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ABSTRACT 

 
We introduce the NIST Platform for Quantum Network Innovation (PQNI) – a new testbed on the NIST campus to 
accelerate the integration of quantum systems into a real life, active network in a controlled scientific setting. The testbed 
will be used to evaluate quantum scale devices and components such as single photon sources, detectors, memories and 
interfaces within various quantum network protocols and configurations for performance, optimization, synchronization, 
loss compensation, error correction, compatibility with conventional network traffic (often referred to as co-existence), 
continuity of operations and more. 
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1. INTRODUCTION 
 
Quantum communication has attracted significant, and growing, attention in the recent decades and has now become a 
very active research field. Quantum communication originated in the 1970’s with Stephen Wiesner’s idea of using 
quantum states to securely encode information for transmitting ‘Quantum Money’. Following initial skepticism, the idea 
was finally published in 1983[1]. One year later, Charles Bennett and Gilles Brassard proposed a first Quantum Key 
Distribution (QKD) protocol, called BB84[2]. Since then, many new QKD protocols have been proposed such as 
simplified B92 [3], entangled photon source-based E91 [4], decoy state QKD [5], and measurement-device-independent 
(MDI) QKD [6]. The newly developed protocols overcame the security issues caused by imperfect devices, extended the 
limited communication distance caused by photon loss in the channel and greatly improved QKD security performance.   
 

                                                 
1  The identification of any commercial product or trade name does not imply endorsement or recommendation by the National 
Institute of Standards and Technology. 
 
 

Quantum Information Science, Sensing, and Computation XI, edited by Eric Donkor, Michael Hayduk,
Michael R. Frey, Samuel J. Lomonaco, John M. Myers, Proc. of SPIE Vol. 10984, 1098407

© 2019 SPIE · CCC code: 0277-786X/19/$18 · doi: 10.1117/12.2519081

Proc. of SPIE Vol. 10984  1098407-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



The first experimental laboratory demonstration of QKD was realized in 1989 in a free-space quantum channel that was 
only 30-cm-long. However, since then, QKD systems and networks have matured significantly to leave the confines of 
the laboratory and indeed, many have been extensively investigated in field environments. Current field testbeds of QKD 
systems have two directions, free-space and fiber-based. State of the art free-space systems mainly refers to satellite-to-
ground communications. These systems have already been demonstrated successfully by several quantum 
communication research groups.  In this paper, we focus on fiber-based quantum networks. So far, the main fiber-based 
quantum network field testbeds and typically QKD specific and include: 
 

1) The DARPA Quantum Network, a project supported by the US Defense Advanced Research Projects Agency 
(DARPA) [7].  

2) The Advanced Technology Demonstration Network (ATDNet) in the Washington D.C. area by Telcordia 
Technologies [8]. 

3) The Secure Communication using Quantum Cryptography (SECOQC) Network in Vienna, a project supported 
by the European FP6 project [9].  

4) The Swiss Quantum Network (SwissQuatum) in Geneva operated by the University of Geneva [10, 11].  
5) The QKD and Quantum teleportation field test in Calgary metropolitan fiber network [12]. 
6) The Tokyo QKD Network that consists of parts of the National Institute of Information and Communications 

Technology (NICT) open testbed network [13]. 
7) The Beijing-Shanghai quantum communication backbone in China [14, 15].  
8) The Quantum City project in Durban, South Africa [16]. 

 
In addition to QKD systems, quantum communication has accelerated the development of quantum networks and, 
ultimately, the quantum Internet. However, building a quantum network is much more challenging than building a QKD 
network and the requirements are significantly different. Although today’s commercial fiber optic infrastructure 
(primarily for classical communications) is widespread, the possibility for a quantum network to share the established 
classical network infrastructure is limited without purposeful consideration of the unique quantum requirements. 
Therefore, it is necessary to test new and existing quantum devices, new protocols and alternative network 
configurations using an active classical network infrastructure in a controlled scientific setting. The NIST Platform for 
Quantum Network Innovation (PQNI) is an extension of an existing classical network testbed (Platform for Network 
Innovation / PNI) established on the NIST Gaithersburg campus and will be used to field test new and existing quantum 
devices and components for performance, synchronization, loss compensation, error correction, compatibility with 
classical network traffic, continuity of operations and more. This paper will outline the quantum communication project 
at NIST and summarize the goals of the proposed PQNI testbed.   

 
2. QUANTUM NETWORK RESEARCH IN NIST’S INFORMATION TECHNOLOGY 

LABORATORY 
 
Beginning in 2004, the Quantum Communications Project in NISTs Information Technology Laboratory (ITL) has 
developed several QKD systems, including a free space QKD system [17], a Fiber-based QKD system with a record 
breaking sifted key rate [18], a long-distance QKD system with frequency up-conversion detectors [19], a cost-effective 
Detection-time-bin-shift QKD system [20] and a differential phase shift QKD system with a superconducting detector 
[21]. In addition to QKD systems, we also developed some key devices for quantum communication systems, such as 
entangled photon sources [22, 23] and upconversion single photon detectors and spectrometers [24-27].  
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We developed a complete 3-node, active QKD network controlled by MEMS optical switches [28]. As shown in Fig. 1, 
the QKD network operates at a 1.25 Gbps clock rate and can provide more than one Mbps sifted-key rate over 1 km of 
optical fiber. As part of the QKD network, we developed a high-level QKD network manager to provide QKD services 
to security applications. These services include managing the QKD network, and demultiplexing and synchronizing the 
secure key stream. To demonstrate the speed of our QKD system, we implemented a video surveillance application that 
is secured by a one-time pad cipher using keys generated by our QKD network and transmitted over public standard 
internet IP channels. The 3-node QKD network used 850 nm for the quantum channel and 1510 nm and 1590 nm for the 
classical channel. To connect our QKD nodes, a pair of MEMS optical switches were used, one for the quantum channel 
and the other for the bi-directional classical channel (1510 and 1590 nm).  
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Fig.1. NIST 3-node QKD network. 
 

A practical QKD network requires a utility program that coordinates the operations of all QKD nodes, such as switching, 
polarization recovery, timing alignment and protocol initialization, as well as provides services to upper layer security 
applications such as routing availability and secure key demultiplexing and synchronization. We developed a quantum 
network manager that performed these functions through various sub-managers.  
 
In addition to the research on QKD and QKD networks, NIST quantum communication project is focusing on the 
implementation of a quantum network beyond QKD, which may lead to the development of a quantum computational 
network to connect quantum computers and ultimately, the future quantum Internet. Quantum repeaters are one of the 
most important technologies to realize a quantum network and the quantum Internet. Our project is now developing the 
critical building blocks for quantum repeaters, such as quantum memories[29, 30], quantum interfaces and compatible 
narrow bandwidth single photon pair source [31]. We also plan to test these new technologies and devices in field 
environments as part of the Platform for Quantum Network Innovation (PQNI).   
 
The NIST Platform for Quantum Network Innovation (PQNI) is an extension of an existing 100 GHz (100-G) ring 
classical network testbed (Platform for Network Innovation / PNI) established on the NIST Gaithersburg campus. The 
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tested, and their performance will be evaluated in the testbed. The testbed will also be used for testing and 
evaluation of fully integrated quantum communication systems. 

3) To study the multi-node configuration of quantum communication. A quantum network needs to connect many 
nodes and can dynamically configure and reconfigure the connections between these nodes. The study will 
include communication path routing, eavesdropper or fiber breakage detection and rerouting, and 
communication system restoration and synchronization. It will evaluate and test stability, name-based 
addressing schemes, and routing/forwarding mechanisms of point-to-point and point-to-multipoint quantum 
links. 

4) To test the compatibility of quantum communication systems with conventional optical networks. Multiplexing 
with classical optical signals in the same networks will greatly reduce the cost of deployment of quantum 
communication systems. The testbed will be used to study the influence of the coexistence of a strong classical 
signal and a single photon signal as well as the compatibility of the quantum signal with a conventional optical 
network. We will develop a capability-based measurement plane that will operate in the classical network layer 
but with measurement probes for the quantum layer.  

5) To evaluate security of the system. Evaluation of security architectures based on securing the physical quantum 
layer versus securing the information content exchanged and stored at different layers.    

 
 

3. CONCLUSION 
 
An acceleration of research efforts towards the development of quantum networks is underway and will ultimately lead 
to the quantum Internet. Significant developments in the technological, commercial and legislative arenas has occurred 
in recent years. Quantum scale devices and components such as single photon sources, detectors, memories and 
interfaces are ever readier to leave the confines of the laboratory. NIST quantum communication project plans to build a 
field testbed, PQNI, for testing components, devices and systems related to quantum network communications, and for 
studying the feasibility and compatibility of multiplexing with conventional optical communication networks. 
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