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ABSTRACT 
The use of deep convolutional neural networks is becom- 

ing increasingly popular in the engineering and manufacturing 
sectors. However, managing the distribution of trained mod-  
els is still a difficult task, partially due to the limitations of 
standardized methods for neural network representation. This 
paper seeks to address this issue by proposing a standardized 
format for convolutional neural networks, based on the Pre- 
dictive Model Markup Language (PMML). A number of pre- 
trained ImageNet models are converted to the proposed PMML 
format to demonstrate the flexibility and utility of this format. 
These models are then fine-tuned to detect casting defects in 
Xray images. Finally, a scoring engine is developed to eval- 
uate new input images against models in the  proposed for- 
mat. The utility of the proposed format and scoring engine is 
demonstrated by benchmarking the performance of the defect- 
detection models on a range of different computation platforms. 
The scoring engine and trained models are made available at 
https://github.com/maxkferg/python-pmml 
 

∗Zementis was acquired by SoftwareAG on 1/1/2017 . 

INTRODUCTION 

Convolutional neural networks (CNNs) are finding numer- 
ous real-world use cases in the manufacturing domain [1]. Re- 
cent research has demonstrated that convolutional neural net- 
works can obtain state-of-the-art performance on tasks like cast- 
ing defect detection [2], anomaly detection in fibrous materi- 
als [3], and classification of waste recycling [4]. Recent progress 
in transfer learning has greatly reduced training dataset require- 
ments, allowing powerful models to be trained with relatively 
small datasets [2]. However, sharing and deploying trained mod- 
els still remains a difficult and error-prone task. Modern CNNs 
often have hundreds of layers and millions of parameters, making 
the distribution and deployment of these models a challenging 
task. In current practice, models are often saved using a serial- 
ization format specific to the machine learning framework used 
to train the model. In most cases, this method provides a reliable 
method of saving trained models, but it greatly hinders interop- 
erability between different machine learning frameworks. In this 
paper, we seek to address this issue by developing a standardized 
representation of CNNs, based on the Predictive Model Markup 
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Language (PMML). 
With the development and adoption of the Predictive Model 

Markup Language, it is now much easier to train and evaluate 
predictive models on separate computers. PMML is an XML- 
based language that enables the definition and sharing of predic- 
tive models between applications [5]. It provides a clean and 
standardized interface between the software tools that produce 
predictive models, such as statistical or data mining systems, and 
the consumers of models, such as applications that depend upon 
embedded analytics [6]. With PMML it is easy to train a model 
with a statistical package such as R, and save the model in a stan- 
dardized format for use in a real-world application. 

For deployment, predictive models are normally evaluated 
by a scoring engine. A scoring engine is a piece of software 
specifically designed to load a model in a standardized format, 
and use it to evaluate new observations or data points. Scoring 
engines are responsible for executing the mathematical opera- 
tions that transform model inputs into model outputs. To pro- 
mote interoperability, scoring engines are normally written in 
languages such as Python, C++ or Java, which are supported by 
most embedded systems and computing environments. There- 
fore, it is feasible to run the same scoring engine on a develop- 
ment computer, a cloud server, or an embedded device, with- 
out modifying the scoring engine code. The development of 
standards-compliant scoring engines allows PMML models to be 
reliably evaluated on a range of devices. 

Neural Networks: An artificial neural network (ANN) is an 
interconnected group of nodes, akin to the vast network of neu- 
rons in a brain. The ANN itself is not an algorithm,  but rather  
a framework for many different machine learning algorithms to 
work together and process complex data inputs [7]. These sys- 
tems “learn” to perform tasks by considering examples, gener- 
ally without being programmed with any task-specific rules. For 
example, an ANN could be trained to identify manufacturing de- 
fects by exposing it to example images that have been manually 
labeled as “defective” or “not defective”. Such neural networks 
are generally trained with little prior knowledge about materi- 
als or manufacturing defects. Instead, neural networks automat- 
ically generate identifying characteristics from the learning ma- 
terial that they process. In common ANN implementations, the 
signal at a connection between artificial neurons is a real number, 
and the output of each artificial neuron is computed by some non- 
linear function of the sum of its inputs. The connections between 
artificial neurons are called “edges”. Artificial neurons and edges 
typically have a weight that adjusts as learning proceeds. The 
weight increases or decreases the strength of the signal at a con- 
nection. Typically, artificial neurons are aggregated into layers. 
Different layers may perform different kinds of transformations 
on their inputs. 

Convolutional  Neural  Networks:    The  development of 
CNNs has led to vast improvements in many image processing 
tasks.  In a CNN, pixels from each image are converted to a fea- 

turized representation through series of mathematical operations. 
Images can be represented as an order 3 tensor    RH×W×D    
with height H, width W, and D color channels [8]. The input 
sequentially goes through a number of processing steps, com- 
monly referred to as layers. Each layer i can be viewed as an 
arbitrary transformation xi+1 = f (xi; θi) with inputs xi, outputs 
xi+1, and parameters θi. By combining multiple layers it is pos- 
sible to develop a complex nonlinear function which can map 
high-dimensional data (such as images) to useful outputs (such as 
classification labels) [39]. More formally, a CNN can be thought 
of as the composition of number of functions: 

 
fx = fN (...( f2( f1(x1; θ1); θ2)...); θN ), (1) 

 
where x1 is the input to the CNN and fx is the output. There are 
several layer types which are common to most modern CNNs, 
including convolution layers, pooling layers and batch normal- 
ization layers. A convolution layer is a function fi(xi; θi) that 
convolves one or more parameterized kernels with the input ten- 
sor,  xi.   Suppose the input  xi  is an order 3 tensor with size    
Hi Wi Di. A convolution kernel is also an order 3 tensor with 
size H W  Di.  The kernel is convolved with the input by tak- 
ing the dot product of the kernel with the input at each spatial 
location in the input. By convolving certain types of kernels with 
the input image, it is possible to obtain meaningful outputs, such 
as the image gradients. In most modern CNN architectures, the 
first few convolutional layers extract features like edges and tex- 
tures. Convolutional layers deeper in the network can extract fea- 
tures that span a greater spatial area of the image, such as object 
shapes. 

Dataflow Graphs: Many modern machine learning soft- 
ware frameworks represent neural networks as a dataflow graph. 
In a dataflow graph, the nodes represent units of computation, 
and the edges represent the data consumed or produced by a com- 
putation. Representing a CNN in this form allows the underly- 
ing software framework to optimize the execution of math oper- 
ations through increased parallelism, distributed execution, and 
compiler-generated optimizations. One way of creating a per- 
sistent representation of a neural network is to save the dataflow 
graph in a standardized machine-readable form. Some of the 
nodes in the neural network dataflow graph may have parameters 
θi that are optimized when training the CNN. These parameters 
are generally referred to collectively as model weights. It fol- 
lows that both the dataflow graph and the associated weights are 
required to fully represent a trained neural network. An example 
of a dataflow graph for a single-layer neural network is shown in 
Figure 1. 

In this paper, we propose a standardized representation of 
CNN based on the dataflow graph model and the existing PMML 
standard. In our proposed format, each layer is represented as an 
interconnected node in the dataflow graph. Model weights are 
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FIGURE 1. DATAFLOW GRAPH FOR TRAINING A SIMPLE 
NEURAL NETWORK. VARIABLES W1 AND W2 ARE THE NEU- 
RAL NETWORK WEIGHTS. VARIABLES b1 AND b2 ARE THE 
BIASES. 

 
 

stored in a separate file, and associated with each node through a 
unique name. The primary contribution of the paper is the pro- 
posed PMML representation for CNN. Additional contributions 
include a study of the performance characteristics of this pro- 
posed format in the context of manufacturing defect detection, 
and PMML scoring engine. 

The remainder of the paper is organized as follows. We be- 
gin by exploring related work in the field of standardized models. 
We then describe our proposed representation, and discuss in de- 
tail the mathematical background of each proposed layer. Next, 
we leverage transfer learning to train ten different CNN models 
for the task of casting defect detection and represent each trained 
model in the proposed PMML format. Finally, we develop a 
high-performance PMML scoring engine for evaluating new in- 
put images against PMML models. We show how the scoring en- 
gine can be used to evaluate manufacturing images on different 
hardware devices. The paper is concluded with a brief discussion 
and conclusion. 

RELATED WORKS 
There is a large body of work that discusses the use of CNNs 

for quality control [1,4,8], automated manufacturing [9], and ad- 
ditive manufacturing processes [10]. However, the core focus of 
this paper is to explore standardized representations for modern 
CNNs, and demonstrate how such representations can be bene- 
ficial to the manufacturing industry. For the remainder of this 
section, we describe a number of ways that machine learning 
models are currently stored and distributed. 

PMML: PMML provides an open standard for represent- 
ing data-mining and predictive models [11]. Once a machine- 
learning model has been trained in an environment like MAT- 
LAB, Python, or R, it can be saved as a PMML file. The PMML 
file can then be moved to a production environment, such as an 
embedded system or a cloud server. The code in the production 
environment can parse the PMML file, and use it to generate pre- 
dictions for new unseen data points. It is important to note that 
PMML does not control the way the model is trained. PMML is 
purely a standardized way to represent the trained model. 

ONNX: The Open Neural Network Exchange (ONNX) for- 
mat is a community project created by Facebook and Microsoft 
[12]. ONNX provides a definition of an extensible dataflow 
graph model, as well as definitions of built-in operators and stan- 
dard data types. Each dataflow graph is structured as a list of 
nodes that form an acyclic graph. Nodes have one or more in- 
puts and one or more outputs. Each node is a call to an operator. 
Operators are implemented externally to the graph, but the set of 
built-in operators are portable across frameworks. Every frame- 
work supporting ONNX will provide implementations of these 
operators on the applicable data types. 

Keras: Keras is a high-level open source neural network 
framework written in Python. It is capable of running on top of 
TensorFlow or Microsoft Cognitive Toolkit. The Keras frame- 
work has support for saving and restoring dataflow graphs and 
model weights. The dataflow graph for any Keras model can be 
exported to the Javascript object notation (JSON) format. Model 
weights can be saved in the compact Hierarchical Data format 
(HDF5) binary format. While these two options provide an easy 
way to save and distribute Keras models, they do not facilitate 
interoperability between different tools. 

TensorFlow: TensorFlow is an open source software library 
for high-performance numerical computation. Its flexible archi- 
tecture allows easy deployment of computation across a variety 
of platforms. Like Keras, TensorFlow also provides an option for 
saving dataflow graphs and model weights. The dataflow graph 
can be exported to a binary file using the Protocol Buffer format. 
The model weights can be exported to a binary format using a 
binary format, likely based on the Protocol Buffer format. 

PyTorch: PyTorch is an open source machine learning li- 
brary for Python, based on Torch, used for applications such as 
natural language processing. It is primarily developed by Face- 
book’s artificial-intelligence research group. PyTorch models are 
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exported to a binary format using the Python Pickle protocol. 
While this approach provides a seamless method of persisting 
PyTorch models, it greatly hinders interoperability. In particular, 
relying on the Pickle object serialization format makes it difficult 
to transfer PyTorch models to other computing environments that 
do not support the Python runtime. 

Given the current industry practices in machine learning, it 
appears that there is a need for greater standardization in the rep- 
resentation of deep neural networks. The creation and adoption 
of such standardized approaches is necessary to promote inter- 
operability of machine learning frameworks and related tools. 

 

PMML FOR CONVOLUTIONAL NEURAL NETWORKS 
In this section, we describe how the existing PMML stan- 

dard is extended to represent CNNs. Figure 2 shows the gen- 
eral structure of a PMML document, which includes four basic 
elements, namely, header, data dictionary, data transformation, 
and the data-mining or predictive model [5]. The Header el- 
ement provides a general description of the PMML document, 
including name, version, timestamp, copyright, and other rele- 
vant information for the model-development environment. The 
DataDictionary element contains one or more DataField child 
elements which describe the data fields and their types, as well 
as the admissible values for the input data. We propose that 
DataField elements with a dataType attribute set to “image” can 
be used to represent images, however further work is needed to 
formalize this change. In addition, in a classification model, all 
of the class names are stored in the DataDictionary element. 

Data transformation is performed using the optional Trans- 
formationDictionary or LocalTransformations element. These 
elements describe the mapping of the data, if necessary, into a 
form usable by the mining or predictive model. While support 

for image transformations would be highly beneficial to the pro- 
posed standard, it is outside the scope of this paper, and is left as 
a topic for future work. The last element in the general structure 
contains the definition and description of the predictive model. 

The element is chosen among a list of models defined in PMML 
standard. We propose the DeepNetwork model element as a new 
element for representing deep neural network models in PMML. 

DeepNetwork Element: A CNN model is represented by  
a DeepNetwork element defined in the XML schema, which 
contains all the necessary information to fully characterize the 
model. The DeepNetwork element has a number of optional at- 
tributes that can be used to provide additional metadata about 
the model, such as the optimization algorithm used to optimize 
the hyperparameters. Figure 2 shows the elements which can be 
nested within the DeepNetwork element. The DeepNetwork el- 
ement must contain one or more NetworkLayer elements which 
describe individual nodes in the dataflow graph. We now de- 
scribe a set of layers which are required to minimally represent 
most of the common CNN architectures that have been proposed 

 

 
 

FIGURE 2. THE STRUCTURE AND CONTENTS OF A DEEP- 
NETWORK PMML FILE. 

 

to date. 
Convolution Layer: The convolution layer convolves a 

convolutional kernel with the input tensor. The cardinality of 
the convolution tensor must be equal to that of the input tensor. 
The size of the convolutional kernel is governed by the Kernel- 
Size child element, and the stride is governed by the KernelStride 
child element. An activation function can be optionally applied 
to the output of this layer. An example of a convolution layer in 
the proposed PMML format is shown in Figure 3. 

Merge Layer: The merge layer takes two tensors of equal 
dimensions and combines them using an elementwise operator. 
Allowable operator types are “addition”, “subtraction”, “multi- 
plication”, “division”. An example of a merge layer in the pro- 
posed PMML format is shown in Figure 4. 

Dense Layer: The dense layer represents a fully connected 
neural network layer. An activation function can optionally be 
applied to the output of this layer. An example of a dense layer 
in the proposed PMML format is shown in Figure 5. 

Concatenation Layer: The concatenation layer takes two 
tensors and concatenates them along a given dimension. The 
cardinality of the two tensors must be equal. The size of all di- 
mensions other than the concatenation dimension must be equal. 
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FIGURE 3. CONVOLUTION LAYER EXAMPLE. 
 
 

 
FIGURE 4.    MERGE LAYER EXAMPLE. 

 

 
FIGURE 5. DENSE LAYER EXAMPLE. 

 

An example of a concatenation layer in the proposed PMML for- 
mat is shown in Figure 6. 

Pooling Layer: The pooling layer applies a pooling opera- 
tion over a single tensor. The width of the pooling kernel is gov- 
erned by the PoolSize child element, and the stride is governed 
by the Strides child element. The pooling operation can be ei- 

 

 
 

FIGURE 6. CONCATENATION LAYER EXAMPLE. 
 
 

ther “max” or “average” depending on the value of the operation 
attribute. 

Depthwise Convolution Layer: The depthwise convolu- 
tion layer convolves a convolutional filter with the input, keeping 
each channel separate. In the regular convolution layer, convo- 
lution is performed over multiple input channels. The depth of 
the filter is equal to the number or input channels, allowing val- 
ues across multiple channels to be combined to form the output. 
Depthwise convolutions keep each channel separate - hence the 
name depthwise. 

Batch Normalization Layer: The batch normalization 
layer applies a batch normalization operation to the input ten- 
sor, which aims to generate an output tensor with a zero mean 
and unit variance. The linear transformation between input and 
output is based on the distribution of inputs at test time, and the 
parameters are generally fixed after training is completed. 

Activation Layer: The activation layer applies an activation 
function to each element in the input tensor. The activation func- 
tion can be any one of “relu”, “sigmoid”, “tanh”, “selu”, “elu”, 
“softmax”. The threshold attribute allows the activation func- 
tion to be offset horizontally. The max value attribute limits the 
maximum value of each output value. 

Global Pooling Layer: This layer applies a pooling opera- 
tion across all spatial dimensions of the input tensor. The pooling 
operation can be either “max” or “average”, and is specified us- 
ing the operation attribute. This layer returns a tensor that has 
size (batch size, channels). 

Zero Padding Layer: This layer pads the outside of a 2D 
tensor with zeros. This operation is commonly used to increase 
the size of oddly shaped layers, to allow dimension reduction in 
subsequent layers. The number of zeros that are added to each 
dimension is specified using the padding attribute. 

Reshape Layer: The reshape layer reshapes the input ten- 
sor. The number of values in the input tensor must equal the 
number of values in the output tensor. The first dimension is not 
reshaped as this is commonly the batch dimension. 

Flatten Layer: The flatten layer flattens the input tensor 
such that the output size is (batch size, n) where n is the number 
of values in the input tensor. 

Many of these layers have weights that are optimized dur- 
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ing the training process. These weights are stored in a binary 
key-value format, such as HDF5, and the corresponding file is 
referenced using the Weights element. The Weights element has 
encoding, checksum and href attributes which specify the encod- 
ing, checksum and location of the model weights, respectively. 

Examples of full PMML models for many common CNN 
architectures are made available at https://github.com/ 
maxkferg/python-pmml [13]. 

 

PMML FOR DEFECT DETECTION 
In this section, we show how the proposed PMML format 

can be used to facilitate transfer learning in a defect detection 
task. CNNs have been particularly successful for detecting man- 
ufacturing defects using camera or Xray images [1, 2, 14]. His- 
torically, manufacturing researchers and technicians were con- 
cerned that deep learning systems would require an infeasible 
amount of data to train. However, by leveraging transfer learn- 
ing, it is now possible to train a powerful computer vision system 
with as little as a thousand training examples. In transfer learn- 
ing, a neural network model is first trained on a large dataset, 
such as the ImageNet dataset. The trained model is then fine- 
tuned on a smaller domain-specific dataset, such as a casting de- 
fect dataset. Hence, the successful application of transfer learn- 
ing is highly dependent on the availability of high-quality neural 
network models. Without a standardized representation of neural 
network models, it is challenging for researchers and practition- 
ers to share their pretrained models. 

A total of ten pretrained image classification models are con- 
verted to the PMML format, allowing them to be easily loaded 
into machine learning frameworks such as Keras, TensorFlow or 
PyTorch. Each model is then fine-tuned on the GDXray casting 
defect dataset. The fine-tuned models are exported to the pro- 
posed PMML format and made publicly available. Finally, the 
PMML models are loaded onto a TensorFlow scoring engine to 
demonstrate how the model could be used in a manufacturing 
environment. 

GDXray dataset: The GDXRay dataset is a collection of 
annotated Xray images [15]. The Castings series of this dataset 
contains 2727 X-ray images mainly from automotive parts, in- 
cluding aluminum wheels and knuckles. The casting defects in 
each image are labeled with tight fitting bounding-boxes. The 
size of the images in the dataset ranges from 256 256 pixels to 
768 572 pixels. The GDXray dataset has been used by many 
researchers as a standard benchmark for defect detection includ- 
ing [16], where patches of size 32 32 pixels are cropped from 
the GDXray Castings series and used to test a number of different 
classifiers. The best performance is achieved by a simple local 
binary pattern (LBP) descriptor with a linear support vector ma- 
chine (SVM) classifier [16]. Several deep learning approaches 
are also evaluated, obtaining up to 86.4 % patch classification 
accuracy. We train multiple different CNN models to classify 

 

 
 

FIGURE 7. TRANSFER LEARNING WITH THE PROPOSED 
PMML FORMAT. THE PRETRAINED MODELS ARE FIRST CON- 
VERTED TO THE PROPOSED PMML FORMAT AND FINE- 
TUNED ON THE GDXRAY DEFECT TILE DATASET. THE MOD- 
ELS ARE THEN TRANSFERRED TO A SCORING ENGINE USING 
THE PROPOSED FORMAT. 

 

image tiles from the GDXray casting dataset. Each image in the 
casting set is divided into 224 224 pixel tiles. When an image 
cannot be divided perfectly into 224 224 pixel tiles, it is first 
padded with black pixels and then divided into tiles. Image tiles 
containing one or more casting defects are considered defective 
(y = 1), otherwise the tile is considered satisfactory and assigned 
class y = 0. The goal is to develop a classifier that can correctly 
predict the class of an unseen tile. To ensure the results are con- 
sistent with previous work, the training and testing data is divided 
in the same way as described in [2]. The preprocessed training 
dataset contains 8192 tiles. A further 1000 tiles from the training 
set are assigned to the dev set, which is used to test whether the 
model is overfitting. The test set contains a total of 1894 tiles. 

Machine learning models: Ten different CNN models are 
trained on the GDXray tiles. Four different CNN architectures 
are trained, namely the VGG (Visual Geometry Group), Residual 
Network (ResNet), MobileNet and DenseNet architectures. Pre- 
trained ImageNet models are converted to PMML from the na- 
tive Keras and PyTorch model formats. The framework-agnostic 
nature of PMML provides the flexibility to train and save mod- 
els in any supported language and machine learning framework. 
The multi-step training process is illustrated in Figure 7. The 
CNN models are trained on the GDXray dataset using the Keras 
machine learning framework. Additionally, the VGG and ResNet 
models are also trained on the GDXray dataset using the PyTorch 
machine learning framework. 

The sparse occurrence of manufacturing defects often cre- 
ates a challenge when training machine learning models. In 

https://github.com/maxkferg/python-pmml
https://github.com/maxkferg/python-pmml
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FIGURE 9. NEURAL NETWORK EVALUATION WITH THE 
PROPOSED PMML FORMAT. A HIGH-PERFORMANCE SCOR- 
ING ENGINE EVALUATES NEW IMAGES AGAINST THE MODEL 
AND RETURNS THE PREDICTED CLASS. 

 
 
 

FIGURE 8. PREDICTION RESULTS FOR FOUR TILES FROM 
THE GDXRAY DEFECT TILE DATASET. EACH 224 × 224 PIXEL 
TILE WAS CLASSIFIED INDIVIDUALLY, AND THEN THE TILES 
WERE RECOMBINED TO FORM THE FIGURE. 

 
 

highly imbalanced datasets, predictive models can often mini- 
mize loss by simply predicting the most common class. To avoid 
this pitfall, defective images are oversampled from the dataset. 
Specifically, we ensure that at least one defective tile is sampled 
from the dataset for every three clean tiles. Data augmentation 
is applied to reduce potential overfitting. During training, each 
image is rotated 90 degrees with probability 0.5, flipped hori- 
zontally with probability 0.5 and flipped vertically with proba- 
bility 0.5. A small amount of Gaussian random noise is also 
added to each image. The gradient-based Adam algorithm is 
used for parameter optimization. The dense layers of each model 
are trained on the GDXray dataset for 10 epochs with a learning 
rate of 0.005, while keeping the weights of the convolutional lay- 
ers fixed. The model is then trained for an additional 10 epochs 
without fixing any of the weights, using a learning rate of 0.001. 
After each epoch, the model is saved to PMML and tested on 
the dev set. The model that achieves the highest performance on 
the dev set is selected as the final model. The test set prediction 
accuracy for each model is presented in Table 1. Some example 
predictions are shown in Figure 8. The trained ImageNet classifi- 
cation models and GDXray defect classification models are made 
publicly available in the proposed PMML format, to accelerate 
future research in this direction [13]. 

EFFICIENCY AND PERFORMANCE 
Modern CNNs are growing increasingly complex, with re- 

cent architectures having hundreds of layers and millions of 
parameters. Therefore, storage efficiency, serialization perfor- 
mance and deserialization performance must be considered when 
designing a standardized format for modern neural networks. To 
evaluate the performance of the proposed format, we develop a 
PMML scoring engine with support for deep CNN models, and 
conduct a number of performance experiments. 

There are two main factors when considering the perfor- 
mance of a scoring engine: (1) The amount of time it takes to 
load a model from a PMML file into memory, and (2) the amount 
of time required to evaluate a new input. We will refer to (1) as 
the initial load time and (2) as the evaluation time. The initial 
load time of modern neural networks tends to be quite large as 
most modern CNNs have complicated dataflow graphs and mil- 
lions of parameters. However, models are generally kept in mem- 
ory between subsequent predictions, so initial load time is not a 
major influence on performance. The prediction time, however, 
is critical to many applications in manufacturing, as it dictates 
the amount of time between an observation being made, and a 
prediction being obtained. 

A scoring engine is developed to evaluate image inputs 
against CNN models in the proposed PMML format. The scor- 
ing engine uses the TensorFlow machine learning framework to 
perform the mathematical operations associated with each net- 
work layer. In our scoring engine, the PMML file is parsed 
using the lxml XML parser [17] and the Python programming 
language. The scoring engine is engineered in a way such that 
the dataflow graph can be evaluated on a central processing unit 
(CPU), graphics processing unit (GPU), or tensor processing unit 
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TABLE 1. TEST ACCURACY AND MODEL STATISTICS FOR TEN CNN MODELS TRAINED ON THE GDXRAY DEFECT TILE DATASET. 
 
 

Model Training Framework PMML Size (KB) Weights Size (MB) Parameters Training time (s) Test accuracy 

VGG-16 PyTorch 58 528 138,357,544 1442 0.899 

VGG-19 PyTorch 60 549 143,667,240 2301 0.921 

ResNet-50 PyTorch 106 99 25,636,712 1349 0.933 

ResNet-152 PyTorch 154 244 60,344,232 2012 0.944 

VGG-16 Keras 54 528 138,357,544 1322 0.899 

VGG-19 Keras 56 549 143,667,240 1943 0.921 

ResNet-50 Keras 101 99 25,636,712 1201 0.933 

ResNet-152 Keras 156 244 60,344,232 1894 0.940 

MobileNet-224 Keras 75 16 4,253,864 1561 0.895 

DenseNet-121 Keras 185 33 8,062,504 2104 0.942 
 
 
 
 

(TPU). The scoring engine can be used to evaluate batches of one 
or more images against a PMML model as shown in Figure 9. 

The performance characteristics of the proposed PMML for- 
mat are analyzed using the aforementioned PMML scoring en- 
gine. Experiments are conducted using four common CNN ar- 
chitectures, namely VGG-16, ResNet-152, DenseNet-121 and 
MobileNet-224. In each case, we use a PMML model trained 
on the GDXray defect detection task. The experiments are con- 
ducted on three platforms: A desktop computer with a single 
NVIDIA 1080 Ti GPU, an identical desktop computer without a 
dedicated GPU, and a cloud-based virtual machine with a tensor 
processing unit (TPU). Figure 10 shows the total amount of time 
required to build the dataflow graph and load the model weights 
from file. Figure 11 shows the time required to parse the PMML 
file and load the dataflow graph into memory, on each of the three 
platforms. Figure 12 shows the time required to load the neural 
network weights into memory. Finally, Figure 13 shows the pre- 
diction time on the three platforms. 

 
 

DISCUSSION 
In this work, we proposed an extension to the PMML for- 

mat for the standardized representation of CNN models. The 
proposed extension adds a DeepNetwork element to the exist- 
ing standard. The proposed format describes the neural net- 
work architecture using the human-readable XML format, mak- 
ing it practical to inspect the architecture of trained models.  
The human-readable nature of this format is highly beneficial 
when sharing models trained by researchers, competition teams 

 

 
 

FIGURE 10. TOTAL LOAD TIME FOR FOUR DIFFERENT MOD- 
ELS. TOTAL LOAD TIME IS DEFINED AS THE TIME FROM 
WHEN THE PMML FILE FIRST STARTS TO LOAD UNTIL THE 
TIME THAT THE DATAFLOW GRAPH IS READY TO MAKE PRE- 
DICTIONS. 

 
or large industry teams; rather than documenting the model de- 
tails in a white-paper, the PMML model can be used to express 
the architecture in a human-readable manner. 

An alternative approach for storing CNN models is to store 
the entire dataflow graph in a binary format. This approach is 
currently being employed as part of the ONNX standard. The 
main benefit of storing the entire dataflow graph is that it pro- 
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FIGURE 11. PMML LOAD TIME FOR FOUR DIFFERENT MOD- 
ELS. PMML LOAD TIME IS DEFINED AS THE TIME TAKEN TO 
LOAD AND PARSE THE PMML FILE. 

 
 

 
FIGURE 12. WEIGHT LOAD TIME FOR FOUR DIFFERENT 
MODELS. WEIGHT LOAD TIME IS DEFINED AS THE TIME 
TAKEN TO BUILD THE DATAFLOW GRAPH ON THE EXECU- 
TION DEVICE AND LOAD THE MODEL WEIGHTS. 

 
 

vides more flexibility for custom mathematical operations. How- 
ever, binary formats such as ONNX are not human-readable, 
making them more difficult to interpret. Both methods could be 
useful in different contexts: The proposed PMML representa- 
tion could be particularly useful when widely-used neural net- 
work architectures, such as ResNet, are trained on a novel task 
and shared across the research or industry communities. A bi- 
nary format such as ONNX is likely more useful for representing 
complex neural network architectures such as recurrent neural 
networks. 

FIGURE 13. MODEL PREDICTION TIME ON THREE DIF- 
FERENT COMPUTATIONAL PLATFORMS. MODEL PREDICTION 
TIME IS DEFINED AS THE AMOUNT OF TIME REQUIRED TO 
GENERATE A PREDICTION FROM A NEW INPUT, WHEN USING 
A BATCH SIZE OF 1. 

 
 

The neural network weights are critical to fully represent- 
ing a trained neural network; without these weights a prediction 
cannot be calculated. While PMML already contains support for 
a NeuralNetwork model element, this requires every neural net- 
work node to be specified. Specifying a 224 224 convolution 
layer with a 3 3 kernel requires 9 weights using the DeepNet- 
work element compared to 224 224 3 3 = 451, 584 weights  
with the traditional NeuralNetwork element. In this work, we 
chose to use the HDF5 format to store model weights, as it pro- 
vides a simple and efficient method of storing a map between 
layer names and weight tensors. However, model weights could 
also be saved using a binary format like ONNX, or directly em- 
bedded in the PMML file as a base64 string. 

A tile-base casting defect classifier was developed to illus- 
trate how the proposed PMML format makes transfer learning 
more accessible to a large number of machine learning frame- 
works. The ResNet-152 model obtained 94.4 % prediction ac- 
curacy on the test set, outperforming the highest scoring CNN 
model in [16], ImageXnet, which achieved 86.4 % accuracy. 
The improved performance is likely due to the use of larger tiles 
(224 224 pixels) compared to the 32 32 pixel patches used in 
ImageXnet. 

Scoring engines will become increasingly important in the 
smart manufacturing industry, especially as internet-connected 
manufacturing machines become more mainstream. For many 
real-time applications, the response time of the scoring engine 
must be sufficiently low to avoid manufacturing devices becom- 
ing idle whilst waiting for feedback from the scoring engine. Due 
to the declarative nature of the proposed PMML format, it is pos- 
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sible for our scoring engine to evaluate models on CPU, GPU or 
TPU hardware. This level of flexibility could be highly beneficial 
for manufacturing applications, where models must be evaluated 
on a range of hardware systems. 

 

CONCLUSION 
In this work, we proposed an extension to the PMML format 

for a standardized representation of convolutional neural network 
models. A tile-base casting defect classifier was developed to il- 
lustrate how the proposed PMML format makes transfer learning 
more practical on many machine learning frameworks. A scoring 
engine was created for this new standardized schema and used to 
evaluate the performance characteristics of the proposed format. 
The scoring engine and the trained models have all been made 
publicly available to accelerate research in the field. 
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