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Abstract 7 
 8 
Setting and strength development of ordinary portland cement (OPC) binders is a complex 9 
process that involves multiple interacting chemical reactions, which result in the formation of a 10 
solid microstructure. A long-standing yet elusive goal of the cementitious materials community 11 
has been to establish a basis for prediction of the properties and performance of concrete using 12 
knowledge of the chemical and physical attributes of its components – OPC, sand, stone, water, 13 
and chemical admixtures – together with the environmental conditions under which they react. 14 
Machine learning provides a data-driven basis for the estimation of properties, and has recently 15 
been applied to estimate the 28 d (compressive) strength of concrete simply from knowledge of 16 
its mixture proportions [1]. Building on this success, the current work uses a diverse dataset of 17 
different ASTM C150 cements, the chemical composition and other attributes of which have 18 
been measured. Machine learning (ML) estimators were trained with this dataset to estimate both 19 
paste setting time and mortar strength development as a function of the OPC composition and 20 
fineness. The ML estimation errors are typically similar to or lower than the measurement 21 
repeatability of the relevant ASTM test methods. ML therefore can be used to estimate the 22 
influence of binder composition and fineness on the engineering properties of cementitious 23 
systems. This creates new opportunities to apply data intensive methods to optimize concrete 24 
formulations under multiple constraints of cost, CO2 impact, and performance attributes. 25 
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1.0 Introduction 29 
The hydration of ordinary portland cement (PC) entails multiple concurrent chemical reactions 30 
[2]. These reactions cause extensive changes in phase assemblage and microstructure, which in 31 
turn determine the time-dependent evolution of concrete properties and performance such as 32 
setting time and compressive strength. Mature (28 d) compressive strength is the metric most 33 
commonly used to specify and qualify a concrete for structural design [3]. Multi-scale 34 
simulations suggest the need to couple microstructural and mechanical models as a means to 35 
predict time-dependent mechanical properties [4]. However, these approaches are still severely 36 
limited by gaps in knowledge of OPC’s hydration process and its constituent mechanisms, and 37 
are generally unable to forecast the evolution of properties and performance unless they are 38 
experimentally, and narrowly, calibrated to the specific system of interest [5]. 39 
 40 
In the absence of knowledge needed to predict cement hydration rates and associated changes in 41 
properties, data-driven machine learning (ML) methods offer an attractive, mechanism-agnostic 42 
approach for estimating engineering properties such as the 28 d compressive strength of concrete 43 
[6–15]. Young et al. [1] have recently demonstrated that ML can, when trained on enough data, 44 
make reasonable estimations of the 28 d compressive strength of field-produced concretes as a 45 
function of its attributes such as water-to-cement mass ratio (w/c), aggregate content, and the 46 
content and type of mineral and chemical admixtures. Such results demonstrate the potential of 47 
ML approaches for predicting concrete performance because the data that were used therein were 48 
obtained for concrete produced under the relatively uncontrolled conditions of diverse 49 
construction sites. The predictions could likely be made even more accurate by including site-50 
specific variables such as temperature and humidity changes with time. However, the study was 51 
limited to concretes produced with Type I/II PC. 52 
 53 
To supplement and extend existing models, the current study takes another step toward truly 54 
predictive models of concrete properties by applying ML methods to estimate the effects of OPC 55 
characteristics, such as chemical composition and fineness, on target performance characteristics 56 
such as paste setting time and mortar compressive strength. In addition, a tentative lower bound 57 
on the number of data records that are required for future estimation of other concrete properties 58 
is established. Special focus is paid to identify potential technical barriers faced by ML methods 59 
to identifying general trends among thousands of data points and, more importantly, to 60 
accurately predict the properties of any one material of interest.  61 
 62 
2.0 Background and Methods 63 
 64 
2.1 Machine learning algorithms 65 
Young et al. showed that bootstrap-aggregated (or bagged) decision tree ensembles can 66 
accurately estimate the 28 d compressive strength of concrete when trained on large datasets with 67 
potentially high inherent variability [1]. These rule-based estimators identify logical splits in 68 
data, partitioning the input space into a tree of decision nodes that are traversed until arriving at a 69 
final prediction of the target, called a leaf node. A simple operation, such as the multiplication of 70 
the input by a constant, produces the output estimation from each leaf node. A collection, or 71 
ensemble of trees are constructed, each tree being trained on different data sets and attributes, 72 
and their results are then averaged to produce the final prediction of the target [16]. This study 73 
focuses on three different decision tree ensembles because of their ability to estimate field 74 
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concrete compressive strength [1].  The first method is a bagged* tree ensemble, which bootstrap 75 
samples n different subsets of the training data with replacement to train n trees.  Other than the 76 
random sampling from the training data, the method is deterministic in the sense that the decision 77 
nodes are chosen from among all attributes using a deterministic function such as information 78 
gain or Gini index [17].  In addition, the threshold value for splitting at a decision node is chosen 79 
to be that which optimizes that deterministic function. The second method, a random forest 80 
ensemble, differs from the bagged tree ensemble in that it selects the attribute chosen for each 81 
decision node from among a randomly chosen small subset of the attributes. The third method, 82 
called extra† trees, is the same as a random forest except that the threshold value for splitting a 83 
decision node is also chosen at random instead of being prescribed by optimization of a 84 
thresholding function [18].  Other ML estimators besides these three tree ensembles were also 85 
examined, including basic linear regression and K-nearest neighbor (K-NN) regression [19–21]. 86 
The tree ensembles provided the highest prediction accuracy for every attribute, although the 87 
results of the other regression methods are also shown for comparison. All the algorithms used 88 
for estimator construction are regressors from the scikit-learn library, and can be accessed and 89 
downloaded, along with their documentation, at http://scikit-learn.org/stable/ [19]. 90 
 91 
2.2 Data collection and preprocessing 92 
Two datasets were utilized. The first dataset was provided by the Cement and Concrete 93 
Reference Laboratory (CCRL) Proficiency Sample Program, which issues four OPCs each year 94 
for comprehensive physical and chemical testing by nearly 200 different laboratories. This 95 
dataset consists of measurements of 48 attributes of a given OPC sample (see Table 1), as 96 
established by ASTM test methods [22]. The second dataset is a compilation of different industry 97 
survey data supplied by the Portland Cement Association (PCA) and the National Institute of 98 
Standards and Technology (NIST), formerly the National Bureau of Standards (NBS). This 99 
dataset comprises 2211 different PCs characterized by an unknown number of testing institutions 100 
using standard test methods. It also includes the averages‡ of 19 of the 48 attributes for each of 101 
the CCRL cements (marked in bold in Table 1). Two other attributes, normal consistency and 102 
final setting time, were also reported in the majority of records available, and so were also 103 
considered in this study (italicized in Table 1). The bolded entries in the “Chemical Tests” 104 
column of Table 1 were used as inputs to the final ML estimators, along with Blaine fineness, 105 
while the bolded and italicized entries in the “Physical Tests” column of Table 1, with the 106 
exception of Blaine fineness, were used as targets for ML prediction using these estimators. 107 
 108 
Prior to use as inputs and targets in the machine learning estimators, the data were preprocessed 109 
to remove obvious errors and to ensure they would be compatible with all the ML algorithms 110 
used. First, on an attribute-by-attribute basis, unphysical or meaningless values were deleted. 111 
Among these were percentages outside the range of 0 % to 100 %§ and unphysical values such as 112 
negative setting time or compressive strength. Second, a filter was applied to each attribute to 113 
delete any outliers, which we defined according Chauvenet’s criterion [23] as more than four 114 

 
*	The term “bagged” is a portmanteau of the terms “bootstrap” and “aggregated”. 
† The term “extra” is a portmanteau of the terms “extremely” and “randomized”. 

‡ Use of averages was necessary to ensure that no cement was over-represented in the input data to ML models, as 
this is known to negatively impact ML estimator performance. 

§ Any percentage values in excess of 100 % or below 0 % were retained only if they were physically meaningful. 
For example, negative percentages in autoclave expansion measurements correspond to shrinkage. 
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standard deviations from the mean of that attribute across all cements. The mean(s) were 115 
recalculated after those outliers were removed and the filter was reapplied, the process being 116 
repeated until no more outliers were identified. Less than 0.05 % of the data were discarded by 117 
this filtering for any given attribute, and the process of omitting outliers required only three 118 
iterations. Afterward, duplicate records (that is, identical cements) were deleted and any missing 119 
attributes were replaced by mean imputation, setting each missing value to the mean for the 120 
appropriate attribute as determined using data from the other cements. This is the simplest of all 121 
methods of data imputation, used in situations when data are missing completely at random, i.e., 122 
when the absence of a value is unrelated to the state of the system or values of other variables. 123 
 124 
Of the two datasets, that from the CCRL contains the greater number of records, nearly 31 000, 125 
and has a more comprehensive list of potential attributes to be used as inputs or targets for ML 126 
estimators. However, that dataset is also missing more data, contains many more duplicates 127 
(consisting of only about 200 unique cements), and consequently was unable to train any ML 128 
estimators as accurately as the composite survey dataset. The CCRL data were incorporated in 129 
the composite survey dataset, however, by using the mean value of each attribute for each 130 
cement instead of the individual records. Randomly shuffling the order of data records proved 131 
essential for effectively training the ML estimators regardless of the algorithm used. This 132 
indicates that the ranges of attribute values are not homogeneously distributed across the 133 
different surveys in the compilation, and that leaving the data grouped by survey alone 134 
introduces an inadvertent bias in the sampling of input attributes toward one particular study. 135 
Therefore, random shuffling as implemented herein is an effective and necessary way to 136 
ameliorate that artifact. 137 
 138 
Table 1: The cement attributes provided in the datasets, and the ASTM standards [22] (in square brackets) used to 139 

measure them. The boldfaced entries are reported consistently for nearly all cements in the full dataset, and italicized 140 
entries are reported in at least 50 % of the records in the dataset. Other entries were not consistently reported and 141 

were excluded from inputs to ML estimators. All boldfaced and italicized entries listed under “Physical Tests,” with 142 
the exception of Blaine Fineness, were utilized as target attributes in this study, and as such were also excluded from 143 

inputs to ML estimators. All other entries that were excluded from inputs to ML estimators were verified to be of 144 
minimal importance to estimator performance, as outlined in Section 3.2. 145 

Chemical Tests Physical Tests 
SiO2 (mass %) [C114] Paste Normal Consistency (%), [C187] 
Al2O3 (mass %) [C114] Vicat Paste Initial Set (minutes), [C191] 
Fe2O3 (mass %) [C114] Vicat Paste Final Set (minutes) [C191] 
CaO (mass %) [C114] Gillmore Initial Set (minutes) [C266] 
C3S (mass %) [C150] Gillmore Final Set (minutes) [C266] 
C2S (mass %) [C150] False Set (%) [C451] 
C3A (mass %) [C150] Autoclave Expansion (%) [C151] 
C4AF (mass %) [C150] Air Content (%) [C185] 
Free CaO (mass %) [C114] Air Content Mixing Water (%) [C185] 
MgO (mass %) [C114] Air Content Mixture Flow (%) [C185] 
SO3 (mass %) [C114] 3 Day Mortar Compressive Strength (MPa) [C109] 
Na2O (mass %) [C114] 7 Day Mortar Compressive Strength (MPa) [C109] 
K2O (mass %) [C114] 28 Day Mortar Compressive Strength (MPa) [C109] 
Loss on Ignition (mass %) [C114] Mortar Compressive Strength Mixture Flow (%) [C109] 
Insoluble Residue (mass %) [C114] Blaine Fineness (m2/kg) [C204] 
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Carbon Dioxide (mass %) [C114] Wagner Fineness (m2/kg) [C115] 
Limestone (mass %) [C114] Sieve Fineness (% passing) [C430] 
ZnO (mass %) [C114] 0 Day Heat of Solution (cal/g) [C186] 
Mn2O (mass %) [C114] 7 Day Heat of Solution (cal/g) [C186] 
P2O5 (mass %) [C114] 28 Day Heat of Solution (cal/g) [C186] 
TiO2 (mass %) [C114] 7 Day Heat of Hydration (cal/g) [C186] 
Cl (mass %) [C114] 28 Day Heat of Hydration (cal/g) [C186] 

 Mortar Bar Expansion (%) [C1038] 
 Mortar Bar Mixing Water (%) [C1038] 
 Mortar Bar Flow [C1038] 

 146 
2.3 Estimator optimization 147 
Numerous machine learning estimators were constructed and applied to predict initial set 148 
(minutes), 3 d compressive strength (MPa), 7 d compressive strength (MPa), and 28 d 149 
compressive strength (MPa). These targets were chosen because the first three affect the 150 
scheduling of construction operations, and the 28 d strength is both an input for structural design 151 
and a specification criterion. Each estimator was trained and tested on the combined datasets 152 
with the performance of each estimator being evaluated using several error metrics. Both training 153 
and testing were conducted on different portions of data using a standard low-bias resampling 154 
procedure called k-Fold Cross-Validation* [24,25]. The data records were randomly split into k = 155 
10 “folds,” nine of which were used to train the estimator, and one of which was used to evaluate 156 
the estimator after training. The process was then repeated nine additional times, each time using 157 
a different fold as the test set, and the remaining nine folds as the training set. 158 
 159 
The estimators used in this study are sensitive to the magnitude of the attributes in the sense that 160 
they will be biased to assign more importance to attributes with inherently greater values. For 161 
example, merely changing the units of Blaine fineness of the powder from m2/kg to cm2/g 162 
increases the numerical value by a factor of ten and can influence the accuracy of the estimators 163 
even though the physical data are the same. To address this kind of artifact, after the training and 164 
testing sets were identified and separated, the data for each attribute were rescaled to a standard 165 
normal distribution (mean = 0, variance = 1). This step was taken after the separation of the 166 
training and testing sets to avoid data leakage (i.e., the unintentional passing of information 167 
about the test set to the training set) which could potentially happen if the combined testing and 168 
training data were rescaled together. 169 
 170 
Estimator optimization was performed by determining extremal values of one of three objective 171 
functions that characterize the overall fidelity of the predictions to the actual values in the testing 172 
set. The objective functions are the root mean square error (RMSE), the mean absolute 173 
percentage error (MAPE), and the coefficient of determination (R2): 174 
 175 

 176 

 RMSE = &∑ (#!$%!)"#
!$%

'
                                                   (1) 177 

 
* Cross-validation is necessary to evaluate how machine-learning estimators are likely to perform when making 

predictions on previously unseen data: a portion of the data are taken as a training set and used to train and optimize 
the model, and the remainder of the data are withheld as a testing set to evaluate the model’s performance. 
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 182 
where 𝑛 is the number of records in the testing set, 𝑃* and 𝐴* are the predicted and actual target 183 
value of the ith record in the testing set, respectively, and 𝐴̅ is the arithmetic average of the actual 184 
target values. RMSE and MAPE indicate the average departure of estimated values from actual 185 
values, whereas R2 is the fraction of the variance of the target values that is predictable from the 186 
attributes using the model. As described in Section 3.1, low RMSE and MAPE values may still 187 
be achieved even when the data are relatively scattered and the R2 value is low. This has also 188 
been observed previously [1] and suggests that an error-based metric such as MAPE is a better 189 
test of estimator performance than R2 because it can be compared more directly with the 190 
acceptable range of physical test values for attributes such as setting time or strength [22].  191 
 192 
Each of the machine learning estimators were finalized by optimizing their estimation 193 
performance via hyperparameter tuning. This procedure varied both the number of trees used in 194 
random forest estimators and the number of attributes considered per tree split when partitioning 195 
the input space. The results of this hyperparameter tuning, shown in Figure 1, indicate that 196 
estimator performance improves only marginally beyond a certain number of trees. 197 
Consequently, the final estimators reported here employ only 100 trees to avoid over-fitting of 198 
the training data, and the extremely-random forest estimators employ only two attributes per 199 
“split,” for similar reasons. These fully-optimized ML estimators are a substantial improvement 200 
(roughly a two-fold reduction in MAPE) over prior work [1], by merit of their consideration of 201 
cement composition. 202 
 203 

  
(a) (b) 

Figure 1: The results of a representative parameter tuning exercise for the extremely random forest estimators 
constructed to estimate initial setting time, showing: (a) A plateau in estimator performance with increasing 

number of trees (i.e., in each case using two attributes to determine each partitioning of the input space), and (b) 
A modest optimum of two splits is observed when using 1000 trees. 

 204 
3.0 Results and discussion 205 
 206 
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3.1 Estimation accuracy for a given target is comparable to ASTM repeatability limits 207 
Among the algorithms examined, ensembles of decision trees consistently produced the lowest 208 
errors, as shown in Table 2. Of the tree ensembles, the extra trees estimator most accurately 209 
estimated every primary attribute as measured by MAPE. The error metrics are not much greater 210 
in magnitude than the reported repeatability of the corresponding ASTM test methods, reported 211 
as a coefficient of variation, though there is no standard ML error parameter that would enable 212 
more direct comparisons [22]. For example, the MAPE for 7 d compressive strength predictions 213 
by extra trees estimators is 6.58 %, less than twice the single-operator coefficient of variation of 214 
the measurement using ASTM C109 (3.8%). Similarly, the variability in initial set time for that 215 
estimator, 25.5 minutes, is considerably less than the acceptable range of two successive 216 
measurements using ASTM C191 (34 minutes). This suggests that, for cement compositions 217 
covered by ASTM C150, ensemble machine learning approaches may reliably estimate the 218 
average properties and performance of paste / mortar formulations nearly as well or better than 219 
they can be repeatably measured in the lab.  220 
 221 
Table 2: The results of 10-fold cross-validation using the following error metrics: root mean square error (RMSE), 222 

coefficient of determination (R2), and mean absolute percentage error (MAPE). The input attributes were SiO2 (mass 223 
%), Al2O3 (mass %), Fe2O3 (mass %), CaO (mass %), SO3 (mass %), and Blaine fineness (m2/kg), as determined by 224 

attribute importance in Section 3.2. 225 
Target Attributes for Ten-Fold Cross-Validation 

 Initial Set Timeb 3 Day Strengthc 7 Day Strengthc 28 Day Strengthc 

Estimator RMSE 
(min) 

R2 MAPE 
(%) 

RMSE 
(MPa) 

R2 MAPE 
(%) 

RMSE 
(MPa) 

R2 MAPE 
(%) 

RMSE 
(MPa) 

R2 MAPE 
(%) 

Linear 29.6 0.392 17.7 3.26 0.676 9.01 3.59 0.573 7.90 4.01 0.305 7.06 
K-NNa 27.8 0.437 15.9 3.25 0.691 8.32 3.48 0.614 7.27 3.77 0.394 6.35 

Decision Tree Ensemble Estimators:         
Bagged 26.2 0.524 15.0 2.79 0.766 7.29 3.18 0.668 6.67 3.50 0.489 5.91 
Random 25.6 0.541 14.9 2.82 0.763 7.35 3.15 0.674 6.68 3.48 0.497 5.87 
Extra 25.5 0.547 14.7 2.82 0.762 7.29 3.14 0.675 6.58 3.44 0.506 5.79 

Boosteda 29.0 0.417 17.7 3.44 0.646 10.0 3.63 0.567 8.19 3.89 0.368 6.81 
Gradienta 26.9 0.495 15.7 2.89 0.749 7.74 3.30 0.642 6.93 3.59 0.460 6.13 

a K-nearest neighbors, boosted decision trees, and gradient boosted decision trees were also used, among other 226 
estimators (not shown), as they are likely to perform similarly to bagged decision trees. None performed better 227 
for these target attributes. For details regarding the implementation, see http://scikit-learn.org/stable/. 228 

b ASTM C191. 229 
c ASTM C109. 230 
 231 
3.2 Higher errors for late-age strength suggest missing data attributes 232 
Table 2 shows that estimator performance for predicting compressive strength is progressively 233 
poorer at later ages, regardless of the estimator used. For example, the RMSE of the extremely 234 
randomized forest estimator increases from 2.82 MPa at 3 d to 3.14 MPa and 3.44 MPa at 7 d 235 
and 28 d, respectively. Despite the somewhat poorer estimator performance for 28 d strength 236 
compared to earlier times, both the MAPE and RMSE for 28 d strength estimates are modestly 237 
better than those determined by Young et al. [1] for industrially produced concretes using similar 238 
estimators, likely due to more detailed knowledge of mixture and material characteristics in the 239 
current study (cement composition, fineness). In any case, the greater errors at later ages may 240 
indicate that the available datasets are missing some important attributes that influence 241 
compressive strength at later ages. 242 
 243 
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One possible reason for this decrease in accuracy at later ages may be inconsistent or poorly 244 
controlled curing conditions in practice, the effects of which would become progressively more 245 
important with time. It is impossible to assess the likelihood of that possibility based on the data 246 
alone, however, because there are no requirements in ASTM C109 to report the imposed degree 247 
of control over curing temperature or moisture conditions. A second possible reason for 248 
increased error is air entrainment in some subset of the measurements, given that ASTM C109 249 
allows the user to decide whether or not the sample will contain entrained air – macroscopic air 250 
voids stabilized by chemical admixtures to improve freeze-thaw resistance – requiring a lower 251 
water-cement mass ratio (w/c) of 0.460 than the value of 0.485 required for samples without air 252 
entrainment. Finally, differences in water content may play a significant role in poor estimator 253 
performance for initial setting time measured using ASTM C191, wherein the mixture must be 254 
prepared with “normal consistency” as measured by ASTM C187, which is the empirically 255 
determined water content required to achieve a prescribed paste stiffness after 30 s of mixing 256 
with 0.65 kg of cement powder (varying from about 22 % to 30 % of the powder mass among 257 
different PCs). Therefore, ML estimation of normal consistency has also been investigated, as it 258 
may serve as a proxy for w/c and is available in some of the compiled survey data. 259 
 260 
Table 3: Results of 10-fold cross-validation for the final machine learning estimators of secondary targets with 261 
partial data records, evaluated using the same error metrics given in Table 1. The best-performing estimator (lowest 262 
MAPE) is marked in bold. The number of available data points used in each estimator is also reported. 263 

Target Attribute for Ten-Fold Cross-Validation 
 Final Set Normal Consistency 
Estimator RMSE 

(min) 
R2 MAPE 

(%) 
Data 
Points 

RMSE 
(%) 

R2 MAPE 
(%) 

Data 
Points 

Linear 60.1 0.422 18.4 1144 1.04 0.292 2.96 1447 
K-NN 59.6 0.432 17.6 1144 0.935 0.427 2.29 1447 
Trees:         
 Bagged 55.5 0.505 16.6 1144 0.920 0.446 2.28 1447 
 Random 55.5 0.505 16.6 1144 0.935 0.427 2.29 1447 
 Extra 54.7 0.513 16.4 1144 0.894 0.471 2.23 1447 
 Boosted 57.6 0.461 17.8 1144 1.11 0.193 3.31 1447 
 Gradient 57.9 0.461 17.5 1144 0.999 0.358 2.49 1447 

         aASTM C191. 264 
         bASTM C187. 265 

 266 
3.3 Estimation of secondary targets suggests a limited ability to account for missing attributes 267 
Among the other attributes in the dataset besides initial set and compressive strength, both 268 
normal consistency and final setting time were reported frequently enough to construct viable 269 
estimators. Estimators for these secondary targets, results of which are given in Table 3, were 270 
indeed about as accurate as those for primary targets in Table 2. However, in contrast to the 271 
primary targets, the errors in estimating normal consistency are significantly higher than the 272 
tolerances listed in its associated ASTM C187 test method. Nevertheless, the normal consistency 273 
estimators have the lowest MAPE of any estimator used in this study. ASTM C187 uses OPC 274 
pastes prepared with normal consistency, so the estimator’s ability to capture the dependence of 275 
normal consistency on composition and fineness may explain why ML estimators are able to 276 
predict initial and final setting times from those same attributes despite the fact that the w/c used 277 
can be different for each cement.  In other words, cement details such as fineness are able to at 278 
least somewhat capture this indicator of “water demand” of a cement, but there likely are other 279 
powder characteristics – perhaps microscale texture or grinding aid type or dose – that affect 280 
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normal consistency but are currently not being measured by standard test methods. This example 281 
highlights both a limitation of, and an opportunity for, ML methods: they can estimate certain 282 
aspects of concrete performance from routinely collected data, but they can also identify other 283 
performance attributes, the systematic estimation of which requires additional or perhaps 284 
qualitatively different material characterization. Similarly, as taken up in the next section, it is 285 
helpful for understanding to identify which currently-measured attributes contribute most 286 
strongly to the quality of ML estimations of different targets. 287 
 288 
3.4 Selective omission identifies six attributes necessary for estimation of set and strength 289 
One can evaluate the relative importance of the different attributes in determining estimator 290 
performance in predicting the primary targets (initial set, compressive strength) by eliminating 291 
them one at a time from the training set. The corresponding increase in MAPE was used as a 292 
quantitative measure of attribute importance, as shown in Figure 2(a). Unsurprisingly, cement 293 
fineness is by far the most influential input attribute, followed by the oxides of sulfur, calcium, 294 
aluminum, silicon, and iron.  Similar attribute rankings were obtained for all targets estimated. 295 
This is reassuring because (i) available surface area is well known to be a key factor that affects 296 
cement reaction rates and water demand, (ii) calcium and aluminum bearing cement phases such 297 
as tricalcium silicate (C3S*) and tricalcium aluminate (C3A), are known to be the most reactive 298 
cement phases, and (iii) proper sulfation of a cement is empirically known to influence setting 299 
and early-age strength gain. Predictions showed only marginal improvement upon inclusion of 300 
any other other attributes from Table 1 besides these six, such as minor oxides (Mg, Na, K), loss 301 
on ignition, or free lime content.  Whether added alone or in combination with other such 302 
attributes, none affected the MAPE by more than 0.1 %. Replacing the four major oxides with 303 
the Bogue estimates of the four major clinker phases also did not improve estimator 304 
performance, which is understandable because the Bogue estimates are merely linear functions 305 
of the oxide proportions.  306 
 307 
3.5 Random omission identifies a tentative lower bound on data needed to train estimators 308 
Having now established the minimum attributes necessary for predicting the primary targets, we 309 
now turn attention to determining the minimum number of data records needed to make accurate 310 
target estimates. This measure of robustness of the different ML algorithms, when applied to 311 
these datasets, can be evaluated by retraining them with a sparse subset of the data. Specifically, 312 
learning curves were constructed by randomly omitting data records from the input, as illustrated 313 
in Figure 2(b). For convenience in terminology, we define “data-sufficiency” as the minimum 314 
number of data records at which the learning curves plateau. Figure 2(b) shows that the 315 
estimators approach peak performance, at least with respect to R2, with less than 10 % of the 316 
available dataset; those trained with a random selection of at least 200 of the 2211 total available 317 
data records performed within about 1 % of the MAPE of the same estimators that were given 318 
access to the full training set. This suggests the viability of applying such estimators even for 319 
relatively smaller datasets and is an encouraging sign that these methods can also be used 320 
reliably even with limited field data. However, the error metrics frequently used to evaluate the 321 
quality of ML estimators, such as MAPE, are not necessarily suitable for the direct comparison 322 
between estimator accuracy on average and the ability of the estimator to make consistently 323 
accurate predictions of engineering properties of particular cement systems. 324 

 
* Conventional cement chemistry notation is used: C = CaO, S = SiO2, A = Al2O3. 
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 325 

 

 

(a) (b) 
Figure 2: Representative evaluations of estimator performance shown for the extremely random forest estimators 

constructed to estimate 3 d compressive strength which highlight (a) Attribute importance as determined by an 
increase in MAPE upon omission of a given input attribute, and (b) so-called “learning curves” for the estimator 

showing the minimum number of input records required to construct an adequate estimator. 
 326 
3.6 New evaluative metrics are needed to properly reflect estimator prediction accuracy 327 
The three objective functions used to score the estimator performance in this study, which are 328 
among the most commonly used scoring metrics in other machine learning efforts, reflect the 329 
estimator’s performance on average for the entire dataset, which comprises many cements. 330 
However, indicators of average error such as RMSE and MAPE do not indicate the estimator’s 331 
accuracy in predicting the target value of any particular cement in the testing set. Just as a 332 
significant fraction of a normally distributed population lies outside one standard deviation of its 333 
mean, so does a given estimator produce individual errors much greater than the RMSE for a 334 
significant fraction of the cements. As an example, Figure 3(a) shows the individual predictions 335 
of 28 d compressive strength made by an extremely random forest regressor with 500 trees 336 
applied to a testing set after training. The predicted value for each data record is plotted against 337 
the actual target value for that record. The RMSE for this estimator is less than 5 MPa, but the 338 
maximum error for any particular cement could be as high as 20 MPa and corresponds to a 339 
relative error of about 50 %. 340 
 341 
To view the situation in a different way, the absolute prediction errors for 28 d strength of 342 
individual cements were collected in a histogram with 1 MPa bin widths.  The histogram was 343 
converted into a normalized probability density plot, the positive portion of which is shown in 344 
Figure 3(b).  For comparison, the same figure shows the corresponding histograms for 3-d 345 
compressive strength obtained in this study and for 28-d concrete strength obtained by Young et 346 
al. [1].  The errors have an approximately normal distribution with a peak near 2 MPa and a 347 
standard deviation of approximately 3.6 MPa. A tolerance interval for an ML estimator can then 348 
be established in a similar manner to the ASTM standard test methods. For example, given that 349 
the 28 d strength errors in Figure 3(b) are approximately normally distributed with a mean of 2 350 
MPa and a standard deviation of 3.6 MPa, there is a 95 % probability that 90 % of the 351 
predictions will be no less than 6.2 MPa below the actual value and no more than 10.2 MPa 352 
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above it.  A tolerance interval this large is far from ideal.  However, for comparison the interval 353 
for similar estimations from concrete mixture proportions by Young et al. [1] comes in at about 354 
±15.5 MPa. As illustrated in Figure 3(b) by comparison to predictions on concrete, as well as 3 d 355 
strength, the current results clarify both the substantial improvement achieved by inclusion of 356 
attributes such as cement composition, as well as the potential future improvements that may 357 
arise from inclusion of additional attributes such as curing conditions. 358 
 359 

  
(a) (b) 

Figure 3. The prediction results of an optimized 500-tree extremely random forest regression estimator, shown as 
(a) predicted vs actual strength values with a dashed line of identity provided to guide the eye, and (b) the 

normalized cumulative probability distribution of a prediction by the estimator having a given error. Also shown 
for comparison are distributions for a similar estimator applied to prediction of 3 d compressive strength of 

mortars (this study) and 28 d compressive strength of concretes (Young et al. [1]). 
 360 
If ML estimators are to be used confidently for concrete mixture design and optimization, they 361 
will need to achieve much lower tolerance intervals in their predictions than are indicated herein. 362 
In statistical treatments such as those discussed above, the only way to reduce the probability that 363 
a particular estimate is outside a tolerable limit is to significantly reduce the average error values 364 
such as RMSE and MAPE, or to effectively tighten the distribution of errors about these average 365 
values. The ways to decrease average error are to provide the estimator with data that more 366 
uniformly span the range of possible values, to acquire better curated data, or to identify and 367 
collect data on other attributes that may relate more meaningfully to the target being estimated. 368 
Within the narrowly prescribed range of cement compositions and characteristics considered 369 
herein, namely ASTM C150 PCs, the dataset would appear to be easily large enough to train the 370 
estimators according to the plateau in learning curves demonstrated in Figure 2(b). 371 
Consequently, the only feasible way to reduce the unexplained variance is to develop a means for 372 
identifying relatively more inconsistent data within the currently applied dataset, or to 373 
supplement the data with measurements of other material or processing characteristics that are 374 
currently not being routinely captured including, but not restricted to, the types and dosages of 375 
chemical admixtures, the particle size distribution of the OPC, clinker grinding parameters, 376 
curing conditions, and data on the mineralogy, texture, and impurities in the individual cement 377 
components. 378 
 379 
3.7 Under-sampling intermediate strength values reduces estimator bias 380 
The correlation between predicted and actual 28 d compressive strength values, as illustrated in 381 
Figure 3(a), exhibits a distinct bias: low actual compressive strength values are consistently over-382 
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predicted, while high values are consistently under-predicted. This suggests that such regression 383 
estimators, including ensemble models such as extremely random forests, suffer from an 384 
imbalance in the input data used to train them, specifically in that a scarcity of very low and very 385 
high compressive strength values leads to less accurate predictions in these ranges. This issue has 386 
been frequently addressed in the field of ML classification [26] by resampling, that is, omitting 387 
or adding data records in the ML training set. Development of this practice for regression 388 
estimators is only in its early stages [26], with primary interest so far in its ability to allow for 389 
prediction of rare extremal values [27]. In the current case, where more accurate predictions 390 
within a narrowly prescribed range are the goal, resampling methods provide a ready means to 391 
reduce estimator bias by simply omitting a selection of the input data. 392 
 393 

  
(a) (b) 

Figure 4. (a) The distribution of measured compressive strength values from the full dataset, with data that was 
used as input to train ML estimators, predictions to test ML estimators, and excluded data marked in green, blue, 

and red, respectively. (b) Prediction results of an optimized 500-tree extremely random forest regressor trained on 
an input set subject to under-sampling (as illustrated in part (a)), shown as predicted vs actual strength values 

with a dashed line of identity provided to guide the eye. 
 394 
A tentative under-sampling procedure, developed specifically for the dataset under consideration, 395 
demonstrates that the input of fewer data is preferable when predicting the compressive strength 396 
of cement mortars (Figure 4b). The under-sampling in this case was conducted by analyzing the 397 
distribution in actual compressive strength values (Figure 4(a)), divided arbitrarily into 1 MPa 398 
intervals.  About 90 % of the data records have compressive strengths between 34 MPa and 54 399 
MPa. At least 20 data records were available within each 1 MPa interval in that range, but not 400 
outside that range. Therefore, 20 data records were randomly selected from each 1 MPa interval 401 
within the range of 34 MPa to 54 MPa, and the remainder of the records in that range were used 402 
to test prediction accuracy. The input set constructed in this manner consisted of 420 data 403 
records, more than enough to optimally train estimators according to Figure 2(b).  Moreover, the 404 
new restricted training set corrected the bias in 28 d strength predictions, as can be seen by 405 
comparing Figure 4(b) with Figure 3(a). 406 
 407 
The under-sampling procedure described above provides marginal improvements in previously 408 
discussed average error metrics; for example, R2 for 28 d strength correlations increased from 409 
0.506 to 0.582.  However, the error in any specific prediction, as before, is still considerably 410 
larger than that achieved by repeated experimental measurements. Nonetheless, this result 411 
highlights an important guideline that should be taken into account, both when using existing 412 
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datasets and when acquiring new data with a broader array of attributes: prediction bias can be 413 
reduced when the training set contains data that are more evenly spread over the entire range of 414 
possible target values. The same principle might apply to imbalances also in specific attributes, 415 
which then reduce estimator performance but are not easily identifiable. This is likely most 416 
applicable to cases for which some of the input attributes are known to vary widely, like those of 417 
concrete mixture proportions, as opposed to the relatively well-bounded cement compositions 418 
considered currently. The potential applications of under-sampling and/or over-sampling across 419 
many attributes to improve the performance of ML regression estimators represents a significant 420 
area for future research, with particular relevance to cement and concrete-type materials. 421 
 422 
4. Summary and conclusions 423 
This study takes another important step toward predictive ML models of concrete properties by 424 
including the effects of OPC characteristics on the properties and performance of cement pastes 425 
and mortars. ML methods are applied to estimate 3 d, 7 d, and 28 d compressive strength and the 426 
time of initial set across numerous ASTM C150 compliant PCs – attributes that are typically 427 
measured in a laborious and time-intensive manner using standard test methods. At a minimum, 428 
accurate estimation of these properties by ML requires knowledge of the cement fineness and the 429 
mass fractions of the oxides of silicon, aluminum, iron, calcium, and sulfur. Additionally, a 430 
lower bound of approximately 200 data records for different cements is required to enable this 431 
nature of estimations, with estimator performance improving only marginally with provision of 432 
more data records, likely due to the relatively narrow range of cement compositions and 433 
finenesses that are included. This implies that suitably-trained ML approaches may be used even 434 
when limited data are available. 435 
 436 
A distinction of the dataset used in this study is that all the attributes and targets were measured 437 
following standard test methods that are intended to minimize the variability of measurement 438 
conditions. One advantage of this is that it enables the ML estimators to isolate and discover the 439 
influences of OPC powder characteristics on engineering performance without the complications 440 
of variability among other important parameters such as mixture proportions and curing 441 
temperature. In the field, these latter variables are not held constant and can have a decisive 442 
influence on concrete performance. However, prior applications of ensemble ML estimators to 443 
field concrete performance have demonstrated that realistic mixture proportioning, and 444 
production procedures and curing conditions can be accommodated and still yield reasonably 445 
accurate estimations of 28 d compressive strength [1]. Therefore, in a limited sense, this effort 446 
confirms the ability of ML methods to estimate how OPC powder characteristics affect binder 447 
properties, while outlining the limitations, such as the difference between an estimator’s average 448 
accuracy and its accuracy in making single predictions. Tight tolerance intervals are a major goal 449 
in the ongoing effort to develop more comprehensive ML approaches to predicting the field 450 
performance of concrete with multicomponent binders. ML approaches are all the more desirable 451 
in this context, however, because they can, if provided with suitable and sufficient data, capture 452 
the effects of variable environmental conditions and curing practices on concrete properties and 453 
performance. 454 
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