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Abstract
In 2018, the U.S. National Institute of Standards and Technol-
ogy (NIST) conducted the most recent in an ongoing series of
speaker recognition evaluations (SRE). SRE18 was organized
in a similar manner to SRE16, focusing on speaker detection
over conversational telephony speech (CTS) collected outside
north America. SRE18 also featured several new aspects in-
cluding: two new data domains, namely voice over internet pro-
tocol (VoIP) and audio extracted from amateur online videos
(AfV), as well as a new language (Tunisian Arabic). A total of
78 organizations (forming 48 teams) from academia and indus-
try participated in SRE18 and submitted 129 valid system out-
puts under fixed and open training conditions first introduced
in SRE16. This paper presents an overview of the evaluation
and several analyses of system performance for all primary con-
ditions in SRE18. The evaluation results suggest 1) speaker
recognition on AfV was more challenging than on telephony
data, 2) speaker representations (aka embeddings) extracted us-
ing end-to-end neural network frameworks were most effective,
3) top performing systems exhibited similar performance, and
4) greatest performance improvements were largely due to data
augmentation, use of extended and more complex models for
data representation, as well as effective use of the provided de-
velopment sets.
Index Terms: human language technology, NIST SRE, speaker
recognition, speaker verification, statistical analysis

1. Introduction
The NIST SRE18 was the latest in an ongoing series of speaker
recognition technology evaluations conducted by NIST since
1996 [1], which continue to drive research and innovation in
robust text-independent speaker recognition, as well as help
measure and calibrate performance of state-of-the-art speaker
recognition systems. SRE18 was organized entirely online us-
ing a web platform1 that supported a variety of evaluation re-
lated services such as registration, data license agreement sub-
mission, data distribution, system output submission and val-
idation/scoring, and system description/presentation uploads.
The task in SRE18 was speaker detection, that is, determin-
ing whether a specified target speaker is talking in a given test
speech recording.

SRE18 was organized in similar manner to SRE16 [2], and
offered two training conditions, fixed and open; in the fixed
training scenario, NIST restricted system training and develop-
ment data to common pre-specified data sets to facilitate mean-
ingful cross-system comparisons in terms of core speaker recog-
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Figure 1: Heatmap of the world countries showing the number
of SRE18 participating sites per country.

nition algorithms/approaches used. For the open training con-
dition, participants were allowed to explore the gains that could
be obtained through the utilization of unconstrained amounts of
publicly available and/or proprietary data. A total of 48 teams,
21 of which were led by industrial institutions, from 78 sites
made 129 valid system submissions, 120 for the fixed training
condition and 9 for the open training condition. Figure 1 dis-
plays a heatmap representing the number of participating sites
per country. It should be noted that all participant information,
including country, was self-reported.

There were also a few differences between the two evalua-
tions. In particular, SRE18 featured two new data domains; in
addition to conversational speech recorded over public switched
telephone networks (PSTN), VoIP data collected outside north
America, as well as audio extracted from online videos (AfV)
were included in SRE18 as development and test material. The
PSTN and VoIP data (labeled as CTS) are spoken in Tunisian
Arabic, while the AfV data is spoken in English. Unlike ex-
isting publicly available speech data derived from online “red
carpet” and interview style videos featuring celebrities (e.g.,
VoxCeleb2), the AfV data in SRE18 was extracted from am-
ateur online video blogs (Vlogs) that were mostly shot using
personal recording devices such as cell phones in extremely di-
verse acoustic backgrounds. This, along with the small amount
of development data, made the AfV domain more challenging
than the CTS domain in SRE18.

Also, in an effort to provide reproducible state-of-the-art
baselines for SRE18, NIST released well in advance of the eval-
uation period a report [3] containing speaker recognition system
description and results obtained using both the traditional Gaus-
sian mixture model (GMM) based as well as the recently devel-
oped deep neural network (DNN) based speaker embeddings.

2http://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/



Table 1: Datasets for the SRE18 fixed training conditions

Dataset LDC Catalog ID(s) Metadata

SRE 1996–2016

LDC2009E10
LDC2012E09
LDC2016E45 Segment/trial keys
LDC2018E30
LDC2018E47

Switchboard LDC2018E48 ASR transcripts
and segment keys

Fisher English LDC2018E49 ASR transcripts
and segment keys

MIXER 6 LDC2013S03 Segment keys
SRE 2018 DEV LDC2018E46 Segment/trial keys
VoxCeleb2 – Segment keys
SITW3 – Segment/trial keys

2. Data
In this section we provide a brief description of the data used in
SRE18 for training, development, and test.

2.1. Training set

As noted previously, SRE18 offered two training conditions,
namely fixed and open. The fixed condition limited system
training and development to a set of pre-specified common data
which are listed in Table 1. The previous (i.e., 1996–2016) SRE
data along with MIXER 6 [4], Switchboard [5, 6, 7, 8, 9, 10]
and Fisher [11] corpora were available from the Linguistic Data
Consortium (LDC), subject to the LDC data license agree-
ment. In addition to these, participants could use VoxCeleb2

and SITW3 corpora. Publicly available, non-speech audio and
data, e.g., noise samples, room impulse responses (RIR), filters,
could also be used, provided that a clear description was given
in the final system report. Participation in the fixed training con-
dition was required.

In the open training scenario, on the other hand, partici-
pants were allowed to utilize additional proprietary or publicly
available data for system training and development. The inclu-
sion of proprietary data was new in SRE18. Selected data from
the IARPA Babel Program [12] was also made available by the
LDC to be used in the open training condition. Participation
in this condition was optional but strongly encouraged to help
quantify the gains that could be achieved with unconstrained
amounts of data.

2.2. Development and test sets

The speech segments in the SRE18 development (dev) and
test sets were extracted from two data sets collected by the
LDC to support speech technology evaluations, namely Call
My Net 2 (CMN2) and Video Annotation for Speech Technol-
ogy (VAST) [13] corpora. The CMN2 corpus consists of CTS
recordings spoken in Tunisian Arabic, which were collected
over PSTN and VoIP platforms outside north America. For
CMN2 data collection, the LDC recruited a few hundred speak-
ers called claques who made multiple calls to people in their so-
cial network (e.g., family, friends). Claques were encouraged to
use different telephone instruments (e.g., cell phone, landline)
in a variety of settings (e.g., noisy cafe, quiet office) for their ini-

3http://www.speech.sri.com/projects/sitw/

Table 2: SRE18 development (dev) set and test set statistics

Domain Dev/Test #speakers #target #non-target

CTS Dev 25 7830 100,265
Test 188 19,298 2,002,332

AfV Dev 10 27 243
Test 101 315 31,500

tiated calls and were instructed to talk for at least 8–10 minutes
on a topic of their choice. All CMN2 recordings are encoded as
a-law sampled at 8 kHz in SPHERE [14] formatted files. On the
other hand, the VAST corpus contains AfV data spoken in En-
glish, which were recorded under diverse acoustic backgrounds
using recording devices such as cell phones. Given the amateur
nature of the data, each audio recording may contain speech
from multiple speakers, as well as non-speech sounds such as
laughter, baby crying, dog barking, etc. All VAST data are en-
coded as 16-bit FLAC files sampled at 44 kHz.

For system development, NIST released small development
sets for both CTS and AfV data domains that broadly mir-
rored the test conditions. Specifically, for the CTS domain a
labeled development set containing speech segments from 25
speakers was released for speaker enrollment and trial tests.
Similar to SRE16, there were two enrollment scenarios for the
CTS domain, namely 1-segment and 3-segment conditions. As
the names imply, in the 1-segment condition only one approxi-
mately 60 s speech segment was given for enrollment, while in
the 3-segment condition three approximately 60 s speech seg-
ments were provided to build the model of the target speaker. It
is worth noting that the 3-segment condition only involved the
PSTN data, because the number of VoIP calls per claque was
limited. As part of the dev set for the CTS domain in SRE18,
an unlabeled set of 2332 segments (with speech duration uni-
formly distributed in 10 s to 60 s range) was also made available
by the LDC (LDC2018E46). The unlabeled segments were ex-
tracted from the non-claque side of the PSTN/VoIP calls. For
the CTS data, the speech duration of the test segments was uni-
formly distributed in the 10 s to 60 s range.

As for the AfV domain, a labeled dev set containing au-
dio recordings from 10 speakers was released by the LDC. The
enrollment condition for the AfV domain was only 1-segment,
with speech duration ranging from in 10 s to 600 s. Manually
produced diarization marks also accompanied the AfV enroll-
ment segments to facilitate building models of the primary tar-
get speaker. The AfV test segment speech duration was variable
from a few seconds to several minutes, and no diarization marks
were provided for the test segments.

The test sets for both domains followed exactly the same
structure as described above for the dev set. Table 2 shows the
statistics for the SRE18 dev and test sets.

3. Performance Measurement
Similar to the past SREs, the primary performance measure for
SRE18 was a detection cost defined as a weighted sum of false-
reject (miss) and false-accept (false-alarm) error probabilities.
Equation (1) specifies the SRE18 primary normalized cost func-
tion for some decision threshold θ,

Cnorm (θ) = Pmiss (θ) + β × Pfa (θ) , (1)



Table 3: Primary partitions in the SRE18 test

Partition Elements #target #non-target

Gender male 21,255 482,790
female 39,420 1,519,542

#enrollment 1 48,540 1,600,871
segments 3 12,135 401,461

Phone# match Y 27,456 0
N 33,219 2,000,000

CTS type PSTN 45,260 1,493,250
VoIP 15,415 509,082

where β is defined as

β =
Cfa

Cmiss
× 1− Ptarget

Ptarget
. (2)

The parameters Cmiss and Cfa are the cost of a missed detec-
tion and cost of a false-alarm, respectively, and Ptarget is the
a priori probability that the test segment speaker is the speci-
fied target speaker. The primary SRE18 cost metric, Cprimary

was the average of normalized costs calculated at 1) two points
along the detection error trade-off (DET) curve [15] for trials
involving CTS data, with Cmiss = Cfa = 1, Ptarget = 0.01
and Ptarget = 0.005, and 2) one point along the DET curve for
trials involving AfV data, with Cmiss = Cfa = 1, Ptarget =
0.05. Here, log(β) was applied as the detection threshold θ for
computing the actual detection costs. Additional details can be
found in the SRE18 evaluation plan [16].

Similar to SRE16, the CTS portion of the test data was di-
vided into 16 partitions. Each partition is defined as a combina-
tion of: speaker gender (male vs female), number of enrollment
segments (1 vs 3), enrollment-test phone number match (Yes
vs No), and CTS source type (PSTN vs VoIP). However, be-
cause no actual “phone number” metadata was available for the
VoIP calls, the phone number match field only contained “N”
for those calls, thereby reducing the effective number of parti-
tions to 12. More information about the various partitions in
SRE18 evaluation set can be found in Table 3. Cprimary was
calculated for each partition, and the final result was the average
of all the partitions’ Cprimary’s.

4. Results and Discussion
In this section we present some key results and analyses for
SRE18 primary submissions, in terms of minimum and actual
costs as well as DET performance curves.

Figures 2a and 2b show performances of all primary fixed
submissions as well as the baseline [3] system in terms of the

actual and minimum costs, for the SRE18 CTS and AfV do-
mains, respectively. Here, the y-axis limit is set to 1 to facili-
tate cross-system comparisons in the lower cost region. Several
observations can be made from the two figures. First, perfor-
mance trends on the two domains are characteristically differ-
ent, with many submissions outperforming the baseline on the
CTS data, but not so on the AfV data. As expected, overall de-
tection cost and calibration error performances on the relatively
cleaner CTS domain are in general smaller than that on the AfV
data which seems to be more challenging due to various factors
such as loud noisy backgrounds, non-speech human vocaliza-
tions, animal sounds, diverse recording devices and codecs, and
multi-party recordings, to mention a few. In addition, as noted
in Section 2, the development set provided by NIST for the AfV
domain was much smaller than the CTS dev set. Second, com-
pared to the most recent SRE (i.e., SRE16), there seems to be
a notable improvement in speaker recognition performance (see
Figure 3 in [2]), which is largely attributed to the recent intro-
duction of speaker representations (aka embeddings) extracted
using end-to-end neural network frameworks [17] that can ef-
fectively exploit vast amounts of training data made available
through data augmentation and/or large-scale datasets such as
VoxCeleb2. Third, it can be seen from the figures that, except
for the top performing team (top two performing for the AfV),
the performance gap among the top-5 teams is not remarkable.

Figure 3 shows system performance by training condition
(i.e., fixed vs open) for the 5 teams that participated in both con-
ditions. We observe limited, if any, improvement in the open
training condition over the fixed training condition. In some
cases, worse performance is observed for the open training con-
ditions, which the participants attribute to i) mismatch between
the data used for open training and the evaluation data, and ii)
limited time and resources to effectively exploit unconstrained

Figure 3: Impact of open vs fixed training on performance in
terms of actual and minimum costs for the SRE18 CTS domain.

(a) (b)

Figure 2: Performance of SRE18 primary fixed submissions in terms of actual and minimum costs for (a) CTS, and (b) AfV domains.
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Figure 4: DET performance comparison by (a) data source (CMN2 vs VAST), (b) CTS type (PSTN vs VoIP), and (c) enrollment-test
phone number match (same vs different). Filled circles and crosses represent minimum and actual costs, respectively.

amounts of training data.
Figures 4a, 4b, and 4c show speaker recognition perfor-

mance for the top performing submission in terms of DET
curves as a function of: data source (i.e., CMN2 vs VAST),
CTS type (i.e., PSTN vs VoIP), and enrollment-test phone num-
ber match for PSTN calls (same vs different), respectively. The
solid black curves in Figures 4b and 4c represent equi-cost con-
tours, meaning that all points on a given contour corresponds
to the same detection cost value. Firstly, consistent with our
observations from Figures 2a and 2b, the detection errors (i.e.,
false-alarm and false-reject errors) across all operating points
for the VAST domain are greater than those for the CTS do-
main. In addition, the calibration error for the VAST domain
is much larger. Secondly, it seems from Figure 4b that for the
operating points of interest (i.e., the low false-alarm region) the
performance on the PSTN data is better than that on the VoIP
data. We speculate this is due to: 1) VoIP being a new unseen
data domain in SRE18, and 2) larger variability in devices (e.g.,
computers, tablets, cell phones) and accessories (e.g., wired and
wireless headphones) used to make VoIP calls. Finally, as ex-
pected, better performance is observed when the speech seg-
ments from the same phone number are used in trials. However,
the error rates still remain relatively high even for the same
phone number condition. This indicates that there are factors
other than the channel (phone microphone) that may adversely
impact speaker recognition performance. These include both
intrinsic (variations in speaker’s voice) and extrinsic (variations
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Figure 5: DET curve performances for the various segment
speech durations (10 s–60 s) in the SRE18 test set.

in background acoustic environment) variabilities.
Figure 5 shows DET curves for the various test segment

speech durations (10 s–60 s) in SRE18. Results are shown for
the top performing primary fixed submission. Limited perfor-
mance difference is observed for durations longer than 40 s.
However, there is a rapid drop in performance when the speech
duration decreases from 30 s to 20 s, and similarly from 20 s to
10 s. This indicates that additional speech in the test recording
helps improve the performance when the test segment speech
duration is relatively short (below 30 seconds), but does not
make a noticeable difference when there is at least 30 seconds of
speech in the test segment. It is also worth noting that the cal-
ibration error (i.e., the gap between filled circles and crosses)
increases as the test segment duration decreases.

5. Conclusions
We presented a summary of the NIST SRE18 whose objective
was to evaluate recent advances in speaker recognition technol-
ogy and to stimulate new ideas and collaborations. SRE18 fea-
tured two new data domains, namely the VoIP and the AfV, as
well as a new language (Tunisian Arabic) for speaker recogni-
tion, and was the first SRE to provide an official baseline well
in advance of the evaluation. Results indicate great progress in
speaker recognition technology compared to SRE16, although
the performance gap on the CTS domain versus the AfV do-
main remains relatively large. Several factors made the AfV do-
main more challenging than the CTS (PSTN and VoIP) domain
in SRE18, including smaller dev set, presence of loud back-
ground noise, animal sounds, non-speech human vocalizations,
and multi-party recordings. This motivates further research to-
wards developing a more robust technology that can maintain
performance across a wide range of operating conditions (e.g.,
new domains, new languages, and channels).

6. Disclaimer
These results presented in this paper are not to be construed or
represented as endorsements of any participant’s system, meth-
ods, or commercial product, or as official findings on the part of
NIST or the U.S. Government.

The work of MIT Lincoln Laboratory is sponsored by the
Department of Defense under Air Force Contract FA8721-05-
C-0002. Opinions, interpretations, conclusions and recommen-
dations are those of the authors and are not necessarily endorsed
by the United States Government.
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