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Abstract
The modified residual entropy scaling approach
has been shown to be a successful means of scal-
ing dense phase transport properties. In this
work, we investigate the dilute-gas limit of this
scaling. This limit is considered for model po-
tentials and highly accurate results from calcu-
lations with ab initio pair potentials for small
molecules. These results demonstrate that with
this approach, the scaled transport properties of
noble gases can be collapsed without any em-
pirical parameters to nearly their mutual un-
certainties and that the scaled transport prop-
erties of polyatomic molecules are qualitatively
similar, and for sufficiently high temperatures
they agree with “universal” values proposed by
Rosenfeld in 1999. There are significant quan-
titative differences between the model poten-
tials and real fluids in these scaled coordinates,
but this study provides a thorough coverage of
model fluids and simple real fluids, providing
the basis for further study. In the supporting
information we provide the collected calcula-
tions with ab initio pair potentials from the lit-
erature, as well as code in the Python language
implementing all aspects of our analysis.

1 Introduction
In 1977, Rosenfeld1 proposed that the
macroscopically-reduced transport properties
in the liquid phase ought to be uniquely speci-
fied by their residual entropy (sometimes called
“excess entropy”, which is misleading because
that term has a different meaning in chem-
ical thermodynamics). The macroscopically
reduced transport properties are defined by2

λ̃ ≡ λ

kBρ
2/3
N

√
kBT/m

(1)

η̃ ≡ η

ρ
2/3
N

√
mkBT

(2)

D̃ ≡ ρ
1/3
N D√
kBT/m

(3)

where λ is the thermal conductivity, η is the
viscosity, D is the self-diffusion coefficient, ρN
is the number density in particles per volume,
m is the mass of one particle, kB is Boltzmann’s
constant, and T is the absolute temperature.

For the model potentials, reduced (starred)
units are used, which results in the identi-
cal definitions for the macroscopically reduced
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transport properties of

λ̃ =
λ∗

(ρ∗)2/3
√
T ∗

(4)

η̃ =
η∗

(ρ∗)2/3
√
T ∗

(5)

D̃ =
(ρ∗)1/3D∗

√
T ∗

=
(ρ∗D∗)

(ρ∗)2/3
√
T ∗

(6)

where λ∗ = λσ2/(kB
√

ε/m), D∗ =

D/(σ
√
ε/m), η∗ = ησ2/

√
mε, ρ∗ = ρNσ

3,
T ∗ = kBT/ε, and ρ∗D∗ = (ρND) · (σ2/

√
ε/m).

The variable ε is the energy scaling parameter,
and σ is the length scaling parameter.

In 1999, Rosenfeld3 noted that for dilute gases
of finite density the macroscopically-reduced
transport properties should be proportional to
the residual entropy to the power of 2/3, based
on a study of inverse power law potentials.
An empirical scaling approach that satisfies the
necessary behavior in the liquid phase1 and the
gas phase3 is to multiply the macroscopically-
reduced transport properties by the residual en-
tropy to the power of 2/3, and use this scaling
throughout the entire fluid domain. This ap-
proach was first proposed by Bell,4 and sub-
sequently applied to the Lennard-Jones 12-6
fluid.2 Thus the +-scaled transport properties
are given by

η+ ≡ η̃ · (−sr/kB)
2/3 (7)

λ+ ≡ λ̃ · (−sr/kB)
2/3 (8)

D+ ≡ D̃ · (−sr/kB)
2/3 (9)

These scaled transport properties have the
characteristic that they are well-conditioned in
the zero-density limit (our focus in this work)
and do not diverge at zero density like the
scaled coordinates of Eqs. (1) to (3). Addi-
tionally, the +-scaled transport properties also
demonstrate a nearly monovariate dependence
on the residual entropy −sr/kB from the low-
density gas into the deeply supercooled liquid
for nonassociating fluids.

As derived in Bell et al.,2 in the zero-density
limit, these +-scaled transport properties can
be rewritten in terms of second virial coeffi-

cients B2, and given as

lim
ρN→0

η+ =
ηρN→0√
mkBT

[
T

(
dB2

dT

)
+B2

]2/3
(10)

lim
ρN→0

λ+ =
λρN→0

kB
√
kBT/m

[
T

(
dB2

dT

)
+B2

]2/3
(11)

lim
ρN→0

D+ =
(ρND)ρN→0√

kBT/m

[
T

(
dB2

dT

)
+B2
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(12)

or in reduced (starred) units

lim
ρN→0

η+ =
η∗ρN→0√

T ∗

[
T ∗
(
dB∗

2

dT ∗

)
+B∗

2

]2/3
(13)

lim
ρN→0

λ+ =
λ∗
ρN→0√
T ∗

[
T ∗
(
dB∗

2

dT ∗

)
+B∗

2

]2/3
(14)

lim
ρN→0

D+ =
(ρ∗D∗)ρN→0√

T ∗

[
T ∗
(
dB∗

2

dT ∗

)
+B∗

2

]2/3
(15)

in which B∗
2 = B2/σ

3.
The scaling proposed here has some similar-

ities with that of the hard sphere scaling, an
approach (along with its empirical modifica-
tions) that has seen extensive study in the past
decades. The review of Silva and Liu5 provides
an extensive discussion of how the hard sphere
scaling of transport properties has been applied
to a range of molecular systems.

The exponent on the residual entropy of 2/3,
obtained from a consideration of dilute particles
modeled with inverse power law potentials,2,3

does not currently have any broader signifi-
cance in entropy scaling. Mode-coupling the-
ory predicts that the shear viscosity should be
proportional to the shear rate to the power of
3/2, though recent simulations have called that
exponent into question.6 There remain many
unanswered questions in the field of entropy
scaling of transport properties, so a connection
between shear rate and residual entropy could
exist, but it is not self-evident.

The term
[
T

(
dB2

dT

)
+B2

]2/3
corresponds to
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an effective cross-sectional area of the molecule5

which monotonically decreases with the tem-
perature (see Fig. 6). In the Modified Enskog
theory7 (see also Section 9.3.2 of Ref. 5), the ef-

fective second virial coefficient T
(
dB2

dT

)
+B2 is

used within the Enskog theory for hard spheres,
and is obtained by replacing the pressure for the
hard sphere by the thermal pressure of the real
fluid (where the thermal pressure is defined by
T (∂p/∂T )ρ).

In order to calculate the +-scaled transport
properties in the zero-density limit, it is neces-
sary to be able to evaluate the transport proper-
ties (η, λ, ρND), the second virial coefficient B2,
and the temperature derivative of B2. Equiva-
lently, reduced (starred) units can be employed.

Applying the term residual entropy scaling to
the zero-density limit is a misnomer because the
residual entropy is by definition always zero at
zero density. Nonetheless, the scaling we in-
vestigate in this work flows directly from the
discoveries made in the modeling of the trans-
port properties of dense phases from residual
entropy scaling.

The primary focus of this work is to inves-
tigate the behavior of these scaled transport
properties in the limit of zero density for a
range of different types of interactions between
molecules. In Section 2 we consider model pair
potentials from fully repulsive (inverse power
law, hard sphere, and EXP), to pair poten-
tials with repulsion and attraction (Mie, EXP-
6), and potentials with attraction, repulsion
and dipolar interactions (Stockmayer). In Sec-
tion 3 we consider the results from highly accu-
rate ab initio calculations for noble gases and
small polyatomic molecules. The overarching
theme is to identify similarities and differences
between the model potentials and real fluids
in this new scaling framework for zero-density
limit transport properties.

2 Model Potentials
The model potentials discussed in this section
are relatively simple, spherically symmetric pair
interactions. These simple models, while they

do not fully capture the interactions between
molecules, are commonly used to probe the
physics of real substances.

2.1 Second Virial Coefficients
For spherically symmetric pair interactions
with a potential V that is uniquely a function of
distance r, the second virial coefficient B2 can
be expressed by the integral

B2 = 2π

∫ ∞

0

[
1− exp

(
−V (r)

kBT

)]
r2dr (16)

For more complex pair potentials (e.g., the
Stockmayer potential), Eq. (16) is generalized
so that the integrand at each value of r is av-
eraged over all mutual orientations of the two
molecules.

For simple model potentials, it is common8–10

that the result of the integration is a closed-
form infinite summation. Variable-numerical-
precision libraries exist that can be used to cal-
culate B2 to any desired level of accuracy. Tem-
perature derivatives of B2 can be obtained by
taking the temperature derivative of the inte-
grand of Eq. (16) and performing a similar nu-
merical integration. Where closed-form solu-
tions for B2 exist, they are used, and complex
step derivatives11,12 are used to evaluate the
temperature derivative of the closed-form solu-
tions. Direct numerical evaluation of Eq. (16)
can be useful to verify an implementation’s cor-
rectness.

Equation (16) assumes classical mechanics;
for real fluids (especially those of low mass
and/or moment of inertia, and especially at
low temperatures) quantum effects are signif-
icant. It is usually adequate to include quan-
tum corrections by a first-order approach that
replaces V (r) in Eq. (16) by an “effective” po-
tential depending on the gradients of the poten-
tial and the related reduced mass and torques.
In this work, no quantum effects were applied
to the model potentials. Values of B2 for the
more realistic ab initio potentials considered
in Section 3 typically employed at least first-
order quantum corrections; in some cases (as
explained in the cited papers) more complete

3



accounting of quantum effects was performed.
In this work we have chosen to non-

dimensionalize the temperature by the Boyle
temperature of the fluid instead of its critical
temperature. In the zero-density limit, the crit-
ical region has only an incidental connection to
the nature of the fluid, while the Boyle tem-
perature is much more meaningful. The Boyle
temperature corresponds to the temperature at
which the second virial coefficient is equal to
zero; i.e., the temperature at which the first
derivative of the compressibility factor Z with
respect to density is zero. Physically, this tem-
perature can be interpreted as the temperature
at which the attractive and repulsive forces in
the low-density gas phase are perfectly bal-
anced on average. The Boyle temperature is
connected to the critical temperature because
in the end, all properties are manifestations
of the interactions between molecules. This
connection is the origin of approaches like that
of Tsonopoulos13 to obtain generalized forms
for the virial coefficients (and therefore, Boyle
temperatures) based on the critical point of the
fluid.

2.2 Transport Properties
In the first-order approximation, the transport
properties are given as

[ηρN→0]1 =
5

16σ2

(
mkBT

π

)1/2
1

Ω(2,2)∗

(17)

[λρN→0]1 =
75

64σ2

(
k3
BT

mπ

)1/2
1

Ω(2,2)∗ (18)

[(ρND)ρN→0]1 =
3

8σ2

(
kBT

mπ

)1/2
1

Ω(1,1)∗ (19)

or in starred units

[η∗ρN→0]1 =
5

16
√
π

√
T ∗

Ω(2,2)∗ (20)

[λ∗
ρN→0]1 =

15

4
[η∗ρN→0]1 (21)

[(ρ∗D∗)ρN→0]1 =
3
√
T ∗

8
√
πΩ(1,1)∗ (22)

Higher-order Sonine corrections are available
for some but not all of the model potentials,
and as a result, we have decided to consistently
use the first-order approximation for all model
potentials.

The collision integrals Ω(1,1)∗ and Ω(2,2)∗ must
be obtained by numerical approaches for all but
the simplest fully repulsive potentials. For each
of the model potentials described, the litera-
ture source employed for the collision integral
is described. Usually the collision integrals are
tabulated, and then interpolation is used to ob-
tain the value of the collision integral at inter-
mediate values. The transport property effec-
tive area (σ2Ω(2,2)∗ for η and λ, and σ2Ω(1,1)∗

for D) monotonically decreases with increas-
ing temperature (see Fig. 6) in an analogous
fashion to that of the virial coefficient effective
area. At high temperatures, the ratio of these
effective area terms is nearly constant, which is
why the +-scaled transport properties approxi-
mately approach a horizontal asymptote.

The collision integrals appearing in the above
equations are usually calculated with the as-
sumption of classical mechanics, although a
complete quantum calculation is possible for
spherically symmetric potentials. In Section 3,
we use quantum-calculated collision integrals
for helium and neon, and classical values for all
other molecules. Unfortunately, in contrast to
the calculation of B2, no viable approach has
been developed to apply quantum corrections
to transport collision integrals; this introduces
an unknown but probably small amount of in-
consistency in our analyses in Section 3.

2.3 Fully Repulsive Potentials
Fully repulsive potentials are those for which
V (r) > 0 and dV /dr ≤ 0 at all values of r.
Their thermodynamic behavior is simplified be-
cause they do not have a vapor-liquid phase
transition. Their second virial coefficients are
always positive, because V (r) > 0 means that
the integrand in Eq. (16) is positive. Here
we consider the inverse-power-law (IPL), hard-
sphere, and EXP potentials.

The inverse-power-law (IPL) potential is
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given by
V (r) = ε

(σ
r

)n
(23)

in which V is the potential in units of energy,
ε is the energy scaling parameter, r is the dis-
tance between particles, σ is the length scaling
parameter (not to be confused with the diame-
ter), and n is the “hardness” of the potential, all
parameters being positive. The EXP potential
is given by

V (r) = ϕ0 exp(−r/σ) (24)

in which ϕ0 is the energy scaling parameter, r
is the distance between particles, and σ is the
length scaling parameter.

In the +-scaled coordinates described above,
the transport properties of the IPL potential
have no temperature dependence because the
temperature dependence of the collision inte-
gral is perfectly canceled by the temperature
dependence of the virial coefficient contribu-
tion. The values for η+, λ+, and D+ are given
by numerical integrations, and tabulated values
(and the requisite code in Python to evaluate
them) are available in the SI of Bell et al.2

The zero-density properties of the EXP po-
tential were studied in the 1950s and 1960s,
and evaluation of its virial coefficients and con-
vergent series expansions approximations to its
virial coefficients are available in Sherwood and
Mason14 and Henderson and Oden.15 Values of
the collision integrals Ω(1,1)∗ and Ω(2,2)∗ are pro-
vided in Monchick17 in tabular form and are in-
terpolated to calculate the transport properties
of the EXP potential. Section 1.1 in the SI sum-
marizes the necessary mathematics to evaluate
these models for the EXP potential. The length
scale parameter of the EXP potential cancels,
leaving ϕ0/kB as the temperature scaling pa-
rameter. Even so, there is only a single curve
for the EXP potential capturing all values of
ϕ0/kB.

In Fig. 1 we show the scaled viscosity and self-
diffusion coefficient for a range of IPL potentials
and the EXP potential. The hard sphere case
is the limiting value (n → ∞) of the IPL po-
tential.
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Figure 1: Scaled viscosity and self-diffusion co-
efficient for IPL potentials of hardness n, the
hard sphere (IPL with n = ∞), and the EXP
potential.

2.4 Mie Potential
Pair potentials that include the effects of at-
traction and repulsion more faithfully represent
the properties of real fluids. The Mie family is
formed as a scaled difference of two IPL poten-
tials in which both of the IPL exponents n and
m are adjustable parameters:

V (r) = Cε
[(σ

r

)n
−
(σ
r

)m]
(25)

with
C =

(
n

n−m

)( n

m

)m/(n−m)

(26)

The Mie potential contains the well-known
Lennard-Jones 12–6 potential (a Mie potential
with n = 12 and m = 6). The exponent 6 of the
Lennard-Jones 12–6 potential can be derived
from theory,18,19 while the repulsive exponent
n is usually an empirical parameter.

The B∗
2 of the n–6 Mie potential (see Eq. (25))

is obtained from the closed-form infinite series
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solution of Sadus,8,9 truncated at 200 terms,
and the temperature derivative of B∗

2 is ob-
tained by complex step derivatives. A similar
formulation for B∗

2 was available as far back as
the year 1924.20 The collision integrals for the
n–6 Mie potentials are obtained from the em-
pirical correlation of Fokin et al.21 (In the work
of Fokin et al. it should be ln(m) rather than
ln(1/m) in Eq. 4b).
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Figure 2: Scaled viscosity and self-diffusion co-
efficient for Mie n–6 potentials in the first-
order approximation for the transport proper-
ties. The dashed line for each Mie potential
corresponds to the value for the IPL potential
of hardness n; this is the infinite temperature
limit for each Mie potential.

Figure 2 shows η+ and D+ in the zero-density
limit. The Mie potential has both attraction
and repulsion and therefore the Boyle tempera-
ture can be calculated, and the temperatures
for each potential are scaled by their Boyle
temperature. These results demonstrate that
changing the repulsive exponent of the Mie po-
tential has only a relatively modest impact on
the +–scaled transport properties. The rela-
tive change in the value of the +-scaled prop-
erties at high temperatures is intimately linked

to the relative change in the IPL potential val-
ues of hardness n because they are the high-
temperature limits of the respective n–6 Mie
potential. The minimum value of the potential
only shifts by a small amount.

The +-scaled transport properties of the Mie
potential approach a constant value at high
temperatures; this is unlike the behavior for
real substances. In the case of noble gases,
as temperature is increased, they approach the
high-temperature behavior of the EXP poten-
tial rather than the behavior of an IPL poten-
tial of fixed hardness (see Fig. 7). Another way
of saying this is that the effective Mie exponent
changes as a function of temperature for real
fluids at high temperatures. The Mie potential
itself (see Ref. 8, Fig. 2) bears a qualitative
resemblance to the scaled transport properties
shown in Fig. 2. While intriguing, we cannot
think of any deeper physical significance to this
similarity.

2.5 EXP-6 Potential
It is known that the Mie potentials are not the
ideal model for the repulsive part of the pair
potential; an exponential function is more suit-
able. The generalized EXP-6 potential has the
r−6 attractive term along with an exponential
repulsive term.

The EXP-6 potential22,23 is given by

V (r) =
ε

1− 6
α

[
6

α
exp

(
α

(
1− r

rm

))
−
(rm
r

)6]
(27)

in which ε is the energy scaling parameter, α is
the scalar parameter controlling the repulsion
of the potential, r is the distance between par-
ticles, and rm is the separation at which the po-
tential is at its minimum. When the attractive
part of the potential is neglected (or when its
influence becomes negligible at very high tem-
peratures), the EXP-6 potential reduces to an
EXP potential.

The B∗
2 values are obtained from tabulated

values from Rice and Hirschfelder,22 and colli-
sion integrals were taken from Mason23 in tab-
ular form. A brief description of the mathemat-
ics required for the EXP-6 results is provided in
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the SI (Section 1.2).
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Figure 3: Scaled viscosity and self-diffusion
coefficient in the first-order approximation for
EXP-6 potentials and the Lennard-Jones 12-6
potential.

Figure 3 shows the scaled transport properties
for the EXP-6 potential for a range of hard-
nesses α. Just like real noble gases, the val-
ues of η+ do not approach a constant value at
high temperature, and their high-temperature
limit is the EXP potential (an EXP-6 potential
without the r−6 attractive term). The values
of D+ on the other hand are very similar and
also similar to those of the Lennard-Jones 12-6
potential.

2.6 Stockmayer Potential
The classical 12-6-3 Stockmayer pair potential
is the Mie 12-6 potential with the subtraction
of an orientation-dependent point dipole con-
tribution,

V (r, θ1, θ2, ϕ) = 4ε

[(σ
r

)12
−
(σ
r

)6]
−Vµ (28)

where

Vµ

ε(µ∗)2
(σ
r

)3 = [2 cos θ1 cos θ2−sin θ1 sin θ2 cosϕ]

(29)
The reduced dipole moment, expressed in Sys-
tème International units, is

(µ∗)2 =
µ2

4πϵ0εσ3
, (30)

in which µ is in C·m, σ is in m, ε is in J, ϵ0 is the
vacuum permittivity (also known as the elec-
tric constant), with the value of 8.8541878128×
10−12 C2·N−1·m−2 (see ref. 24, an updated value
from that of ref. 25).

For the virial coefficient, we use the closed
form solution of Bartke and Hentschke,26 with
additional terms in the series expansion as de-
scribed in the SI (Section 1.3). Other closed-
form implementations can be found in the lit-
erature,27–30 but it was not possible to evalu-
ate these models due to typographical errors
and/or insufficient description. Tabulated val-
ues of B∗ are available in Hirschfelder et al.32

for verification purposes.
The evaluation of B∗

2 from the formulation of
Bartke and Hentschke26 requires a significant
amount of computational effort due to the large
number of indefinite integrals required. In or-
der to save computational time, Chebyshev ex-
pansions of degree 100 of (T ∗dB∗

2/dT
∗ +B∗

2)
2/3

as a function of T ∗ were constructed with the
ChebTools library33 and evaluated to obtain
the virial coefficient contribution. One expan-
sion was constructed for each of the values of
(µ∗)2 included in Monchick and Mason.34

For the transport properties, Monchick and
Mason34 tabulated values of the collision in-
tegrals Ω(2,2)∗ and Ω(1,1)∗ for selected values of
(µ∗)2, from which the transport properties can
be evaluated by interpolation of the collision in-
tegrals. It should be noted that Monchick and
Mason obtained their values for the collision in-
tegrals in an approximate manner. First, they
calculated values for the collision integrals for
fixed angular orientations of the particles in the
same way as for particles interacting through
a spherically-symmetric potential. Then, they
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averaged the collision integrals over the angular
orientations. This approximation (commonly
known as the “Mason–Monchick approxima-
tion”) corresponds to the unphysical assump-
tion that the relative orientations of the two
particles do not change during the collision pro-
cess. An accurate treatment of the collision
dynamics would, however, result in transport
property values that also depend on the reduced
moments of inertia of the particles.

Figure 4 shows the scaled transport properties
for the Stockmayer potential. As the reduced
dipole moment (µ∗)2 is increased, the devia-
tions from the LJ 12-6 potential increase, and
the limit of zero dipole moment is the LJ 12-
6 potential itself. The inclusion of the point-
dipole shifts the zero-density transport prop-
erties much more significantly than the rela-
tively minor modifications to the repulsive part
of the EXP-6 or Mie potentials. The varia-
tion within the family of Stockmayer potentials
of reduced dipole moments (µ∗)2 approximates
the behaviors of small polar molecules. In ad-
dition, while the Stockmayer potential with re-
duced dipole moment (µ∗)2 of zero (the LJ 12-
6 potential) demonstrates minima for viscosity
and self-diffusion at a value of T/TBoyle ≈ 0.5,
as the dipole moment is increased, the minima
disappear. The disappearance of the minima of
the scaled transport properties for fluids with
greater polarity is consistent with the behavior
seen below (see Section 3) for fluids with some-
what polar interactions.
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Figure 4: Scaled viscosity and self-diffusion
coefficient in the first-order approximation for
12-6-3 Stockmayer potentials of reduced dipole
moment (µ∗)2 and the Lennard-Jones 12-6 po-
tential.

3 Ab Initio Pair Potentials
The intermolecular interactions of real fluids
are more complicated than the “toy” poten-
tials described above. Therefore, extensive ef-
forts have been invested, particularly in the
last decade, to model the zero-density transport
properties and virial coefficients of real fluids
from first principles.

The potential energy surface between a pair
of molecules is a function of distance and ori-
entation. Points on the surface are generated
by computing the energy of the pair and sub-
tracting the energies of the isolated monomers.
Attainment of high accuracy requires the use
of large basis sets and of ab initio methods
that account for electron correlation at a high
level (such as CCSD(T), coupled-cluster sin-
gles and doubles with perturbative triples con-
tribution).35 With present computing capabil-
ities, such high-accuracy calculations are only
tractable for pairs where each molecule has
roughly three (or fewer) “heavy” atoms, where
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in this context a heavy atom is anything with
more than two electrons. Typically, thousands
of ab initio points are generated for each pair,
and then these points are fitted to a suitable
function (with attention to necessary boundary
conditions at large and small distances) in or-
der to enable calculation of virial coefficients
and collision integrals.

The ab initio potentials are almost always
developed under the assumption that the
molecules are rigid, although for a few systems
(such as H2O and D2O)36 virial coefficients have
been calculated that incorporate intramolecu-
lar vibration. Molecules with internal confor-
mational degrees of freedom, such as normal
alkanes larger than propane, add enough addi-
tional complication that high-accuracy ab ini-
tio potential energy surfaces are not currently
available; even if they were available the evalu-
ation of collision integrals for such molecules is
currently intractable. We therefore restrict our
work here to molecules that can be treated as
rigid to a good approximation.

3.1 Second Virial Coefficients
The second virial coefficients can be very accu-
rately calculated numerically from ab initio po-
tentials and are usually tabulated at a range of
temperatures. With the exception of 4He,38 the
temperature derivatives of the virial coefficients
were not made available directly in the respec-
tive study. Calculating very accurate smoothed
values of the virial coefficients between tabu-
lated values of temperature is a surprisingly
challenging endeavor, not well suited to con-
ventional interpolation techniques.

Therefore, we used an optimization approach
to fit nonlinear correlation functions to the ab
initio results for B2; one example of this ap-
proach is that of Harvey and Lemmon for or-
dinary water.70 We utilized a similar nonlinear
functional form, given by

B2

B2,scale

=
N∑
i=1

ci(Tscale/T )
ti (31)

where the number of terms N was determined
to suit the given fluid, Tscale is a parameter used

to scale the temperature, and B2,scale is a pa-
rameter used to scale the second virial coeffi-
cient. With this functional form, the tempera-
ture derivative term is equal to

T

(
dB2

dT

)
= B2,scaleT

(
dB2

d
(
Tscale

T

))(d
(
Tscale

T

)
dT

)
(32)

= −B2,scale

N∑
i=1

citi

(
Tscale

T

)ti

(33)

We carried out a hybrid optimization scheme
to obtain the correlations for the second virial
coefficients. The exponents ti were optimized in
an outer evolutionary optimization loop, con-
strained to be in the range (0.2, 20). For each
set of exponents ti, a linear-least-squares fit was
carried out to obtain the best set of coefficients
ci. In this manner, reliable and accurate sec-
ond virial coefficients were obtained for all the
ab initio results. The goal was to reproduce the
second virial coefficient within 0.1% except for
in the vicinity of the Boyle temperature. The
second virial coefficient correlations obtained
and statistics about the goodness of fit are pre-
sented in the SI (Section 2.2). We also provide
the Python script used to fit the correlations.

3.2 Noble Gases
The noble gases represent the simplest
“molecules”. They are spherically symmetric
and form the basis of a significant body of
molecular modeling efforts. It has long been
proposed that corresponding states should ap-
ply to the noble gases, and as such, the pair
potentials should map onto each other with
the appropriate selection of the temperature
scaling parameter ε/kB and the length scaling
parameter σ.

3.2.1 Transport Properties

Figure 5a presents the scaled transport proper-
ties obtained from ab initio calculations for the
noble gases as well as the respective deviations
from the corresponding values for xenon. With
zero adjustable scaling parameters, the viscos-
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Table 1: The references for the virial coefficients, constant volume specific heat correlations, and
transport properties employed in this work as obtained from ab initio calculations. The chemical
formulas are given in Hill System Order, and the molecules are sorted by molar mass. The critical
temperature Tcrit is obtained from the reference equation of state used to obtain cv,0 and the Boyle
temperature TBoyle is obtained by interpolation of the ab initio results for B2. An entry of “TW”
indicates that the values are presented in this work in the SI, and the associated potential energy
surface is indicated by the reference.

Formula Name M / g·mol−1 Tcrit / K TBoyle / K c
(0)
v B2 η λ ρD

4He helium-4 4.0026 5.2 23.2 37 38 38 38 N.A.
CH4 methane 16.0428 190.6 511.4 39 40 41 42 41
H2O ordinary water 18.0153 647.1 1410.9 43 36 44 45 TW46,47

OD2 heavy water 20.0275 643.8 1395.9 48 36 49 49 49
Ne neon 20.1790 44.4 119.5 50 51 51 51 N.A.
N2 nitrogen 28.0135 126.2 325.9 52 TWa 53 53 TW53

C2H6 ethane 30.0690 305.3 759.5 54 55 55 55 55
H2S hydrogen sulfide 34.0809 373.1 944.9 56 57 57 45 57
Ar argon 39.9480 150.7 408.6 58 59 59 59 60
CO2 carbon dioxide 44.0098 304.1 714.3 61 62 62 62 TW62

N2O nitrous oxide 44.0128 309.5 769.5 56 63 63 63 63
C2H4O ethylene oxide 44.0526 468.9 1129.2 64 65 65 65 65
C3H8 propane 44.0956 369.9 881.8 66 67 67 67 67
Kr krypton 83.7980 209.5 574.9 56 68 68 68 68
Xe xenon 131.2930 289.7 794.9 56 69 69 69 69
a: The nitrogen B2 values differ from those of the original publication53 because the treatment of
quantum effects has changed. The treatment of quantum effects for the new values is similar to

that applied for CO2.62
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ity, thermal conductivity, and self-diffusion co-
efficient values of argon, krypton, and xenon
agree within their mutual uncertainty over
nearly the complete temperature range. The
+-scaled standard uncertainty is approximately
0.1-0.4% for krypton (the noble gases are all
similar) for all three transport properties (see
the SI, Section 2.1). Thus the expanded (k = 2
coverage factor) uncertainty for one noble gas
would be 0.2-0.8%, and their mutual uncer-
tainty band would be 0.4-1.6%. The effect
of molecular size is removed because the im-
pact of molecular size on the transport prop-
erty and the virial coefficient contribution ef-
fectively cancel. The curves are not entirely co-
incident, and especially at lower Boyle-reduced
temperatures, the deviations increase. The
gases with non-negligible quantum effects (neon
and helium-4) represent increasing deviations
from the behavior of xenon. When neon and
helium-4 are treated classically, they too fall
back into alignment with the higher noble gases.
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Figure 5: Scaled transport properties for noble gases 4He, Ne, Ar, Kr, and Xe.
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As discussed above, the effective area from
the transport properties and the effective area
from the virial coefficients are approximately
proportional to each other, especially at higher
temperatures. Figure 6 shows that for viscosity
both of the effective areas are of similar mag-
nitude, and as temperature increases, their ra-
tio becomes approximately constant. This is
the origin of the nearly horizontal asymptote
for ηρN→0 in Fig. 5a, though at higher temper-
atures, the curves do begin to curl downwards
and approach the EXP potential (see the next
section).
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Figure 6: Effective areas involved in the +-
scaled viscosity for the noble gases.

3.2.2 High-Temperature Limit

For each of the noble gases without strong
quantum effects, an exponential function of the
form of Eq. (24) was fit directly to the poten-
tial at the smallest inter-particle distances, and
from that the leading coefficient ϕ0/kB was ob-
tained. Figure 7 shows the +-scaled viscosities
of the noble gases along with the EXP poten-
tial plotted as a function of the temperature
scaled by ϕ0/kB. Although there is some varia-
tion due to the fitting of ϕ0/kB, the asymptotic

behavior of the ab initio potentials is to ap-
proach the EXP potential. A similar approach
has also been used in the literature for model-
ing the high-temperature limiting dilute trans-
port properties of noble gases71 and polyatomic
gases.72,73

10 7 10 6 10 5 10 4 10 3

T/( 0/kB)

0.24
0.25
0.26
0.27
0.28
0.29
0.30

+

EXP

Argon
Krypton
Xenon

Figure 7: High-temperature limiting behavior
of the noble gases as compared with the EXP
potential; the value of ϕ0/kB is in the SI (Table
S17).

3.3 Molecules
Polyatomic molecules represent more complex
transport mechanisms due to their internal de-
grees of freedom (rotational and vibrational)
and the much more complex collision dynamics
as a result of the anisotropy of the intermolecu-
lar potential and the possibility of inelastic col-
lisions.

3.3.1 Viscosity and Self-Diffusion

Figure 8 presents the scaled transport prop-
erties calculated from ab initio potentials in
combination with the classical kinetic theory
of molecular gases. From a qualitative stand-
point, the +-scaled self-diffusion coefficient and
viscosity values are rather similar for all fluids.
Rosenfeld3 proposed a universal value for the
dilute gas of finite density of η+ = 0.27± 0.027
based on a consideration of IPL potentials from
hardness n = 4 to n = ∞, which is not far
from the mark, except for at T/TBoyle < 0.5,
at which point the molecular interactions are
strongly influenced by the attraction between
molecules. Similarly, for the self-diffusion coef-
ficient, Rosenfeld’s proposed value3 of D+ =

13



0.37 ± 0.0555 provides significant predictive
power except at temperatures T/TBoyle < 0.5.
The relative similarity of the values for η+ and
D+ among the polyatomic fluids demonstrates
that the addition of intramolecular degrees of
freedom does not have a very significant impact
on the respective scaled transport property. As
demonstrated above for the noble gases, sim-
ply changing the molecular size without chang-
ing the nature of the molecule (consider the n-
alkane series methane, ethane, propane) does
not result in a significant change to the scaled
values.

The deviations in scaled transport properties
between the molecules and the respective value
for nitrogen are within 10% for T/TBoyle > 1 for
all but H2O and D2O. Analogously to the noble
gases, the deviations at lower temperatures for
η+ and D+ increase rather significantly at lower
temperatures as the attractive interactions be-
gin to play a larger role.
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Figure 8: Scaled transport properties for diatomic and polyatomic molecules.
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3.3.2 Thermal Conductivity

The story is rather different for the thermal
conductivity. Figure 8 also shows the values
for the thermal conductivity for the polyatomic
molecules. Intramolecular degrees of freedom
(DOF) have a much more significant impact on
λ+ than for D+ or η+. Thus, the kinetic theory
for monatomic gases, which does not account
for internal DOF at all, usually fails spectac-
ularly for molecular gases. However, the ki-
netic theory of molecular gases (used to obtain
the values shown in Fig. 8) is too complicated
for routine applications, as it requires accu-
rate anisotropic potentials, which became avail-
able only in the last two decades. In addition,
accurate approaches to treat the vibrational
DOF were also found only quite recently (see
Hellmann and Bich45 and references therein).
Therefore, typically researchers have resorted
to empirical or semi-empirical treatments of the
impact of the internal DOF on the thermal con-
ductivity for polyatomic molecules.

In the modified Eucken approach,45,74 the to-
tal thermal conductivity λ is given as the sum
of a contribution from translational modes, and
another from all grouped internal DOF (rota-
tional and vibrational),

λ = λtr + λint (34)

The +-scaled thermal conductivity can be ob-
tained from Eq. (11). A semi-theoretical treat-
ment of λint is needed because the values of
λ for polyatomic molecules vary significantly.
On the other hand, when λint is subtracted off,
the pseudo-translational contribution is more
similar among polyatomic molecules, as we
will show below. As far back as the 1960s
it was already shown that the translational
and internal thermal conductivity contribu-
tions cannot be straightforwardly decoupled in
this manner,45,75 but, to our knowledge, better
theoretically-grounded approaches do not exist
within the ill-suited framework of the kinetic
theory of monatomic gases.

Despite its limitations, we follow the modified
Eucken approach, in which the translational
contribution λtr (in W·m−1·K−1) is evaluated

from
λtr = ηftrc

(0)
v,tr (35)

where the viscosity η is in Pa·s, ftr = 5/2,
and the translational contribution to the zero-
density specific heat c

(0)
v,tr is equal to 3

2
R
M

for
all molecules, with R the universal gas con-
stant in J·mol−1·K−1 and M the molar mass
in kg·mol−1.

The contribution to λ from internal DOF
(λint) is given by

λint = η

(
ρmassDself

η

)
c
(0)
int (36)

where the product ρmassDself is in Pa·s, and c
(0)
int

is the specific heat contribution from internal
DOF, in J·kg−1·K−1. The value of the mass-
specific internal heat capacity c

(0)
int is given by

c
(0)
int = c(0)v − c

(0)
v,tr (37)

where c
(0)
v is the constant volume specific heat

on a mass basis, evaluated from the reference
equation of state.

In this work we have values for ρmassDself

and η from ab initio calculations, and we use
them directly in Eq. (36). On the other hand,
the value of ρmassDself is frequently unknown,
and it is common to make the assumption of
fint ≡ ρmassDself/η ≈ 1.32. Figure 9 shows the
values of ρmassDself/η for all fluids from their re-
spective ab initio calculations, expanding on a
similar figure from Bich et al.76 The constant
value of 1.32 is far from being a universally ap-
plicable recommendation, but it does provide a
reasonable representation of the noble gases for
T/TBoyle < 1. To that end, we have developed
an empirical treatment of fint in which it is a lin-
ear function of ln(T/TBoyle) for T/TBoyle ≤ 0.4,
and equal to a constant value of 1.39 otherwise.
This empirical fit more faithfully represents the
values of ρmassDself/η from the ab initio calcu-
lations for the molecular gases.
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Figure 9: An overlay of the values of
ρmassDself/η from ab initio calculations.

Figure 10 shows the pseudo-translational con-
tribution to λ+ obtained by taking the value
of λ+ from ab initio calculations and subtract-
ing the contribution from the modified Eucken
correction. In general, the modified Eucken
correction over-corrects the thermal conductiv-
ity, which can be seen by comparison with the
“universal” value of λ+ ≈ 1.0125 ± 0.10125
(15/4 times the value for η+) proposed by
Rosenfeld,3 but the qualitative behavior of the
pseudo-translational contribution mirrors the
other transport properties considered here.

Nonetheless, the modified Eucken correction
remains an imperfect treatment of internal
DOF. Even with inclusion of the highly ac-
curate ab initio calculations for ρmassDself and
η, the pseudo-translational contribution to λ+

(theoretically equal to 15η+/4) does not equal
15η+/4. Figure 11 shows the relative differ-
ence between the pseudo-translational contri-
bution and the value of 15η+/4. The deviations
roughly increase as the polarity of the molecules
increases; the relative impacts of molecular size
are less pronounced (consider the n-alkane fam-
ily of methane, ethane, propane).
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Figure 10: The pseudo-translational contribu-
tion to λ+ for di- and polyatomic molecules.
The shaded area represents the band of values
proposed by Rosenfeld based on a study of IPL
potentials.
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Figure 11: The percentage deviation between
the pseudo-translational contribution to λ+ ob-
tained from the modified Eucken correction and
the translational contribution calculated from
the viscosity.

4 Conclusions
In this work we have demonstrated that the
zero-density limit of the transport properties
obtained from modified residual entropy scaling
yields a novel approach for scaling of transport
properties for model potentials, noble gases,
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and small di- and polyatomic molecules. The
model potentials serve as useful explorations of
the scaling approach, and while they do not
capture all the physics of larger molecules, they
can be used to inform the behavior of real
molecules.

For the noble gases with insignificant quan-
tum contributions, the residual entropy scal-
ing leads to a scaling for the zero-density limit
that results in a collapse of the scaled trans-
port property data without any empirical scal-
ing parameters. For the polyatomic molecules
for which ab initio calculations are possible, the
scaled values for self-diffusion coefficient and
viscosity show a striking similarity, while the
values of the thermal conductivity scatter sig-
nificantly due to the influence of internal de-
grees of freedom. Even when a modified Eu-
cken correction is applied to remove the con-
tributions of internal degrees of freedom in an
approximate manner, the scaled thermal con-
ductivity values do not collapse as tightly as
the other scaled transport properties.

The limitations of computation and theory
conspire to restrict the range of molecules that
can be modeled by ab initio methods. For now,
we must resort to empirical models and the het-
erogeneous coverage of experimental data that
are available in order to model larger molecules
of technical relevance. While this is an impor-
tant topic of research, it is outside the scope of
the current study and we must leave it to future
work.

We have based our analysis on highly accurate
data combined with theoretically-grounded ap-
proaches and avoided empiricism as much as
possible. Nevertheless, some elements of the
analysis could be modified to improve quanti-
tative consistency between fluids. For instance,
the selection of the Boyle temperate as the
temperature scaling parameter was a subjective
choice; the temperature scale could be modified
in order to make the low-temperature collapse
of fluids more quantitative by fitting a reduc-
ing temperature for each fluid, as is commonly
done with the Lennard-Jones 12–6 potential.

Supporting Information Avail-
able
In order to ensure reproducibility of our results,
we have provided in the supporting informa-
tion: a) the Python code used for each of the
model potentials b) the full set of thermophys-
ical property data collected from the literature
from ab initio calculations in comma-separated-
value form with a consistent unit system c) the
empirical fits we obtained for the virial coeffi-
cients d) additional description of our method-
ology that was not appropriate to put in the
main manuscript.
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