
(1) Overview

Title

PFHub: The Phase-Field Community Hub

Paper Authors

1. Wheeler, Daniel; (corresponding author) A
2. Keller, Trevor; A
3. DeWitt, Stephen J.; B
4. Jokisaari, Andrea M.; C
5. Schwen, Daniel; C
6. Guyer, Jonathan E.; A
7. Aagesen, Larry K.; C
8. Heinonen, Olle G.; D
9. Tonks, Michael R.; E
10. Voorhees, Peter W.; F
11. Warren, James A.; G

Paper Author Roles and Affiliations

A. Materials Science and Engineering Division,
Material Measurement Laboratory,
National Institute of Standards and Technology,
Gaithersburg, MD 20899 USA

B. Materials Science and Engineering Department,
University of Michigan,
Ann Arbor, MI 48109 USA

C. Fuel Modeling and Simulation Department,
Idaho National Laboratory,
Idaho Falls, ID 83415 USA

D. Argonne National Laboratory,
Lemont, IL 60439 USA

E. Department of Materials Science and Engineering,
University of Florida,
Gainesville, FL 32611



F. Department of Materials Science and Engineering,
Northwestern University,
Evanston, IL 60208 USA

G. Material Measurement Laboratory Office,
Material Measurement Laboratory,
National Institute of Standards and Technology,
Gaithersburg, MD 20899 USA

Abstract

Scientific communities struggle with the challenge of effectively and efficiently shar-
ing content and data. An online portal provides a valuable space for scientific
communities to discuss challenges and collate scientific results. Examples of such
portals include the Micromagnetic Modeling Group (µMAG [1]), the Interatomic
Potentials Repository (IPR [2, 3]) and on a larger scale the NIH Genetic Sequence
Database (GenBank [4]). In this work, we present a description of a generic web
portal that leverages existing online services to provide a framework that may be
adopted by other small scientific communities. The first deployment of the PFHub
framework supports phase-field practitioners and code developers participating in
an effort to improve quality assurance for phase-field codes.

Keywords

phase-field; materials-science; jekyll-website; reproducible-science

Introduction

Generally, small scientific communities do not have the resources to build and host
dedicated web infrastructure to support their varied content and data requirements.
In particular, hosting and supporting a complex content management system (CMS)
including web servers, web frameworks and databases requires a great deal of config-
uration and long term support and funding. Furthermore, a turnkey CMS solution
may not meet requirements for most scientific communities that often use arcane
data formats and require custom data displays along with client-side automation.
The PFHub effort, instead of focusing on the CMS tool, focuses on customizing and
delivering the client-side requirements whilst delegating back-end functionality to
external services that provide dependable APIs [5].

The phase field method (PFM) describes material interfaces at the mesoscopic scale
between atomic scale models and macroscale models [6]. The PFM is well estab-
lished and there are an assortment of code frameworks (e.g., FiPy [7], MMSP [8],
MOOSE [9], PRISMS-PF [10]) available for solving the wide variety of phenomena
associated with phase field (e.g. dendritic growth, spinodal decomposition, grain



growth) [11]. However, it is difficult for novice as well as seasoned phase field prac-
titioners to asses the capability of codes for different phenomena without extensive
prototyping and groundwork. PFHub aims to provide a low barrier for comparing
code output data using a standard set of metrics.

PFHub is a community effort spearheaded by the Center for Hierarchical Mate-
rials Design at Northwestern University and the National Institute of Standards
and Technology in support of phase-field code development. The current PFHub
deployment [12] focuses on improving cross-collaboration between phase-field code
developers and practitioners by providing a standardized set of benchmark prob-
lems [13, 14] and a workflow for uploading and comparing benchmark results from
different phase-field codes.

Community based scientific efforts often require web services to share and display
data in unique ways between groups and institutions. These services are difficult to
implement due to the groundwork required to investigate and prototype the many
data-sharing and CMS tools available. The PFHub framework provides a template
for other scientific projects beyond the phase field community. The method outlined
in this paper of using static infrastructure coupled with small independent third
party web services provides a flexible approach eliminating the initial prototyping
and on-going maintenance required for new infrastructure, while allowing developers
to focus on their unique front-end data views.

This paper presents the first deployment of the PFHub framework including its
client-side focused design, how it employs external services and metadata about
the code base. The paper describes the relative ease with which other scientific
groups might adapt the framework for their own purposes and deploy using the
fully reproducible Nix environment [15].

Implementation and architecture

The PFHub framework provides a template for other small scientific communi-
ties to host custom content and integrate data from members of their community.
The current deployment (see Figure 1) provides a facility for uploading, display-
ing and comparing results from benchmark problems supporting phase-field code
developers and practitioners. However, the framework and overall philosophy are
broadly transferable to other communities with some custom configuration and con-
tent generation. The framework uses the Jekyll static website generator [16] along
with automated front-end processing to eliminate the need for a CMS [5], which is
generally costly to maintain especially for small scientific communities with limited
funding and staffing. The framework relies on the API, WebSocket and webhook
infrastructure that underpins the modern web and allows external services to have
full-duplex communication between servers and browsers. In particular, PFHub
relies on GitHub’s well maintained API and webhook functionality for external
services (such as Travis CI [17] and Staticman [18]).



The workflow for uploading benchmark results relies on third party tools using the
following steps, illustrated in Figure 2.

1. The users are first required to upload simulation outputs to an archival re-
source (e.g., Figshare1 [19]) configured with permissive cross-origin resource
sharing (CORS).

2. The metadata summarizing each simulation is entered into a form on the
website (see Figure 3), including relevant details such as memory usage, run
time and links to the data archived in the first step.

3. Upon submission, the Staticman app [18] submits the entered metadata as a
pull request against the PFHub repository hosted by GitHub. The metadata
is stored in a YAML file with a unique path in the repository, see [20] for an
example.

4. Travis CI [17] performs linting on the submission and then launches a tem-
porary version of the proposed website using Surge [21]. The PFHub admins
can then examine the new submission and further changes can be made if
necessary.

5. Once review has been completed to the satisfaction of both the uploading
scientist and the website maintainers, the pull request is merged and served
to the World Wide Web using a hosting service compatible with GitHub Pages.

A combination of Jekyll templates and CoffeeScript are used to access and download
the data links in the submitted YAML files and then display the data in interactive
plots on the website. CoffeeScript is a higher level language than JavaScript and,
thus, more readable whilst also allowing programming in a more functional manner
which makes data manipulation pipelines both more succinct and easier to under-
stand. The interactive plots (see Figure 4) are displayed using the Plotly JavaScript
Graphing Library [22] as it provides a programmable interface and requires minimal
configuration, see [23] for typical data displayed on the interactive plots.

The current deployment of PFHub has benchmark specifications consisting of equa-
tions, narrative, plots and code samples, and are composed in Jupyter Notebooks.
The Jupyter Notebooks are included as static objects in the website after transla-
tion into HTML using the nbconvert tool [24]. There are currently 7 benchmark
problems each with a number of variations. At the time of writing there are 109
separate benchmark result uploads [12] submitted as pull requests and approved
following code review to ensure compatibility with the website.

1Certain commercial equipment, instruments, or materials (or suppliers, or software, ...) are
identified in this paper to foster understanding. Such identification does not imply recommen-
dation or endorsement by the National Institute of Standards and Technology, nor does it imply
that the materials or equipment identified are necessarily the best available for the purpose.



Figure 1: Front page of the current version of the deployed PFHub website showing
links to the wiki and upload pages. The hexbin splash provides links to phase field
papers and websites. This can easily be modified with alternative links and images
by editing a YAML file.

The combination of a central repository on GitHub for website source code and
metadata with distributed data records on third-party archives avoids the com-
plexity and administrative overhead of maintaining a live database and associated
back-end application.

Quality control

The framework has a fully automated test recipe deployed on Travis CI with an
environment built using the Nix Package Manager [15]. A fully automated test
environment using continuous integration allows all developers and users to have
common feedback on code updates and determine the compatibility of result uploads
with the deployed website. The environment is pinned to a specific version of the Nix
Packages Collection (Nixpkgs [25]), ensuring fully reproducible build and test phases



Figure 2: Schematic overview of the PFHub framework for building scientific re-
search portals, simply.

as well as ensuring that the development and automated testing environments are
identical. The full test recipe is outlined in a YAML file, .travis.yml, file stored
in the repository [26] and consists of the following steps.

1. Build the Nix environment from a persistent cache on Travis CI, reducing the
build time.

2. Run automated tests on Jupyter Notebooks using NBval [27] and Py.test [28].

3. Run validation tests on HTML files using HTMLProofer [29].

4. Lint and test front-end CoffeeScript using Coffeelint [30] and Mocha [31],
respectively.

5. Display a temporary version of the website using Surge [21] for visual review.

(2) Availability

Operating system

The PFHub framework can be deployed on any platform supporting Nix, which in-
cludes all contemporary Linux and macOS platforms. Since the framework is built
with Jekyll and automated front-end processing, it can be deployed on GitHub’s
Pages infrastructure, which enables streamlined deployment without the need for
any back-end infrastructure and, thus, is largely platform independent. For devel-
opment purposes, a local installation of either Nix (on Linux or Mac) or Docker (on
Linux, Mac or Windows) is required.



Figure 3: The form used to enter simulation result metadata and then upload to
the repository via a GitHub pull request allowing the data to be checked before
pushing to the website.



Figure 4: Results comparison page for benchmark 3 (Dendritic Growth). The data
for each upload is plotted asynchronously and the page is not affected if a data link
dies.



Programming language

PFHub is currently built and tested using the programming languages and versions
outlined in Table 1.

Table 1: PFHub programming languages and corresponding supported versions.
Language Version
HTML 5
Jupyter Notebook 5.4.0
JavaScript 5
Nix 2.1.3
CoffeeScript 1.12.7
CSS 4

Additional system requirements

There are no additional system requirements.

Dependencies

The entire environment can be built using the Nix Package Manager so the only
required dependency is a functional Nix installation. The PFHub framework has
over 2000 separate package dependencies using data from the Nix package manager.
The full dependency graph for PFHub can be seen online [32].

List of contributors

This list is for contributors to the code base, but not those that have only uploaded
output results to the website.

1. Wheeler, Daniel; A, @wd15
2. Keller, Trevor; A, @tkphd
3. DeWitt, Stephen J.; B, @stvdwtt
4. Jokisaari, Andrea M.; C, @amjokisaari
5. Schwen, Daniel; C, @dschwen
6. Guyer, Jonathan E.; A, @guyer

Also, see the contributors list on GitHub [33].

Software location:

Archive

https://github.com/wd15/
https://github.com/tkphd/
https://github.com/stvdwtt/
https://github.com/amjokisaari/
https://github.com/dschwen/
https://github.com/guyer/


Name: Zenodo
Persistent identifier: 10.5281/zenodo.2592705
Licence: NIST Software License [34]
Publisher: Daniel Wheeler
Version published: v0.1
Date published: 13/03/19

Code repository

Name: GitHub
Persistent identifier: https://github.com/usnistgov/pfhub/tree/v0.1

Licence: NIST Software License [34]
Date published: 13/03/19

Languages

English

(3) Reuse potential

The PFHub framework can be readily adopted by other communities that want
to follow a CMS-free philosophy and use well supported external services. The
website infrastructure can be cloned as a Git repository or downloaded as a ZIP
archive and deployed with minimum effort. The mechanism for uploading data
using Staticman can be easily configured for a new repository location. However,
customizing the content of the website for a particular scientific community would
require considerable effort. The current effort is closely integrated with GitHub,
but future deployments could be modified to use other repository services such as
GitLab or BitBucket.

The following steps are the more challenging aspects of deploying the framework
for a new community.

� Upload new data upload specifications (e.g. the phase-field benchmarks in the
PFHub website [12]) in a format that Jekyll can parse, e.g., Jupyter Notebook,
Markdown or HTML.

� Edit the benchmarks.yaml file to reflect the new upload requirements and
describe the figures that need to be generated on the upload comparison pages.

� Edit the config.yml file to update links and text related to the configuration
for all aspects of the website.

� Update Markdown files to reflect the new content and mission of the scientific
community.

https://dx.doi.org/10.5281/zenodo.2592705
https://github.com/usnistgov/pfhub/tree/v0.1


REFERENCES REFERENCES

� Remove data and files that are not required by the new community.

Further details on deployment and development of PFHub can be found in the
development guide [35]. Currently, a deployment for a new community has not
been attempted and, thus, the above steps need to be refined and documented.

Acknowledgments

We gratefully acknowledge input and guidance from all participants in the series of
Phase-Field workshops held between 2015 and 2018 at the Center for Hierarchical
Material Design [36].

Funding statement

D.W. wishes to acknowledge the Materials Genome Initiative funding allocated to
the National Institute of Standards and Technology. S.J.D wishes to acknowledge
funding from the U.S. Department of Energy, Office of Basic Energy Sciences, Divi-
sion of Materials Sciences and Engineering under Award #DE-SC0008637 as part of
the Center for PRedictive Integrated Structural Materials Science (PRISMS Center)
at University of Michigan. P.W.V. is grateful for the financial assistance under the
award 70NANB14H012 from the National Institute of Standards and Technology
as part of the Center for Hierarchical Materials Design (CHiMaD).

Competing interests

The authors declare that they have no competing interests.

References

[1] µMAG: The Micromagnetic Modeling Activity Group. 2019. url: https://
www.ctcms.nist.gov/~rdm/mumag.org.html (visited on 03/11/2019).

[2] Lucas M. Hale, Zachary T. Trautt, and Chandler A. Becker. “Evaluating
variability with atomistic simulations: the effect of potential and calculation
methodology on the modeling of lattice and elastic constants”. en. In: Mod-
elling and Simulation in Materials Science and Engineering 26.5 (July 2018),
p. 055003. issn: 0965-0393, 1361-651X. doi: 10.1088/1361-651X/aabc05.
url: http://stacks.iop.org/0965- 0393/26/i=5/a=055003?key=

crossref.1d3c4d0412b252a7afd7d58da45f306d (visited on 03/15/2019).

https://www.ctcms.nist.gov/~rdm/mumag.org.html
https://www.ctcms.nist.gov/~rdm/mumag.org.html
https://doi.org/10.1088/1361-651X/aabc05
http://stacks.iop.org/0965-0393/26/i=5/a=055003?key=crossref.1d3c4d0412b252a7afd7d58da45f306d
http://stacks.iop.org/0965-0393/26/i=5/a=055003?key=crossref.1d3c4d0412b252a7afd7d58da45f306d


REFERENCES REFERENCES

[3] Chandler A. Becker et al. “Considerations for choosing and using force fields
and interatomic potentials in materials science and engineering”. en. In: Cur-
rent Opinion in Solid State and Materials Science 17.6 (Dec. 2013), pp. 277–
283. issn: 13590286. doi: 10.1016/j.cossms.2013.10.001. url: https:
//linkinghub.elsevier.com/retrieve/pii/S1359028613000788 (visited
on 03/21/2019).

[4] GenBank: NIH genetic sequence database. url: https://www.ncbi.nlm.
nih.gov/genbank/ (visited on 03/26/2019).

[5] Dave Cole. How We Build CMS-Free Websites. July 2018. url: https://
medium.com/devseed/how-we-build-cms-free-websites-d7e19d94a0ff

(visited on 03/11/2019).

[6] Nele Moelans, Bart Blanpain, and Patrick Wollants. “An introduction to
phase-field modeling of microstructure evolution”. In: Calphad 32.2 (2008),
pp. 268–294. issn: 0364-5916. doi: 10.1016/j.calphad.2007.11.003. url:
http://www.sciencedirect.com/science/article/pii/S0364591607000880.

[7] Jonathan E. Guyer, Daniel Wheeler, and James A. Warren. “FiPy: Partial
Differential Equations with Python”. In: Computing in Science & Engineering
11.3 (2009), pp. 6–15. issn: 1521-9615. doi: 10.1109/MCSE.2009.52. url:
http://www.ctcms.nist.gov/fipy.

[8] Jason Gruber et al. mesoscale/mmsp: Zenodo integration. Mar. 2019. doi: 10.
5281/zenodo.2583258. url: https://doi.org/10.5281/zenodo.2583258.

[9] Michael R. Tonks et al. “An object-oriented finite element framework for
multiphysics phase field simulations”. In: Computational Materials Science
51.1 (2012), pp. 20–29. issn: 0927-0256. doi: 10.1016/j.commatsci.2011.
07.028. url: http://www.sciencedirect.com/science/article/pii/
S0927025611004204.

[10] Stephen DeWitt et al. prisms-center/phaseField: PRISMS-PF (Version 2.1.1).
Mar. 2019. doi: 10.5281/zenodo.2583308. url: https://doi.org/10.
5281/zenodo.2583308.

[11] Michael R. Tonks and Larry K. Aagesen. “The Phase Field Method: Mesoscale
Simulation Aiding Material Discovery”. In: Annual Review of Materials Re-
search 49.1 (2019), pp. 79–102. doi: 10.1146/annurev-matsci-070218-
010151. eprint: https://doi.org/10.1146/annurev- matsci- 070218-

010151. url: https : / / doi . org / 10 . 1146 / annurev - matsci - 070218 -

010151.

[12] PFHub: The Phase Field Community Hub. url: https://pages.nist.gov/
pfhub (visited on 03/27/2019).

[13] Andrea M. Jokisaari et al. “Benchmark problems for numerical implementa-
tions of phase field models”. In: Computational Materials Science 126 (2017),
pp. 139–151. issn: 0927-0256. doi: 10 . 1016 / j . commatsci . 2016 . 09 .

022. url: http : / / www . sciencedirect . com / science / article / pii /

S0927025616304712.

https://doi.org/10.1016/j.cossms.2013.10.001
https://linkinghub.elsevier.com/retrieve/pii/S1359028613000788
https://linkinghub.elsevier.com/retrieve/pii/S1359028613000788
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://medium.com/devseed/how-we-build-cms-free-websites-d7e19d94a0ff
https://medium.com/devseed/how-we-build-cms-free-websites-d7e19d94a0ff
https://doi.org/10.1016/j.calphad.2007.11.003
http://www.sciencedirect.com/science/article/pii/S0364591607000880
https://doi.org/10.1109/MCSE.2009.52
http://www.ctcms.nist.gov/fipy
https://doi.org/10.5281/zenodo.2583258
https://doi.org/10.5281/zenodo.2583258
https://doi.org/10.5281/zenodo.2583258
https://doi.org/10.1016/j.commatsci.2011.07.028
https://doi.org/10.1016/j.commatsci.2011.07.028
http://www.sciencedirect.com/science/article/pii/S0927025611004204
http://www.sciencedirect.com/science/article/pii/S0927025611004204
https://doi.org/10.5281/zenodo.2583308
https://doi.org/10.5281/zenodo.2583308
https://doi.org/10.5281/zenodo.2583308
https://doi.org/10.1146/annurev-matsci-070218-010151
https://doi.org/10.1146/annurev-matsci-070218-010151
https://doi.org/10.1146/annurev-matsci-070218-010151
https://doi.org/10.1146/annurev-matsci-070218-010151
https://doi.org/10.1146/annurev-matsci-070218-010151
https://doi.org/10.1146/annurev-matsci-070218-010151
https://pages.nist.gov/pfhub
https://pages.nist.gov/pfhub
https://doi.org/10.1016/j.commatsci.2016.09.022
https://doi.org/10.1016/j.commatsci.2016.09.022
http://www.sciencedirect.com/science/article/pii/S0927025616304712
http://www.sciencedirect.com/science/article/pii/S0927025616304712


REFERENCES REFERENCES

[14] Andrea M. Jokisaari et al. “Phase field benchmark problems for dendritic
growth and linear elasticity”. In: Computational Materials Science 149 (2018),
pp. 336–347. issn: 0927-0256. doi: 10 . 1016 / j . commatsci . 2018 . 03 .

015. url: http : / / www . sciencedirect . com / science / article / pii /

S092702561830168X.

[15] Nix Package Manager. url: https://nixos.org/nix/ (visited on 03/13/2019).

[16] Jekyll. url: https://jekyllrb.com/ (visited on 03/14/2019).

[17] Travis CI: Test and Deploy with Confidence. url: https://travis-ci.org/
(visited on 03/11/2019).

[18] Staticman: Static sites with superpowers. url: https : / / staticman . net

(visited on 03/11/2019).

[19] Figshare. url: https://figshare.com/ (visited on 03/27/2019).

[20] Typical PFHub Upload Data. url: https://github.com/usnistgov/pfhub/
blob/master/_data/simulations/fipy_3a/meta.yaml (visited on 08/06/2019).

[21] Surge: Static web publishing for Front-End Developers. url: https://surge.
sh/ (visited on 03/11/2019).

[22] Plotly Technologies Inc. Collaborative data science. 2015. url: https://

plot.ly (visited on 03/20/2019).

[23] Typical PFHub Display Data. url: https : / / github . com / usnistgov /

pfhub/blob/master/_data/simulations/fipy_3a/meta.yaml (visited
on 08/06/2019).

[24] Thomas Kluyver et al. “Jupyter Notebooks – a publishing format for repro-
ducible computational workflows”. In: Positioning and Power in Academic
Publishing: Players, Agents and Agendas. Ed. by F. Loizides and B. Schmidt.
IOS Press. 2016, pp. 87–90.

[25] Nix Packages Collection. url: https://github.com/NixOS/nixpkgs (visited
on 04/05/2019).

[26] Travis CI Recipe for PFHub. url: https://github.com/usnistgov/pfhub/
blob/master/.travis.yml (visited on 03/13/2019).

[27] NBVal: Py.test plugin for validating Jupyter notebooks. url: https://github.
com/computationalmodelling/nbval (visited on 03/14/2019).

[28] Py.test. url: https://docs.pytest.org/en/latest/ (visited on 03/14/2019).

[29] HTML Proofer. url: https://github.com/gjtorikian/html- proofer

(visited on 03/14/2019).

[30] CoffeeLint. url: https://github.com/clutchski/coffeelint (visited on
08/05/2019).

[31] Mocha. url: https://mochajs.org/ (visited on 08/05/2019).

[32] PFHub Dependency Graph. url: https://github.com/usnistgov/pfhub/
wiki/PFHub-Dependency-Graph (visited on 08/06/2019).

https://doi.org/10.1016/j.commatsci.2018.03.015
https://doi.org/10.1016/j.commatsci.2018.03.015
http://www.sciencedirect.com/science/article/pii/S092702561830168X
http://www.sciencedirect.com/science/article/pii/S092702561830168X
https://nixos.org/nix/
https://jekyllrb.com/
https://travis-ci.org/
https://staticman.net
https://figshare.com/
https://github.com/usnistgov/pfhub/blob/master/_data/simulations/fipy_3a/meta.yaml
https://github.com/usnistgov/pfhub/blob/master/_data/simulations/fipy_3a/meta.yaml
https://surge.sh/
https://surge.sh/
https://plot.ly
https://plot.ly
https://github.com/usnistgov/pfhub/blob/master/_data/simulations/fipy_3a/meta.yaml
https://github.com/usnistgov/pfhub/blob/master/_data/simulations/fipy_3a/meta.yaml
https://github.com/NixOS/nixpkgs
https://github.com/usnistgov/pfhub/blob/master/.travis.yml
https://github.com/usnistgov/pfhub/blob/master/.travis.yml
https://github.com/computationalmodelling/nbval
https://github.com/computationalmodelling/nbval
https://docs.pytest.org/en/latest/
https://github.com/gjtorikian/html-proofer
https://github.com/clutchski/coffeelint
https://mochajs.org/
https://github.com/usnistgov/pfhub/wiki/PFHub-Dependency-Graph
https://github.com/usnistgov/pfhub/wiki/PFHub-Dependency-Graph


REFERENCES REFERENCES

[33] List of PFHub Contributors. url: https://github.com/usnistgov/pfhub/
graphs/contributors (visited on 03/13/2019).

[34] NIST Software License. url: https://www.nist.gov/director/copyright-
fair-use-and-licensing-statements-srd-data-and-software (visited
on 03/13/2019).

[35] PFHub Development Guide. url: https://pages.nist.gov/pfhub/DEVELOPMENT/
(visited on 08/06/2019).

[36] CHiMaD Phase-Field Workshops. url: https://pages.nist.gov/pfhub/
wiki/workshops/ (visited on 03/14/2019).

https://github.com/usnistgov/pfhub/graphs/contributors
https://github.com/usnistgov/pfhub/graphs/contributors
https://www.nist.gov/director/copyright-fair-use-and-licensing-statements-srd-data-and-software
https://www.nist.gov/director/copyright-fair-use-and-licensing-statements-srd-data-and-software
https://pages.nist.gov/pfhub/DEVELOPMENT/
https://pages.nist.gov/pfhub/wiki/workshops/
https://pages.nist.gov/pfhub/wiki/workshops/

