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ABSTRACT
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Accurate simulation of planetary boundary layer height (PBLH) is key to

greenhouse gas emission estimation, air quality prediction and weather fore-

casting. This manuscript describes an extensive performance assessment

of several Weather Research and Forecasting (WRF) model configurations

where novel observations from ceilometers, surface stations and a flux tower

were used to study their ability to reproduce planetary boundary layer heights

(PBLH) and the impact that the urban heat island (UHI) has on the mod-

eled PBLHs in the greater Washington, D.C. area. In addition, CO2 mea-

surements at two urban towers were compared to tracer transport simulations.

The ensemble of models used 4 PBL parameterizations, 2 sources of initial

and boundary conditions and 1 configuration including the building energy

parameterization (BEP) urban canopy model. Results have shown low biases

over the whole domain and period for wind speed, wind direction and temper-

ature with no drastic differences between meteorological drivers. We find that

PBLH errors are mostly positively correlated with sensible heat flux errors,

and that modeled positive UHI intensities are associated with deeper mod-

eled PBLs over the urban areas. In addition, we find that modeled PBLHs

are typically biased low during nighttime for most of the configurations with

the exception of those using the MYNN parametrization and that these biases

directly translate to tracer biases. Overall, the configurations using MYNN

scheme performed the best, reproducing the PBLH and CO2 molar fractions

reasonably well during all hours, thus opening the door to future nighttime

inverse modeling.
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1. Introduction41

Turbulent mixing drives the transport of mass, heat and momentum in the planetary boundary42

layer (PBL) (Stull (1988)) and, therefore, numerical weather prediction (NWP) models need to43

include PBL parametrizations to ensure that this phenomenon is properly represented. In addition,44

atmospheric transport models rely strongly on the proper representation of the PBL by the NWP45

model driving them to properly account for the mixing of pollutants. These transport models are46

fundamental tools for air quality prediction as well as for the inference of trace gas (pollutant or47

greenhouse gas) sources using top-down approaches (Nisbet and Weiss (2010)).48

Many different PBL schemes are available; they differ from each other by the vertical mixing49

formulation (local vs. non-local) and the closure order. Local schemes only consider adjacent ver-50

tical levels in the fluxes computations, while nonlocal schemes take into account multiple levels,51

often from the surface up to the estimated PBL height, in representing the fluxes through the PBL.52

In addition, PBL schemes are coupled to the surface layer parametrizations, that generally are not53

interchangeable, and strongly influence the near surface variables and PBL mean properties, (Shin54

and Hong (2011)).55

Recent studies have looked at different PBL schemes with the focus of atmospheric transport56

modeling in mind. For example, Angevine et al. (2012) and Feng et al. (2016) studied the per-57

formance of different PBL schemes in the Weather Research and Forecasting (WRF) model along58

with other physics options for the CalNex-2010 campaign (late spring, 2010). Kretschmer et al.59

(2012, 2014) compared the impact of two PBL schemes on CO2 transport over Europe and eval-60

uated them with radiosondes during late summer. Sarmiento et al. (2017) studied the behavior61

of PBL schemes and their interactions with Land Surface models and the land use representation62

over Indianapolis (Indiana, USA) for a month in late winter and a month in summer. Lian et al.63
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(2018) studied WRF PBL schemes and their impacts on CO2 transport for a month in winter over64

Paris (France) area. Dı́az-Isaac et al. (2018) did a comparison of multiple WRF physics schemes65

for a summer month in the Midwest of the United states. Over the Washington DC - Baltimore66

(Maryland, USA) area, WRF PBL schemes were also evaluated as part of the DISCOVER-AQ67

campaign (Hegarty et al. (2018)) during July 2011. These studies demonstrate that there is much68

interest in finding the best performing configuration for WRF so that the errors introduced in trace69

gas transport are minimized. However, the results obtained are somewhat dependent on the region70

and period studied, the observations used for verification, the methods applied to derive PBLH and71

the WRF version.72

PBLH observations are not very common. Their availability is sparse, in space and time, and73

rely strongly on operational radiosondes that sample the PBL only twice a day. This lack of74

measurement data limits understanding of PBL dynamics and validation studies, and therefore pa-75

rameterization development. The introduction of new measurement techniques for mixing height,76

such as those based on ceilometers and particle Lidars, has the potential to be a game changer for77

model validation due to the greater temporal coverage and resolution that they provide. In the last78

few years, Lidar observations and ceilometers have been used to evaluate WRF simulations (Ware79

et al. (2016); Feng et al. (2016); Hegarty et al. (2018)).80

Impervious urban surfaces are characterized by lower albedo, lower specific heat capacity, higher81

thermal conductivity and much smaller rainfall retention than rural surfaces (Oke (1982)). These82

properties cause higher Bowen ratios (larger sensible heat fluxes and lower latent heat fluxes) and83

surface temperatures in the urban landscape and, therefore, induce perturbations in the wind, air84

temperature, water vapor content as well as in the boundary layer height, (Angevine et al. (2003);85

Zhang et al. (2009, 2011)). Understanding how the meteorological models reproduce this feature86

is also essential for atmospheric transport.87

6



The WRF model undergoes continuous development with two releases per year as new mea-88

surements and techniques become available, therefore new comparisons and testing are needed.89

In addition, it is clear from previous studies that there is no single configuration that works best90

under all circumstances and validation for specific areas and periods are required.91

In this work, we intend to better understand the performance of eight configurations of WRF92

over the Washington DC/Baltimore area during winter, to uncover similarities and differences in93

PBL parametrizations regarding PBLH and urban heat island related variables and the impacts on94

tracer transport with the aim of identifying the best performing configuration for the purpose of95

greenhouse gas (GHG) inverse modeling in the North East Corridor - Baltimore / Washington DC96

test bed (Lopez-Coto et al. (2017a)). In Section 2, the eight model configurations as well as the97

surface stations, CO2 measurements,flux tower and ceilometers used for comparison are described.98

In Section 3, the model performance is presented as well as an analysis between the heat island99

produced by each configurations and how it impacts on PBLH. In Section 4, implications of our100

findings on tracer transport and inverse modeling are discussed. Last, in Section 5, the main101

conclusions obtained are highlighted.102

2. Methods103

a. Observational data104

1) SURFACE STATIONS105

The Integrated Surface Database (ISD) consists of global hourly and synoptic observations from106

more than 100 original data sources that collectively archived hundreds of meteorological vari-107

ables. It is compiled by the NOAAs National Climatic Data Center (NCDC) and accessible108

through the web (https://www.ncdc.noaa.gov/isd). The primary data sources include the Auto-109

7



mated Surface Observing System (ASOS), Automated Weather Observing System (AWOS), Syn-110

optic, Airways, METAR, Coastal Marine (CMAN), Buoy, and various others, from both military111

and civilian stations including both automated and manual observations (Smith et al. (2011)).112

More than 14,000 active stations worldwide are updated daily in the database. As described in113

Smith et al. (2011), ISD contains 54 quality control (QC) algorithms, which serve to process114

each data observation through a series of validity checks, extreme value checks, internal (within115

observation) consistency checks, and external (versus another observation for the same station)116

continuity checks. For the month of February 2016 and the domain of interest, six ISD surface117

stations had data with the highest level of quality control flag, Figure 1.118

2) CO2 MEASUREMENTS119

Three towers equipped with Cavity Ring Down Spectrometers are used to measure CO2. The120

sites, NDC, HAL and BUC are located near Washington, D.C., Baltimore, M.D., and a more back-121

ground area in the Delmarva peninsula about 100 km away from the urban centers respectively.122

Further details about the stations, calibration and quality control can be found in Karion et al.123

(2020).124

CO2 enhancements were computed subtracting from each hourly observation, the measurements125

at the background tower (BUC) similarly to other work in urban areas (Lauvaux et al. (2016).)126

3) CEILOMETERS AND PLANETARY BOUNDARY LAYER HEIGHT (PBLH) RETRIEVAL127

Two Vaisala ceilometers were used to derive PBLHs during the period of interest: the CL-31 at128

the National Weather Service (NWS) Sterling Field Support Center (SFSC) in Sterling, VA and129

the CL-51 at Beltsville, MD (HUBV) (Figure 1)130
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Both ceilometers use an InGaAs laser diode with a 910 nm wavelength. They use a single lens131

optics system where the inner part of the lens is employed for transmitting and the outer part for132

receiving light. This system provides a good overlap of the transmitter and the receiver field-of-133

view over the whole measuring range, conferring an improved near-range performance compared134

to two lens systems and allows reliable detection of very low nocturnal stable layers below 200 m.135

The latest model, the CL-51, is equipped with a larger lens and a more powerful laser transmitter136

module. These improvements increase the reporting range and signal-to-noise ratio.137

Thirty-minute averaged two-way attenuated backscatter profiles with a vertical resolution of 20138

m from the surface are processed to derive PBL heights using the Wavelet Covariance Transform139

(WCT; Davis et al. (2000); Compton et al. (2013)) method for unstable/neutral conditions and140

the Hybrid-Lowest for stable conditions (Hicks et al. (2015)). The stability was determined in141

base to the averaged low-altitude Bulk Richardson values (below 0.2 km); values lower than -142

0.01 were considered unstable, near neutral if between or equal to -0.01 and 0.01, and stable if143

greater than 0.01. The Hybrid-Lowest method is a combination of the WCT method and the Error144

Function-ideal profile (ERF; Steyn et al. (1999)) method. They are combined such that the WCT145

method detects the significant gradient layers and the ERF method determines which of the layers146

correspond to PBL height below significant elevated aerosol layers. We note that the Hybrid-147

Lowest algorithm expects there to be a residual layer at night and attempts to locate the PBL148

height beneath it. In addition, a height constraint based on the lifting condensation level (LCL) is149

applied for both techniques. Details of the methods can be found in Hicks et al. (2015, 2019).150

The PBLHs derived from the ceilometers, as described above, were manually filtered after visual151

inspection by removing those corresponding to rain events and other apparent artifacts on the152

backscatter signals such as a dirty lens or malfunctioning hardware leading to an acceptance rate153

of 77.4 % (N=1100) for SFSC and 73.4 % (N=1043) for HUBV.154
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In Hicks et al. (2015, 2019) the consistency rate (Co) parameter was defined as the percentage155

of the ceilometer PBLH observations that measured within ± 300 m when compared to radioson-156

des. The consistency rate reported in these previous works for the PBLH retrieval methods em-157

ployed was 65 % for unstable conditions and 74 % for stable conditions. These comparisons were158

performed in the context of the NWS CL31 Planetary Boundary Layer project, (Atkinson et al.159

(2017)). Here we use the consistency rate (Co) parameter to compare the simulated PBLH to the160

ceilometer observations.161

4) FLUX TOWER162

At HUBV, a micrometeorological tower has been collecting micrometeorological parameters163

since 2006. The campus is located in a complex suburban/rural/industrial landscape, however, the164

campus itself has minimal urban development, and it is principally covered by a mix of deciduous165

(maple and mixed oak) and coniferous (mainly Virginia Pine) trees. At the tower, fast response166

instruments measure variables such as wind speed, temperature (CSAT, Campbell Scientific), wa-167

ter vapor, and CO2 concentrations (LI7500, LICOR Inc) at 31.5 m above ground level (∼ 15 m168

above the canopy). Before the eddy covariance technique (Stull (1988)) is used to estimate turbu-169

lent fluxes, a flow rotation to the wind field is applied (McMillen (1988)). Also, scalar fluxes are170

corrected due to density fluctuations (Webb et al. (1980)).171

b. Model configurations172

1) METEOROLOGICAL MODEL173

Simulations for the month of February 2016 were conducted with the Weather Research and174

Forecasting (WRF) model. February was selected because is a representative month of winter175

in the study area. In addition, inverse modeling studies are carried out mostly during winters176
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so that biogenic activity is small and cause little influence on CO2 estimated fluxes. The Ad-177

vanced Research WRF (ARW) core uses fully compressible, non-hydrostatic Eulerian equations178

on an Arakawa C-staggered grid with conservation of mass, momentum, entropy, and scalars (Ska-179

marock et al. (2008)).180

Two datasets were tested as initial and boundary conditions: North America Regional Reanalysis181

(NARR) three hourly data (Mesinger et al. (2006)) and High Resolution Rapid Refresh (HRRR)182

model hourly analyses (Benjamin et al. (2016)) following Blaylock et al. (2017), both provided183

by the National Center for Environmental Prediction (NCEP). As in Lopez-Coto et al. (2017b),184

the model was configured with 3 nested domains (with feedback) of 9, 3 and 1 km horizontal185

resolution respectively. However, for the case of HRRR, only two domains were used being 3 and186

1 km horizontal resolution. 60 vertical levels with monotonically increasing thickness from the187

surface resulted in 34 levels below 3 km for better boundary layer representation. Adaptive time188

step was selected with a Courant-Friedrichs-Lewy (CFL) criterion of 1. The RRTMG radiation189

scheme, (Mlawer et al. (1997)), Thompson microphysics scheme, (Thompson et al. (2004, 2008)),190

Noah land surface model, (Chen and Dudhia (2001)) and the Kain-Fritsch cumulus scheme, for191

the 9 km domain only, (Kain (2004)) were used and kept constant across configurations.192

Four PBL schemes were compared, three local schemes and one non-local scheme: 1) YSU is193

a nonlocal, first order closure scheme. It includes a countergradient correction term in the down-194

gradient diffusion and represents the entrainment explicitly (Hong et al. (2006)). Later on, Hong195

(2010) removed the counter-gradient flux terms and included other changes for stable boundary196

layers. The PBL height in the YSU scheme is determined from the Rib method calculated from the197

surface to the top of the PBL. A threshold value of zero is used for stable cases, while 0.25 is used198

for unstable conditions. 2) QNSE is a local, 1.5- order local closure, scheme (Sukoriansky et al.199

(2005)). It is intended to account for wave phenomena within stable boundary layers. The QNSE200
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theory is valid for stable stratification and weakly unstable conditions. The PBLH is diagnosed201

based on a TKE threshold. 3) BouLac is also a local, 1.5-order local closure scheme including202

a prognostic equation for TKE, (Bougeault and Lacarrere (1989)). It is designed for use with203

the BEP (Building Environment Parametrization) multi-layer, urban canopy model (Martilli et al.204

(2002); Salamanca et al. (2011a,b)). BouLac diagnoses PBL height as the height where the vir-205

tual potential temperature exceeds the surface virtual potential temperature by 0.5 K. Here we use206

this scheme with and without the BEP parametrization. 4) MYNN is a local scheme (Nakanishi207

and Niino (2004, 2006)). In particular, we tested the 1.5- order closure scheme (MYNN2). The208

expressions of stability and mixing length are based on the results of large eddy simulations rather209

than on observations. In recent years, MYNN has undergone extensive development, including the210

addition of BouLac mixing length in the free atmosphere, changing the turbulent mixing length to211

be integrated from the surface to the top of the boundary layer plus a transition layer depth, the212

addition of a scale-aware mixing length following Ito et al. (2015) and the addition of an eddy213

mass-flux option (Angevine et al. (2018); Olson et al. (2019)) that confers to this scheme some214

non-local characteristics as well. For the PBL height diagnosis, a hybrid method is used, which215

blends a theta-v-based definition in neutral/convective boundary layer and a TKE-based definition216

in stable conditions. We tested here MYNN with and without the eddy mass-flux option.217

The land-use classification plays a role in the model since it determines the values for the surface218

properties as the roughness length, albedo and heat capacity which are important for the surface219

energy balance and heat and momentum fluxes to the atmosphere. Here we tested two datasets220

available in WRF: The USGS dataset and the more up to date NLCD 2011. The main difference221

between these datasets, as concerns this work, is the representation of the urban land use; in222

the USGS, only one urban category is defined while in the NLCD, four categories exist going223

from developed open space to developed high intensity (Figure 1). For the configuration using224
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the Building Energy Parameterization (BEP) multilayer Urban Canopy Model (UCM) a modified225

version of USGS was used that included 3 urban categories taken from the NLCD dataset where226

the developed open space and low intensity categories were added together. In addition, the BEP227

specific parameters for Washington, DC, and Baltimore, MD, cities were taken from the NUDAPT228

dataset already included in the WRF data distribution.229

All the options described above total to eight different configurations that were tested here (Table230

1).231

Model-data comparison was performed similarly for each data source. Hourly (or half-hourly)232

measurements for each station were compared to model predictions extracted at the location and233

time of each observation. Then, daily cycles, bias (model - observations), standard deviation of the234

differences and percentiles were computed for all stations together. In the case of the ceilometers,235

metrics for each ceilometer are provided as well as both combined.236

2) TRACER TRANSPORT MODEL237

The CO2 transport was simulated similarly to Lopez-Coto et al. (2017a). We used the Stochastic238

Time-Inverted Lagrangian Transport model (STILT; Lin (2003); Nehrkorn et al. (2010)), driven239

by meteorological fields generated by four of the configurations described above (MYNN, YSU,240

QNSE, BOUL+UCM). Five-hundred particles were released from both urban sites (NDC and241

HAL) hourly, and were tracked as they moved backwards in time for 24 h. The footprint was242

calculated from the particle density and residence time in the layer that sees surface emissions,243

defined as 0.5 PBLH (Gerbig et al. (2003)) and then convolved with CO2 fluxes provided by244

ACES inventory (Gately and Hutyra (2017)).245

13



3. Results246

a. Surface variables247

Overall, over the month of February, the temperature bias ranged from -0.92 K for MYNNe+nlcd248

to 1.96 K for BOUL+UCM while standard deviation ranged from 1.60 K for YSU to 2.04 K for249

MYNNe and YSU+NARR. Wind speed bias was negative for all but BOUL, ranging from -1.12250

m/s for MYNNe+nlcd to 0.69 m/s for BOUL. The standard deviation ranged from 1.70 m/s for251

YSU and QNSE to 2.16 m/s for BOUL+UCM. Wind direction bias ranged from -5.03o for QNSE252

to 6.43o for BOUL+UCM while standard deviations did from 36.62o for BOUL to 47.12o for253

MYNN (Table 2). It is interesting that by looking at YSU and YSU+NARR, it seems that the254

HRRR driver provided better results; however, by looking at MYNN and MYNNe, the conclusions255

would be the opposite. It is worth noting that due to the circular nature of the wind direction,256

differences larger (lower) than 180o (-180o) were measured in the opposite direction, for example,257

if the model had a wind direction of 175 while the observations were at -160, the difference is258

equal to -25, not 335. This step removes the fat tails of the distribution and makes them much259

more Gaussian and hence gains significance for the mean and standard deviation calculated here.260

In the overall statistics, the urban canopy model decreased the performance of the BouLac261

parametrization for the 3 surface variables analyzed here making it too warm and more variable262

regarding wind speeds and direction errors. In addition, the MYNN scheme showed the largest263

wind direction error variability, especially when it was driven by HRRR. On the other hand, in-264

cluding the eddy mass flux option in MYNN had a positive impact on wind speed and direction265

but using the NLCD dataset caused the model to be colder and reduced the wind speeds.266

The daily cycle of the temperature differences (Fig 2a) reflects that BOUL was too warm during267

nights while during the day the median bias was close to zero. The addition of the UCM did268
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however increase the bias during the day as well. QNSE was colder during nighttime while for269

MYNN and MYNNe the median temperature bias was similar during day and night. The inclusion270

of NLCD caused the temperatures to decrease during day time. The wind speed errors had a271

clear daily cycle for BouLac, with winds being too strong during night time (Fig 2b). The UCM272

corrected this bias at the cost of increasing the (negative) bias during daytime. For the rest of273

configurations, the bias was slightly more negative during daytime but not as marked as for BOUL.274

No significant cycle was observed for the wind direction errors for any configuration (Fig 2c).275

b. Planetary Boundary Layer Heights276

1) OBSERVED PLANETARY BOUNDARY LAYER HEIGHTS277

Figure 3 shows the daily cycle observed at the two ceilometer locations for the month of Febru-278

ary 2016. The observed PBLHs are in good agreement with previous climatological results (Seidel279

et al. (2012)), and more specifically with the results published for the area under study by Hegarty280

et al. (2018).281

Beltsville (HUBV) shows typically higher PBL depths during the day as well as sharper transi-282

tions during the morning and especially during the evening as compared to Sterling (SFSC). This is283

likely due to the more urban surroundings for that location and the typical westerly flows dominant284

over the region that likely transport air masses with deeper PBL from the denser Washington DC285

metro area adjacent to this location (Angevine et al. (2003); Zhang et al. (2009, 2011)). However,286

we also note that the differences between ceilometers between both locations might have played a287

role as well on the observed differences.288
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2) PERFORMANCE OF MODEL CONFIGURATIONS289

Table 3 shows the overall statistics for the PBLH differences for the eight tested configurations290

using both ceilometers together and for each ceilometer independently. For both ceilometers,291

the consistency rate ranged from 52 % for QNSE and BOUL to 60 % for MYNN. The mean292

values were higher than the median values indicating the differences were skewed to higher values.293

In the extreme case, QNSE provided the largest values for all the statistics estimators but the294

lowest consistency parameter. For each ceilometer, the results resemble the global values, showing295

slightly better model performance for Beltsville (HUBV) than for Sterling (SFSC). Reasons for296

that are not clear but it is possible that the Vaisala CL-51 ceilometer at HUBV, which has a better297

signal-to-noise ratio than the CL31 at SFSC, might have achieved a higher quality PBLH retrieval.298

Overall, the three variants of MYNN provided the best consistency rate and the lowest standard299

deviation followed closely by YSU.300

To better understand the performance of each model configuration, we analyzed both the daily301

cycle of the differences (Fig. 2d) and the daily cycle of the relative differences, Figure 4. Noc-302

turnal PBLH bias is typically smaller than daytime values. Although in relative terms, they are303

comparable, or larger at night due to the typically low measured nocturnal PBLH values.304

BOUL provided the lowest nocturnal PBLH values, reaching median bias between -50 % and305

-60 % of the observed values, followed by YSU (- 50%). During daytime, both BOUL and YSU306

performed much better providing median relative bias close to zero. The inclusion of the urban307

canopy parameterization increased PBLH values, slightly improving the BouLac schemes noctur-308

nal performance but at the cost of an increased daytime bias. The QNSE configuration gave the309

largest PBLH values during the day, followed by BOUL+UCM. QNSE performed better during310

nighttime but still over-predicted the PBLH. It also showed the largest IQR. On the other hand,311
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MYNN performed well during most hours, slightly under-predicting PBLH during the evening.312

The usage of NARR driver data did however decrease the MYNN performance during the night313

causing a slight underestimation of the PBLH during these hours. This configuration had also314

the eddy mass flux option activated, however, the decreased nighttime performance cannot be at-315

tributed to it because this option only gets triggered during convective situations. The inclusion316

of the NLCD dataset had a positive impact on the prediction, causing MYNNe+nlcd to be nearly317

unbiased for all hours. Interestingly, most of the configurations showed a noticeable PBLH drop at318

18 EST probably coinciding with the evening transition. It is not clear however whether this result319

is caused by a too quick evening transition in the models or a problem on the retrieved PBLH in320

this complex situation. Overall, MYNN produced the best predictions of the PBLH for all hours.321

c. Surface fluxes322

Table 4 shows the sensible and latent heat flux errors at Beltsville (HUBV). Sensible heat flux323

bias ranged from -23 W m-2 for MYNN to 12 W m-2 for MYNNe+nlcd while the standard devi-324

ation ranged from 86 W m-2 for YSU+NARR to 97 W m-2 for BOUL+UCM. For the latent heat325

flux, the bias ranged from -11 W m-2 for MYNNe+nlcd to 21 W m-2 for QNSE. The standard326

deviation ranged from 57 W m-2 for BOUL+UCM to 65 for W m-2.327

The daily cycle of the sensible heat flux differences (Fig 2e) shows that all the configurations328

are nearly unbiased from 17 EST to 7 EST with the exception of MYNNe+nlcd, which shows a329

slight positive bias during those hours. During daytime, the model performance is more variable:330

YSU, YSU+NARR, MYNNe, BOUL and QNSE are nearly unbiased during the morning while331

showing negative bias during the afternoon; MYNN shows negative bias during all daytime hours,332

being the largest in the afternoon; BOUL+UCM presents positive bias during all daytime, being333

the largest during the late morning and MYNNe+nlcd is nearly unbiased during these hours.334
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The daily cycle of the latent heat flux differences (Fig 2f) shows a similar behavior during non-335

daylight hours (17 - 7 EST) as in the previous case with very little to no bias for all the schemes.336

However, in this case MYNNe+nlcd and BOUL+UCM are the best performing configurations337

with almost zero bias while the rest show a slightly positive bias. During daytime hours, all338

the configurations show a positive bias that is the largest close to noon, with the exception of339

MYNNe+nlcd which has a negative bias.340

Figure 5 presents a scatter plot of the mean daily cycle of PBLH differences vs. the sensi-341

ble heat flux differences. As expected, all configurations show a positive correlation between342

the two, with the exception of BOUL+UCM. However, both the magnitude of the dependence,343

as measured by the slope of a linear model, and the intensity of the correlation, as measured by344

the Pearson correlation coefficient, differs between configurations. BOUL and YSU exhibit the345

largest slope of them all, followed by MYNNe, QNSE, YSU+NARR, MYNN, MYNNe+nlcd346

and BOUL+UCM, which is the only one with negative slope. The correlations are between347

0.66 and 0.8 for MYNN, YSU+NARR, MYNNe, YSU, QNSE and BOUL, but below 0.35 for348

MYNNe+nlcd and BOUL+UCM. This analysis shows that when the model underestimates the349

sensible heat flux, the PBLH tends to be underestimated as well. This is true for all the configura-350

tions but BOUL+UCM and to a lesser extent for MYNNe+nlcd.351

d. Urban Heat Island Effect352

The Urban Heat Island (UHI), computed here as the difference between the area-averaged sur-353

face skin temperature (TSK) for the urban area and the non-urban area, is reproduced similarly354

by all configurations being about 2 - 3 K during nights with a peak during early evening (Fig 6a).355

During the daytime, the median values are close to zero for all configurations but BOUL+UCM356

which showed UHI intensities over 2 K for these hours.As shown by Basara et al. (2008), and by357
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comparison to the rest of the models, the values shown by BOUL+UCM are rather large. Over-358

all, all models reproduced the larger sensible heat fluxes in the urban areas as expected (Wood359

et al. (2013)). However, QNSE and BOUL+UCM showed the largest contrast between urban and360

non-urban sensible heat fluxes (∆HFX) of all configurations being the largest for the latter (Fig361

6c). In addition, the peak was at least three hours earlier than for the rest of configurations. The362

usage of NARR driver data in MYNN caused the sensible heat flux differences between urban and363

non-urban areas to increase while the addition of the NLCD land cover dataset had the opposite364

effect.365

On the other hand, BOUL+UCM had the smallest difference between urban and non-urban latent366

heat fluxes (∆LE) while QNSE had the largest (Fig 6d). The median Bowen ratio over urban areas367

during daytime was between 5 to 15 times larger than those for the non urban areas for most of368

the models, with MYNNe+nlcd being the smallest and QNSE the largest (Fig 6b). These values369

are within the range of observed values but on the large side of the typical ones (Oke (1982)).370

However, BOUL+UCM showed two peaks, at 8 a.m. and 4 p.m. (EST), with values of up to 20371

times those of the non urban areas. This feature is not seen in any other configuration and can be372

attributed to the UCM since the BOUL configuration without UCM behaved similarly to the rest373

of configurations.374

QNSE and BOUL+UCM had consistently the largest PBLH difference between the urban375

and non-urban areas (∆PBLH) while MYNNe+nlcd had the lowest (Figure 7). QNSE and376

BOUL+UCM also had positive ∆PBLH during daytime while the rest of configurations had a377

median value close to zero during these hours. As with the UHI, the maximum differences were378

simulated during the early evening, about 17 - 18 EST depending on the configuration. The us-379

age of NARR driver data as well as the inclusion of the eddy mass flux option in MYNN caused380

the median PBLH differences to decrease. For YSU, ∆PBLH was the most different of all con-381
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figurations having a median value near zero during nighttime but with the distribution skewed to382

negative values indicating that in many occasions the PBL was deeper in the non-urban areas than383

in the urban areas. Attending to the results published by Godowitch et al. (1985) and Angevine384

et al. (2003) and by comparison with the rest of models, this result is not expected and seems odd.385

The reasons for this are not clear because neither the UHI nor the ∆HFX showed a cycle that could386

suggest this type of behavior.387

To understand the relationship between the PBLH differences between the urban and non-urban388

areas and the Urban Heat Island (UHI) intensity, Figure 8 shows a scatter-plot for all simulated389

values for the month of February along with the slope of a linear model between the two variables390

for each model configuration. Overall, negative UHI intensities resulted in deeper PBLs over the391

non-urban areas while positive UHI intensities were associated with deeper PBLs over the urban392

areas, as expected, (Godowitch et al. (1985); Angevine et al. (2003)). This relationship shows a393

somewhat linear trend where larger UHI values resulted in larger PBLH differences between urban394

and non-urban areas for all configurations but YSU. Slopes ranged from -1.8 ± 2.1 m/K for YSU395

to 72.7 ± 2.4 m/K for QNSE. BOUL and BOUL+UCM had higher slopes than MYNN while the396

inclusion of the NLCD dataset reduced the slope considerably from 47.2 to 29.7 m/K. Correlation397

coefficients ranged from 0.02 and 0.06 for YSU and YSU+NARR respectively to 0.65 and 0.64398

for BOUL and MYNNe+nlcd respectively. The rest of the configurations also had correlation399

coefficients larger than 0.5, except for BOUL + UCM, which had a correlation of 0.4.400

The near zero correlation coefficient and slope showed by YSU and YSU+NARR is caused by401

the large hysteresis shown in the median cycle of these two variables for both configurations (Fig-402

ure 9). During night and until late morning, the median UHI intensity decreases while the PBLH403

difference between urban and non-urban areas slightly increases. This behavior is the opposite to404

the rest of configurations and previously published works (Spangler and Dirks (1974); Godowitch405
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et al. (1985); Dupont (1999); Angevine et al. (2003)) where decreasing the UHI intensity results406

in a reduced PBLH difference between urban and non-urban areas.407

4. Implications for tracer transport and inverse modeling408

As expected, the different performance of each configuration is reflected in the tracer transport.409

The daily cycle of the integrated footprint from the STILT model (Figure 10 (a) ) reflects large410

differences between configurations. The strongest daily cycle (largest amplitude) is the one for411

BOUL+UCM while the weakest is for MYNN. During the night BOULC+UCM and YSU behave412

similarly while QNSE and MYNN behave similarly to each other as well. On the other hand,413

during the day the similarities are changed and YSU and MYNN show similar response while414

QNSE resembles the BOUL+UCM values. Indeed, the differences with respect to MYNN (Figure415

10 (b) ) are between 10 to 50 % for YSU and BOUL+UCM during nighttime and about -30 %416

for QNSE and BOUL+UCM during daytime. These differences are reflected in the CO 2 mole417

fraction and thus in the bias as well. Figure 10 (c) shows that mean daily cycle for MYNN is the418

least biased for all hours. During nighttime, MYNN shows a positive bias between 1 to 2 ppm419

while the rest show much stronger biases with up to 6 ppm for BOUL+UCM. During daytime,420

YSU still shows a positive bias about 1 to 2 ppm while MYNN fluctuates around 0 ppm. On the421

other hand, BOUL+UCM and QNSE show negative biases between -1 and -4 ppm depending on422

the hour.423

In general, strong underestimation of PBLH during nights as shown by the configurations tested424

in this work with the exception of MYNN, results in large accumulation of pollutants emitted from425

local sources and thus strong nighttime positive bias. During daytime, the situation is different as426

most models show a small relative PBLH bias. Nevertheless, the CO2 daytime bias is non-zero and427

different in direction depending on the configuration. The smaller daytime bias in most models428
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supports the typical practice in inverse modeling of only using afternoon hours. However, the429

results shown here imply that MYNN has the potential of extending the inversion analysis to430

nighttime as well due to the much smaller biases (and comparable to daytime) during this time of431

the day.432

The fact that positive UHI intensities are associated with deeper modeled PBLs over the urban433

areas and that positive UHI are generally simulated by all models during nights implies that the434

pollutant mixing during these hours in the urban areas is more active than in the rural counterpart.435

In addition, it could also favor the development of urban centripetal circulations, as described in436

Oke (1995), further impacting the pollutant advection. However, the fact that YSU is reproducing437

in many occasions deeper nocturnal PBLHs over the non-urban areas would imply a more active438

mixing outside of the city and the inhibition of the urban centripetal circulation.439

In addition, inverse modeling based on the concept of footprints (observations’ sensitivity to sur-440

face fluxes) relies on Lagrangian Particle Dispersion Models (LPDMs) driven by meteorological441

fields as those generated in this work. The footprints depend mostly on the advection of the par-442

ticles (driven by the wind field), the turbulent mixing (driven by the turbulent velocity variances)443

and the planetary boundary layer height (PBLH). Deeper modeled PBLHs than observed would444

result in artificial dilution of the footprints and, therefore, source term overestimation. In addition,445

some Lagrangian models parametrize the turbulent velocities as a function of the heat flux at the446

surface. The fact that PBLH errors are mostly positively correlated with sensible heat flux errors447

implies that an overestimation of the heat flux will cause an overestimation of the turbulent mixing448

as well as PBLH, having a non-linear impact on the overall strength of the footprints.449
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5. Conclusions450

We show that using ceilometers we were able to analyze the daily cycles of the PBLH and found451

that most PBL schemes largely underestimate PBLH during nights. We also show that with these452

measurements, correlations between PBLH errors and heat fluxes errors can be calculated and453

serve to identify models that do not follow the proper trend. These results could not be obtained454

using operational radiosondes as they are very limited in time (only twice a day).455

We find the BEP urban canopy model did not improve the model performances in general and it456

had an adverse impact on PBLH and sensible heat flux as compared to measurements. The UCM457

partially corrected the Boulac nocturnal positive wind speed bias and negative PBLH bias at the458

cost of increasing the negative bias as well as increasing the positive PBLH bias during daytime.459

In addition, the UHI and ratio urban-rural of Bowen ratio did not compare well with the rest of460

configurations or previously published results.461

We find that modeled PBLHs are typically biased low during nighttime for most of the config-462

urations with the exception of those using the MYNN parametrization. In addition, we find that463

PBLH errors are mostly positively correlated with sensible heat flux errors, and that modeled pos-464

itive UHI intensities were associated with deeper modeled PBLs over the urban areas. Overall, the465

configurations using MYNN scheme performed the best, reproducing the PBLH reasonably well466

during all hours.467

We show that strong underestimation of PBLH during nights results in large accumulation of468

pollutants emitted from local sources and thus strong nighttime positive CO2 bias. However,469

MYNN results suggest that, given the low night-time biases for this model, which are similar in470

magnitude to the daytime biases, an inversion analysis may be extended into nighttime hours.471
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Last, we find that while most of the configurations performed as expected on reproducing the ur-472

ban heat island effect, noticeable differences remain that may have an impact on weather and tracer473

dispersion simulations in urban and regional studies. Further research is needed and experimental474

intensive campaigns must be carried out to address these issues and differences as well as to better475

understand the differences between PBL schemes during other seasons for the Washington, DC, /476

Baltimore, MD, area.477
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TABLE 1. WRF model configurations

Label Version PBL scheme Surface Layer IC/BC Land use Urban canopy model

YSU 3.8 YSU MOST HRRR USGS —

YSU+NARR 3.8 YSU MOST NARR USGS —

MYNN 3.8 MYNN MYNN HRRR USGS —

MYNNe 3.9.1.1 MYNN+edmf MYNN NARR USGS —

MYNNe+nlcd 3.9.1.1 MYNN+edmf MYNN NARR NLCD —

BOUL 3.8 BouLac MOST HRRR USGS —

BOUL+UCM 3.8 BouLac MOST HRRR USGS33 BEP

QNSE 3.8 QNSE QNSE HRRR USGS —
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TABLE 2. ISD statistics mean bias (model - observations), standard deviation (SD) and the interquartile range

(IQR) of the differences. February 2016.

702

703

YSU YSU+NARR MYNN MYNNe MYNNe+nlcd BOUL BOUL+UCM QNSE

Bias 0.09 -0.63 -0.56 -0.55 -0.92 1.26 1.96 -0.71

T (K) SD 1.60 2.04 1.76 2.04 2.00 1.92 2.02 1.62

IQR 1.63 2.16 1.84 2.16 2.33 2.03 2.30 1.68

Bias -0.45 -0.53 -0.88 -0.60 -1.12 0.69 -0.70 -0.91

ws (m/s) SD 1.70 1.81 1.96 1.73 1.72 2.00 2.16 1.70

IQR 2.03 2.17 2.37 2.02 2.12 2.31 2.40 1.99

Bias 1.04 0.99 -1.42 -0.07 -3.27 5.79 6.43 -5.03

wd (o) SD 36.64 42.11 47.12 41.63 43.99 36.62 37.53 40.03

IQR 27.91 36.42 34.76 37.26 42.84 27.49 28.80 29.73
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TABLE 3. Global statistics for the PBLH errors (model minus observed). February 2016.

BOTH YSU YSU+NARR MYNN MYNNe MYNNe+nlcd BOUL BOUL+UCM QNSE

Co (%) 56 55 60 57 59 52 55 52

Mean (m) -38 -73 -57 -32 15 -50 50 152

SD (m) 494 496 462 496 480 519 513 542

Median (m) -93 -119 -72 -89 -47 -126 -25 77

IQR (m) 484 502 460 462 479 516 571 630

SFSC YSU YSU+NARR MYNN MYNNe MYNNe+nlcd BOUL BOUL+UCM QNSE

Co (%) 50 51 58 51 56 46 48 47

Mean (m) -17 -41 -27 -11 43 -15 53 163

SD (m) 497 509 459 528 479 535 523 545

Median (m) -94 -121 -69 -110 -37 -116 -46 96

IQR (m) 579 541 469 530 519 623 655 692

HUBV YSU YSU+NARR MYNN MYNNe MYNNe+nlcd BOUL BOUL+UCM QNSE

Co (%) 63 60 62 63 61 58 61 56

Mean (m) -61 -107 -88 -55 -15 -86 48 139

SD (m) 491 480 463 460 480 499 503 539

Median (m) -91 -114 -77 -80 -56 -133 -9 59

IQR (m) 396 459 440 416 433 411 481 554

38



TABLE 4. Global statistics for the sensible (HFX) and latent (LE) heat fluxes errors (model - observed) at

Beltsville (HUBV) (units: W m-2). February 2016.

704

705

HFX YSU YSU+NARR MYNN MYNNe MYNNe+nlcd BOUL BOUL+UCM QNSE

Mean -13 -15 -23 -16 12 -19 8 -20

SD 90 86 96 89 96 94 97 92

Median -2 -2 -9 -5 16 -7 3 -10

IQR 46 48 56 51 65 57 61 61

LE YSU YSU+NARR MYNN MYNNe MYNNe+nlcd BOUL BOUL+UCM QNSE

Mean 8 9 11 13 -11 13 0.5 21

SD 58 59 61 61 58 58 57 65

Median 5 6 9 8 0.2 11 0.6 12

IQR 23 27 26 30 22 29 16 39

39



LIST OF FIGURES706

Fig. 1. Innermost computational domain (1 km) showing the urban land use categories employed in707

the model: left, USGS and right, NLCD for the area of interest (Washington DC / Baltimore708

region) along with the location of the ISD surface stations and two ceilometers used for709

verification. . . . . . . . . . . . . . . . . . . . . . . . 41710

Fig. 2. Median daily cycle of the differences for (a) temperature, (b) wind speed, (c) wind direction,711

(d) planetary boundary layer heights, (e) sensible heat flux and (f) latent heat flux. Grey lines712

correspond to the rest of configurations not present in the legend. February 2016. . . . . 42713

Fig. 3. Daily cycle for the observed Planetary Boundary Layer Heights (PBLH) at the two ceilome-714

ter locations for the month of February 2016. Red line is the median, blue bar represents the715

first and third quantile and the whisker bars are limited to 1.5 times the IQR. February 2016. . 43716

Fig. 4. Daily cycle of the relative differences for the PBLH, including both ceilometers, for the eight717

configurations tested. Red line is the median, blue bar represents the first and third quantile718

and the whisker bars are limited to 1.5 times the IQR. February 2016. . . . . . . . 44719

Fig. 5. Scatter plot of the mean daily cycle of PBLH differences vs the sensible heat flux differences720

at Beltsville (HUBV). February 2016. . . . . . . . . . . . . . . . . 45721

Fig. 6. Median daily cycle for the (a) urban heat island (UHI), (b) the area averaged Bowen ratio for722

urban areas over Bowen ratio for non-urban areas (βua/βnua), (c) the area averaged sensible723

heat flux difference between urban and non-urban areas (∆HFX) and (d) the area averaged724

latent heat flux difference between urban and non-urban areas (∆LE). Grey lines correspond725

to the rest of configurations not present in the legend. Note that in (b) the black horizontal726

dashed line marks the value 1. February 2016. . . . . . . . . . . . . . . 46727

Fig. 7. Daily cycle for the area averaged PBLH difference between urban and non-urban areas728

(∆PBLH). Red line is the median, blue bar represents the first and third quantile and the729

whisker bars are limited to 1.5 times the IQR. February 2016. . . . . . . . . . . 47730

Fig. 8. Scatter plot and linear model fit of the relationship between the UHI and the ∆PBLH. Febru-731

ary 2016. . . . . . . . . . . . . . . . . . . . . . . . 48732

Fig. 9. Median daily cycle of the UHI and the PBLH difference between urban and non-urban areas733

(∆PBLH). The marked point represents the time 19 EST while the line connects the points734

as the time increases, thus ending at 18 EST. February 2016. . . . . . . . . . . 49735

Fig. 10. Daily cycle of the a) Integrated footprint (ppm), b) relative difference to MYNN (%),c) CO736

2 mean bias (ppm) and, d) CO 2 median bias (ppm) for the two towers and 4 configurations.737

February 2016. . . . . . . . . . . . . . . . . . . . . . . 50738

40



FIG. 1. Innermost computational domain (1 km) showing the urban land use categories employed in the

model: left, USGS and right, NLCD for the area of interest (Washington DC / Baltimore region) along with the

location of the ISD surface stations and two ceilometers used for verification.
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FIG. 2. Median daily cycle of the differences for (a) temperature, (b) wind speed, (c) wind direction, (d)

planetary boundary layer heights, (e) sensible heat flux and (f) latent heat flux. Grey lines correspond to the rest

of configurations not present in the legend. February 2016.
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FIG. 3. Daily cycle for the observed Planetary Boundary Layer Heights (PBLH) at the two ceilometer loca-

tions for the month of February 2016. Red line is the median, blue bar represents the first and third quantile and

the whisker bars are limited to 1.5 times the IQR. February 2016.
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FIG. 4. Daily cycle of the relative differences for the PBLH, including both ceilometers, for the eight config-

urations tested. Red line is the median, blue bar represents the first and third quantile and the whisker bars are

limited to 1.5 times the IQR. February 2016.
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FIG. 5. Scatter plot of the mean daily cycle of PBLH differences vs the sensible heat flux differences at

Beltsville (HUBV). February 2016.
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FIG. 6. Median daily cycle for the (a) urban heat island (UHI), (b) the area averaged Bowen ratio for urban

areas over Bowen ratio for non-urban areas (βua/βnua), (c) the area averaged sensible heat flux difference be-

tween urban and non-urban areas (∆HFX) and (d) the area averaged latent heat flux difference between urban

and non-urban areas (∆LE). Grey lines correspond to the rest of configurations not present in the legend. Note

that in (b) the black horizontal dashed line marks the value 1. February 2016.
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FIG. 7. Daily cycle for the area averaged PBLH difference between urban and non-urban areas (∆PBLH). Red

line is the median, blue bar represents the first and third quantile and the whisker bars are limited to 1.5 times

the IQR. February 2016.
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FIG. 8. Scatter plot and linear model fit of the relationship between the UHI and the ∆PBLH. February 2016.
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FIG. 9. Median daily cycle of the UHI and the PBLH difference between urban and non-urban areas (∆PBLH).

The marked point represents the time 19 EST while the line connects the points as the time increases, thus ending

at 18 EST. February 2016.
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FIG. 10. Daily cycle of the a) Integrated footprint (ppm), b) relative difference to MYNN (%),c) CO 2 mean

bias (ppm) and, d) CO 2 median bias (ppm) for the two towers and 4 configurations. February 2016.
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Figure S1. Daily cycle of the differences for the Temperature, including all ISD stations, for

the eight configuration tested. Red line is the median, blue bar represents the first and third

quantile and the whisker bars are limited to 1.5 times the IQR.
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Figure S2. Daily cycle of the differences for the wind speed, including all ISD stations, for

the eight configuration tested. Red line is the median, blue bar represents the first and third

quantile and the whisker bars are limited to 1.5 times the IQR.
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Figure S3. Daily cycle of the differences for the wind direction, including all ISD stations,

for the eight configuration tested. Red line is the median, blue bar represents the first and third

quantile and the whisker bars are limited to 1.5 times the IQR.
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Figure S4. Daily cycle of the differences for the PBLH, including both ceilometers, for the

eight configuration tested. Red line is the median, blue bar represents the first and third quantile

and the whisker bars are limited to 1.5 times the IQR.
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Figure S5. Daily cycle of the differences for the Sensible Heat Flux (HFX) at Betsville for

the eight configuration tested. Red line is the median, blue bar represents the first and third

quantile and the whisker bars are limited to 1.5 times the IQR.
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Figure S6. Daily cycle of the differences for the Latent Heat Flux (LE) at Betsville for the

eight configuration tested. Red line is the median, blue bar represents the first and third quantile

and the whisker bars are limited to 1.5 times the IQR.
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Figure S7. Daily cycle for the Urban Heat Island (UHI) for the eight configuration tested.

Red line is the median, blue bar represents the first and third quantile and the whisker bars are

limited to 1.5 times the IQR.
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Figure S8. Daily cycle for the area averaged Sensible heat flux difference between urban and

non-urban areas (∆HFX). Red line is the median, blue bar represents the first and third quantile

and the whisker bars are limited to 1.5 times the IQR.
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Figure S9. Daily cycle for the area averaged Latent heat flux difference between urban and

non-urban areas (∆LE). Red line is the median, blue bar represents the first and third quantile

and the whisker bars are limited to 1.5 times the IQR.
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Figure S10. Daily cycle for the area averaged Bowen ratio for urban areas over Bowen ratio

for non-urban areas (βua/βnua). Red line is the median, blue bar represents the first and third

quantile and the whisker bars are limited to 1.5 times the IQR. Black horizontal dashed line

marks the value 1.


