
Towards an Automated Unified Framework to Run Applications
for Combinatorial Interaction Testing

Bestoun S. Ahmed* Amador Pahim Cleber R. Rosa Junior
Dept of Mathematics and Computer Red Hat Czech s.r.o., Brno, Czech Red Hat, Inc., Westford, USA
Science, Karlstad Univ, Sweden and Republic crosa@redhat.com
Dept of Computer Science, Czech apahim@redhat.com
Technical Univ in Prague, Czech

Republic
bestoun@kau.se

D. Richard Kuhn
Natl Inst of Standards and

Technology, Gaithersburg, MD, USA
kuhn@nist.gov

ABSTRACT
Combinatorial interaction testing (CIT) is a well-known technique,
but industrial experience is needed to determine its efectiveness in
diferent application domains. We present a case study introducing
a unifed framework for generating, executing and verifying CIT
test suites, based on the open-source Avocado test framework. In
addition, we present a new industrial case study to demonstrate
the efectiveness of the framework. This evaluation showed that
the new framework can generate, execute, and verify efective
combinatorial interaction test suites for detecting confguration
failures (invalid confgurations) in a virtualization system.

KEYWORDS
Automated testing framework, Software testing, Combinatorial
testing applications, Software quality assurance, Test automation

ACM Reference Format:
Bestoun S. Ahmed*, Amador Pahim, Cleber R. Rosa Junior, D. Richard Kuhn,
and Miroslav Bures. 2019. Towards an Automated Unifed Framework to
Run Applications for Combinatorial Interaction Testing. In Proceedings of
ACM conference (EASE2019). ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Combinatorial interaction testing (CIT) (sometimes called t-way
testing) is based on the covering array (CA) [11], a matrix that
includes all t-way combinations of input parameter values, for a
specifed level of t (usually t ≤ 6 for software testing) of the system-
under-test (SUT). Research activities have focused mainly in two
directions (1) generating combinatorial interaction test suites that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EASE2019, 2019, Denmark
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Miroslav Bures
Dept of Computer Science, Faculty of
Electrical Eng, Czech Technical Univ,

Prague, Czech Republic
buresm3@fel.cvut.cz

provide t-way coverage, and (2) applying a combinatorial interac-
tion approach to test industrial systems.

CIT has shown impressive results in many testing studies and
large-scale industrial projects [6, 17]. The usefulness of CIT could
be for example a systematic reduction of a test suite or detecting
new faults in a SUT due to interactions of input parameters, or
identifying invalid confgurations of the SUT. In fact, fnding new
applications for CIT is an active research area.

To apply CIT on any SUT, the frst step is to model the input
parameters or confgurations of the system. Typically, this pro-
cess involves identifying the input parameter and confguration
values that are needed in testing. For continuous-valued param-
eters, equivalence class partitioning will generally be needed to
reduce the domain size to a tractable level. The CA generation tool
uses the input model to produce test suites that cover all t-way
combinations of values of the CA variables. A limited form of this
method is "pairwise" or "all-pairs" testing, which includes all 2-way
combinations of parameter values. Stronger forms of combinatorial
testing use 3-way, 4-way, or higher strength CAs to detect complex
faults that depend on multiple factors interacting.

Once the test suites are generated, they must be executed and
their output verifed, steps which can be combined and automated.
For example, test generation and execution can be combined using
a scripting language (e.g.,[22]). However, applying these steps may
vary from one application to another, so implementing CIT in
practice is usually application-specifc.

In this paper, we introduce a generic unifed framework approach
to apply CIT in practice. This framework is an output of a successful
industry-academia-government collaboration efort. We have inte-
grated the CIT capabilities into the Avocado1 framework. Avocado
is an open source testing framework maintained by Red Hat Inc.
and Avocado Community Contributors. The framework consists of
a combination of tools and libraries to ease automated testing by
providing a set of programs for test execution and diferent APIs
for writing test cases. The test can be written in a user’s program-
ming language or using a Python API. The new plugin will add

1https://avocado-framework.github.io/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://1https://avocado-framework.github.io
mailto:buresm3@fel.cvut.cz
mailto:kuhn@nist.gov
mailto:bestoun@kau.se

EASE2019, 2019, Denmark B. Ahmed et al.

the capability of CIT to the framework. Originally, Avocado was
designed as a fexible framework that can be used to run any set of
test cases for an application as far as the plugin of that application
is available. For example, the user can use it for unit testing, vir-
tualization testing, security testing, or mobile application testing.
Almost everything is a plugin in Avocado and the development of
a new plugin is made straightforward to extend the functionality
of the runner for testing any new application.

Using these capabilities of Avocado, we have designed and imple-
mented a new and unique plugin to extend the Avocado framework
by interacting with the other plugins, which allows generating
much more efcient and efective test data. In doing so, the user
will need only to follow the input modeling style of Avocado to
enter the values of the SUT and then let Avocado generate, run,
and verify the test cases.

2 BACKGROUND AND LITERATURE
CIT relies on a covering array (CA), to derive the combinatorial
interaction test suites. A CA is based on t-way coverage criteria
(where t represents the desired interaction strength, which is the
number of factors interacting). CA(N ; t , k,v), also expressed as
CA(N ; t ,vk), is a combinatorial structure constructed as an array of
N rows and k columns on v values such that every N × t sub-array
contains all ordered subsets from the v values of size t at least
once. A mixed-level covering array (MCA)(N ; t , k, (v1,v2, . . . vk))

or MCA(N ; t , k,vk) may be adopted when the number of com-
ponent values varies [19], while the Constrained Covering Array
(CCA) may be adopted when there are constraints among the values
of input parameters [3].

Research activities in CIT include (1) the generation of combi-
natorial interaction test suites, and (2) the application of CIT [3].
In fact, the problem of test suite generation has received more at-
tention from the research community. Generation algorithms vary
from random generation [12] to mathematical constructions for
limited small size and interaction strength such as generation from
Orthogonal Arrays (OA) [11], to the deterministic generation meth-
ods like In parameter Order (IPO) algorithm [16] and its variants
IPOG, IPOG-D [15], and IPOG-F [9]. Metaheuristic algorithms have
also been used widely in the last decade to optimize the gener-
ation process. Here, many algorithms are used, such as Genetic
Algorithms (GA) [5], Ant Colony Algorithms (ACA) [23], Particle
Swarm Optimization (PSO) [2], and Tabu Search [18]. A compre-
hensive survey of these generation algorithms and many others can
be found in [3]. In fact, with the availability of all these algorithms
and tools, algorithm research for CIT can be said to have reached a
mature state, making CIT practical for real-world applications.

Many studies have investigated diferent applications of com-
binatorial methods to software testing and program verifcation.
Many applications emerged in this direction, including investiga-
tion of the relationship between code coverage and t-way coverage
[13], fault detection and characterization [25], graphical user in-
terface testing (GUI) [26], and model-based testing and mutation
testing [8]. In fact, there are many applications of CIT in the soft-
ware testing discipline. Combinatorial interaction testing also fnds
its way to other felds rather than software testing. For example, it
has been used in satellite communication testing, hardware testing

[7], advanced material testing [20], dynamic voltage scaling (DVS)
optimization [24], and gene expression regulation [21]. Many other
application domains can be found in the literature, and researchers
are actively discovering new uses for CIT.

As mentioned previously, to apply CIT in practice, there is a need
to organize variables and values of the SUT into some interpretable
input model for input to the CA test generation tool. After generat-
ing the test cases, tests should be executed on the SUT, and then the
test output should be verifed for the pass and fail criteria. These
steps are applicable for almost all applications. However, details of
each step may vary from one application to another. For example,
the input model, and the execution of the test cases may vary de-
pending on the SUT. There are always some manual activities in
this process. In the literature, there are some eforts [12] to develop
adaptive solutions to generate and execute the test cases, but still,
they are application-specifc solutions. A more practical solution is
to develop a fexible automated framework that can generate, run,
and evaluate combinatorial test suites on any SUT. One approach
to integrating these steps is CITLab [10], designed to improve the
interoperability among combinatorial testing tools, by providing a
framework for defning domain-specifc languages.

In this paper, we introduce an enhancement of the Avocado
testing framework to include CIT capability and apply this new
capability to automate testing of confguration specifcations for the
open source hypervisor Qemu. Avocado provides a set of tools and
supporting libraries for test automation on the Linux platform. The
framework can take the input of the SUT as a model and generate
test cases according to it, then run and verify the test cases, as
described in the following sections.

3 THE AVOCADO FRAMEWORK
Avocado is an open source testing framework maintained by Red
Hat Inc. and Avocado Community Contributors, that is designed to
give common ground to both quality assurance (QA) teams and De-
velopers. The framework is a set of tools and libraries to help with
automated testing. Here, the native tests are written in Python; how-
ever, any executable can serve as a test. Avocado consists of three
main components, the test runner, libraries, and plugins. The test
runner enables the user to run the test cases. Avocado provides the
fexibility of writing test cases in Python or any other programming
language. In both cases, there are facilities to record the activities
during the test, such as information collection of the system and
automatic logging. Libraries are used to create and write test cases
in an expressive way. The plugins are extensions to Avocado for
adding more functionality and features to the framework. The abil-
ity to add more plugins to the framework easily assures maximum
fexibility for future developers. Figure 1 shows the basic building
blocks of the framework from the user perspective. The framework
supported by the GDB2 front-end for the user interface. The test
runner relies on plugins and many of them can be used during test
execution. The output of the testing process can be saved and used
in JSON, Xunit, HTML, or TAP formats. Hence, the output fle can
be used in diferent ways by the developers or testers. For example,
it can be integrated with Jenkins3 to trigger the testing process.

2https://sourceware.org/gdb/
3https://jenkins.io/

https://3https://jenkins.io
https://2https://sourceware.org/gdb

Towards an Automated Unified Framework to Run Applications for Combinatorial Interaction Testing EASE2019, 2019, Denmark
Avocado For Test Writers

Testing APITest Writer

Instrumented tests

Program under test

GDB
Wrappers

simple tests

 Test Runner

Figure 1: Avocado high level test writer view

To automate the testing process of any SUT, the tester needs to
create test cases and then run them using the plugins. The plugin
for that SUT must be used to automate the process. The test runner
will automatically run the SUT with the necessary environment (i.e.,
necessary resources and programs) to execute the test cases. For
example, suppose we want to test a mobile application using some
set of test cases and record the output in any of the used formats.
Here, the test runner will run the test cases using a plugin to start
the mobile emulator. When the test runner initiates the emulator,
the test cases will be executed automatically by the Avocado, and
the output will be saved directly to the user output format.

If the user of Avocado wants to test an application and the plugin
is not available, then the user frst needs to create a plugin to start
the environment and setting up all the relevant services, stubs, and
programs to start the application. In fact, the creation of a new
plugin for this purpose is simplifed by our development team. The
user needs to follow a few simple steps to create this plugin. These
steps can be found in the Avocado documentation4.

These fexibilities of the Avocado framework make it attractive
to implement an automated unifed framework for combinatorial
interaction testing applications. Here, we extend Avocado to han-
dle the combinatorial interaction testing automatically to perform
the model creation, test case generation, test case execution, and
evaluation of the test oracle. By adding this feature, we can get the
benefts of CIT to reduce and detect faults in the SUT, with the
benefts of Avocado to automate, run and verify the testing process.
In the next section, we illustrate this CIT extension to Avocado.

4 THE CIT EXTENSION TO AVOCADO
The CIT extension to Avocado adds signifcant capabilities to the
framework and makes it possible to apply CIT in a fully automated
testing process (see Figure 2). Here, the user frst needs to model
the SUT input parameters to the CIT fle format, i.e., determine the
parameters to be included in tests, and values for each parameter.
The output of CIT test generation will be a set of tests that covers
all t-way combinations of the parameter values, for a selected level
of t . Thus, if t=2, the tests will instantiate all sets of variables taken
two at a time with all pairs of possible values for these variables.
For example, in Figure 2, there are four input parameters, each with
a diferent number of values. The input parameters and values are
also represented in Avocado in a tree representation model. The
test resolver will resolve this input model to an interpreted format
understandable by the CIT plugin. The CIT plugin will generate

4http://avocado-framework.readthedocs.io/en/59.0/

Parameter_1[V1, V2, V3,V4,V5]
Parameter_2[V1, V2]
Parameter_3[V1, V2, V3, V4, V5]
Parameter_4[V1, V2]

Test Resolver File Loader

External Loader

CIT PluginVarianter

Test Runner

Running Environment

Local

Remote

VM

Docker

Output

SUT

Local

Local

Local

Local

CIT input File

CIT Tree Model by Avocado

Multiplexer

Figure 2: Basic structure of Avocado with CIT extension

the test cases and send them to the multiplexer that creates the
scripts to be run on the SUT. In some applications, the test suite is
a confguration setting of the SUT and there are still some input
fles or codes that must be input with the confguration. We call
this type of input a variant. Hence, if there is a variant in the SUT,
Avocado will consider it with the test suite through the multiplexer.
The multiplexer will then send the test cases to the test runner.
The test runner executes the test cases with respect to the SUT.
For each test case, the Avocado will record the output and show a
verifcation message on the screen.

The test runner can run the test cases in diferent ways. As shown
in Figure 2, it can run the test cases on the conventional local ma-
chine, remote machine, virtual machine, or even on a Docker con-
tainer. After running the test cases, the runner saves the recorded
results of the output in a customizable format. The output format
can be in XML, JSON, Tap, or HTML format, as selected by the user.
The fnal runner output and test time execution are also shown
on On the output screen in Pass and Fail forms. Here, the PASS
and FAIL depend on the output of the test case. For a simple test,
it is PASS when the exit code is "0". For an instrumented test, it is
considered PASS for example when there is no exception in setUp(),
testMethod(), or tearDown(). A test is also considered PASS when
the runner gets the fnal test status. This PASS and FAIL is also
customizable, and the user can state the PASS and FAIL based on
the output summary of the test.

Combinatorial interaction test suites are generated with the
previously developed algorithm PSTG [1, 4]. PSTG generates com-
binatorial interaction test suites using Particle Swarm Optimization
(PSO). The algorithm has been assessed extensively and proved its
efciency, with diferent benchmarks and experiments in the litera-
ture. The user also can contribute to the test generation algorithm
as it is an open source framework.

5 AN INDUSTRIAL CASE STUDY
To show the efectiveness of the automated framework, it is applied
in an industrial case study of validating confgurations in a virtual-
ization environment. In addition to the evaluation aim of this case
study, it also demonstrates a somewhat diferent application of CIT,
in which CAs are used in confguration checking as compared with
conventional code testing.

EASE2019, 2019, Denmark B. Ahmed et al.

5.1 Object of the Study
The object of the study is the Qemu virtualization Project5, specif-
cally, the Qemu Block Layer confguration checking tests. Qemu
is a machine emulator and virtualizer. An essential component of
this virtualizer is its Block Layer. Every emulated or virtualized
machine will need at least one virtual disk to fulfll its purpose.
Qemu supports a variety of disk image formats, and they can be
created in many diferent ways. To ensure that a confguration
can function correctly on the virtualizer, a set of shell scripts and
commands are run on Qemu. In this case study, there are 192 such
validation scripts. A confguration is determined to be valid if all
192 validation scripts pass, otherwise the confguration is invalid.

We present a real case study from the industry. In this work, CIT
tests are not used to detect coding errors, but to identify invalid
confguration settings. The case study is a sample of bigger projects
that were inspired and adopted by the Red Hat Quality Assurance
(QA) team. We used the Avocado framework as a test bed.

To cover with the required testing of those many formats and
options for creating Qemu disk images, the Qemu Project holds a
‘qemu-iotests‘ directory, with the validation test cases6. The tests
consist of BASH scripts that will be executed by the Avocado Test
Runner. Avocado will receive the combinations from the CIT Plugin,
parse it into a Tree object and iterate that Tree object to create
the Test Suite, an object containing each variation of tests per
parameters combination. Test scripts will then be executed with a
given ‘Variant‘(i.e., a combination of parameters and variants) in
place, to be consumed in the form of environment variables. The
test script will create the virtual disk image following those options
and then manipulate it to test if the generated image fle complies
with the requirements, as specifed within the test script. Based
on the test assessment of the created image manipulation, the test
script will return the corresponding exit code to Avocado. Using
that exit code, Avocado will mark the fnal test status as PASS (exit
code 0) or FAIL (exit code non-0).

5.2 The System Under Test
The virtualized system under test used for this experiment con-
sists of fve input parameters. Each parameter represents a specifc
type of image that can be used as an option in the system confg-
uration that has to be run as a Qemu project. The Avocado tree
representation7 of the input model can be generated by Avocado.

As can be seen in the tree representation model, the system has
fve inputs, each of them having diferent confguration values. For
example, the image format could be one of fve values, i.e., raw,
qcow, qcow2, luks, and vmdk. The full meaning of each parameter
and its corresponding values is shown in Table 1. A possible system
confguration is a combination of these variables and settings, so
the input model structure for combinatorial test generation would
be designated 5223, i.e., two variables with fve values and three
with two values. Note that this expression also gives the number of
possible combinations, in this case 200. Combining these variables
together will form a confguration; however, this does not mean

5https://www.qemu.org/
6The used scripts can be found in https://github.com/qemu/qemu/tree/master/tests/qemu-
iotests
7Example of the tree model can be found here https://bit.ly/2UmWrEW

that the confguration is a valid confguration, thus the need for
validation scripts as explained above.

5.3 Evaluation and Analysis
To evaluate the efectiveness of Avocado for CIT, we present here
the results of our case study. As previously mentioned, we are not
evaluating the test generation algorithm efciency of the Avocado
framework, as it has been reviewed extensively in the literature. We
used the PSTG algorithm to generate the test cases. More evaluation
results and comparison with other algorithms and tools can be
found in the literature (e.g., [1, 4]). Note also that the Avocado
framework is composed of many plugins and tools, and evaluating
them is beyond the scope of this paper.

Here, we aim to validate the efectiveness and performance of
the Avocado CIT extension regarding four critical issues:

(1) The coverage validity of the generated test cases
(2) The performance of the testing process
(3) The efciency of the multiplexer integration with test gen-

eration when generating diferent t-way test suites.
(4) Level of fault detection for diferent t-way test suites.
As the generation algorithm uses PSO concepts, it generates

nondeterministic results due to the random initialization of the
algorithm. To this end, we ran each test several times and addressed
the results to assure a fair statistical experiment. For coverage
validity, we checked it in each run; however, due to limited space in
the paper, we only present one graph for each t-way test suite. We
ran the test cases for the performance and efectiveness 30 times
and then produced a box-plot for them. All the experiments were
performed on a Linux Fedora personal computer with 2.9 GHz Intel
Core i5 CPU and 8GB 2133 MHz of memory.

The basic concept of the CIT is that all the combination tuples
must be covered by the generated test suite at least once. To as-
sure that our Avocado framework covers all these tuples, we used
the Combinatorial Coverage Measurement Command Line Tool
(CCMCL)8 for evaluation. The tool was developed by the National
Institute of Standards and Technology (NIST) to measure and vali-
date the coverage of a t-way test suites. Figure 3 shows the coverage
measure for 2-way, 3-way, and 4-way test suites.

The CCMCL tool is a coverage strength meter to determine
the combinatorial coverage of any test suite and also identify any
missing combinatorial tuples. Note that combinatorial coverage
as evaluated by CCMCL is diferent from conventional structural
coverage measures such as statement or branch coverage. Com-
binatorial coverage is a measurement of the proportion of t-way
combinations included in a test suite (a static measure), rather than
a dynamic execution-related code measure such as statement cov-
erage. It is clear from Figure 3a that the generated 2-way test suite
achieves the 100% coverage of the tuples. Here, the red indicator line
is on the right side of the graph which indicates the 100% achieved
coverage level. Figure 3a also shows the 3-way, 4-way, and 5-way
(i.e., the exhaustive test suite with full strength) for the same 2-way
test suite for comparison. Here, we can see that the 2-way test suite
can assure the full coverage of 2-way combinatorial tuples but it
only covers 50% of 3-way combinatorial tuples (blue line), 25% of

8https://github.com/usnistgov/combinatorial-testing-tools

https://8https://github.com/usnistgov/combinatorial-testing-tools
https://bit.ly/2UmWrEW
https://github.com/qemu/qemu/tree/master/tests/qemu
https://5https://www.qemu.org

Towards an Automated Unified Framework to Run Applications for Combinatorial Interaction Testing EASE2019, 2019, Denmark

Table 1: Parameter and corresponding value meanings of the SUT

Parameter/Value Meaning
img_format The format in which the Qemu image will be created.
raw no specifc format, raw data.
qcow The versatile Qemu Copy On Write format, frst version.
qcow2 The versatile Qemu Copy On Write format, second version.
luks The Linux Unifed Key Setup encrypted image format.
vmdk VMWare image format.
img_protocol The protocol used to access the image.
fle Direct access through the flesystem.
nbd Network Block Device protocol, enabling a remote server to be used as block device.
cache_mode The method used to cache data with the image fle.
none The host page cache is skipped and writes happen directly from the userspace bufers and the image.
writeback The default option, where direct cache and no-fush are of. The host page cache is used and writes are reported to the guest as

complete when they are committed to the page cache.
writethrough Doesn’t batch metadata updates. Writes are reported as complete after data is committed to the image.
directsync Writes reported as complete when the data is committed to the image, skipping the host page cache.
unsafe Same as "writeback" with additional ignore for the fush commands (no-fush enabled).
misalign Misalign allocations for direct writes.
true Enabled
false Disabled
qemu_img The qemu-img binary to create images with.
/usr/bin/qemu-img The Fedora 27 version (2.10).
/git/qemu/qemu-img The latest upstream version (master).

(a) 2-way full coverage (b) 3-way full coverage (c) 4-way full coverage

Figure 3: The coverage measure for 2-way, 3-way, and 4-way test suites

4-way combinatorial tuples (green line), and 10% of 5-way combi-
natorial tuples (brown line). The full coverage of 3-way and 4-way
combinatorial tuples can be achieved with 3-way and 4-way test
suites respectively in Figures 3b and 3c. Figure 3c also illustrates
a basic property of CAs. A CA for t-way combinations will also
provide 100% coverage of s-way combinations, for any s < t , i.e.,
the designated strength and all lower strength tuples. For example,
in Figure 3c the 4-way test suite covers the 4-way, 3-way and 2-way
combinations.

To evaluate the performance of the testing process, we compared
the execution time of each t-way test suite. This time represents
the total time the Avocado framework takes to generate, execute,
and validate the test cases. Figure 4a shows the box plot analysis to
predict the performance and compare the execution time.

The box plot in Figure 4a reveals a number of salient character-
istics of the Avocado and also CIT in general. We can see that the
execution time increases with the interaction strength as the size
of the test suite is increasing towards the exhaustive (5-way) test
suite. Even though the lower quartile of the 3-way test suite is near
to the upper quartile of the 2-way test suite, the time of execution
has a notable diference among the test suites. Also, we can see
that the deviation and diferences among individual test execution
time within the same t-way test suite are not more signifcant as
the top-to-bottom whisker width is small.

To test the efciency of the multiplexer integration with test
generation, we have compared the number of variants generated for
the SUT. Here, the number of the variant is computed by the number
of total variants multiplied by the number of test cases generated
for a specifc t-way value. For this case study, we have 192 local
variants that each test case must run to validate the confgurations.
For example, there are 200 test cases for the 5-way test suite. Hence,
the total number of variants generated is 200×192 = 38400 variants
to be run for the 5-way testing. Figure 4b shows the box plot analysis
for the total number of variants generated for each test suite.

From Figure 4b, we can see a clear diference among the gener-
ated variants. There is not even a matching between the lower and
upper quartiles of two diferent variant sets, which in turn shows
the test generator and also the multiplexer efciency in generating
variants.

Finally, to evaluate the efectiveness of fnding invalid confgu-
rations in the case study, we compared the output of Avocado for
diferent test suites. Figure 4c shows a box plot analysis graph to
compare diferent t-way test suites. To give a better understand-
ing of the number and proportion of these values, Table 2 shows
median values of the variants’ number, invalid confgurations out
of these variants, and the ratio between them. Note that, as men-
tioned in Section 5.1, the counts and ratios in Table 2 do not refer
to errors in the code, but to confgurations that are not valid in the
virtualization environment.

EASE2019, 2019, Denmark B. Ahmed et al.

2-way 3-way 4-way 5-way
0

20,000

40,000

60,000

80,000

100,000

Te
st

 E
xe

cu
tio

n
Ti

m
e

(S
ec

.)

(a) Comparison of the test execution time
by each t -way test suite

2-way 3-way 4-way 5-way
0

10,000

20,000

30,000

40,000

50,000

N
o#

 V
ar

ia
nt

s

(b) Comparison of the total number of
variants generated by avocado during the
testing with respect to a t -way test suite

2-way 3-way 4-way 5-way
0

1,000

2,000

3,000

In
va

lid
 C

on
fig

.

(c) Comparison of the number of invalid
confgurations detected by Avocado with

respect to a t -way test suite

Figure 4: The coverage measure for 2-way, 3-way, and 4-way test suites

Table 2: Median values of the generated variants and invalid
confgurations found with the ration between them

Test Suite #Variants #Invalid Cofg. Ratio %

2-way 5184 425 8.19
3-way 9984 705 7.06
4-way 20736 1405 6.77
5-way 38400 2455 6.39

An important observation can be found in Figure 4c and also
Table 2 . Here, we note that the number of detected invalid confgu-
rations increases with the growth of the combinatorial interaction
strength. We found that the total number of invalid confgurations
in the SUT is 2455 when the full strength (i.e., 5-way) is considered.
As can be predicted in the upper quartile, in the best case, the 2-way
test suite can detect 470 invalid confgurations, which is almost 19%
of the total faults. In the same way, the 3-way test suite can detect
nearly 29% of total invalid confgurations in the best case, while
4-way can detect almost 58% of total invalid confgurations in the
best case. We can observe that for this application, the t-way test
suite can reduce the size and the execution time of the test suites
dramatically. However, the full strength combinatorial test suite is
necessary to detect all the invalid confgurations. Another impor-
tant observation is that using combinations of input confguration
setting values is an efective way to identify invalid confgurations.
Here, Avocado presents an excellent choice for automating confg-
uration validation and testing.

We can see from the results that more invalid confgurations are
found as the test size and combination strength increase. However,
it is not immediately clear from these results how many of those
confgurations detected at 5-way are the result of containing a
particular 2-way, 3-way, or 4-way combination that detects an
invalid confguration. As it is clear from Figure 3, a confguration
with some particular combination strength will also exist in other
higher strength combinations of confgurations. For example, if we
have fve binary variables, A, B, C, D, E, and a 2-way combination
A=0, B=1 and that results in an invalid confguration, then any
3-way or higher strength combination that includes these values
for A and B will also be detected as an invalid confguration. In
particular, the 3-way combinations ABC = 010, ABC = 011, ABD =
010, ABD = 011, ABE = 010, and ABE = 011 would all include the

Table 3: Invalid Confguration Identifcation Test Case Re-
sults

2-way 3-way 4-way 5-way

Test cases: 470 722 1415 2455
removing (t -1)-way - 376 960 2113
removing (t -2)-way - - 572 768
removing (t -3)-way - - - 382

invalid combination. Therefore a test such as ABCDE = 01011 would
include three 3-way combinations, three 4-way combinations, and
one 5-way combination that detect an invalid confguration, but
these counts are redundant because only the 2-way combination
AB=01 is needed for detection. It is easy to see how these multiple
counting situations would increase with a large number of variables.
To address this situation and provide a deeper analysis of the test
cases, we have reviewed those invalid or failed confgurations to
determine if this situation is occurring. We have developed a simple
open source tool9 that counts the occurrence of the combinations
in any t-way test suite based on the strength. Table 3 shows the
result of this analysis.

Table 3 shows the result of analyzing the test suites. We run the
test suites with Avocado and monitor the output of each test case. As
mentioned previously, these test suites are used with the multiplexer
to produce the variants’ set. We identifed the invalid confgurations
in the variant set; then we analyzed each confguration case for
covered combinations. As shown in the table, we found and isolated
the number of invalid variants’ combinations in the confgurations.
Hence, the numbers used in Table 3 are the variants’ combinations
after multiplication by the confguration test suite.

We have addressed the size of the invalid confgurations for
each t-way test suite. In addition, we have addressed this size of
an invalid confguration after removing the repeated lower t-way
combinations. Here, we used t−1, 2, and 3 test suites. For example,
for the 5-way test suite, we also generate the 4-way, 3-way, and
2-way combinations and compared them with the used equivalent
test suites to identify the repeated test cases based on the tuples.

As we note from the results in Table 3, some confgurations
are failed (determined to be invalid) in the lower strength of com-
binations, and they are also repeated in the higher strength test
9https://github.com/bestoun/CombinatorialCounter

https://9https://github.com/bestoun/CombinatorialCounter

Towards an Automated Unified Framework to Run Applications for Combinatorial Interaction Testing EASE2019, 2019, Denmark

suite. For example, using the analysis tool on the invalid 5-way
test cases, we found that 342 repeated 4-way invalid confgurations
out of those 2455, which results in 2113 5-way confgurations af-
ter removing them. Also, there are 1345 repeated 3-way invalid
confgurations out of those 2113 remaining confgurations, which
results in 768 5-way confgurations after removing them. In the
same way, there are 368 repeated 2-way invalid confgurations out
of those 768 remaining confgurations, which results in 382 5-way
confgurations after removing them.

We can conclude from Table 3 that for this application, lower
strength combinations are responsible for part of those invalid
confgurations; however, higher interaction strength (greater value
of t) combinations are needed to detect all the possible confguration
failures. In fact, this shows that unlike studies of fault detection in
the literature, e.g. [14], running only pairwise (2-way) test cases is
not enough for this application to trigger most of the failures. The
reason for this diference is that other applications of combinatorial
testing have generally been for detecting errors in code. In this
case, however, testing addressed detection of confgurations that
could not be supported in the virtual machine environment, rather
than detecting code faws. This is a diferent use of combinatorial
methods, but t-way testing was shown to be highly efective. Like
any other confgurable system, for larger confgurations of this
application in the industry, running full exhaustive testing in most
cases is impossible. Hence, running lower combination strength
test suites with Avocado is an option to assure quality and avoid
triggering confguration failure.

6 CONCLUDING REMARKS
We have demonstrated a method of automating the combinatorial
interaction testing process, using the open source Avocado testing
framework with CIT capabilities implemented in a plugin. Within
Avocado CIT, the tester needs only to establish the environment of
the application to be tested. The Avocado framework was used for
validating virtual machine confgurations for Qemu, demonstrat-
ing that Avocado can be a cost-efective tool for automating this
essential step in the virtualizer setup.

Avocado is a fexible and customizable framework in which other
capabilities, features, algorithms, and tools can be added easily
through a plugin. We plan to add constraint handling capabilities
to the framework through a constraint solver. Avocado is a freely
available open source project freely available10.

ACKNOWLEDGEMENTS
This research is funded by Red Hat Czech s.r.o. as a collaboration
project with Software Testing Intelligent Lab (STILL) in CVUT
and part of Avocado testing framework project. Products may be
identifed in this document, but identifcation does not imply recom-
mendation or endorsement by NIST, nor that the products identifed
are necessarily the best available for the purpose.

REFERENCES
[1] Bestoun S. Ahmed and Kamal Z. Zamli. 2010. PSTG: A T-Way Strategy Adopting

Particle Swarm Optimization. In Proceedings of the 2010 Fourth Asia International
Conference on Mathematical/Analytical Modelling and Computer Simulation (AMS

10https://github.com/avocado-framework/avocado

’10). IEEE Computer Society, Washington, DC, USA, 1–5. https://doi.org/10.1109/
AMS.2010.14

[2] Bestoun S. Ahmed and Kamal Z. Zamli. 2011. A Variable Strength Interaction
Test Suites Generation Strategy Using Particle Swarm Optimization. J. Syst. Softw.
84, 12 (Dec. 2011), 2171–2185. https://doi.org/10.1016/j.jss.2011.06.004

[3] Bestoun S. Ahmed, Kamal Z. Zamli, Wasif Afzal, and Miroslav Bures. 2017. Con-
strained Interaction Testing: A Systematic Literature Study. IEEE Access 5 (2017),
25706–25730. https://doi.org/10.1109/ACCESS.2017.2771562

[4] Bestoun S. Ahmed, Kamal Z. Zamli, and Chee Peng Lim. 2012. Application of
Particle Swarm Optimization to Uniform and Variable Strength Covering Array
Construction. Applied Soft Computing 12, 4 (April 2012), 1330–1347. https:
//doi.org/10.1016/j.asoc.2011.11.029

[5] P. Bansal, N. Mittal, A. Sabharwal, and S. Koul. 2014. Integrating greedy based
approach with genetic algorithm to generate mixed covering arrays for pair-wise
testing. In 2014 Seventh International Conference on Contemporary Computing
(IC3). 629–634. https://doi.org/10.1109/IC3.2014.6897246

[6] Redge Bartholomew. 2013. An industry proof-of-concept demonstration of
automated combinatorial test. In Proceedings of the 8th International Workshop on
Automation of Software Test. IEEE Press, 118–124.

[7] S. Yu. Borodai and I. S. Grunskii. 1992. Recursive generation of locally complete
tests. Cybernetics and Systems Analysis 28, 4 (01 Jul 1992), 504–508. https:
//doi.org/10.1007/BF01124983

[8] Miroslav Bures and Bestoun S. Ahmed. 2017. On the Efectiveness of Combi-
natorial Interaction Testing: A Case Study. In 2017 IEEE International Confer-
ence on Software Quality, Reliability and Security Companion (QRS-C). 69–76.
https://doi.org/10.1109/QRS-C.2017.20

[9] M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, and D.R. Kuhn. 2008. Refning the
in-parameter-order strategy for constructing covering arrays. Journal of Research
of the National Institute of Standards and Technology 113, 5 (2008), 287–297. cited
By 91.

[10] Angelo Gargantini and Paolo Vavassori. 2012. CitLab: a laboratory for combina-
torial interaction testing. In Software Testing, Verifcation and Validation (ICST),
2012 IEEE Fifth International Conference on. IEEE, 559–568.

[11] Alan Hartman and Leonid Raskin. 2004. Problems and algorithms for covering
arrays. Discrete Mathematics 284, 1 (2004), 149 – 156. https://doi.org/10.1016/j.
disc.2003.11.029 Special Issue in Honour of Curt Lindner on His 65th Birthday.

[12] R. Huang, X. Xie, T. Y. Chen, and Y. Lu. 2012. Adaptive Random Test Case Gen-
eration for Combinatorial Testing. In 2012 IEEE 36th Annual Computer Software
and Applications Conference. 52–61. https://doi.org/10.1109/COMPSAC.2012.15

[13] Jerry Huller. 2000. Reducing time to market with combinatorial design method
testing. In In Proceedings of the 2000 International Council on Systems Engineering
(INCOSE) Conference. 16–20.

[14] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. 2004. Software fault
interactions and implications for software testing. IEEE transactions on software
engineering 30, 6 (2004), 418–421.

[15] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. 2008.
IPOG-IPOG-D: Efcient Test Generation for Multi-way Combinatorial Testing.
Softw. Test. Verif. Reliab. 18, 3 (Sept. 2008), 125–148. https://doi.org/10.1002/stvr.
v18:3

[16] Yu Lei and Kuo-Chung Tai. 1998. In-Parameter-Order: A Test Generation Strategy
for Pairwise Testing. In The 3rd IEEE International Symposium on High-Assurance
Systems Engineering (HASE ’98). IEEE Computer Society, Washington, DC, USA,
254–261.

[17] Xuelin Li, Ruizhi Gao, W Eric Wong, Chunhui Yang, and Dong Li. 2016. Applying
combinatorial testing in industrial settings. In Software Quality, Reliability and
Security (QRS), 2016 IEEE International Conference on. IEEE, 53–60.

[18] Kari J. Nurmela. 2004. Upper bounds for covering arrays by tabu search. Dis-
crete Applied Mathematics 138, 1 (2004), 143 – 152. https://doi.org/10.1016/
S0166-218X(03)00291-9 Optimal Discrete Structures and Algorithms.

[19] Arturo Rodriguez-Cristerna, Jose Torres-Jimenez, W. GÃşmez, and W.C.A. Pereira.
2015. Construction of Mixed Covering Arrays Using a Combination of Simulated
Annealing and Variable Neighborhood Search. Electronic Notes in Discrete Math-
ematics 47 (2015), 109 – 116. https://doi.org/10.1016/j.endm.2014.11.015 The 3rd
International Conference on Variable Neighborhood Search (VNS’14).

[20] Ulrich S. Schubert. 2004. Experimental Design for Combinatorial and High
Throughput Materials Development. Edited by James N. Cawse. Angewandte
Chemie International Edition 43, 32 (2004), 4123–4123. https://doi.org/10.1002/
anie.200385086

[21] Dennis E. Shasha, Andrei Y. Kouranov, Laurence V. Lejay, Michael F. Chou, and
Gloria M. Coruzzi. 2001. Using Combinatorial Design to Study Regulation by
Multiple Input Signals. A Tool for Parsimony in the Post-Genomics Era. Plant
Physiology 127, 4 (2001), 1590–1594. https://doi.org/10.1104/pp.010683

[22] Anwar Sherif. 2016. Combinatorial Testing: Implementations in Solutions Testing.
In 2016 IEEE Ninth International Conference on Software Testing, Verifcation and
Validation Workshops (ICSTW). 59–64. https://doi.org/10.1109/ICSTW.2016.39

[23] Toshiaki Shiba, Tatsuhiro Tsuchiya, and Tohru Kikuno. 2004. Using Artifcial
Life Techniques to Generate Test Cases for Combinatorial Testing. In Proceedings

https://doi.org/10.1109/AMS.2010.14
https://doi.org/10.1109/AMS.2010.14
https://doi.org/10.1016/j.jss.2011.06.004
https://doi.org/10.1109/ACCESS.2017.2771562
https://doi.org/10.1016/j.asoc.2011.11.029
https://doi.org/10.1016/j.asoc.2011.11.029
https://doi.org/10.1109/IC3.2014.6897246
https://doi.org/10.1007/BF01124983
https://doi.org/10.1007/BF01124983
https://doi.org/10.1109/QRS-C.2017.20
https://doi.org/10.1016/j.disc.2003.11.029
https://doi.org/10.1016/j.disc.2003.11.029
https://doi.org/10.1109/COMPSAC.2012.15
https://doi.org/10.1002/stvr.v18:3
https://doi.org/10.1002/stvr.v18:3
https://doi.org/10.1016/S0166-218X(03)00291-9
https://doi.org/10.1016/S0166-218X(03)00291-9
https://doi.org/10.1016/j.endm.2014.11.015
https://doi.org/10.1002/anie.200385086
https://doi.org/10.1002/anie.200385086
https://doi.org/10.1104/pp.010683
https://doi.org/10.1109/ICSTW.2016.39
https://10https://github.com/avocado-framework/avocado

EASE2019, 2019, Denmark B. Ahmed et al.

of the 28th Annual International Computer Software and Applications Conference
- Volume 01 (COMPSAC ’04). IEEE Computer Society, Washington, DC, USA,
72–77.

[24] Diary R. Sulaiman and Bestoun S. Ahmed. 2013. Using the combinatorial optimiza-
tion approach for DVS in high performance processors. In 2013 The International
Conference on Technological Advances in Electrical, Electronics and Computer
Engineering (TAEECE). 105–109. https://doi.org/10.1109/TAEECE.2013.6557204

[25] Cemal Yilmaz, Myra B. Cohen, and Adam Porter. 2004. Covering Arrays for
Efcient Fault Characterization in Complex Confguration Spaces. SIGSOFT Softw.
Eng. Notes 29, 4 (July 2004), 45–54. https://doi.org/10.1145/1013886.1007519

[26] Xun Yuan, Myra B. Cohen, and Atif M. Memon. 2011. GUI Interaction Testing:
Incorporating Event Context. IEEE Transactions on Software Engineering 37, 4
(July 2011), 559–574. https://doi.org/10.1109/TSE.2010.50

https://doi.org/10.1109/TAEECE.2013.6557204
https://doi.org/10.1145/1013886.1007519
https://doi.org/10.1109/TSE.2010.50

	Abstract
	1 Introduction
	2 Background and literature
	3 The Avocado Framework
	4 The CIT Extension to Avocado
	5 An Industrial Case Study
	5.1 Object of the Study
	5.2 The System Under Test
	5.3 Evaluation and Analysis

	6 Concluding Remarks
	References

