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The recognition that large classes of quantum many-body systems have limited entanglement in
the ground and low-lying excited states led to dramatic advances in their numerical simulation via
so-called tensor networks. However, global dynamics elevates many particles into excited states, and
can lead to macroscopic entanglement and the failure of tensor networks. Here, we show that for
quantum transport – one of the most important cases of this failure – the fundamental issue is the
canonical basis in which the scenario is cast: When particles flow through an interface, they scatter,
generating a “bit” of entanglement between spatial regions with each event. The frequency basis
naturally captures that – in the long–time limit and in the absence of inelastic scattering – particles
tend to flow from a state with one frequency to a state of identical frequency. Recognizing this
natural structure yields a striking – potentially exponential in some cases – increase in simulation
efficiency, greatly extending the attainable spatial- and time-scales, and broadening the scope of
tensor network simulation to hitherto inaccessible classes of non-equilibrium many-body problems.

Tensor networks enable the systematic search for
ground states of certain many-body Hamiltonians, as well
as numerical time evolution, provided that there is a lim-
ited amount of entanglement present [1–6]. Quantum
quenches – when a parameter of the Hamiltonian is sud-
denly changed – can, though, generate highly-entangled
states, seen both experimentally [7] and theoretically [8–
13]. The large amount of entanglement creates a chal-
lenge for tensor network simulation and the efficient
representation of the underlying quantum state [4, 12].
There are many approximate approaches under develop-
ment to truncate further the description of the state and
maintain control over the size of the tensor network [14–
16], but these rely on additional assumptions, such as the
thermalizing nature of the dynamics. We will here de-
velop a controllable approach to break the entanglement
barrier for an important class of problems in transport.

Quantum transport through an impurity S is a
paradigmatic example of a “pathological” quench. A
global bias µ drives particles through an interface where
they scatter, see Fig. 1a. For particles around the Fermi
level (ω = 0), each scattering event gives rise to an en-
tangled electron-hole pair [17, 18]√

T (0)|0L1R〉+
√

1− T (0)|1L0R〉 (1)

across the left (L) and right (R) reservoir regions. The
left component of the state represents a particle trans-
mitted from L to R with transmission probability T (0)
and the right component the reflected particle (the phase
is unimportant here). Given that the attempt frequency
is µ/2π [19], the entanglement entropy S increases as

S ≈ H[T (0)]
µt

2π
, (2)

where H[T (0)] is the binary entropy of the transmission
probability and t the time [17, 18]. This linear growth
of spatial entanglement – and its “light cone” spread [20]
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FIG. 1. Entanglement, transport, and simulation. (a)
A bias or particle imbalance between the L and R reservoirs
drives a current I through the impurity system S. This spatial
structure, though, has an entanglement “light cone” (over top
heat map), leading to macroscopic entanglement and simula-
tion failure. (b) Separately diagonalizing the single-particle
eigenstates in the L and R regions (of arbitrary spatial di-
mension) and combining them into a joint LR environment
circumvents this issue by naturally structuring the simulated
system. The entanglement then becomes localized within the
bias window and highly suppressed (right heat map). The
heat map scale is for both entanglement plots and the simu-
lation details are the same as in Fig. 2.

(see the heat map in Fig. 1a) – is due to the linear in-
crease in the number of entangled electron-hole pairs, as
expressed by Eqs. (1,2).
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This growth results in the failure of one-dimensional
tensor networks – matrix product states (MPS) – beyond
a “hard wall”: The required matrix product dimension
D increases exponentially with the timescale. Figure 2
shows this spectacular failure for the non-interacting An-
derson impurity model (see the caption for its defini-
tion). This intrinsic, physically-based limitation restricts
MPS to short timescales and small/moderately-sized lat-
tices [21–31], or linear response via an equilibrium corre-
lation function [32, 33]. Simulating time-dependent prob-
lems (artificial gauge fields, Floquet states, etc.), more
complex many-body regions, or long relaxation times, re-
quires a new approach.

The linear growth in entanglement entropy – or its
consequence, the uncontrolled growth in matrix prod-
uct dimension – is deceptive: The paradigmatic impurity
model will, in the long time limit, have particles go from
a state of frequency ω (on the left) to a state of the same
frequency ω on the right, albeit with some characteristic
spread. This entails that if one instead works with the
single-particle eigenbasis of L and R, ordered on a lattice
as shown in Fig. 1b, the entanglement should be limited
(in higher dimensions, momentum conservation can play
this role). In fact, recently it was shown, in the context
of dynamical mean-field theory, that for real-time single-
particle correlation functions (and equilibrium) the so-
called star geometry, where the energy basis for the bath
is used, suppresses entanglement from logarithmic into a
localized structure with smaller overall magnitude [34].
For quenches in the Anderson impurity model, it was
shown that energy basis ordering naturally delineates the
bad (linear entanglement growth) and good (limited en-
tanglement) scenarios [35].

Unlike these cases, we address simulating the bad sce-
nario and show that it can be transformed to a scenario
with logarithmic growth, and thus intermediate between
the bad and good. To do so, we use a mixed energy
and spatial basis, reflecting the entanglement structure
in Eq. (1) and incorporating the energy basis in two sep-
arate spatial regions. Figure 1 shows the steps leading
to this mixed basis (diagonalizing the separate L and
R spatial regions and then ordering them). Entangle-
ment in this mixed basis is localized to the bias window
and mostly between pairs of (iso- or nearly iso-energetic)
sites, see the heat map in Fig. 1b. The strength of the
couplings to the impurity, as well as many-body inter-
actions and inelastic scattering, determine the spread of
entanglement. At the same time, the low dimensionality
of S and the scattering nature of the states limits the
amount of entanglement between the impurity and the
reservoirs. We will comment on alternative structural
representations later.

We note here that various approaches can perform
computations with matrix product states, such as the
density matrix renormalization group (DMRG) [38], the
time-dependent variational principle (TDVP) [39], or
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FIG. 2. Failure and success. (a) The particle current
I versus time for both the exact simulation via the single-
particle correlation matrix (black line) and MPS simula-
tions (colored lines). In the spatial basis, the simulation
abruptly fails and successive doubling of D only gives a
linear increase of the achievable time scale, an exponential
relationship that negates the primary advantage of MPS.
In the mixed energy/spatial basis, however, a modest D
of 128 (necessary only around the bias window) allows for
the time dynamics to be accurately captured (red, dashed
line). The Hamiltonians are HS = ~ωS

∑
σ nσ, HL(R) =

~ω0

∑
j∈L(R)

(
b†jbj+1 + b†j+1bj

)
+µL(R)

∑
j∈L b

†
jbj , and HI =

~v
∑
σ,l=1L,1R

(
c†σblσ + b†lσcσ

)
for S, L(R), and the inter-

action, respectively [36]. The parameters are v = ω0/
√

2,
ωS = ω0, NL = NR = 256, and µ = ω0/2 = 2µL = −2µR,
where ω0 sets the frequency scale. For these parameters,
T (0) = 1/2, thus giving a rapid increase in spatial entan-
glement. The initial state has µ = 0 (half-filling). (b) In-
tuitively (although not precisely [4, 37]), the failure of the
spatial basis is due to the conflict between a linearly grow-
ing entanglement entropy (black line, see Eq. (2)) and the
maximal amount of entanglement, S? = log2D, an MPS can
hold with a given bond dimension D (colored lines saturating
near S?). (c) Simulations of very large systems (512+1+512
sites) and long times (extensive in NL(R)) are made possible
by this basis, which is also reflected in the ability to capture
the linear growth in spatial entanglement (red, dashed line
in b). The inset shows the error in the current versus time,
normalized by the exact steady-state current Iexss [36].

Krylov-based methods [40]. Unlike the schemes based on
the Trotter decomposition of the Hamiltonian into local
gates, they allow treating any Hamiltonian represented as
a matrix product operator (MPO). Thus, we use DMRG
to find the initial ground state in the preferred basis and
TDVP for the subsequent time evolution. Since we work
with the MPO of the Hamiltonian, its dimension is im-
portant since the formal scaling for time evolution in,
e.g., 1D is O(D3Md + D2M2d2), where M is the MPO
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FIG. 3. mixed-basis simulation. (a,b) The conductance, g = Iss/µ, versus bias for the mixed-basis simulation (data points)
and the exact (black line) for the non-interacting model of Fig. 2, as well as the entanglement growth with time for the mixed
basis. We obtain the steady-state current by fitting I(t) = Iss + δ sin(φt + φ0) within the window of ω0t ∈ [32, 128] [29]. The
95 % confidence intervals are smaller than the symbol line widths. The inset shows the current versus time for several applied
biases. The entanglement growth is logarithmic in time for the mixed basis, unlike the linear in time growth for the spatial
basis. Here, NL = NR = 256 and D = 256 except for µ/ω0 = 1 and 2, for which D = 512. (c,d) The current versus time for
interacting L and R reservoirs that have the additional contribution ~Ur

∑
j∈LR(nj − 1/2)(nj+1 − 1/2) to the Hamiltonian,

as well as the effective entanglement entropy for the spatial and mixed bases (black, dotted line extrapolates the linear region
of the entropy for the largest D). The MPO of the Hamiltonian increases when Ur 6= 0, but the mixed-basis simulation
enables stable evolution that is not possible in the spatial basis. The advantage of the mixed basis becomes substantial as LR
entanglement increases with time or with the transport parameters (e.g., with the bias). For this interacting model, the results
are for µ/ω0 = 2 and NL = NR = 64.

bond dimension and d is the local Hilbert space dimen-
sion. When the reservoirs are non-interacting, the MPO
of the mixed basis has a small, fixed M for both the
initial state and time evolution regardless of bias [36].

Since there is overhead associated with the presence
of long-range interactions, we also work under a guiding
principle that both the Hamiltonian MPO and the state
MPS should have limited D. The mixed basis, in con-
trast to the spatial basis (exponentially large MPS D)
and the global single particle basis (extensive MPO D
when interactions are present), respects this principle in
addition to capturing the natural structure of impurity
transport [36]. Optimality questions aside, it permits
an advantageous extension to open systems [41] where a
bias is maintained by external contacts to L and R eigen-
states separately [42–44], as well as a suitable structure
for fine–graining the reservoirs [45].

Figure 2a shows the result of employing this mixed-
basis MPS. An inhomogeneous and modest D ≤ 128 al-
ready gives excellent results out to a time extensive in the
system size (a time equal to the reservoir length divided
by the Fermi velocity, 2ω0, at which the current “front”
hits the open boundary and travels backwards toward
the impurity [20, 46]). This mixed basis captures the lin-
ear growth in spatial entanglement entropy, Fig. 2b, and
allows for very large systems, Fig. 2c.

As a consequence of naturally representing the entan-
glement structure, the majority of the lattice in the mixed
basis has little entanglement across bipartite cuts with
correlations predominantly between modes in the bias
window (see Fig. 1b). Thus, the computational speedup
is not just a consequence of a reduced D, but also an
inhomogeneous D. As a point of comparison, the mixed-
basis simulations in Fig. 2a took only 15 hours, whereas

the spatial-basis simulation with the same D = 128 took
44 hours, both on the same single core computer. While
implementation choices affect this comparison, the em-
pirical scaling follows from Fig. 2: To bring the spatial-
basis simulation out to t = 128ω0 requires five more dou-
blings of D just to move the breaking point (forgetting
about overall error). The dominant D3Md contribution
to the computational cost then indicates an approximate
computational time of (25)3 · 44 hours, or 165 years.

Even for a large bias, the mixed-basis MPS still out
performs the spatial basis, a direct consequence of the
more local nature of entanglement in energy. Figure 3a
shows the conductance and current versus time traces for
µ = 0 to 4ω0 (after which the L and R bands go out of
alignment and there is no steady state current and entan-
glement saturates). In all cases, the mixed basis yields
accurate results. Figure 3b shows that the effective en-
tanglement entropy [36] grows logarithmically opposed
to linear. The advantages of the mixed basis also extend
to interacting reservoir models, where Fig. 3c,d show the
current versus time and effective entanglement entropy
for the same LSR system but with interactions in LR.
The Hamiltonian’s MPO dimension grows with the sys-
tem size in this case, and in some parameter regimes we
expect a spatial basis may be more suitable (such as in
a localized regime), but the mixed basis enables stable
time evolution. Further work will be necessary to assess
the efficiency gains across different parameter regimes,
since many-body interactions in L and R modify both
the MPO and entanglement structure of the problem.

The above can be straightforwardly applied to higher
dimensional non-interacting reservoirs (since only their
energy/momentum bases matter) and to interacting spin-
less fermions, including larger dimensional systems S.
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FIG. 4. Many-body transport in a mixed, multi-channel basis. (a) The “X-lattice” we employ when multiple channels
are present. (b) Current versus time for spatial- and mixed-basis simulations, showing abrupt failure of the spatial basis. (c)
Effective entanglement versus time, which accounts also for the inhomogeneity of D [36]. The spatial basis shows a linear
growth in spatial entanglement (black, dotted line extrapolates the linear region of the entropy for the largest D), similarly to
its non–interacting counterpart. The mixed basis, however, has only moderate growth in entanglement and essentially does not
change as D increases beyond the value shown. (d) Conductance diagram for the Anderson impurity model versus the system’s
on-site frequency ωS and interaction strength U . White dashed lines indicate high conductance states, see the main text for
discussion. The steady state is found in the same way as Fig. 3a but using the window ω0t ∈ [32, 64] for NL = NR = 128. The
parameters are v = ω0/

√
2 and µ = ω0/5. Note that the broken U < 0 line is due to the resolution of the figure. For (b) and

(c), NL = NR = 256, U = 5ω0, ωS = 0, and µ = ω0/2.

For many-body systems of typical interest, though,
one has to have spin, which requires simulating mul-
tiple channels. The Anderson impurity problem [47]
with electron-electron interaction Un↑n↓ at the impurity
(where n↑(↓) is S’s spin up (down) number operator),
and its extension to larger S [48, 49], is the paradigmatic
example.

In the non-interacting limit the two spin channels
are fully independent. In the presence of interactions,
U 6= 0, the interchannel entanglement originates from
the many-body contact at S, which is in addition to the
intrachannel entanglement around the bias window [36].
This suggests an X-shape MPS (i.e., a tree tensor net-
work [50, 51]) depicted in Fig. 4a as a natural ansatz
(a structure also supported by results of other recent
works [52]). Tree tensor networks, similarly to a one-
dimensional MPS, possess a normal form. As such, the
TDVP integration scheme of Ref. [39] directly extends to
such tensor network geometries [36].

Figure 4b shows the X-lattice simulated in both the
spatial and mixed bases. Just as with the non-interacting
case, the spatial basis abruptly fails and increasing D
only gives logarithmic increase in the achievable simula-
tion time. The mixed basis, though, enables the simula-
tion to go out to a time extensive in the reservoir size.
When D is too small, it will lose accuracy, but it does
not abruptly fail. This is reflected in the limited growth
in entanglement, Fig. 4c, which behaves similarly to the
non-interacting case.

Figure 4d shows the conductance diagram of the
paradigmatic Anderson impurity problem. For negative
U , S is approximately half occupied in each channel, giv-
ing a U/2 contribution to S’s on-site energy in the other
channel. This results in a single high conductance state
when the level energy is pushed into the bias window

at ωS ≈ −U/2. As ωS becomes negative, the conduc-
tance peak bifurcates into two particle-hole dual, corre-
lated high-conductance states. For one, there is a cor-
related state between one channel being occupied and
current flowing in the other channel, giving ωS ≈ −U to
effectively push the current-carrying channel state into
the bias window. The other is a correlated state between
one channel being empty and current flowing in the other
channel. This occurs at ωS ≈ −ω0 instead of ωS = 0 due
to residual many-body correlations increasing the energy
(a residual also present in the ωS ≈ −U state). The
accurate calculation of the whole conductance diagram
enables the identification of these features.

Finally, we comment on the computational speedup.
The spatial basis requires exponentially large D in the
total simulation time T , already alluded to above: Each
doubling of D increments the breaking point by ∆t (in-
dependent of the value of D), giving ∆t lnD ≈ T or
D ≈ eT/∆t. For the mixed-basis simulation of the sin-
gle channel model, we examine the error versus D for
several simultaneous multiples of the reservoir size and
time [36]. The simultaneously, e.g., doubling of size and
time is the method by which one achieves the long-time
limit. The error decay suggests that doubling of the simu-
lation time (and size) requires increasing D to αD, where
α is bounded, to keep the overall error fixed. Thus, the
computational cost is brought from e3T/∆t to T p, where
p ≈ 3 [36]. We note, however, that for fermions with
spin, the X-lattice configuration requires also evolution
between the two channels. The entropy across this bond
is the same in the spatial and mixed basis, and can it-
self increase linearly in time. For the range of parameters
here, it is still quite small. In principle, this will dominate
the scaling for long times. However, one will still get an
exponential improvement in the prefactor of this contri-
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bution, since that prefactor depends in the intrachannel
entanglement and thus is suppressed when going to the
mixed basis. Other structures besides the X-lattice may
improve this further.

The above general considerations demonstrate that dif-
ficult computational problems can be broached so long as
the natural entanglement structure is recognized – here,
by changing the canonical basis. This enables the ac-
curate simulation of quantum transport that underlies
many applications, from quantum dot platforms for com-
puting to molecular and nanoscale electronic devices, and
fundamental studies with cold-atom emulators. The long
times achievable will be conducive to simulating trans-
port through systems undergoing time-dependent driv-
ing to generate artificial gauge fields or Floquet states.
Combining the approach here with other recent meth-
ods [53–55] will push further the limits of simulation, as
will developing algorithms to locally optimize the canon-
ical basis [56]. As such, our results open new avenues
to study the behavior and simulation of non-equilibrium
many-body systems, from fermionic impurities to bosonic
baths to the inherent structure of tensor networks.
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[5] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[6] F. Verstraete, V. Murg, and J. Cirac, Adv. Phys. 57,

143 (2008).
[7] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli,

R. Schittko, P. M. Preiss, and M. Greiner, Science 353,
794 (2016).

[8] V. Alba and P. Calabrese, Proc. Natl. Acad. Sci. U.S.A.
114, 7947 (2017).

[9] H. Liu and S. J. Suh, Phys. Rev. Lett. 112, 011601
(2014).

[10] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205
(2013).

[11] J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J.
Daley, Phys. Rev. X 3, 031015 (2013).

[12] N. Schuch, M. M. Wolf, K. G. H. Vollbrecht, and J. I.
Cirac, New J. Phys. 10, 033032 (2008).

[13] P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp.
, P04010 (2005).

[14] C. D. White, M. Zaletel, R. S. K. Mong, and G. Refael,
Phys. Rev. B 97, 035127 (2018).

[15] E. Leviatan, F. Pollmann, J. H. Bardarson, D. A. Huse,
and E. Altman, arXiv:1702.08894 (2017).

[16] J. Surace, M. Piani, and L. Tagliacozzo, Phys. Rev. B
99, 235115 (2019).

[17] C. W. J. Beenakker, in Proc. Int. School Phys. E. Fermi ,
Vol. 162 (IOS Press, Amsterdam, 2006) pp. 307–347.

[18] I. Klich and L. Levitov, Phys. Rev. Lett. 102, 100502
(2009).

[19] L. S. Levitov and G. B. Lesovik, JETP Letters 58, 230
(1993).

[20] C.-C. Chien, M. Di Ventra, and M. Zwolak, Phys. Rev.
A 90, 023624 (2014).

[21] M. A. Cazalilla and J. B. Marston, Phys. Rev. Lett. 88,
256403 (2002).

[22] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205
(2004).

[23] D. Gobert, C. Kollath, U. Schollwöck, and G. Schütz,
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Quantum transport through an impurity or interface is typically approached via the Hamiltonian [1, 2]

H = HS +HI +HL +HR, (S1)

where HS is the many-body Hamiltonian of the impurity region – the system S – which may include electron-
electron interactions, electron-phonon/vibrational coupling, etc. The remaining terms are the coupling of the system
and reservoirs, and the isolated reservoir Hamiltonians. Reflecting the non-interacting nature of the Fermi sea and
recognizing that the partitioning into S and LR can be done so that the relevant, spatially localized interaction region
is in S, it is standard [1, 2] to take these other Hamiltonians as quadratic forms

HI =
∑

i∈S,k∈LR
~vik

(
c†iak + a†kci

)
(S2)

and

HL(R) =
∑

k∈L(R)

~ωka†kak, (S3)

where c†i (ci) and a†k (ak) are the creation (annihilation) operators in S and LR, respectively, and vik is the coupling
for modes i ∈ S and k ∈ LR. Spin (when present) is implicit in the labels. This “impurity” Hamiltonian is the same
general structure as that addressed with the Numerical Renormalization Group (of course, one can modify Eq. (S2)
to have some other S operator but retaining the linearity in LR operators). There, a logarithmic discretization of
the energy basis in the reservoir(s) gives a finite number of modes with a more fine structure at low energy. After a
transformation of this Hamiltonian with a finite number of degrees of freedom to a one-dimensional lattice (a Wilson
chain), an iterative diagonalization process yields the low energy states [3, 4].

Matrix product state simulations require a (quasi-) 1D lattice. Prior simulations thus considered either explicitly
a lattice in one spatial dimension [5–14] or some other real-space-like construction (e.g., one spatial dimension with
energetically tapered boundaries [10, 12]). Essentially, this amounts to considering the reservoir Hamiltonian

HL = ~ω0

∑
j∈L

(
b†jbj+1 + b†j+1bj

)
+ ~µL

∑
j∈L

b†jbj (S4)

and similarly for HR. For simplicity, we take the hopping and chemical potential to be uniform within each reservoir,
and take the same ω0 for both L and R. The bj (b†j) are the creation (annihilation) operators in LR at the real-space
site j.

When the system is a single Anderson impurity with equal coupling v to both reservoirs, the remaining Hamiltonians
are

HS = ~ωS
∑
σ

nσ + ~Un↑n↓ (S5)

and

HI = ~v
∑

σ,l=1L,1R

(
c†σblσ + b†lσcσ

)
, (S6)

where all indices now explicitly include spin σ [Eqs. (S1)–(S4) have spin implicit], nσ = c†σcσ is the number operator
on the system site with spin σ, and l = 1L(R) is the site in L (R) that contacts S. For the specific simulations in this
work, we will use this model and vary ωS , v, and U . However, we will work in the single-particle eigenbasis of each of



2

these reservoirs separately. Thus, the spatial nature of this lattice will be inconsequential to the general considerations
in our work (it only will change the band structure and the dispersion of the coupling). The computational approach
can thus handle non-interacting reservoirs in any dimension, 1D, 2D, 3D, etc., and with long-range hopping.

The canonical transformation that defines the eigenbasis for the 1D reservoir model is ak =
∑
j∈L U

†
kjbj with

U†kj =
√

2/ (N + 1) sin (jkπ/ (N + 1)) and k = 1, . . . , N for an N site reservoir, yielding

ωk = 2ω0 cos (kπ/ (N + 1)) + µL, (S7)

and vk = v U†k1 in Eq. (S2) (and similarly for R). The simulation technique will work in the more general setting where
S is an arbitrary interacting impurity with many electronic sites and vibrational modes, although the computational
cost will depend on the Hilbert space dimension and structure of S.

To drive a current, we consider the LSR system initially in contact and in its ground state at zero temperature.
At time t = 0, a bias µL = −µr = µ/2 turns on, generating a current. An alternative case is to have HI = 0 and
µL = −µr = µ/2 initially, then turn on HI and off µ. This starts the system with a density imbalance that drives the
current when the applied chemical potential no longer sustains the imbalance. A third case is to have HI on initially
and also the chemical potential drop, letting the latter go to drive the current. These lead to different time dynamics
and initial entanglement, but they yield the same steady state and asymptotic entanglement growth [15]. The current
from left to right is

I(t) = −〈dnL/dt〉 = −2
∑
σ,k∈L

vk=〈a†kcσ〉, (S8)

where nL is the total particle number on the left reservoir, = is the imaginary component, and again spin is implicit
in the label k. In all simulations, the overall filling is determined by the initial state. It is set at (almost) half-filling
with N electrons for a system of N + 1 +N modes (per spin channel).

For any finite system, one can directly simulate the dynamics of non-interacting electrons by evolving the correlation
matrix [16]

Cmn = tr [d†mdn ρ], (S9)

where ρ is the full density matrix and d†m (dn) are the creation (annihilation) operators at mode m,n ∈ LSR. Defining
the single-particle Hamiltonian H̄ through

H =
∑

m,n∈LSR
H̄nmd

†
mdn (S10)

and using that tr
(
d†mdn[H, ρ]

)
= [H̄, C]mn, the evolution of the correlation matrix is

Ċ = −ı[H̄, C]/~. (S11)

This equation can be evolved directly. The dynamics can also be simulated by diagonalizing the “small” dimensional
H̄ and then transforming the correlation matrix into its eigenbasis [15].

We first consider the fully non-interacting model [U = 0 in Eq. (S5)], dropping also the spin since there is no
interaction between spin channels (we will multiply the current by an additional factor of two to account for spin,
which is not the factor of two already appearing in Eq. (S8)). We then consider the case with interactions.

Figure 2 of the main text shows a matrix product state (MPS) and an exact (via the correlation matrices) simulation
of transport in the non-interacting model, Eq. (S5) with U = 0, using the spatial basis, as has been done in prior
work. The steady-state particle current, Iss, is given by Landauer’s formula (regardless of the protocol for driving the
current),

Iex
ss =

1

π

∫ ∞
−∞

dω(fL(ω)− fR(ω))T (ω) = gexµ (S12)

≈ 1

π
T (0)µ, (S13)

where we explicitly include the factor of two out front (cancelling a factor of 1/2) to account for both spin channels and
the second line is in linear response. This equation also defines the exact value of conductance gex for non–interacting
case. The fL(R) are the Fermi-Dirac distributions in the left (right) reservoir. The transmission function is

T (ω) = ΓLΓR|G(ω)|2, (S14)
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FIG. S1. Effective entropy and mode ordering in the mixed basis. For the setup in Fig. 2 of the main text with
NL = NR = 256, we compare the entanglement entropy during different stages of the evolution in the position basis, mixed
basis with modes ordered according to energy, and the mixed basis with random ordering. For the latter, we show a histogram
of 104 orderings. The plots show the probability for the (a) effective entropy Seff (blue histogram), see Eq. (S16), and (b)
median entropy of the possible bipartite divisions of the 1D lattice. The expected entropy for random orderings in the energy
basis is comparable to the position basis, being both large and growing linearly in time (in the position basis, there is an initial,
residual entropy due to the fact that the initial state is a critical state with entanglement logarithmic in the system size). For
all but the shortest times, both are significantly larger than the energy-ordered mixed basis. The median entropy shows that
the result for the effective entropy is not due to a small subset of large entropy cuts. Moreover, the median shows that the
energy-ordered mixed basis has basically no entanglement throughout the lattice. These results clearly indicate that the right
ordering is crucial for properly capturing the entanglement structure of the system during all stages of the evolution.

with the retarded Green’s function of the impurity G(ω) = 1/[ω − ωS − ΣSL − ΣSR], the spectral function of
the couplings ΓL(R) = −2=ΣSL(SR), the self-energies ΣSL(SR) = v2GL(R)(ω), and the reservoir Green’s functions

GL(R)(ω) = 1/[ω − µL(R) − ΣL(R)(ω)], and self-energies ΣL(R) = (1/2)
[
ω − µL(R) − ı

√
4ω2

0 − (ω − µL(R))2
]
.

The response of the total system to the driving force results in a rapid rise of the current from zero as particles
flow from one reservoir to the other, going into oscillations (due to the presence of Gibbs phenomenon) that decay as
the current goes into a quasi-steady state [17]. With a large matrix product dimension, the current from the MPS
simulation will match the exact solution reasonably well until it abruptly fails for the spatial basis. The origin of the
failure is the scattering nature of the problem: Particles come in from, e.g., the left, scattering off the interface at the
impurity, generating entanglement between the two reservoirs in the process.

Figure S1 shows the maximum bipartite entanglement entropy across the lattice for position basis and different
orderings in mixed basis. The “natural” ordering, with reservoir modes paired with their closest frequency mode on
the opposing side and with the system placed around the Fermi level, has the smallest entanglement. We choose
to consider canonical transformations that are only permutations to ensure that the matrix product operator that
defines the evolution is low dimensional (see below), and, in particular, does not grow with time. We note that
for the particular case with a fully non–interacting model, the global single-particle eigenbasis of the Hamiltonian
for the time dynamics has zero entanglement growth during evolution. However, the MPO dimension for the initial
Hamiltonian grows linearly with the total lattice size (and rotating the interacting component further adds to the MPO
dimension). Having interacting systems in mind, including ones with larger interacting regions S, we limit ourselves
to the most natural mixed basis, which allows both for a simple MPO and – via a proper ordering – representation
of the entanglement structure, in correspondence with the guiding principle mentioned in the main text. In Fig. S2,
we show the results, including the entanglement entropy, of the mixed basis simulations for other values of ωS , v, µ,
and U = 0 (complementary to Fig. 3 of the main text).

Many-body simulation. Various approaches can perform computations with matrix product states, such as the
density matrix renormalization group (DMRG) [18] for obtaining the ground state, and the time-evolving block
decimation algorithm (TEBD) [19], Krylov- and expansion-based methods [20, 21] and the time-dependent variational
principle (TDVP) [22, 23] for simulating time evolution. In order to simulate the time evolution, we employ TDVP
for matrix product states (MPS) [22, 23], where for simulating the effects of local gates we apply the Krylov-based
method of Ref. 24 that is adaptive both in the timestep and in Krylov-subspace dimension. TDVP provides a means to
tackle a broad class of Hamiltonians represented as a matrix product operator (MPO). For instance, the Hamiltonian
in Eq. (S1) – limited to a single spin channel (U = 0) in the mixed energy-spatial basis, Eqs. (S3) and (S5), and a
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FIG. S2. Current and entanglement for the mixed basis at U = 0. We show complementary results to the ones in Fig.
3 of the main text. Here, NL = NR = 256 and D ≤ 256 (apart from µ/ω0 = 1 and 2 in column (c) – where, for completeness,
we repeat part of Fig. 3 of the main text – see the caption of that figure). We also show the effective entropy, Eq. (S16), in the
position and mixed bases for different slices of (a) ωS , (b) v, (c) µ. There are special situations – namely, resonant transport
– where no entanglement is generated in the position basis as there is no scattering. These situations, though, are of measure
zero in parameter space.

single system site interacting with the reservoirs – can be expressed as an MPO with a small bond dimension, M = 4
(for the spatial Hamiltonian in Eq. (S4) and without interactions in S, the bond dimension is also 4). The latter is
independent on the particular ordering of the energy modes. Each additional system site interacting with the reservoir
would increase this bond dimension by 2. For a single channel and a single site in S, the exact form for the mixed
basis is

H =
∏
ωk<0

W k ·WS ·
∏
ωk>0

W k, (S15)

where the sites are ordered according to ωk form Eq. (S7) (jointly for L and R). The initial state is the ground state
of the Hamiltonian with µL = µR = 0, which has an MPO of the same form (with sites ordered using the nonzero
value of µ for t > 0 so that exactly the same basis is used for the initial state and the subsequent time evolution).
Finally, the MPO matrices read

Wωk<0 =


1 vikak vika

†
k ωka

†
kak

1

1

1

 ,

WS =


1 −ci c†i ωSni

−c†i
ci
1

 ,
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FIG. S3. Error in the steady state current and conductance. (a) We consider the setup in Fig. 2 of the main text.
For different system sizes NL = NR = N , we obtain the steady-state current by fitting I(t) = Iss + δ sin(φt + φ0) within the
window of ω0t ∈ [N/4, N/2]. This simultaneously increases both lattice length and the timescale, which is the normal process
by which the long-time limit is taken. The error bars indicate 95 % confidence intervals of the fits. We compare the extracted
steady-state current, IMPS

ss , of simulations for different values of MPS bond dimension D with the exact value extracted from,
ICorr
ss , from evolving the single-particle correlation matrix, with the measure of error taken as the relative difference, ε, with

the exact value. This comparison shows that to take the long-time limit (e.g., successive doubling of both time and space)
at a fixed simulation error, the necessary D only increases by approximately a constant factor. The error is not expected to
decrease by simple power laws and the waviness in the plots is due to features in the spectrum of Schmidt coefficients. Other
factors that influence the error (timestep, Schmidt tolerance, etc.) – ones that might have some complicated interplay with
the matrix product dimension – are taken to be sufficiently stringent to give only a secondary influence in the error versus
D. Only when taking the asymptotic limit and coarse–graining the error (smoothing over some range of D’s) might a simple
decay emerge. Nevertheless, in (b) we attempt power law fit to the above data, obtaining the leading behavior ε ∼ ecLa/Db,
with a = 3.1 ± 0.3, b = 2.5 ± 0.2 and c = −10.5 ± 1.5. (c) The relative error in the conductance E compared to that found
from the exact calculation in the infinite system/time limit (see Eq. (S12), with gex = Iex

ss /µ). Unlike in (a), this error has a
minimum value for a fixed finite size and time due to an offset from the infinite system/time result [12, 17]. That is, this error
(for an exact simulation of a finite system) vanishes as 1/N . Increasing D → ∞ will therefore not remove this error. Rather,
the error will decay initially as D increases, but will level off when reaching this asymptotic value (potentially, as seen for
L = 92, increasing to this limit). Increasing the accuracy of the calculation requires a simultaneous increase of the length- and
time-scales, as well as the matrix product dimension. (d) We use the above to rescale the overall error, obtaining reasonable
collapse for different D and N . The optimal combination of the latter to reach given quality of E corresponds to the crossover
point.

and

Wωk>0 =


1 ωka

†
kak

1 vika
†
k

1 vikak
1

 .

The terms equal to zero have been left blank to show the sparsity of the these matrices. Finally, the first and the
last matrix in Eq. (S15) (i.e., the smallest and largest energy modes) are limited only to the first row and column,
respectively. For such a setup, one can also employ the Jordan-Wigner transformation to the pseudo-spin operators.
The fermionic nature of the problem is then reflected by, among other things, σz operators replacing the identities 1
that connect separate creation and annihilation operators. For the case of interacting reservoirs in Fig. 3(c,d) of the
main text, the additional contribution to the Hamiltonian reads ~Ur

∑
j∈LR(nj − 1/2)(nj+1 − 1/2). Its MPO in the
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FIG. S4. Characterization of the many-body simulations. The setup is the same as in Fig. 4 of the main text with
U = 2 and ωS = −1, which is the “bifurcation” point in Fig. 4(d). (a) The relative difference of the steady-state current for a
given point, IMPS

ss at a particular N and D, and a reference point, Iref
ss at N = 128 and D = 128. For N = 128 and smaller, the

current is already converged to within 0.1 % for D & 92. After this convergence, the smaller reservoir sizes have a gap between
their currents and the reference current that represents the decrease in accuracy due to the finite reservoir size. For the larger
reservoir sizes, the current estimate deviates even more, taking a larger D to converge. This indicates that there is a trade-off
between reservoir size and matrix product dimension when improving accuracy, as is the case for the non-interacting regime,
see Fig. S3. For a given error, it is best to choose a sufficient N and increase D. As the desired error is decreases, though, a
larger N is necessary. (b) Connected density-density correlation function Ckk′ = 〈nknk′〉 − 〈nk〉〈nk′〉 in the mixed basis at the
latest time tω0 = N/2 (here, N = 128). Several features are clearly visible: (i) There are strong spin-up-spin-up correlations
(the spin-down-spin-down correlations are identical) between the neighbouring modes with ωk in the bias window, which is set
at µ = 0.2 ω0 (left panel). In each spin channel the sites are ordered as in Eq. (S15) – similarly as for U = 0 discussed above.
(ii) At the same time, there are correlations between the spin channels (right panel), both at the impurity (placed at ω = 0)
and the modes in/around the bias windows. This distribution of correlations corroborates the use of the X-lattice, Fig. 4a of
the main text, with the impurity put inside the bias windows and the spin-channels in proximity to each other in the tensor
network structure.

mixed basis is generated starting from the simple MPOs representing elementary operators. The full Hamiltonian is
obtained by subsequent multiplication and addition (as well as bond dimension compression of the resulting MPOs) of
the elemental components, using the standard calculus of matrix product states, see e.g., Ref. [25]. Its bond dimension
grows approximately as ∼ 24N .

For the simulations in Fig. 3 of the main text, we set a threshold on the Schmidt values kept, smin. The bond
dimension is limited by a number of Schmidt values larger than smin and a maximal bond dimension D – whichever
is smaller. We use smin = 10−6 in most of the simulations, which we check is small enough not to influence the
results. In the energy representation, the modes outside of the bias window (−µ/2 to µ/2) remain weakly entangled.
For that reason, setting smin leads to a small bond dimension in that region and greatly speeds up the simulations,
as indicated in the main text. Only the modes in the bias window are getting entangled, and the precision of the
simulation for longer times is ultimately controlled by D. We show typical behavior of the errors in Fig. S3 and
provide some data on convergence of the conductance in Fig. 4(d) of the main text in Fig. S4. We discuss further
details of the simulations at the end of this Supplementary Material.

There are alternative setups/structures to handle the time dynamics in the energy basis. Multi-configuration time-
dependent Hartree methods employ conditional states on the impurity [26, 27]. This was recently employed with
MPS for bosonic baths [28]. Thus, in addition to the physical structure of entanglement addressed here, there are
also questions regarding the optimal implementation, which we will examine in a further contribution. We employ a
standard MPS structure as we conjecture it will be the most scalable when going to larger-dimensional systems S.

Effective entanglement entropy. To facilitate the comparison between the computational cost of the spatial and
mixed bases, we define an effective measure of entanglement of the lattice of a single channel,

Seff = ln 3

√
1

L− 1

∑
n

e3Sn , (S16)

where the sum is over all bipartite cuts (see Eq. (S17) and comment below it for Sn), and L − 1 is the total
number of relevant cuts. The definition stems from the fact that maximal amount of describable entanglement
scales logarithmically with the bond dimension Dn, and that the leading computational cost of simulation local step
of the time evolution is proportional to D3

n (simplifying here that the neighboring bonds have the same Dn and
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limiting ourselves to the 1D ordering). As such, equation (S16) incorporates that the required D is inhomogeneous
across the cuts and includes, heuristically, how the entanglement entropy contributes to computational cost.

Comments on TDVP simulations. The TDVP procedure, which we rely on to simulate the time evolution of MPS,
is masterfully explained in Ref. 23. We briefly summarize it here in order to outline two variations which we employ
in this article: combining 1-site and 2-site TDVP updates to, for efficiency, enlarge the bond dimension only when
necessary and simulating the time evolution on the X-lattice in Fig. 4(a) (or, more generally, on a tree).

Let’s consider a quantum state represented as an MPS of length L,

, (S17)

with dangling legs corresponding to local physical degrees of freedom and connected lines corresponding to vir-
tual degrees of freedom of the tensor network. Above, we depict two representations of the same state in differ-
ent mixed-canonical forms. All MPS tensors Ai to the left (right) of the nth bond are in left (right) canonical
form [25] – marked here using right-pointing (left-pointing) triangles. For instance, the entanglement of bipartite
cuts appearing in Eq. (S16) is fully encoded in the singular values of Cn – which we mark here as Λn,i – and

reads Sn = −2
∑Dn

i=1 Λ2
n,i log2 Λ2

n,i (for a normalized state and bond dimension Dn of the nth cut). We also define
sn = mini Λn,i as the smallest singular value for bond dimension Dn.

We can now consider the Hamiltonian H and its expectation value in the state |Ψ[A]〉,

. (S18)

The 0-site effective Hamiltonian HCn

eff , related with the central block Cn, follows from the expectation value of H in
|Ψ[A]〉, which is calculated/contracted all the way except the contribution from Cn. All the MPS tensors which are
contracted to form HCn

eff are in proper left and right canonical forms with respect to the position of the central block

Cn. Similarly, one introduces the 1-site effective Hamiltonian H
Ac

n

eff related with the (central) MPS tensor Acn, and

2-site effective Hamiltonian H
AAc

n,n+1

eff for two adjacent MPS tensors Acn and Acn+1 blocked together.
In order to simulate the Schrödinger equation, TDVP projects the action of H on |Ψ[A]〉 on the tangent space of

|Ψ[A]〉 [22]. To efficiently integrate it, the evolution operator is approximately decomposed into the set of local gates,
which are used to update central blocks/sites [23],

U [0]
n (dt)Cn = exp(−ıdtHCn

eff )Cn → Cn (S19)

U [1]
n (dt)Acn = exp(−ıdtHAc

n

eff )Acn → Acn (S20)

U
[2]
n,n+1(dt)AcnA

c
n+1 = exp(−ıdtHAAc

n,n+1

eff )AcnA
c
n,n+1

SVD−−−→ Acn, A
c
n+1 (S21)

We note, again, that above the MPS is in a correct mixed canonical form with respect to the updated elements. In
practice, one does not calculate the matrix representation of the effective Hamiltonian, but, for efficiency, employs a
Krylov-based procedure (we use the method in Ref. [24]), which requires only the action of the effective Hamiltonian
on a trial vector. The latter can be efficiently calculated by combining smaller building blocks (environments) when
H is given as an MPO (or as a sum of local terms or MPOs).

Ref. 23 discusses two main decompositions to simulate the time evolution,

U(dt) ≈ T [1](dt/2)T [1]∗(dt/2) ≈ T [2](dt/2)T [2]∗(dt/2). (S22)

For the 1-site TDVP scheme

T [1](y) = U
[1]
L (y)U

[0]
L−1(−y)U

[1]
L−1(y) . . . U

[0]
2 (−y)U

[1]
2 (y)U

[0]
1 (−y)U

[1]
1 (y), (S23)

with central sites Acn evolved forward in time, and central blocks Cn evolved backward in time. T [1] constitute one
sweep from left to right, where, before each local unitary update, MPS is put in a proper mixed canonical form. It is
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completed by its adjoint T [1]∗ with all the gates applied in the reverse order, i.e., a sweep from right to left, making
it a 2nd order method in dt. It operates with fixed bond dimensions (at each cut) of the MPS.

Dynamical adjusting of the bond dimensions can be obtained by 2-site TDVP scheme

T [2](y) = U
[2]
L−1,L(y)U

[1]
L−1(−y)U

[2]
L−2,L−1(y) . . . U

[1]
3 (−y)U

[2]
2,3(y)U

[1]
2 (−y)U

[2]
1,2(y), (S24)

(plus its adjoint T [2]∗ in the reverse order). Now, the 2-site gate are evolved forward in time, and 1-site gate are
evolved backward in time. In case of the 2-site update U [2], two adjacent MPS matrices are blocked together and
subsequently split using a singular value decomposition (SVD), truncating the virtual bond to given size/weights. It
is, however, numerically significantly more costly both due to larger vectors appearing in the Krylov procedure and
the additional SVD.

In this article, we employ a slight modification of the above procedures by combining the two schemes. The 2-site
gates are employed only locally when both are necessary (all the Schmidt values of a given cut above a threshold
smin) and possible (bond dimension of a given cut is below the maximal D). Such an approach is consistent with
the strongly inhomogeneous nature of the system we consider where entanglement is localized only in a part of the
system, and the MPS bond dimensions between modes outside of the bias window can remain small. To that end,
it is sufficient to note how to transition between parts of T [1](y) and T [2](y) during a sweep to build T [mixed](y). If

the n-th bond is enlarged and the next one is not, one gets T [mixed](y) = . . . U
[0]
n+1(−y)U

[2]
n,n+1(y) . . .. On the other

hand, if nth bond is not enlarged and the next one is, one has T [mixed](y) = . . . U
[2]
n+1,n+2(y)U

[0]
n (−y) . . .. We perform

the adjoint (sweep from right to left) using the exact reversal of the gates in T [mixed](y). We numerically observe,
however, that finding new T [mixed]∗(y) based on the bond dimension/Schmidt weights does not reduce the order of
the method in dt. For clarity, below we collect the full procedure as a pseudocode:

Input: |Ψ[A]〉 in right canonical form;
minimal Schmidt values of all cuts sn;
precomputed environments for calculation of Heff

Output: |Ψ[A]〉 ← U(dt)|Ψ[A]〉 in right canonical form;
C ← 1
update two ← false
for n = 1 to L do

if not update two then
Ac ← C ·An

if (sn < smin) or (Dn ≥ Dmax) then {do not enlarge next bond dimension}
Ac ← U

[1]
n (dt/2)Ac

An, C ← left-orthogonalize Ac

update environments for calculation of Heff

C ← U
[0]
n (−dt/2)C

else
update two ← true

end if
else
AAc ← Ac ·An

AAc ← U
[2]
n−1,n(dt/2)AAc

An−1, A
c ← left-orthogonalize and truncate AAc based on Dmax and smin (with some margin).

update environments for calculation of Heff

if (sn < smin) or (Dn ≥ Dmax) or (n = L) then {do not enlarge next bond dimension}
update two ← false
An, C ← left orthogonalize(Ac)
update environments for calculation of Heff

C ← U
[0]
n (−dt/2)C

else
Ac ← U

[1]
n (−dt/2)Ac

end if
end if

end for
sweep n back from L to 1 additionally computing the minimal Schmidt values sn.

Pseudocode 1. Combining 1-site and 2-site TDVP sweep to locally enlarge the MPS bond dimension based on a maximal bond
dimension Dmax and Schmidt–value threshold smin.
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Finally, the tree-tensor network ansatz corresponding to the X-shape lattice in Fig. 4(a) of the main text is

. (S25)

Again, we show two different mixed canonical representations of the same state with all the tensors to the left (right)
of the central site [bond on the right-hand side] in the left (right) canonical form. On the right-hand side, we show
the central block CS between the two spin channels, which in our case corresponds to the placement of the impurity
S (hence the index).

The simulation of the time evolution is obtained using U(dt) ≈ TX(dt/2)TX∗(dt/2). A one-way sweep is composed

as TX(y) = T ↑[mixed](y)U
[0]
S (−y)T ↓[mixed](y). Sweeps of the spin channels, T ↑(↓)[mixed](y), are done similarly as for

the 1D chain above, and U
[0]
S describes the update of the central block CS . If one wants to enlarge that bond, one

can replace U
[0]
S (−y) with U

[1]
↓S(−y)U

[2]
S (y)U

[1]
↑S(−y), with U

[2]
S acting on two tensors connecting the spin channels,

and U
[1]
↑(↓)S on each of them. We depict the order of the full sweep – combining to U(dt) – with blue arrows on

the right-hand side of Eq. (S25). Its symmetric form ensures that it is second order in dt. The total Hamiltonian
(which generates the U gates) is treated as a sum of (the contributions coming from) MPOs for each channel and the
interacting term, Un↓n↑, which is coupling the system modes placed next to each other in the X-lattice geometry.
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