
found at early times (and near the heater site) when
a substantial fraction of initially deposited energy is
present (Fig. 3d). If we assume ⌦ remains the same,
the temperature elevation �TB,j is enough to once again
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put transport in a stable regime of the landscape at
this level of hierarchy, with a typical barrier energy of
67 meV. This yields an approximately linear region for
JBB with a di↵usivity De↵,C = 1.9 ⇥ 10�2 nm2 ps�1

(e↵,C = 3.2⇥ 10�3 eV K�1 ps�1).
Region D. Increasing �ijTe↵ even further, beyond

50 K, leads to a transport region with a larger di↵u-
sivity De↵,D = 8.0 ⇥ 10�2 nm2 ps�1 (e↵,D = 1.3 ⇥
10�2 eV K�1 ps�1), corresponding to over–the–barrier
di↵usion. In this case, a new level of the energy land-
scape hierarchy becomes accessible, which would other-
wise require strong activation at lower energies.

Figure 4a shows the e↵ective free energy barriers in the
di↵erent regimes, which are also reflected in the backbone
rate constants (Fig. 4b,c). The kBB initially decrease
with �ijTe↵ (from 0 K to 4 K) due to a diminishing resid-
ual ballistic component when averaging at �t = 100 fs.
Overestimation of this signature (e.g., through an im-
proper coarse–graining scale), can lead to the discrepan-
cies with experiment found in earlier theoretical analyses
[13, 21]. This is followed by a plateau in kBB at about
1.5 ps�1 between 4 K to 15 K, followed by a drop as the
landscape is pushed into a new, barrier–dominated re-
gion. After this, though, the larger �ijTe↵ correspond to
a larger temperature elevation, bringing the events above
the features in the energy landscape and raising kBB fur-
ther. Our methods extract the dependence on the local
temperature gradients and, by spatiotemporal correla-
tion, the temperature elevation. Beyond �ijTe↵ = 77 K,
the rate constants and fluxes decline sharply, reflecting
very early dynamics where strong dynamical localization
processes dominate. These barriers collectively define the
energy scales, and thus the rate of di↵usion in conforma-
tional space [49], that is associated with the mechanical
dynamics of heat propagation at di↵erent temperatures.

Discussion

While our NEMD simulations support that a transi-
tion [13, 18, 20, 21] in di↵usivity is present, they do not
support that the transition happens solely due to the ex-
istence of energy barriers, as stated in Ref. [13, 17, 22],
or glassy dynamics (which is certainly the case but does
not pinpoint the particular processes that occur here).
Rather, the transition is due to the development of re-
gion C physics: Energy flow, which largely happens from
0 to 10 ps, is in the presence of large �ijTe↵ (see initial
time, high gradient line in Fig. 3d) on top of equilibrium
fluctuations (�ijTe↵ ⇡ ±10 K). We interpret this to indi-
cate that large gradients give a vibrational mismatch via
nonlinear energy localization, introducing a barrier to en-
ergy transport. In this context, localization would then
mediate the transition into a higher di↵usivity regime
— thereby suggesting an origin of the sharpness of the
transition. The increase of the base temperature reduces
the vibrational mismatch by pushing the dynamics onto
a di↵erent level of the landscape hierarchy. Simultane-

ous Arrhenius activation and barrier reduction conspire
to give a sharp transition. More extensive simulations
are necessary to make this precise.

These findings demonstrate that energy transport gives
quantitative information regarding the biomolecular free
energy landscape, its nonlinearity, and overall connectiv-
ity. Going beyond what we present here, the experimen-
tal analogues of our simulations o↵er potential probes of
structural transitions, where a temperature–dependent
change in the transport profile is a manifestation of the
graph–theoretic topology associated with molecular con-
tacts and nonlinear interactions of the dominant con-
former(s). In other words, thermal transport can be em-
ployed to devise ‘tomographies’ that provide a comple-
mentary mapping of biomolecular structure, conforma-
tional dynamics, and folding pathways. While dominated
by local contacts and secondary structure within the sim-
ple Aib10 peptide, we expect higher aspects of fold (ter-
tiary, quaternary) to define these dynamics in increas-
ingly complex biomolecules. Furthermore, such probes
might excel for highly fluctuating systems such as intrin-
sically disordered proteins (IDPs), where e�cacious ther-
mal transport may still persist (addressed in the Supple-
mentary Discussion), or as a means to dissect local shifts
in vibrational mode structure during molecular signal-
ing or allostery. These dynamics have been impervious
to other spectroscopies. Our approach provides the con-
ceptual foundations and analysis tools that are directly
applicable to experimental data, permitting the imme-
diate interpretation of measurements that leverage local
vibrational thermometry. In addition to the functional
implications, the approach will also enable the develop-
ment of a better understanding of what interactions look
like at the atomic scale, and therefore better force-fields,
and facilitate the design of nanodevices with directed,
environmentally responsive heat transport mechanisms.

Methods

Molecular dynamics simulations. Our simula-
tions consist of a modified Aib10 peptide (AcOHN-
Aib10-COOCH3), embedded in a box of 922 chloroform
molecules. Equilibration and ensemble generation are de-
scribed in Ref. [11]. Prior to NEMD runs, structures are
further equilibrated for 100 ps at each base (TB) temper-
ature (NPT; time step �t = 1.0 fs) followed by a 50 ps
run with shorter time step (NPT; �t = 0.1 fs). Using the
final configurations, NEMD (NVT; �t = 0.1 fs) is initi-
ated by heating the first residue of Aib10 to TB + �T
(�T = 670 K) for 1 ps, while holding the remaining
atoms at TB. Thermostatting is then disabled and heat
propagation monitored in the microcanonical ensemble.
Similar thermostatting protocols have been established
as surrogates for explicit photoexcitation [21, 33]. NVT
simulations employ a velocity Verlet integrator and mod-
ified Nosé–Hoover thermostat (damping = 100 fs), while
NPT runs add a Martyna–Tobias–Klein barostat (damp-



7

ing = 1000 fs, eight member chain) [50–52]. Isotropic cell
fluctuations are allowed for NPT runs and initial veloc-
ities are assigned according to a Gaussian distribution.
Simulations employ CHARMM36 force field parameters
[53, 54], CHARMM pair potentials (without CMAP pa-
rameters, as rationalized in Ref. [11]), transferrable pa-
rameters for CHCl3 [55], PPPM electrostatics (force cut-
o↵ 6.95 ⇥ 10�3 pN; pair coupling rescaled at 1.0 nm,
terminated at 1.35 nm) and the LAMMPS codebase [56].
We have adopted a thermostat timescale that is faster
than backbone amide relaxation and azobenzene isomer-
ization in order to preserve transport–relevant dynam-
ics. While a slight overpopulation of long–range modes
remains possible, it would only serve to underestimate
the impact of nonlinear localization while overestimat-
ing ballistic signatures — thus leaving our conclusions
una↵ected.

Kinetic fitting. While physically descriptive, the
master equation, Equation (1), is underdetermined
when fitting the simulated transport profiles Ej(t) =
3/2NjkBhT (t)i for the Nj atoms of the jth residue. As
a simplifying approximation, we relate forward and re-
verse rate constants kij = (fi/fj)kji through the degrees
of freedom of each residue fj , as required for detailed
balance to hold at equilibrium. We also restrict analysis
to structurally homogeneous (helical) conformers, where
the rate constants for hydrogen bond energy transfer
kj,j+3 ⇡ kj,j+4 ⇡ kHB and solvent coupling ks,j ⇡ Rj ks
as are uniform quantities (up to a fixed geometric factor
Rj for the surface area of terminal residues). Under these
conditions, we may fit the time dependence of the sol-
vent ks ! ks(t) and peptide rate constants, kij ! kij(t)
and kHB ! kHB(t), to account for the local temperature
(which changes in time). This is in contrast to prior ef-
forts that assume a uniform and time–independent back-
bone rate constant kj,j+1 = kBB [33].

Rate constants kj = (k1,2, . . . , kN�1,N , kH) at the nth

simulation time step are estimated for the linear system
of Equation (1) though a constrained optimization

k(tn) = min
k�0

1

2
||G(tn) · k� d(tn)||2 (2)

where dj(tn) = [Ej(tn)�Ej(tn�1)]+ ks(tn)[Ej(tn)�Es]
captures energy redistribution among residues of the
peptide. The matrix G(t) is similarly defined so that
Gi,j(t) = �Gi+1,j(t) = �[Ei(t) � Ej(t)] accommodates
backbone energy transport and Gi,N (t) =

P
`[Ei � E`]

describes its hydrogen bonding counterpart to the ith

residue. The solvent coupling rate ks(tn) =
P

j [Ej(tn)�
Ej(tn�1)]/[Ej(tn) � Es(tn)] is then given by the energy
exchanged between the peptide and the solvent at each
time step (the solvent bath energy Es(tn) = 3NjkBTB/2
is treated a constant).

Data availability

The authors declare that all data supporting the find-

ings in this manuscript are available within the paper and
its supplementary information.
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I. SUPPLEMENTARY FIGURES

Net Heat Transfer: Residue 1 to Residue 2

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 1. Cumulative Heat Transfer Between Residues 1 and 2. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 1 and j = 2 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J1,2(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

Transfers exceed the 1.6 eV of heat added to the first residue due to residual error from short timescale

transients. This behavior may be mitigated by coarse graining the trajectory over larger temporal windows,

at the cost of weaker statistics. The bath temperature for each trace (�TB) is indicated in the upper left

hand side of the plot. The error bands are plus/minus one standard error.
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Net Heat Transfer: Residue 2 to Residue 3

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 2. Cumulative Heat Transfer Between Residues 2 and 3. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 2 and j = 3 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J2,3(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

The bath temperature for each trace (�TB) is indicated in the upper left hand side of the plot. The error

bands are plus/minus one standard error.
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Net Heat Transfer: Residue 3 to Residue 4

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 3. Cumulative Heat Transfer Between Residues 3 and 4. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 3 and j = 4 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J3,4(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

The bath temperature for each trace (�TB) is indicated in the upper left hand side of the plot. The error

bands are plus/minus one standard error.
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Net Heat Transfer: Residue 4 to Residue 5

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 4. Cumulative Heat Transfer Between Residues 4 and 5. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 4 and j = 5 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J4,5(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

The bath temperature for each trace (�TB) is indicated in the upper left hand side of the plot. The error

bands are plus/minus one standard error.
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Net Heat Transfer: Residue 5 to Residue 6

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 5. Cumulative Heat Transfer Between Residues 5 and 6. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 5 and j = 6 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J5,6(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

The bath temperature for each trace (�TB) is indicated in the upper left hand side of the plot. The error

bands are plus/minus one standard error.
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Net Heat Transfer: Residue 6 to Residue 7

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 6. Cumulative Heat Transfer Between Residues 6 and 7. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 6 and j = 7 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J6,7(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

The bath temperature for each trace (�TB) is indicated in the upper left hand side of the plot. The error

bands are plus/minus one standard error.
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Net Heat Transfer: Residue 7 to Residue 8

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 7. Cumulative Heat Transfer Between Residues 7 and 8. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 7 and j = 8 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J7,8(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

The bath temperature for each trace (�TB) is indicated in the upper left hand side of the plot. The error

bands are plus/minus one standard error.
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Net Heat Transfer: Residue 8 to Residue 9

290.0 K 310.0 K 330.0 K

230.0 K 250.0 K 270.0 K

Supplementary Figure 8. Cumulative Heat Transfer Between Residues 8 and 9. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 8 and j = 9 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J8,9(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

The bath temperature for each trace (�TB) is indicated in the upper left hand side of the plot. The error

bands are plus/minus one standard error.
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290.0 K

Net Heat Transfer: Residue 9 to Residue 10
230.0 K 270.0 K250.0 K

310.0 K 330.0 K

Supplementary Figure 9. Cumulative Heat Transfer Between Residues 9 and 10. Energy transfer

is quantified by integrating the heat flux [JBB]i,j between the i = 9 and j = 10 residues up to time t in the

MD simulation trajectory: Q(t) =
R t
0

J9,10(t0) dt0. Fluxes are obtained using the master equation analysis

described in the parent manuscript, with time series data coarse grained at �t = 100 fs prior to analysis.

There is a small negative Q(t). This is within the error, but may be due to the high flexibility of residue 10

leading to intermittent contact with the remainder of the peptide even with in the helical structure. This

could give a thermal transport pathway from residue 10 to 9, or some residual e↵ect from the solvent. The

error bands are plus/minus one standard error.
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kBB = 1.0 x 104 ps-1

kBB

kBB
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Supplementary Figure 10. Rate constant distribution. Probability density distribution p(kBB) for

backbone rate constants kBB, as obtained using the master equation–based fitting method (Equation 1

of the parent manuscript). Physically extremal values, defined as rates that exceed 6.2 ⇥ 103 ps�1, have a

statistical weight of less than 1.0⇥10�4, attesting to the robustness of the fitting algorithm. The distribution

is presented as an aggregate for helical conformers at all temperatures, with simulation time series data coarse

grained over �t = 100 fs intervals prior to analysis.
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Supplementary Figure 11. Reconstructed thermal transport profiles. To demonstrate robust-

ness of our master equation reconstruction (Equation 1 of the manuscript), molecular dynamics simulation

profiles �TB,sim are propagated forward by one analysis timestep (�t = 100 fs) using the backbone rate

constants kBB fit at that step. In doing so, we generate a temperature elevation profile �TB,fit for fit data.

The deviation between fit and simulation data ��TB = �TB,fit � �TB,sim a↵ords a metric for quality of

reconstruction, exhibiting variations that are generally below ±10.0 K (Supplementary Figure 12). Data

are presented for simulations at TB = 230.0 K, with MD simulation data coarse grained over �t = 100 fs

intervals prior to analysis.



13

TB  = 230.0 K
N

(�
�

T
B


T

c
u
t
)/

N
t
o
t

<latexit sha1_base64="XGU0BjqDYTjaR3GGmjw6aTrHvhA=">AAACJnicbVDLSgMxFM34rPVVdekmWATd1BkVdCMUdeGqVOhD6JSSSW81mHmY3BHLMF/jxl9x46Ii4s5PMW0H0eqBkHPPuZfkHi+SQqNtf1hT0zOzc/O5hfzi0vLKamFtvaHDWHGo81CG6spjGqQIoI4CJVxFCpjvSWh6t2dDv3kPSoswqGE/grbPrgPRE5yhkTqFkwrdcc9BIqPZVeu4CA+YnKbUlXD3XfMY0126RytZjSGmnULRLtkj0L/EyUiRZKh2CgO3G/LYhwC5ZFq3HDvCdsIUCi4hzbuxhojxW3YNLUMD5oNuJ6M1U7ptlC7thcqcAOlI/TmRMF/rvu+ZTp/hjZ70huJ/XivG3nE7EUEUIwR8/FAvlhRDOsyMdoUCjrJvCONKmL9SfsMU42iSzZsQnMmV/5LGfsk5KO1fHhbLdhZHjmySLbJDHHJEyuSCVEmdcPJInsmAvFpP1ov1Zr2PW6esbGaD/IL1+QVYyqUa</latexit>

Tcut (K)
<latexit sha1_base64="iR4o8nfhJlGZugV0swCRtKEOXNQ=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahgpSkCrosuBHcVOgLmhAm00k7dPJg5kYsoeDGX3HjQhG3/oQ7/8Zpm4VWD1w4c869zL3HTwRXYFlfRmFpeWV1rbhe2tjc2t4xd/faKk4lZS0ai1h2faKY4BFrAQfBuolkJPQF6/ijq6nfuWNS8ThqwjhhbkgGEQ84JaAlzzxoeg6we8hoChPsnOLK/HkzOfHMslW1ZsB/iZ2TMsrR8MxPpx/TNGQRUEGU6tlWAm5GJHAq2KTkpIolhI7IgPU0jUjIlJvNbpjgY630cRBLXRHgmfpzIiOhUuPQ150hgaFa9Kbif14vheDSzXiUpMAiOv8oSAWGGE8DwX0uGQUx1oRQyfWumA6JJBR0bCUdgr148l/SrlXts2rt9rxct/I4iugQHaEKstEFqqNr1EAtRNEDekIv6NV4NJ6NN+N93low8pl99AvGxzdELpc2</latexit>

TB = 230.0 K
<latexit sha1_base64="Py5b88P9rmObE3GsWJcylveQoBY=">AAACBXicbVC7SgNBFJ2Nrxhfq5ZaDAbBQsJuImgjBG0Emwh5QTaE2clsMmT2wcxdMSzb2PgrNhaK2PoPdv6Nk2QLTTxw4cw59zL3HjcSXIFlfRu5peWV1bX8emFjc2t7x9zda6owlpQ1aChC2XaJYoIHrAEcBGtHkhHfFazljq4nfuueScXDoA7jiHV9Mgi4xykBLfXMw3rPAfYAyVWKL3G5YpUs53Sm3KY9s6jfU+BFYmekiDLUeuaX0w9p7LMAqCBKdWwrgm5CJHAqWFpwYsUiQkdkwDqaBsRnqptMr0jxsVb62AulrgDwVP09kRBfqbHv6k6fwFDNexPxP68Tg3fRTXgQxcACOvvIiwWGEE8iwX0uGQUx1oRQyfWumA6JJBR0cAUdgj1/8iJplkt2pVS+OytWrSyOPDpAR+gE2egcVdENqqEGougRPaNX9GY8GS/Gu/Exa80Z2cw++gPj8wdQMJcf</latexit>

Supplementary Figure 12. Percentage of trajectory frame deviations by temperature cut-

o↵. The variation between fit rate profiles and raw MD simulation (Supplementary Figure 11) may be

further quantified through the percentage of trajectory propagations N/Ntot with a temperature deviation

��TB = �TB,fit � �TB,sim lying at or below a given cuto↵ ��TB  Tcut (here Ntot is the total number of

propagations). In this case, 95.2 % of propagations exhibit a deviation of less than 5.0 K over 100 fs, while

98.0 % show a deviation of less than 10.0 K over the same time interval. At deviations up to Tcut = 15.0

K, we find that 99.0 % of propagations will lie below the cuto↵. While not employed here, these values can

be used to filter erroneous fits during analysis. In this case, Tcut = 10.0 K would account for pathologies

due to numerical instability while retaining robust counting statistics. Data are presented for simulations

at TB = 230.0, with MD simulation data coarse grained over �t = 100 fs intervals prior to analysis.
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Supplementary Figure 13. Distribution of backbone temperature gradients. The probability den-

sity distribution p(�ijTe↵) for the e↵ective temperature gradient �ijTe↵ between adjacent residues (taken as

positive when i > j) is calculated directly from simulation data. Data are partitioned into low–temperature

(blue; 230 K to 270 K) and high–temperature (red; 290 K to 330 K) regimes. Distributions are calculated us-

ing trajectory frames that have been coarse grained over �t = 100 fs intervals, and are themselves averaged

into 1.0 K bins.
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Supplementary Figure 14. Heat di↵usivities calculated from backbone rate constants. The

e↵ective backbone heat di↵usivity DBB = kBB (�x)2 may be estimated using the rate constants kBB from

the master equation analysis. Di↵usivities are calculated as DBB(TB) =
PN

`=1
kBB,` p` (�x)2 at each bath

temperature TB, where the summation is over all N bins of the thermal gradient �ijTe↵ distribution, p` is

the weight assigned to each bin (Supplementary Figure 13), and �x is the mean residue separation. The

resulting di↵usivities exhibit scaling that mimics the full simulation data (Fig. 2a in the manuscript), albeit

with a slightly larger magnitude. While deviations exist (particularly for TB = 240 K), these likely reflect

the simplified interactions accommodated by our model, alongside limitations due to sampling. The overall

similarity suggests that most critical processes are captured by the master equation approach, supporting

the scope of our interpretation. The error bars are plus/minus one standard error.
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Supplementary Figure 15. Hydrogen Bond Rates and Fluxes. (a) Hydrogen bond flux distributions

(JHB) for helical Aib10 conformers. Fluxes are parameterized by the e↵ective temperature gradient �ijTe↵

between adjacent residues, taken as positive when i > j. (b) Rate constants (kHB) corresponding to

the hydrogen bond flux distribution. Rates and fluxes are obtained by fitting a kinetic master equation

(Equation 1 from the parent manuscript) to MD simulation data that has been coarse grained over �t =

100 fs intervals. The resulting fluxes and rates are block averaged into 1.0 K bins. The error bars are

plus/minus one standard error.
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II. SUPPLEMENTARY DISCUSSION

As a general rule, di↵erent folds of the Aib10 peptide (or other biomolecules) have a conformationally–

dependent solvent–accessible surface area (SASA). Since thermal conduction between the peptide

and the solvent bath occurs at this interface, it is expected that the overall thermalization profile

will also depend on molecular conformation. To quantify this, we exploit the largely di↵usive

nature of heat conduction in Aib10 to construct a simple model for thermal relaxation. In this

case, we assume two compartments — consisting of the peptide and the solvent — which undergo

strictly conductive heat transfer according to Fourier’s law (i.e., no convective contribution). As-

suming that the solvent bath is much larger than the peptide, with minimal local solvent heating,

we can write the total kinetic energy content E(t) of Aib10 in the time–dependent form

E(t) = EB + [E(0) � EB]e�kct, (1)

where EB is the net kinetic energy content of Aib10 when in thermal equilibrium with the bath, E(0)

is the net kinetic energy content of peptide immediately following heating, and kc is a characteristic

time constant for heat transfer to the solvent. Using this expression, we employ three NEMD

ensembles, containing 750 simulations each (at TB = 230.0 K), for helix, hairpin, and completely

extended Aib10 conformers. The fits resulting from this protocol are depicted in Supplementary

Figure 16 and summarized in Supplementary Table 1.

Our simple cooling model is generally robust when applied to thermal relaxation in Aib10.

Modest deviations between the resulting fits and simulation data are observed at early times

(t  2.5 ps) and high temperatures, where ballistic processes likely shunt heat to the solvent more

rapidly than allowed by a di↵usive mechanism. Outside of this region, the thermal transport

dynamics are relatively similar for the helix, hairpin, and extended coil, with the most prominent

(relative) conformational variation observed for the cooling rate constant kc. In our simulations,

the extended coil dissipates heat most rapidly to solvent, followed by the structured ↵–helix fold

and comparatively globular hairpin conformations. While statistically significant, this e↵ect is also

small — largely due to the fact that Aib10 dynamics are surface–dominated in any conformer due

to finite–size e↵ects.

The overall scaling trend for kc is mirrored when comparing the mean SASA between conformers

(Supplementary Table 1). Quantitative di↵erences nonetheless exist between SASA and kc ratios

[kc(coil)/kc(hairpin) = 1.10, while we find SASA(coil)/SASA(hairpin) = 1.26], with the surface
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area contribution underestimated in the rate constants. While a variety of factors may collude in

this e↵ect, the conformer–dependent heat transport rates within the peptide likely make the largest

contribution. That is, the helical and hairpin conformations possess high thermal di↵usivities and

auxiliary conduction pathways (due to molecular topology), which facilitate the transfer of heat

to away from the heater and throughout the peptide (Supplementary Figure 17). Since the local

cooling rate Ėj(t) at the j–th residue is proportional to the local temperature gradient between

the peptide and the solvent Ėj(t) / Tj(t)�Ts,j(t), this accelerates solvent relaxation. The peptide

thus acts as a radiator, relinquishing heat to the bath while circumventing local solvent heating

— and thus partially mitigating the insulating e↵ect of molecular conformation. We expect the

contribution of this e↵ect to be less in larger biomolecules — in a manner that depends on the

surface–to–volume ratio — where redistribution pathways may also lead deeper into the molecular

‘bulk’ and thus away from the solvent interface.
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Supplementary Figure 16. Conformation–dependent cooling. Application of the the cooling model

E(t) = EB + [E(0) � EB]e�kct to NEMD simulations of distinct Aib10 conformers at TB = 230.0 K. Non-

linear least–squares fitting was performed to the mean kinetic energy profile of each NEMD ensemble (each

containing 750 distinct conformations) with block averaging into 10 fs bins prior to analysis. Error bands

corresponding to the block standard error are displayed alongside simulation data (colored lines; bands are

on the order of the line width), while the fits are depicted as a black dashed line. Data are measured relative

to the peak net kinetic energy of Aib10, with simulation methods identical to the parent manuscript.
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Conformer EB/E(0) [E(0) � EB]/E(0) kc (ps�1) SASA (nm2)

Helix 0.7555 ± 0.0007 0.2153 ± 0.0009 0.0338 ± 0.0004 9.8 ± 0.14

Hairpin 0.7474 ± 0.0007 0.2293 ± 0.0008 0.0329 ± 0.0004 9.8 ± 0.16

Coil 0.7539 ± 0.0007 0.2209 ± 0.0009 0.0362 ± 0.0004 12.3 ± 0.15

Supplementary Table 1. Cooling fit parameters. Parameters for the cooling model E(t) =

EB + [E(0) � EB]e�kct, measured with respect to the peak kinetic energy content E(0) of Aib10 imme-

diately following excitation. Data is provided for 750–member ensembles of helix, hairpin, or extended

coil conformers at TB = 230.0 K, with the mean transport profile coarse–grained into 10 fs bins prior to

analysis. Fit error bands correspond to variation at the 95% confidence interval. The solvent–accessible

surface area (SASA) calculated with a 0.1 nm probe is also provided for each conformer. In this case, the

bands correspond to plus/minus one standard deviation for the ensemble composed of the initial equilibrium

conformations for the NEMD simulation.
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Supplementary Figure 17. Variation between transport profiles. Conformational dependence of

the heat transport profile for helical, hairpin, and extended coil Aib10 ensembles during cooling simulations

at TB = 230.0 K. Raw data are quantified through the ensemble–averaged temperature elevation hTji over

the bath temperature �TB,j = hTji � TB at residue j for designated conformational populations (following

Fig. 1 of the main text). Plots correspond to a di↵erence map of these elevations between helical and coiled

(�THelix,j � �TCoil,j), as well as hairpin and coiled (�THP,j � �TCoil,j) structures. Heat redistribution

throughout the peptide is more e�cacious within helical and hairpin ensembles. For plotting purposes, the

upper and lower temperature elevation (e.g., �TB,j) bounds are a cuto↵ for all values lying outside the

range. The heater site is denoted by a red asterisk.


