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Abstract: Computer vision and classification methods have become increasingly wide-spread
in recent years due to ever-increasing access to computation power. Advances in semiconductor
devices are the basis for this growth, but few publications have probed the benefits of data-driven
methods for improving a critical component of semiconductor manufacturing, the detection and
inspection of defects for such devices. As defects become smaller, intensity threshold-based
approaches eventually fail to adequately discern differences between faulty and non-faulty
structures. To overcome these challenges we present machine learning methods including
convolutional neural networks (CNN) applied to image-based defect detection. These images are
formed from the simulated scattering of realistic geometries with and without key defects while
also taking into account line edge roughness (LER). LER is a known and challenging problem in
fabrication as it yields additional scattering that further complicates defect inspection. Simulating
images of an intentional defect array, a CNN approach is applied to extend detectability and
enhance classification to these defects, even those that are more than 20 times smaller than the
inspection wavelength.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Compared to the Apollo 11’s onboard guidance computer, a modern cellphone is about 1,400
times faster and has 4,000,000 times more memory [1]. These dramatic increases illustrate
the substantial impact, observed by Gordon E. Moore, that with the decrease in production
costs, the number of transistors in a dense integrated circuit will double about every two years
[2]. Transistor count is the most common measure of integrated circuit complexity and is
closely related to computational performance [3] - the main force driving the feasibility and
wide-spread availability of the different techniques of data-driven methods. The manufacturing
of these integrated circuits as of 2017 has become a $ 400 billion industry [4], and even as
the semiconductor industry struggles to perpetuate Moore’s law [5], crucial challenges exist in
monitoring the production process for decreasing feature sizes [6].

One of the most pressing challenges is the detection of so-called ”killer defects” i.e., deviations
that would lead to device failure due to shorted or broken electrical connections within the layers
that are printed using photolithography [7,8]. Not detecting such defects can lead to systematic
imperfections within other devices on subsequent wafers, resulting in multiple failed devices that
are only observed after fabrication is complete. Examples of such observations include electrical
testing and the X-ray based detection of die warpage after packaging [9]. The latter however is
limited by long scan times for laboratory-based X-ray sources.

Defect metrology concentrates on locating and identifying these defects during manufacturing
to increase yield. Optical tools, such as scatterometry [10] or imaging techniques [11], are the
only way to successfully inspect these defects non-destructively at high speeds over the area
of the typical 300mm diameter wafer. As killer defects decrease in size with shrinking device
dimensions the scattered intensity from these defects becomes harder to detect, thus for either
approach a large amount of data need to be processed. Converting these low-intensity data into
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meaningful results requires exploiting the very increase in computation power that results from
successfully producing more powerful devices. In this work, this virtuous cycle is illustrated by
adding several key aspects from machine learning to image-based defect detection, comparing
a contemporary deep ultraviolet (DUV) inspection wavelength against proposed and potential
vacuum- and extreme-ultraviolet (VUV, EUV) wavelengths.

While machine learning (ML) has successfully been reported in the analysis of patterns of
poor device yield across such wafers after electrical testing [12–14] with some even using
convolutional neural networks (CNN) [15–17], only recently has the imaging of defects been
treated in a ML setting, more specifically by using principal component analysis [18]. This work
broadens the application of ML to improve localized, image-based defect metrology by comparing
linear classifiers and CNNs. Note, image-based defect detection with machine learning has been
realized in other industries e.g., textiles [19–22], steel [23], and wood [24], but a key difference
is that due to the decreased dimensions in semiconductors these defects must be detected even as
they are often unresolved.

2. Simulation details

Shown schematically in Fig. 1 are two types of bridging defects and two types of line extensions
which in general are harder to detect. These layouts are based upon public information about
recent manufacturing processes [25] of the fins for 3-D field effect transistors (finFETs) and also
upon an intentional defect array defined by SEMATECH [26]. The latter provides the naming
convention for the defectuous wafers, see panels (b) to (e) in Fig. 1.

Fig. 1. Schematic representation of a) ideal layout, b) Bx and c) By bridging defects, d) Cx
and e) Cy line extension defects, and f) and g) key dimensions of the unit cell. The lighter
color is simulated as crystalline silicon and the blue as amorphous silicon. For clarity two 2
nm thick conformal layers that coat the amorphous silicon are not shown. Geometry and
materials details are available at [27].

The simulations were performed using a well-verified [28–30] in-house implementation of the
finite-difference time-domain [31] (FDTD) method to model the electromagnetic field scattered
from the patterned layout and its defects. The incident angle of the illumination is chosen to
be normal to the substrate for clarity; prior simulation results indicate that the defect detection
often varies when using oblique illumination [29,32]. The linear polarization basis within the
simulation is defined with respect to the long axis of the nominal pattern. (Note, the x and
y directions do not correspond to the defect naming convention.) The scattered and reflected
fields are converted to images through an idealized modeling of the Fourier optics assuming
a collection numerical aperture of 0.95 for simplicity. To account for the measurement noise,
Poisson (shot) noise [33] is applied to the raw images. Throughout the remainder of this paper
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the pixel size at the sample is assumed to be 10 nm × 10 nm. This number has been proven to be
a good compromise between the changes in the noise model due to an increased photon count for
larger pixels and aliasing effects.
We have previously utilized intensity and area thresholding to extract a signal-to-noise ratio

(SNR) from differential images. In [30,34,35] the SNR was strongest for bridging defects when
applying a wavelength of λ = 47 nm for the simulated structures, while the SNR varied notably
across the remaining wavelengths. While SNR is straightforward and convenient it does require
an informed choice of these intensity and area thresholds to exclude the shot noise, and for
sufficiently low photon densities a SNR may not be reportable.
In this work three wavelengths are employed, 193 nm as a common inspection wavelength,

47 nm that performed best for the SNR metric, and 13 nm which was proven to be a challenging
wavelength in our prior reports. The photon densities that are applied here are based on current
estimates for the intensity of the three wavelengths used in this study, see Refs. [36,37], and can
be found in Tab. 1 below.

Table 1. Benchmark photon densities ρph from the literature [36,37] for the wavelengths used in
this study.

λ (nm) 13 47 193

ρph (nm−2) 10 10 105

In addition to measurement noise, “wafer noise” due to process variations is included [38–42].
Line edge roughness (LER) is known to be present in every lithographically manufactured device,
either reducing the signal or increasing the noise [43]. The geometries in these simulations
include LER [44,45] that is based on the current state-of-the-art with 3 · σLER = 0.6 nm, i.e. 10
% of the line width and a correlation length of ξ = 10 nm [46]. Both types of noise are applied
separately to defect and no-defect images that are used to form the absolute value differential
images (AVDI). These AVDIs form the basis of the investigations, and are realized by subtracting
these two images and taking the absolute value of the resulting pixel values, see Fig. 2 for
examples. Here, the intensities in the defect and no-defect images are given relative to the
intensity of the incident light, the AVDIs are converted to 8-bit integers and normed to their
respective maximum values for use in the machine learning algorithms. This subtraction almost
completely removes the background at a cost of combining two realizations of shot noise.

Separating the shot noise from the noise due to LER for experimental data is a very challenging
task for optical tools, more easily achieved in scatterometry-based critical dimension metrology
[47,48] than for imaging defect inspection tools. For this simulation study, by definition we
have perfect knowledge of the distribution of the shot noise and removing this would lead to
unrealistically good results. Noise filtering in this work is therefore limited only to wavelet-based
compression techniques.
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Fig. 2. Example images with Poisson noise generated using photon densities from Tab. 1,
(left) no defect, (center) defect, (right) AVDI. (top row) Bx defect, Y polarization, λ = 13 nm,
(middle row) Cx defect, Y polarization, λ = 47 nm, (bottom row) By defect, X polarization,
λ = 193 nm. While the longer wavelengths are able to identify the defect, it is almost
indistinguishable from noise at λ = 13 nm.

3. Implementation of ML algorithms

Two types of ML algorithms are applied to this classification problem. While the first type, linear
classifiers (LC) [49] can in some sense be seen as extensions of our previously used SNR metric,
the second one, convolutional neural networks (CNNs) [50] are a class of algorithms that are
widely used across a vast number of image recognition tasks. Each algorithm requires a set of
features to operate on, and the selection of these features is an integral part in any ML setup.
Limited computation resources, especially memory, have guided the selection of these methods.
The linear classifier uses histograms, while the CNN processes wavelet-compressed AVDIs.

The histogram of its pixel intensities is an easily obtained image feature. Even though one
discards the spatial information of the image, several applications in such diverse fields as wood
[24] and fabric inspection [51] have proven that histograms can be a very valuable feature for
classification. The intensities for each image are normed relative to its respective maximum
value and a total of 100 bins to create the histogram has been used (although not shown, setting
the number of bins to less than 50 in this work has a negative effect on the performance of the
ML algorithms used). The histograms are normalized to show the relative pixel frequencies. A
training set is created that consists of nt = 10000 histograms x(i) ∈ R100, i = 1, . . . , nt, one half of
which are images from simulations without a defect and labeled by y(i) = [0, 1]ᵀ , i = 1, . . . , 5000,
and the other half are images from simulations with a defect y(i) = [1, 0]ᵀ , i = 5001, . . . , 10000.
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Figure 3 presents the histograms for two critical wavelength/defect combinations. Note the clear
difference in the histograms for λ = 193 nm while the histograms for λ = 13 nm are virtually
indistinguishable.

Fig. 3. Histograms of pixel intensities as used as features in the linear classifier,
ρph (193 nm) = 105 nm−2, ρph (13 nm) = 100 nm−2.

The classifier that has been applied to these histograms is a simple linear classifier (LC).
Figure 4 has the classification success rates (CSRs) for the above algorithm if applied to histogram
data that has been generated using realistic photon densities as given in Tab. 1. Ten optimizations
have been performed to determine the mean CSRs. The corresponding standard deviations in all
cases were below 0.01 and are therefore not plotted. The LC performs quite well for λ = 193 nm
yielding a CSR of approximately 0.98, i.e., on average it successfully classifies an image in 98%
of all cases. For the λ = 13 nm data with a low photon count ρph = 1 nm−2 to 10 nm−2, however,
the LC performs poorly as the CSR is just above 0.5. With increasing ρph, the CSR increases to
0.82 for the Bx defect and 0.98 for the By defect at ρph = 1000 nm−2. It has been reported that
the SNR is a good metric for defect detection at λ = 47 nm, so it is not surprising to see that the
LC also performs very well for a reference photon density of 10 nm−2. Even for photon counts
that are a magnitude less, a CSR of around 0.9 is achieved here. However, for real-world process
control this value is not satisfying. The same can be said for the LC at λ = 13 nm, even for an
increased photon count. Therefore the CNN is to be applied which will need a different feature
that ideally contains more information without requiring too much memory.

Fig. 4. CSRs as a function of photon density, capital letter after defect type denotes
polarization of incident light, CNN denotes convolutional neural network, LC denotes linear
classifier.

Memory constraints using the full images with a pixel size of 10 nm × 10 nm arise as images
at λ = 13 nm and λ = 47 nm consist of 71 × 63 pixels and 107 × 95 for λ = 193 nm. Building a
sufficiently large library of training data with these images is not possible given our resources,
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hence the information provided by the images is condensed by applying a two-step wavelet-based
image compression using a ’db1’ wavelet [52], by high-pass filtering the original images. The
resulting images are then low-pass filtered and downscaled, yielding approximated subimages for
which the procedure is repeated. This approach leads to a reduction of the image sizes to 18 × 16
pixels for λ = 13 nm and λ = 47 nm and 27 × 24 pixels for λ = 193 nm, and hence an increase
of the pixel sizes at the sample from 10 nm to 39.4 nm. Even with these larger pixel sizes, the
wavelet-based compressed images preserve the details of the original defect images while they
tend to disappear if one simply rebins, see Fig. 5 for an example.

Fig. 5. Effect of compression and binning for the Cx defect (circled), λ = 47 nm, Y-
polarization, ρph = 10 nm−2, a) original AVDI, b) rebinned image, c)-e) wavelet-based
compression for two, three, and four steps.

With the 16-fold data reduction due to the compression, it is now possible to train a convolutional
neural network that uses the spatial information contained in the compressed images as features
to classify the defect/no-defect AVDIs. A known, fundamental architecture that has been proven
to successfully detect defects in a slightly different field [23] is used, given in Fig. 6, and
implemented using the TensorFlow toolbox [54]. Just as with in the histogram case, a training
set for each different λ-ρph-defect-polarization combination is created.

Fig. 6. Schematic representation of used CNN, the filter size for the convolution layers was
set to 5 × 5 pixels. For supplementary information see [53].

Initially the LC and the CNN are both used for binary classification, i.e., defect no-defect. The
capabilities of the CNN will be evaluated further by using an order of magnitude less light at
λ = 193 nm and also attempting defect classification among the Bx, By, Cx, and Cy defects and
the no-defect case.

4. CNN results

Starting with the λ = 47 nm case and the reduced photon density of ρph = 1 nm−2, recall that
the histogram approach resulted in CSRs of approximately 0.9 for both the Bx and By defects.
Using the CNN approach yields CSRs of almost 1, cf. the red and blue ’×’s in Fig. 4. The
same improvement in performance is observed for the Bx defect and λ = 193 nm case, with
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the CSR increasing from 0.88 for the LC to basically 1 for the CNN. For λ = 13 nm with
current photon densities, even the CNN approach cannot detect these defects at this wavelength.
Therefore the change in the CSRs is to be determined for increased ρph. With a photon density
of ρph = 1000 nm−2 values for the CSRs are close enough to 1 if the CNN is used. That is
about an order of magnitude less in photon density than would be needed for the SNR metric to
successfully separate defects from no-defect images [35].
Finally the presented approaches are applied to smaller defects, excluding λ = 13 nm due to

the difficulties this wavelength presented for larger defects. Figure 1 c) and d) have a schematic
representation of the non-bridging defects that, following the SEMATECH convention, will be
denoted by Cx and Cy, and that shall be investigated here using λ = 47 nm and λ = 193 nm.
Although not shown, neither defect could be classified adequately using the SNR metric for
any wavelength, further motivating the use of machine learning based methods. The results for
applying the LC and CNN approaches are presented in Fig. 4 as light blue and orange triangles,
respectively. The shorter wavelength does not have any problems detecting the Cx and Cy defects
at the current ρph if the CNN is used, but only reaches a maximum CSR of 0.92 for the Cx
defect for lower photon densities. As expected the LC is not sufficient to detect either defect at
λ = 47 nm for any given photon density due to the very small scattering volume. On the other
hand, λ = 193 nm performs very well on those small defects, especially given their size, that
is approximately less than 1

20 -th the length of the inspection wavelength. The Cy defect at this
wavelength does not even require the CNN approach and yields a CSR of 0.995 using the LC.

For processing images for high-volume manufacturing however, the image’s size in memory
may need to be decreased beyond the 16-fold reduction from the two-step wavelet compression.
Figure 7 shows the effect that further compressing of the images has on the obtained CSRs
for λ = 13 nm. Increased compression does indeed have a negative impact on CSRs > 0.6,
decreasing the values for both defect types at the two larger investigated photon densities. For the
smaller photon densities, better CSRs might occur for higher compression, however with CSR
< 0.6 this is of negligible impact on defect detection. It is however surprising to see that the
drop in CSRs is not as dramatic as expected, for example the CSR decreased from 0.985 to 0.938
for the Bx defect at ρph = 10000 nm−2. While the CSRs from the highly compressed data are
insufficient for practical application, the size of the image in memory is one variable of many
that must be optimized for data-driven defect inspection.

Fig. 7. Effect of compression on CSRs for λ = 13 nm.

One advantage of simulating an intentional defect array is the perfect prior knowledge of each
image’s defect type, and this enables further testing of the CNN beyond binary classification



Research Article Vol. 2, No. 9 / 15 September 2019 / OSA Continuum 2690

as shown in Fig. 4 using training and test data unique to each defect type. In the following we
therefore train the same CNN architecture using a five-fold classification to distinguish among the
no-defect case and the four types of defects as shown in Fig. 2. Specifically we use AVDIs that
were generated for a wavelength of λ = 193 nm and an order of magnitude less photon density
than the benchmark value to represent possible inefficiencies in source strengths and faster data
acquisition with examples shown in Fig. 8. From each of these five classes 4000 images have
been generated leading to a total of nt = 20000 images that are separated into 16000 training and
4000 test images.

Fig. 8. Defect AVDIs at λ = 193 nm and ρph = 10000 nm−2. While many defects are
easily identified by eye, some defect and polarization combinations yield difference images
that are visually similar.

The classification works quite well with the confusion matrix presented in Tab. 2 showing
the accurate classification of three of the four defect types and of the no-defect case. For X
polarization only 14 % of the By images were misclassified as Cx defects; for Y polarization (not
shown) the trends are the same with 16 % of By images misclassified similarly and an overall
CSR of 0.968. Note, that despite the small error rate, all defects were accurately flagged as a
defect for both linear polarizations. Another key result from these data is that the success of the
CNN does not depend upon polarization optimization. Contrast this with Fig. 4 where these
highly directional defects are illuminated using each defect’s optimal linear polarization axis,
e.g., Bx with Y polarization. While defects encountered in nanoelectronics fabrication often defy
such straightforward classification, the presented results demonstrate the versatility of a CNN
approach to addressing the ever-pressing challenge of detecting killer defects.

Table 2. Confusion matrix for λ = 193 nm, ρph = 10000 nm−2, X-polarization, CSR = 0.974 for
multiple defect classification. As is apparent the random draw of 4000 test images did not precisely

select 800 of each class.

Ground Truth \ Inferred no defect Bx By Cx Cy

no defect 802 0 0 0 0

Bx 0 848 0 0 0

By 0 0 646 103 0

Cx 0 0 0 780 0

Cy 0 0 0 0 821
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5. Conclusion

We have applied two data-driven approaches to defect detection, namely linear classifiers and
convolutional neural networks to simulated images computed using normally incident illumination
using three wavelengths. As expected, CNN outperforms both the linear classifier and the SNR,
due to the conservation of spatial information of the images. A very straightforward CNN
approach can be used to extend the defect detectability to smaller defects, even as some are
more than 20 times smaller in one dimension than the inspection wavelength of λ = 193 nm.
Successful classification from an intentional defect array has been demonstrated for these data at
this longer wavelength.
However, the prospects for defect metrology remain challenging at λ = 13 nm despite the

implementation of ML algorithms, partly due to the very low photon density realistically
expected at this wavelength. It has been demonstrated that an increase in photon density can
help to improve the detectability significantly using longer wavelengths for “killer defects” and
further improvements in defect detectability through optimal combinations of illumination angle,
polarization, photon density, defect type, and wavelength can be expected.
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