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Quantum characterization, validation, and verification (QCVV) techniques are used to probe,
characterize, diagnose, and detect errors in quantum information processors (QIPs). An important
component of any QCVV protocol is a mapping from experimental data to an estimate of a property
of a QIP. Machine learning (ML) algorithms can help automate the development of QCVV protocols,
creating such maps by learning them from training data. We identify the critical components of
“machine-learned” QCVV techniques, and present a rubric for developing them. To demonstrate
this approach, we focus on the problem of determining whether noise affecting a single qubit is
coherent or stochastic (incoherent) using the data sets originally proposed for gate set tomography.
We leverage known ML algorithms to train a classifier distinguishing these two kinds of noise. The
accuracy of the classifier depends on how well it can approximate the “natural” geometry of the
training data. We find GST data sets generated by a noisy qubit can reliably be separated by linear
surfaces, although feature engineering can be necessary. We also show the classifier learned by a
support vector machine (SVM) is robust under finite-sample noise.

Characterizing the errors and imperfections in a quan-
tum information processor (QIP) is necessary to under-
stand what is going wrong with it, to identify ways to fix
the errors, and to improve the processor’s performance.
To do so, quantum characterization, validation, and ver-
ification (QCVV) techniques are used. There are many
QCVV techniques, in part because QIPs have many prop-
erties to be characterized at various levels of detail. (A
“property” being anything that describes the processor’s
behavior.) Interesting, relevant properties are quite di-
verse: they can be binary (e.g., the presence of leakage),
real-valued (e.g., T1 and T2 times, logical error rates, av-
erage fidelities), matrix-valued (e.g., process matrices),
or fall within some other category.

Many QCVV techniques fall into a “model-based”
paradigm: they use a statistical model, which is a pa-
rameterized family of probability distributions over ex-
perimental data. Estimates of these parameters can be
used to predict important properties of the QIP. (See
Figure 1.) They can be used to diagnose problems, miti-
gate them, and improve the correctness of future results
obtained from the (improved) QIP. Until recently, the
number of parameters to be estimated has been manage-
able, largely because QIPs contained just a few qubits.

As QIPs grow more sophisticated, characterizing them
becomes harder. Large, multi-qubit QIPs have more
properties that need to be characterized, and inventing
a new QCVV technique to probe a new property of in-
terest is a nontrivial task. New methods for develop-
ing QCVV techniques will be required to keep pace with
the development of QIPs. This is especially true in the
“noisy, intermediate-scale quantum” (NISQ) era [1], as

Experimental 
data D<latexit sha1_base64="na5vyq0qC9MAHy3fJafTP+ZD8Xw=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppQAvLCOYCyRJmJ7PJkNmZZeasEJY8ho2FIra+hW9g59s4m6TQxB8GPv5zDvOfEyaCG/S8b6ewsrq2vlHcLG1t7+zulfcPmkalmrIGVULpdkgME1yyBnIUrJ1oRuJQsFY4usnrrUemDVfyAccJC2IykDzilKC1Ot2Y4JASkd1OeuWKV/WmcpfBn0Pl+vP8vAYA9V75q9tXNI2ZRCqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdi5LEzATZNPLEPbFO342Utk+iO3V/T2QkNmYch7Yzj2gWa7n5X62TYnQZZFwmKTJJZx9FqXBRufn+bp9rRlGMLRCquc3q0iHRhKK9UskewV9ceRmaZ1Xf8r1fqV3BTEU4gmM4BR8uoAZ3UIcGUFDwBC/w6qDz7Lw577PWgjOfOYQ/cj5+ALB3kvs=</latexit><latexit sha1_base64="wtjECjRo6cnuDPuOmDA5EnNfwrE=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkKevBYwdZCGspmu2mXbnbD7otQQn+GFw+KePXXePPfuGlz0NaBhWHmPXbeRKngBj3v26msrW9sblW3azu7e/sH9cOjrlGZpqxDlVC6FxHDBJesgxwF66WakSQS7DGa3BT+4xPThiv5gNOUhQkZSR5zStBKQT8hOKZE5LezQb3hNb053FXil6QBJdqD+ld/qGiWMIlUEGMC30sxzIlGTgWb1fqZYSmhEzJigaWSJMyE+TzyzD2zytCNlbZPojtXf2/kJDFmmkR2soholr1C/M8LMoyvwpzLNEMm6eKjOBMuKre43x1yzSiKqSWEam6zunRMNKFoW6rZEvzlk1dJ96LpW37vN1rXZR1VOIFTOAcfLqEFd9CGDlBQ8Ayv8Oag8+K8Ox+L0YpT7hzDHzifP3K7kVM=</latexit>D<latexit sha1_base64="na5vyq0qC9MAHy3fJafTP+ZD8Xw=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppQAvLCOYCyRJmJ7PJkNmZZeasEJY8ho2FIra+hW9g59s4m6TQxB8GPv5zDvOfEyaCG/S8b6ewsrq2vlHcLG1t7+zulfcPmkalmrIGVULpdkgME1yyBnIUrJ1oRuJQsFY4usnrrUemDVfyAccJC2IykDzilKC1Ot2Y4JASkd1OeuWKV/WmcpfBn0Pl+vP8vAYA9V75q9tXNI2ZRCqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdi5LEzATZNPLEPbFO342Utk+iO3V/T2QkNmYch7Yzj2gWa7n5X62TYnQZZFwmKTJJZx9FqXBRufn+bp9rRlGMLRCquc3q0iHRhKK9UskewV9ceRmaZ1Xf8r1fqV3BTEU4gmM4BR8uoAZ3UIcGUFDwBC/w6qDz7Lw577PWgjOfOYQ/cj5+ALB3kvs=</latexit><latexit sha1_base64="wtjECjRo6cnuDPuOmDA5EnNfwrE=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkKevBYwdZCGspmu2mXbnbD7otQQn+GFw+KePXXePPfuGlz0NaBhWHmPXbeRKngBj3v26msrW9sblW3azu7e/sH9cOjrlGZpqxDlVC6FxHDBJesgxwF66WakSQS7DGa3BT+4xPThiv5gNOUhQkZSR5zStBKQT8hOKZE5LezQb3hNb053FXil6QBJdqD+ld/qGiWMIlUEGMC30sxzIlGTgWb1fqZYSmhEzJigaWSJMyE+TzyzD2zytCNlbZPojtXf2/kJDFmmkR2soholr1C/M8LMoyvwpzLNEMm6eKjOBMuKre43x1yzSiKqSWEam6zunRMNKFoW6rZEvzlk1dJ96LpW37vN1rXZR1VOIFTOAcfLqEFd9CGDlBQ8Ayv8Oag8+K8Ox+L0YpT7hzDHzifP3K7kVM=</latexit>

QCVV 
model M(✓)

<latexit sha1_base64="O6CPbK8hrRm53O/XkQ3kvOrIe9M=">AAACCXicbVC7SgNBFL3rM8bXqqUgg0GITdi10UoCNjZCBPOAbAizk0kyZPbBzF0hLGlt/IJ0foCNhSK2/oGdf+NskkITLwxzOOde7rnHj6XQ6Djf1tLyyuraem4jv7m1vbNr7+3XdJQoxqsskpFq+FRzKUJeRYGSN2LFaeBLXvcHV5lev+dKiyi8w2HMWwHthaIrGEVDtW3iBRT7jMr0ZlT0/Eh29DAwX+phnyMdnbbtglNyJkUWgTsDhfLRePwEAJW2/eV1IpYEPEQmqdZN14mxlVKFgkk+ynuJ5jFlA9rjTQNDGnDdSieXjMiJYTqkGynzQiQT9vdESgOdGTSdmW89r2Xkf1ozwe5FKxVhnCAP2XRRN5EEI5LFQjpCcYZyaABlShivhPWpogxNeHkTgjt/8iKonZVcg2/dQvkSppWDQziGIrhwDmW4hgpUgcEDPMMrvFmP1ov1bn1MW5es2cwB/Cnr8wc/SZzd</latexit><latexit sha1_base64="IqkMFzGNiuzdLd3d9PCRsVz9L70=">AAACCXicbVDLSsNAFJ34rPUVdelmsAh1UxI3upKCGzdCBfuAJpTJZNIOnUzCzI1QQrdu/BU3LhRx6x+482+ctFlo64VhDufcyz33BKngGhzn21pZXVvf2KxsVbd3dvf27YPDjk4yRVmbJiJRvYBoJrhkbeAgWC9VjMSBYN1gfF3o3QemNE/kPUxS5sdkKHnEKQFDDWzsxQRGlIj8dlr3gkSEehKbL/dgxIBMzwZ2zWk4s8LLwC1BDZXVGthfXpjQLGYSqCBa910nBT8nCjgVbFr1Ms1SQsdkyPoGShIz7eezS6b41DAhjhJlngQ8Y39P5CTWhUHTWfjWi1pB/qf1M4gu/ZzLNAMm6XxRlAkMCS5iwSFXjIKYGECo4sYrpiOiCAUTXtWE4C6evAw65w3X4Du31rwq46igY3SC6shFF6iJblALtRFFj+gZvaI368l6sd6tj3nrilXOHKE/ZX3+AEt3mq0=</latexit>

M(✓)
<latexit sha1_base64="O6CPbK8hrRm53O/XkQ3kvOrIe9M=">AAACCXicbVC7SgNBFL3rM8bXqqUgg0GITdi10UoCNjZCBPOAbAizk0kyZPbBzF0hLGlt/IJ0foCNhSK2/oGdf+NskkITLwxzOOde7rnHj6XQ6Djf1tLyyuraem4jv7m1vbNr7+3XdJQoxqsskpFq+FRzKUJeRYGSN2LFaeBLXvcHV5lev+dKiyi8w2HMWwHthaIrGEVDtW3iBRT7jMr0ZlT0/Eh29DAwX+phnyMdnbbtglNyJkUWgTsDhfLRePwEAJW2/eV1IpYEPEQmqdZN14mxlVKFgkk+ynuJ5jFlA9rjTQNDGnDdSieXjMiJYTqkGynzQiQT9vdESgOdGTSdmW89r2Xkf1ozwe5FKxVhnCAP2XRRN5EEI5LFQjpCcYZyaABlShivhPWpogxNeHkTgjt/8iKonZVcg2/dQvkSppWDQziGIrhwDmW4hgpUgcEDPMMrvFmP1ov1bn1MW5es2cwB/Cnr8wc/SZzd</latexit><latexit sha1_base64="IqkMFzGNiuzdLd3d9PCRsVz9L70=">AAACCXicbVDLSsNAFJ34rPUVdelmsAh1UxI3upKCGzdCBfuAJpTJZNIOnUzCzI1QQrdu/BU3LhRx6x+482+ctFlo64VhDufcyz33BKngGhzn21pZXVvf2KxsVbd3dvf27YPDjk4yRVmbJiJRvYBoJrhkbeAgWC9VjMSBYN1gfF3o3QemNE/kPUxS5sdkKHnEKQFDDWzsxQRGlIj8dlr3gkSEehKbL/dgxIBMzwZ2zWk4s8LLwC1BDZXVGthfXpjQLGYSqCBa910nBT8nCjgVbFr1Ms1SQsdkyPoGShIz7eezS6b41DAhjhJlngQ8Y39P5CTWhUHTWfjWi1pB/qf1M4gu/ZzLNAMm6XxRlAkMCS5iwSFXjIKYGECo4sYrpiOiCAUTXtWE4C6evAw65w3X4Du31rwq46igY3SC6shFF6iJblALtRFFj+gZvaI368l6sd6tj3nrilXOHKE/ZX3+AEt3mq0=</latexit>

Estimated model 
parameters ✓̂M(D)

<latexit sha1_base64="II28PW5sg2CLDKdovhlrChckQXg=">AAACHXicbVDLSgNBEOz1bXxFPQqyGIR4Cbsi6EkCevAiRDBRyIbQO5kkg7MPZnqFsOyH6EU/xYsHRTx4Ef/G2UREowXD1FR3M9Xlx1JocpwPa2Jyanpmdm6+sLC4tLxSXF1r6ChRjNdZJCN16aPmUoS8ToIkv4wVx8CX/MK/OsrrF9dcaRGF5zSIeSvAXii6giEZqV3c8/pIqedHsqMHgblSj/qcMMvaqRcg9RnK9DTLyt+P42ynXSw5FWcI+y9xv0ipunlzcw8AtXbxzetELAl4SEyi1k3XiamVoiLBJM8KXqJ5jOwKe7xpaIgB1610uF1mbxulY3cjZU5I9lD9OZFioHPvpjP3qMdrufhfrZlQ96CVijBOiIds9FE3kTZFdh6V3RGKM5IDQ5ApYbzarI8KGZlACyYEd3zlv6SxW3ENP3NL1UMYYQ42YAvK4MI+VOEEalAHBrfwAE/wbN1Zj9aL9TpqnbC+ZtbhF6z3TzOBpf8=</latexit><latexit sha1_base64="QW2rGzea8zPVe/zHuvYidC3s0qw=">AAACHXicbVDLSsNAFJ3UV62vqks3wSLUTUlE0JUUdOFGqGAf0JRyM500QycPZm6EEvIjbvwVNy4UceFG/BsnbRFtPTDMmXPvZc49biy4Qsv6MgpLyyura8X10sbm1vZOeXevpaJEUtakkYhkxwXFBA9ZEzkK1oklg8AVrO2OLvN6+55JxaPwDscx6wUwDLnHKaCW+uVTxwdMHTcSAzUO9JU66DOELOunTgDoUxDpTZZVfx5X2XG/XLFq1gTmIrFnpEJmaPTLH84goknAQqQClOraVoy9FCRyKlhWchLFYqAjGLKupiEETPXSyXaZeaSVgelFUp8QzYn6eyKFQOXedWfuUc3XcvG/WjdB77yX8jBOkIV0+pGXCBMjM4/KHHDJKIqxJkAl115N6oMEijrQkg7Bnl95kbROarbmt3alfjGLo0gOyCGpEpuckTq5Jg3SJJQ8kCfyQl6NR+PZeDPep60FYzazT/7A+PwGP6+jzw==</latexit>

✓̂M(D)
<latexit sha1_base64="II28PW5sg2CLDKdovhlrChckQXg=">AAACHXicbVDLSgNBEOz1bXxFPQqyGIR4Cbsi6EkCevAiRDBRyIbQO5kkg7MPZnqFsOyH6EU/xYsHRTx4Ef/G2UREowXD1FR3M9Xlx1JocpwPa2Jyanpmdm6+sLC4tLxSXF1r6ChRjNdZJCN16aPmUoS8ToIkv4wVx8CX/MK/OsrrF9dcaRGF5zSIeSvAXii6giEZqV3c8/pIqedHsqMHgblSj/qcMMvaqRcg9RnK9DTLyt+P42ynXSw5FWcI+y9xv0ipunlzcw8AtXbxzetELAl4SEyi1k3XiamVoiLBJM8KXqJ5jOwKe7xpaIgB1610uF1mbxulY3cjZU5I9lD9OZFioHPvpjP3qMdrufhfrZlQ96CVijBOiIds9FE3kTZFdh6V3RGKM5IDQ5ApYbzarI8KGZlACyYEd3zlv6SxW3ENP3NL1UMYYQ42YAvK4MI+VOEEalAHBrfwAE/wbN1Zj9aL9TpqnbC+ZtbhF6z3TzOBpf8=</latexit><latexit sha1_base64="QW2rGzea8zPVe/zHuvYidC3s0qw=">AAACHXicbVDLSsNAFJ3UV62vqks3wSLUTUlE0JUUdOFGqGAf0JRyM500QycPZm6EEvIjbvwVNy4UceFG/BsnbRFtPTDMmXPvZc49biy4Qsv6MgpLyyura8X10sbm1vZOeXevpaJEUtakkYhkxwXFBA9ZEzkK1oklg8AVrO2OLvN6+55JxaPwDscx6wUwDLnHKaCW+uVTxwdMHTcSAzUO9JU66DOELOunTgDoUxDpTZZVfx5X2XG/XLFq1gTmIrFnpEJmaPTLH84goknAQqQClOraVoy9FCRyKlhWchLFYqAjGLKupiEETPXSyXaZeaSVgelFUp8QzYn6eyKFQOXedWfuUc3XcvG/WjdB77yX8jBOkIV0+pGXCBMjM4/KHHDJKIqxJkAl115N6oMEijrQkg7Bnl95kbROarbmt3alfjGLo0gOyCGpEpuckTq5Jg3SJJQ8kCfyQl6NR+PZeDPep60FYzazT/7A+PwGP6+jzw==</latexit>

Prediction 

P̂ = P
⇣
✓̂M(D)

⌘
<latexit sha1_base64="XZZbI6N+dP9+L5gUSvtmzOpUve0="></latexit><latexit sha1_base64="DwVcf0+wv+eBmqHMHFzNZPjMpjI="></latexit>

P̂ = P
⇣
✓̂M(D)

⌘
<latexit sha1_base64="XZZbI6N+dP9+L5gUSvtmzOpUve0=">AAACSXicbVA9bxNBEJ1z+Ajmy4GSZoWF5DTRHSlIE2QpFDRIRsJJJJ9l5tZzvlX2PrQ7h7BO+3fyU9KkS8d/oKEAISr27AhCwkirffPmjWbmJZVWlsPwS9DZuHX7zt3Ne937Dx4+etzbenJoy9pIGstSl+Y4QUtaFTRmxZqOK0OYJ5qOkpODtn70iYxVZfGBlxVNc1wUKlUS2VOz3sc4Q27iHDmTqJuRc2JfXEljTSkP1qKk1HO7zP3XxJwRo3Ozv63vnBv8Sd647dioRcbbs14/3AlXIW6C6BL0h7unnwUAjGa9i3heyjqngqVGaydRWPG0QcNKanLduLZUoTzBBU08LDAnO21WTjjxwjNzkZbGv4LFir3a0WBu2xO8sl3VXq+15P9qk5rTvWmjiqpmKuR6UFprwaVobRVzZUiyXnqA0ii/q5AZGpTsze96E6LrJ98Ehy93Io/fR/3ha1jHJjyD5zCACF7BEN7CCMYg4Qy+wnf4EZwH34Kfwa+1tBNc9jyFf6Kz8Rt047cV</latexit><latexit sha1_base64="DwVcf0+wv+eBmqHMHFzNZPjMpjI="></latexit>

Model-based

Experimental 
data D<latexit sha1_base64="na5vyq0qC9MAHy3fJafTP+ZD8Xw=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppQAvLCOYCyRJmJ7PJkNmZZeasEJY8ho2FIra+hW9g59s4m6TQxB8GPv5zDvOfEyaCG/S8b6ewsrq2vlHcLG1t7+zulfcPmkalmrIGVULpdkgME1yyBnIUrJ1oRuJQsFY4usnrrUemDVfyAccJC2IykDzilKC1Ot2Y4JASkd1OeuWKV/WmcpfBn0Pl+vP8vAYA9V75q9tXNI2ZRCqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdi5LEzATZNPLEPbFO342Utk+iO3V/T2QkNmYch7Yzj2gWa7n5X62TYnQZZFwmKTJJZx9FqXBRufn+bp9rRlGMLRCquc3q0iHRhKK9UskewV9ceRmaZ1Xf8r1fqV3BTEU4gmM4BR8uoAZ3UIcGUFDwBC/w6qDz7Lw577PWgjOfOYQ/cj5+ALB3kvs=</latexit><latexit sha1_base64="wtjECjRo6cnuDPuOmDA5EnNfwrE=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkKevBYwdZCGspmu2mXbnbD7otQQn+GFw+KePXXePPfuGlz0NaBhWHmPXbeRKngBj3v26msrW9sblW3azu7e/sH9cOjrlGZpqxDlVC6FxHDBJesgxwF66WakSQS7DGa3BT+4xPThiv5gNOUhQkZSR5zStBKQT8hOKZE5LezQb3hNb053FXil6QBJdqD+ld/qGiWMIlUEGMC30sxzIlGTgWb1fqZYSmhEzJigaWSJMyE+TzyzD2zytCNlbZPojtXf2/kJDFmmkR2soholr1C/M8LMoyvwpzLNEMm6eKjOBMuKre43x1yzSiKqSWEam6zunRMNKFoW6rZEvzlk1dJ96LpW37vN1rXZR1VOIFTOAcfLqEFd9CGDlBQ8Ayv8Oag8+K8Ox+L0YpT7hzDHzifP3K7kVM=</latexit>D<latexit sha1_base64="na5vyq0qC9MAHy3fJafTP+ZD8Xw=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppQAvLCOYCyRJmJ7PJkNmZZeasEJY8ho2FIra+hW9g59s4m6TQxB8GPv5zDvOfEyaCG/S8b6ewsrq2vlHcLG1t7+zulfcPmkalmrIGVULpdkgME1yyBnIUrJ1oRuJQsFY4usnrrUemDVfyAccJC2IykDzilKC1Ot2Y4JASkd1OeuWKV/WmcpfBn0Pl+vP8vAYA9V75q9tXNI2ZRCqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdi5LEzATZNPLEPbFO342Utk+iO3V/T2QkNmYch7Yzj2gWa7n5X62TYnQZZFwmKTJJZx9FqXBRufn+bp9rRlGMLRCquc3q0iHRhKK9UskewV9ceRmaZ1Xf8r1fqV3BTEU4gmM4BR8uoAZ3UIcGUFDwBC/w6qDz7Lw577PWgjOfOYQ/cj5+ALB3kvs=</latexit><latexit sha1_base64="wtjECjRo6cnuDPuOmDA5EnNfwrE=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkKevBYwdZCGspmu2mXbnbD7otQQn+GFw+KePXXePPfuGlz0NaBhWHmPXbeRKngBj3v26msrW9sblW3azu7e/sH9cOjrlGZpqxDlVC6FxHDBJesgxwF66WakSQS7DGa3BT+4xPThiv5gNOUhQkZSR5zStBKQT8hOKZE5LezQb3hNb053FXil6QBJdqD+ld/qGiWMIlUEGMC30sxzIlGTgWb1fqZYSmhEzJigaWSJMyE+TzyzD2zytCNlbZPojtXf2/kJDFmmkR2soholr1C/M8LMoyvwpzLNEMm6eKjOBMuKre43x1yzSiKqSWEam6zunRMNKFoW6rZEvzlk1dJ96LpW37vN1rXZR1VOIFTOAcfLqEFd9CGDlBQ8Ayv8Oag8+K8Ox+L0YpT7hzDHzifP3K7kVM=</latexit>

Prediction map f
<latexit sha1_base64="Nmbu6lLpEC7lCxLqplvDv4epWRY=">AAAB6HicbZC7SgNBFIbPxluMt6iFhc1gEKzCrk2sJGBjmYC5QLKE2cnZZMzs7DIzK4QlT2BjoYitj2TnS+QZnFwKTfxh4OP/z2HOOUEiuDau++3kNja3tnfyu4W9/YPDo+LxSVPHqWLYYLGIVTugGgWX2DDcCGwnCmkUCGwFo7tZ3npCpXksH8w4QT+iA8lDzqixVj3sFUtu2Z2LrIO3hFL1bDolAFDrFb+6/ZilEUrDBNW647mJ8TOqDGcCJ4VuqjGhbEQH2LEoaYTaz+aDTsildfokjJV90pC5+7sjo5HW4yiwlRE1Q72azcz/sk5qwhs/4zJJDUq2+ChMBTExmW1N+lwhM2JsgTLF7ayEDamizNjbFOwRvNWV16F5XfYs171S9RYWysM5XMAVeFCBKtxDDRrAAOEZXuHNeXRenHfnY1Gac5Y9p/BHzucP7JOPNg==</latexit><latexit sha1_base64="iUvauqlEiUD1KYtfu3d/t+RnmD4=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSL3qSghePLZi20Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219YeHhnRl25g1TwbVx3W+ntLG5tb1T3q3s7R8cHlWPT9o6yRRDnyUiUd2QahRcom+4EdhNFdI4FNgJJ3fzeucJleaJfDDTFIOYjiSPOKPGWq1oUK25dXchsg5eATUo1BxUv/rDhGUxSsME1brnuakJcqoMZwJnlX6mMaVsQkfYsyhpjDrIF4vOyIV1hiRKlH3SkIX7eyKnsdbTOLSdMTVjvVqbm//VepmJboKcyzQzKNnyoygTxCRkfjUZcoXMiKkFyhS3uxI2pooyY7Op2BC81ZPXoX1V9yy3vFrjtoijDGdwDpfgwTU04B6a4AMDhGd4hTfn0Xlx3p2PZWvJKWZO4Y+czx/Iz4zj</latexit>

f
<latexit sha1_base64="Nmbu6lLpEC7lCxLqplvDv4epWRY=">AAAB6HicbZC7SgNBFIbPxluMt6iFhc1gEKzCrk2sJGBjmYC5QLKE2cnZZMzs7DIzK4QlT2BjoYitj2TnS+QZnFwKTfxh4OP/z2HOOUEiuDau++3kNja3tnfyu4W9/YPDo+LxSVPHqWLYYLGIVTugGgWX2DDcCGwnCmkUCGwFo7tZ3npCpXksH8w4QT+iA8lDzqixVj3sFUtu2Z2LrIO3hFL1bDolAFDrFb+6/ZilEUrDBNW647mJ8TOqDGcCJ4VuqjGhbEQH2LEoaYTaz+aDTsildfokjJV90pC5+7sjo5HW4yiwlRE1Q72azcz/sk5qwhs/4zJJDUq2+ChMBTExmW1N+lwhM2JsgTLF7ayEDamizNjbFOwRvNWV16F5XfYs171S9RYWysM5XMAVeFCBKtxDDRrAAOEZXuHNeXRenHfnY1Gac5Y9p/BHzucP7JOPNg==</latexit><latexit sha1_base64="iUvauqlEiUD1KYtfu3d/t+RnmD4=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSL3qSghePLZi20Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219YeHhnRl25g1TwbVx3W+ntLG5tb1T3q3s7R8cHlWPT9o6yRRDnyUiUd2QahRcom+4EdhNFdI4FNgJJ3fzeucJleaJfDDTFIOYjiSPOKPGWq1oUK25dXchsg5eATUo1BxUv/rDhGUxSsME1brnuakJcqoMZwJnlX6mMaVsQkfYsyhpjDrIF4vOyIV1hiRKlH3SkIX7eyKnsdbTOLSdMTVjvVqbm//VepmJboKcyzQzKNnyoygTxCRkfjUZcoXMiKkFyhS3uxI2pooyY7Op2BC81ZPXoX1V9yy3vFrjtoijDGdwDpfgwTU04B6a4AMDhGd4hTfn0Xlx3p2PZWvJKWZO4Y+czx/Iz4zj</latexit>

 
learned by algorithm

Prediction 
P̂ = f(D)

<latexit sha1_base64="zIEC8FFt/E5syxE3vi5mBHVzALo=">AAACC3icbZC7SgNBFIbPxluMt1VLQYYEITZh10YbJaCFZQRzgWQJs5PZZMjshZlZISzb2/gA6XwCGwtFbH0BO9/G2SSIJv4w8PGfc5hzfjfiTCrL+jJyS8srq2v59cLG5tb2jrm715BhLAitk5CHouViSTkLaF0xxWkrEhT7LqdNd3iZ1Zt3VEgWBrdqFFHHx/2AeYxgpa2uWewMsEo6PlYDgnlSS1N0jrzyj3GVHnfNklWxJkKLYM+gVD0cjx8BoNY1Pzu9kMQ+DRThWMq2bUXKSbBQjHCaFjqxpBEmQ9ynbY0B9ql0ksktKTrSTg95odAvUGji/p5IsC/lyHd1Z7ajnK9l5n+1dqy8MydhQRQrGpDpR17MkQpRFgzqMUGJ4iMNmAimd0VkgAUmSsdX0CHY8ycvQuOkYmu+sUvVC5gqDwdQhDLYcApVuIYa1IHAPTzBC7waD8az8Wa8T1tzxmxmH/7I+PgGfYic3Q==</latexit><latexit sha1_base64="lNpN+6Q3Eb5yITjcGxeYwhnQFNY=">AAACC3icbZDLSsNAFIYn9VbrLerSzdAi1E1J3OhGKejCZQV7gSaUk+mkHTq5MDMRSsjeja/ixoUibn0Bd76NkzaItv4w8PGfc5hzfi/mTCrL+jJKK6tr6xvlzcrW9s7unrl/0JFRIghtk4hHoueBpJyFtK2Y4rQXCwqBx2nXm1zl9e49FZJF4Z2axtQNYBQynxFQ2hqYVWcMKnUCUGMCPG1lGb7Afv3HuM5OBmbNalgz4WWwC6ihQq2B+ekMI5IENFSEg5R924qVm4JQjHCaVZxE0hjIBEa0rzGEgEo3nd2S4WPtDLEfCf1ChWfu74kUAimngac78x3lYi03/6v1E+WfuykL40TRkMw/8hOOVYTzYPCQCUoUn2oAIpjeFZMxCCBKx1fRIdiLJy9D57Rha761a83LIo4yOkJVVEc2OkNNdINaqI0IekBP6AW9Go/Gs/FmvM9bS0Yxc4j+yPj4Bom2mq0=</latexit>

P̂ = f(D)
<latexit sha1_base64="zIEC8FFt/E5syxE3vi5mBHVzALo=">AAACC3icbZC7SgNBFIbPxluMt1VLQYYEITZh10YbJaCFZQRzgWQJs5PZZMjshZlZISzb2/gA6XwCGwtFbH0BO9/G2SSIJv4w8PGfc5hzfjfiTCrL+jJyS8srq2v59cLG5tb2jrm715BhLAitk5CHouViSTkLaF0xxWkrEhT7LqdNd3iZ1Zt3VEgWBrdqFFHHx/2AeYxgpa2uWewMsEo6PlYDgnlSS1N0jrzyj3GVHnfNklWxJkKLYM+gVD0cjx8BoNY1Pzu9kMQ+DRThWMq2bUXKSbBQjHCaFjqxpBEmQ9ynbY0B9ql0ksktKTrSTg95odAvUGji/p5IsC/lyHd1Z7ajnK9l5n+1dqy8MydhQRQrGpDpR17MkQpRFgzqMUGJ4iMNmAimd0VkgAUmSsdX0CHY8ycvQuOkYmu+sUvVC5gqDwdQhDLYcApVuIYa1IHAPTzBC7waD8az8Wa8T1tzxmxmH/7I+PgGfYic3Q==</latexit><latexit sha1_base64="lNpN+6Q3Eb5yITjcGxeYwhnQFNY=">AAACC3icbZDLSsNAFIYn9VbrLerSzdAi1E1J3OhGKejCZQV7gSaUk+mkHTq5MDMRSsjeja/ixoUibn0Bd76NkzaItv4w8PGfc5hzfi/mTCrL+jJKK6tr6xvlzcrW9s7unrl/0JFRIghtk4hHoueBpJyFtK2Y4rQXCwqBx2nXm1zl9e49FZJF4Z2axtQNYBQynxFQ2hqYVWcMKnUCUGMCPG1lGb7Afv3HuM5OBmbNalgz4WWwC6ihQq2B+ekMI5IENFSEg5R924qVm4JQjHCaVZxE0hjIBEa0rzGEgEo3nd2S4WPtDLEfCf1ChWfu74kUAimngac78x3lYi03/6v1E+WfuykL40TRkMw/8hOOVYTzYPCQCUoUn2oAIpjeFZMxCCBKx1fRIdiLJy9D57Rha761a83LIo4yOkJVVEc2OkNNdINaqI0IekBP6AW9Go/Gs/FmvM9bS0Yxc4j+yPj4Bom2mq0=</latexit>

Machine-learned

Training data Hypothesis class

FIG. 1. Comparing “model-based” and “machine-
learned” QCVV. QCVV techniques use an experimental
data set D to make an inference about some property P of
a QIP. “Model-based” QCVV techniques make predictions
based on the estimated parameters of a statistical model
M(θ). In the NISQ era, developing new QCVV techniques
within this paradigm can be challenging. We introduce and
discuss “machine-learned” QCVV as an alternative paradigm
in which predictions are made using a prediction map learned
by a machine learning algorithm.

novel multi-qubit processors are being developed and de-
ployed by IBM, Google, IonQ, Rigetti Quantum Com-
puting, and others [2–5].

However, NISQ processors will have more qubits, and
are likely to demand new QCVV techniques. Many exist-
ing techniques demand resources – e.g., number of exper-
imental configurations, repetitions of each experiment,
or classical postprocessing – that grow rapidly with the
number of qubits [6]. The techniques that do scale well
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usually describe the QIP’s behavior in a coarse-grained
way, by using a statistical model with a modest number
of parameters [7, 8]. These techniques don’t enable de-
tailed characterization of novel types of noise expected
to appear in next-generation QIPs, such as crosstalk or
correlated errors. Finally, new techniques will be neces-
sary to probe the “holistic” performance of QIPs on tasks
stressing the entire processor [9, 10].

But inventing a new QCVV technique is hard. It typ-
ically demands creativity, effort, and time. New QCVV
techniques are informed by significant domain-specific ex-
pertise, and distilling the complex behavior of a QIP into
a meaningful set of characterizable properties requires
thoughtful effort. In this paper, we ask “Can expertise
be augmented by computation, to let scientists develop
QCVV techniques more rapidly?” We suggest the answer
is “yes,” by examining how machine learning (ML) [11–
14] can automate one of the more challenging aspects of
creating a QCVV technique. We call such a QCVV tech-
nique created with the help of ML “machine-learned”.

I. OVERVIEW: MACHINE-LEARNED QCVV
TECHNIQUES

A. Advantages and disadvantages of using machine
learning (ML) for QCVV tasks

Any QCVV technique requires an experiment design
(“What kind of data will be collected?”) and a data pro-
cessing pipeline (“How will that data be processed?”).
In principle, ML algorithms can help to generate both.
In this paper, we focus on data processing, and on using
ML algorithms to learn good maps from data to inferred
properties [15]. We assume an expert has already spec-
ified an experiment design that produces data (D) from
which the property of interest (P) can be inferred. With
the experiment design specified, solving the characteriza-
tion task “Infer P from D.” requires finding a prediction
map f : D → P that yields the right prediction with high
probability.

Most existing QCVV techniques use prediction maps
designed using statistical theory. The designer posits
a parameterized statistical model M(θ) that, for each
value of the parameters θ, predicts the probability dis-
tribution of observed data, or a coarse-graining of it [16].
Then, the designer chooses a statistical estimation pro-
cedure (e.g. maximum likelihood or Bayesian inference

[17]) that maps the data D to an estimate θ̂M(D) of the
model parameters describing the QIP that generated D.
Finally, the prediction for the property P is inferred as

its value for the estimated parameters: P̂ = P (θ̂M(D)).
For example, if θ is a process matrix describing a gate,

and the property of interest is “Is the gate’s error coher-

ent?”, then the inferred answer is “yes” if θ̂ corresponds
to an undesired unitary rotation. This approach is illus-
trated in the top part of Figure 1.

Such a QCVV technique is only as good as the models

at its heart. There is no unique, obvious way to choose a
good model – George Box famously observed “All mod-
els are wrong; some are useful.”[18]. A model with too
many parameters will produce inaccurate estimates and
falsely detect effects. But overly simple models, insuf-
ficiently rich to capture the QIP’s behavior and fit the
data, will produce suspect or biased inferences about P.
Perhaps most importantly, a model capturing the desired
property has to exist or be invented by a creative theorist
before statistical machinery can be deployed.

A “machine-learned” QCVV protocol need not rely on
a statistical model. Its core is the prediction map f
learned by an ML algorithm. “Learning” means iden-
tifying, out of a large set of candidate maps (the algo-
rithm’s hypothesis class), a map that (1) works reliably
on training data, and (2) satisfies some robustness crite-
rion that suggests this reliability will extend to future,
as-yet-unseen data. Machine-learned QCVV is viable in
part because some ML algorithms are known to be par-
ticularly good at learning approximations to functions.
So if a good approximation to the relationship between
D and P exists – e.g., one that could be derived via sta-
tistical theory – then some ML algorithm should be able
to find it [19].

Both machine-learned and model-based QCVV proto-
cols use data, but whereas the model-based approach uses
data to estimate parameters of a statistical model, ma-
chine learning cuts out the middle part, and uses data to
choose f directly. Because ML algorithms infer an anal-
ysis map inductively, by generalizing from a large array
of sample cases (training data, either synthetic or real),
there is no obligation to come up with a good statistical
model. This shifts the burden of effort from statistics
(which requires reasoning about hypothetical data that
might be observed) to collecting large amounts of train-
ing data.

In this work, we think of the prediction map learned by
ML algorithms as a decision surface separating data sets
coming from QIPs with different values of the property
of interest. Then, the hypothesis class of the algorithm
is the set of all possible decision surfaces it could learn.
Each decision surface gives rise to a decision rule, which
is the approximation to f . As we will show, the inter-
play between the geometry of the decision surfaces within
the algorithm’s hypothesis class and the geometry of the
data used to train the algorithm affects the quality of the
predictions for the property.

Going from model-based to machine-learned QCVV
techniques does come with several costs:

1. The prediction function learned by the algorithm
may not make sense to humans, and not lend itself
to insight or the development of intuition. This
is particularly true for powerful algorithms such as
neural networks [20–22].

2. Generating sufficient training data can require lots
of experiments and/or large amounts of simulation
time. Creating synthetic data might become ex-
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tremely costly once NISQ processors become (es-
sentially) unsimulable on classical computers.

3. If the hypothesis class of the ML algorithm is not
rich enough, then the prediction map learned by
the algorithm will generally perform poorly. On
the other hand, if the hypothesis class is extremely
rich, efficiently training the algorithm may be hard.
Choosing a good hypothesis class can be just as
tricky as choosing a good model.

4. Many ML algorithms have user-specified hyperpa-
rameters that control their behavior and affect the
accuracy of the decision surface they learn. Hyper-
parameter tuning, like statistical model selection,
is often necessary to maximize accuracy and mini-
mize overfitting. This tuning can be expensive.

Replacing statistical inference with machine learning
merely trades one set of challenges for another. The chal-
lenges of machine-learned QCVV are somewhat different
from those of model-based QCVV, and thus machine-
learned QCVV may perform well in situations where
model-based QCVV does not.

B. Problem statement and key results

We investigate the use of supervised classification al-
gorithms to learn a high-accuracy classifier for determin-
ing whether the noise affecting a single qubit is coher-
ent or stochastic. This is a special case of a previously-
studied problem, estimating the coherence of noise, for
which there are known QCVV techniques [23, 24]. Our
intention here is not to demonstrate a better solution, but
to show that ML algorithms can automatically produce
solutions to this problem.

We first outline a rubric for developing a machine-
learned QCVV technique based on supervised learning al-
gorithms (Section II). We use this rubric to show “off-the-
shelf” supervised classification algorithms can be trained
to classify between coherent and stochastic noise. We
find that the geometry of QCVV datasets, plus the al-
gorithm’s hyperparameters, governs the accuracy of the
decision surface it learns (Sections III and IV). We also
find that linear classifiers – ones that learn separating
hyperplanes – can have comparable performance to non-
linear classifiers, but only if feature engineering is used
to change the geometry of the QCVV datasets (Section
IV D). Finally, we examine the robustness of the sup-
port vector machine in the presence of finite-sample noise
(Section IV E). We conclude with an outlook on the vi-
ability of machine-learned QCVV for NISQ processors
(Section V).

C. Related work

The work reported here lies at the intersection of ma-
chine learning and quantum computing, a subfield in its
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measure P<latexit sha1_base64="CYFHoHBc43N1mpBcY63KWB53dHI=">AAAB6HicbZC7SgNBFIbPxluMt6ilzWAQrMKuKWKlARvLBMwFkkVmJ2eTMbOzy8ysEJY8gY2FIra+im9g59s4uRSa+MPAx/+fw5xzgkRwbVz328mtrW9sbuW3Czu7e/sHxcOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A5GN9O8/YhK81jemXGCfkQHkoecUWOtRv2+WHLL7kxkFbwFlK4/K5UaANj6r14/ZmmE0jBBte56bmL8jCrDmcBJoZdqTCgb0QF2LUoaofaz2aATcmadPgljZZ80ZOb+7shopPU4CmxlRM1QL2dT87+sm5rw0s+4TFKDks0/ClNBTEymW5M+V8iMGFugTHE7K2FDqigz9jYFewRveeVVaF2UPcsNr1S7grnycAKncA4eVKEGt1CHJjBAeIIXeHUenGfnzXmfl+acRc8x/JHz8QPlM451</latexit><latexit sha1_base64="/7s/D5sHiuh3MmvyuDDb7jKDre8=">AAAB6HicbVDLSgMxFL3js9ZX1aWbYBFclRk3upKCG5ct2Ae0g2TSO21sJhmSjFCGfoEbF4q49ZPc+Tem7Sy09UDgcM655N4TpYIb6/vf3tr6xubWdmmnvLu3f3BYOTpuG5Vphi2mhNLdiBoUXGLLciuwm2qkSSSwE41vZ37nCbXhSt7bSYphQoeSx5xR66Rm46FS9Wv+HGSVBAWpQgGX/+oPFMsSlJYJakwv8FMb5lRbzgROy/3MYErZmA6x56ikCZowny86JedOGZBYafekJXP190ROE2MmSeSSCbUjs+zNxP+8Xmbj6zDnMs0sSrb4KM4EsYrMriYDrpFZMXGEMs3droSNqKbMum7KroRg+eRV0r6sBY43g2r9pqijBKdwBhcQwBXU4Q4a0AIGCM/wCm/eo/fivXsfi+iaV8ycwB94nz+nd4zN</latexit>P<latexit sha1_base64="CYFHoHBc43N1mpBcY63KWB53dHI=">AAAB6HicbZC7SgNBFIbPxluMt6ilzWAQrMKuKWKlARvLBMwFkkVmJ2eTMbOzy8ysEJY8gY2FIra+im9g59s4uRSa+MPAx/+fw5xzgkRwbVz328mtrW9sbuW3Czu7e/sHxcOjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A5GN9O8/YhK81jemXGCfkQHkoecUWOtRv2+WHLL7kxkFbwFlK4/K5UaANj6r14/ZmmE0jBBte56bmL8jCrDmcBJoZdqTCgb0QF2LUoaofaz2aATcmadPgljZZ80ZOb+7shopPU4CmxlRM1QL2dT87+sm5rw0s+4TFKDks0/ClNBTEymW5M+V8iMGFugTHE7K2FDqigz9jYFewRveeVVaF2UPcsNr1S7grnycAKncA4eVKEGt1CHJjBAeIIXeHUenGfnzXmfl+acRc8x/JHz8QPlM451</latexit><latexit sha1_base64="/7s/D5sHiuh3MmvyuDDb7jKDre8=">AAAB6HicbVDLSgMxFL3js9ZX1aWbYBFclRk3upKCG5ct2Ae0g2TSO21sJhmSjFCGfoEbF4q49ZPc+Tem7Sy09UDgcM655N4TpYIb6/vf3tr6xubWdmmnvLu3f3BYOTpuG5Vphi2mhNLdiBoUXGLLciuwm2qkSSSwE41vZ37nCbXhSt7bSYphQoeSx5xR66Rm46FS9Wv+HGSVBAWpQgGX/+oPFMsSlJYJakwv8FMb5lRbzgROy/3MYErZmA6x56ikCZowny86JedOGZBYafekJXP190ROE2MmSeSSCbUjs+zNxP+8Xmbj6zDnMs0sSrb4KM4EsYrMriYDrpFZMXGEMs3droSNqKbMum7KroRg+eRV0r6sBY43g2r9pqijBKdwBhcQwBXU4Q4a0AIGCM/wCm/eo/fivXsfi+iaV8ycwB94nz+nd4zN</latexit>

Hyperparameter 
search

ML algorithm A<latexit sha1_base64="7dAnQSDa0O4FgVF1SHL6KPxqSNM=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppxMYygrlAsoTZyWwyZHZmmTkrhCWPYWOhiK1v4RvY+TbOJik08YeBj/+cw/znhIngBj3v2ymsrK6tbxQ3S1vbO7t75f2DplGppqxBlVC6HRLDBJesgRwFayeakTgUrBWObvN665Fpw5V8wHHCgpgMJI84JWitTjcmOKREZDeTXrniVb2p3GXw51C5/jw/rwFAvVf+6vYVTWMmkQpiTMf3EgwyopFTwSalbmpYQuiIDFjHoiQxM0E2jTxxT6zTdyOl7ZPoTt3fExmJjRnHoe3MI5rFWm7+V+ukGF0GGZdJikzS2UdRKlxUbr6/2+eaURRjC4RqbrO6dEg0oWivVLJH8BdXXobmWdW3fO9XalcwUxGO4BhOwYcLqMEd1KEBFBQ8wQu8Oug8O2/O+6y14MxnDuGPnI8fq+iS+A==</latexit><latexit sha1_base64="QfQwpYABtexdqXTm3+5g3RssdiI=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkqXjxWsLWQhrLZbtqlm92w+yKU0J/hxYMiXv013vw3btoctHVgYZh5j503USq4Qc/7dipr6xubW9Xt2s7u3v5B/fCoa1SmKetQJZTuRcQwwSXrIEfBeqlmJIkEe4wmt4X/+MS04Uo+4DRlYUJGksecErRS0E8IjikR+c1sUG94TW8Od5X4JWlAifag/tUfKpolTCIVxJjA91IMc6KRU8FmtX5mWErohIxYYKkkCTNhPo88c8+sMnRjpe2T6M7V3xs5SYyZJpGdLCKaZa8Q//OCDOOrMOcyzZBJuvgozoSLyi3ud4dcM4piagmhmtusLh0TTSjalmq2BH/55FXSvWj6lt/7jdZ1WUcVTuAUzsGHS2jBHbShAxQUPMMrvDnovDjvzsditOKUO8fwB87nD24skVA=</latexit>

A
<latexit sha1_base64="7dAnQSDa0O4FgVF1SHL6KPxqSNM=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppxMYygrlAsoTZyWwyZHZmmTkrhCWPYWOhiK1v4RvY+TbOJik08YeBj/+cw/znhIngBj3v2ymsrK6tbxQ3S1vbO7t75f2DplGppqxBlVC6HRLDBJesgRwFayeakTgUrBWObvN665Fpw5V8wHHCgpgMJI84JWitTjcmOKREZDeTXrniVb2p3GXw51C5/jw/rwFAvVf+6vYVTWMmkQpiTMf3EgwyopFTwSalbmpYQuiIDFjHoiQxM0E2jTxxT6zTdyOl7ZPoTt3fExmJjRnHoe3MI5rFWm7+V+ukGF0GGZdJikzS2UdRKlxUbr6/2+eaURRjC4RqbrO6dEg0oWivVLJH8BdXXobmWdW3fO9XalcwUxGO4BhOwYcLqMEd1KEBFBQ8wQu8Oug8O2/O+6y14MxnDuGPnI8fq+iS+A==</latexit><latexit sha1_base64="QfQwpYABtexdqXTm3+5g3RssdiI=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkqXjxWsLWQhrLZbtqlm92w+yKU0J/hxYMiXv013vw3btoctHVgYZh5j503USq4Qc/7dipr6xubW9Xt2s7u3v5B/fCoa1SmKetQJZTuRcQwwSXrIEfBeqlmJIkEe4wmt4X/+MS04Uo+4DRlYUJGksecErRS0E8IjikR+c1sUG94TW8Od5X4JWlAifag/tUfKpolTCIVxJjA91IMc6KRU8FmtX5mWErohIxYYKkkCTNhPo88c8+sMnRjpe2T6M7V3xs5SYyZJpGdLCKaZa8Q//OCDOOrMOcyzZBJuvgozoSLyi3ud4dcM4piagmhmtusLh0TTSjalmq2BH/55FXSvWj6lt/7jdZ1WUcVTuAUzsGHS2jBHbShAxQUPMMrvDnovDjvzsditOKUO8fwB87nD24skVA=</latexit>

Training

Experimental 
data D<latexit sha1_base64="na5vyq0qC9MAHy3fJafTP+ZD8Xw=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppQAvLCOYCyRJmJ7PJkNmZZeasEJY8ho2FIra+hW9g59s4m6TQxB8GPv5zDvOfEyaCG/S8b6ewsrq2vlHcLG1t7+zulfcPmkalmrIGVULpdkgME1yyBnIUrJ1oRuJQsFY4usnrrUemDVfyAccJC2IykDzilKC1Ot2Y4JASkd1OeuWKV/WmcpfBn0Pl+vP8vAYA9V75q9tXNI2ZRCqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdi5LEzATZNPLEPbFO342Utk+iO3V/T2QkNmYch7Yzj2gWa7n5X62TYnQZZFwmKTJJZx9FqXBRufn+bp9rRlGMLRCquc3q0iHRhKK9UskewV9ceRmaZ1Xf8r1fqV3BTEU4gmM4BR8uoAZ3UIcGUFDwBC/w6qDz7Lw577PWgjOfOYQ/cj5+ALB3kvs=</latexit><latexit sha1_base64="wtjECjRo6cnuDPuOmDA5EnNfwrE=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkKevBYwdZCGspmu2mXbnbD7otQQn+GFw+KePXXePPfuGlz0NaBhWHmPXbeRKngBj3v26msrW9sblW3azu7e/sH9cOjrlGZpqxDlVC6FxHDBJesgxwF66WakSQS7DGa3BT+4xPThiv5gNOUhQkZSR5zStBKQT8hOKZE5LezQb3hNb053FXil6QBJdqD+ld/qGiWMIlUEGMC30sxzIlGTgWb1fqZYSmhEzJigaWSJMyE+TzyzD2zytCNlbZPojtXf2/kJDFmmkR2soholr1C/M8LMoyvwpzLNEMm6eKjOBMuKre43x1yzSiKqSWEam6zunRMNKFoW6rZEvzlk1dJ96LpW37vN1rXZR1VOIFTOAcfLqEFd9CGDlBQ8Ayv8Oag8+K8Ox+L0YpT7hzDHzifP3K7kVM=</latexit>D<latexit sha1_base64="na5vyq0qC9MAHy3fJafTP+ZD8Xw=">AAAB8nicbZC7SgNBFIbPxluMt6ilzWIQrMKuFlppQAvLCOYCyRJmJ7PJkNmZZeasEJY8ho2FIra+hW9g59s4m6TQxB8GPv5zDvOfEyaCG/S8b6ewsrq2vlHcLG1t7+zulfcPmkalmrIGVULpdkgME1yyBnIUrJ1oRuJQsFY4usnrrUemDVfyAccJC2IykDzilKC1Ot2Y4JASkd1OeuWKV/WmcpfBn0Pl+vP8vAYA9V75q9tXNI2ZRCqIMR3fSzDIiEZOBZuUuqlhCaEjMmAdi5LEzATZNPLEPbFO342Utk+iO3V/T2QkNmYch7Yzj2gWa7n5X62TYnQZZFwmKTJJZx9FqXBRufn+bp9rRlGMLRCquc3q0iHRhKK9UskewV9ceRmaZ1Xf8r1fqV3BTEU4gmM4BR8uoAZ3UIcGUFDwBC/w6qDz7Lw577PWgjOfOYQ/cj5+ALB3kvs=</latexit><latexit sha1_base64="wtjECjRo6cnuDPuOmDA5EnNfwrE=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0m86EkKevBYwdZCGspmu2mXbnbD7otQQn+GFw+KePXXePPfuGlz0NaBhWHmPXbeRKngBj3v26msrW9sblW3azu7e/sH9cOjrlGZpqxDlVC6FxHDBJesgxwF66WakSQS7DGa3BT+4xPThiv5gNOUhQkZSR5zStBKQT8hOKZE5LezQb3hNb053FXil6QBJdqD+ld/qGiWMIlUEGMC30sxzIlGTgWb1fqZYSmhEzJigaWSJMyE+TzyzD2zytCNlbZPojtXf2/kJDFmmkR2soholr1C/M8LMoyvwpzLNEMm6eKjOBMuKre43x1yzSiKqSWEam6zunRMNKFoW6rZEvzlk1dJ96LpW37vN1rXZR1VOIFTOAcfLqEFd9CGDlBQ8Ayv8Oag8+K8Ox+L0YpT7hzDHzifP3K7kVM=</latexit>

Prediction map f
<latexit sha1_base64="Nmbu6lLpEC7lCxLqplvDv4epWRY=">AAAB6HicbZC7SgNBFIbPxluMt6iFhc1gEKzCrk2sJGBjmYC5QLKE2cnZZMzs7DIzK4QlT2BjoYitj2TnS+QZnFwKTfxh4OP/z2HOOUEiuDau++3kNja3tnfyu4W9/YPDo+LxSVPHqWLYYLGIVTugGgWX2DDcCGwnCmkUCGwFo7tZ3npCpXksH8w4QT+iA8lDzqixVj3sFUtu2Z2LrIO3hFL1bDolAFDrFb+6/ZilEUrDBNW647mJ8TOqDGcCJ4VuqjGhbEQH2LEoaYTaz+aDTsildfokjJV90pC5+7sjo5HW4yiwlRE1Q72azcz/sk5qwhs/4zJJDUq2+ChMBTExmW1N+lwhM2JsgTLF7ayEDamizNjbFOwRvNWV16F5XfYs171S9RYWysM5XMAVeFCBKtxDDRrAAOEZXuHNeXRenHfnY1Gac5Y9p/BHzucP7JOPNg==</latexit><latexit sha1_base64="iUvauqlEiUD1KYtfu3d/t+RnmD4=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSL3qSghePLZi20Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219YeHhnRl25g1TwbVx3W+ntLG5tb1T3q3s7R8cHlWPT9o6yRRDnyUiUd2QahRcom+4EdhNFdI4FNgJJ3fzeucJleaJfDDTFIOYjiSPOKPGWq1oUK25dXchsg5eATUo1BxUv/rDhGUxSsME1brnuakJcqoMZwJnlX6mMaVsQkfYsyhpjDrIF4vOyIV1hiRKlH3SkIX7eyKnsdbTOLSdMTVjvVqbm//VepmJboKcyzQzKNnyoygTxCRkfjUZcoXMiKkFyhS3uxI2pooyY7Op2BC81ZPXoX1V9yy3vFrjtoijDGdwDpfgwTU04B6a4AMDhGd4hTfn0Xlx3p2PZWvJKWZO4Y+czx/Iz4zj</latexit>

f
<latexit sha1_base64="Nmbu6lLpEC7lCxLqplvDv4epWRY=">AAAB6HicbZC7SgNBFIbPxluMt6iFhc1gEKzCrk2sJGBjmYC5QLKE2cnZZMzs7DIzK4QlT2BjoYitj2TnS+QZnFwKTfxh4OP/z2HOOUEiuDau++3kNja3tnfyu4W9/YPDo+LxSVPHqWLYYLGIVTugGgWX2DDcCGwnCmkUCGwFo7tZ3npCpXksH8w4QT+iA8lDzqixVj3sFUtu2Z2LrIO3hFL1bDolAFDrFb+6/ZilEUrDBNW647mJ8TOqDGcCJ4VuqjGhbEQH2LEoaYTaz+aDTsildfokjJV90pC5+7sjo5HW4yiwlRE1Q72azcz/sk5qwhs/4zJJDUq2+ChMBTExmW1N+lwhM2JsgTLF7ayEDamizNjbFOwRvNWV16F5XfYs171S9RYWysM5XMAVeFCBKtxDDRrAAOEZXuHNeXRenHfnY1Gac5Y9p/BHzucP7JOPNg==</latexit><latexit sha1_base64="iUvauqlEiUD1KYtfu3d/t+RnmD4=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSL3qSghePLZi20Iay2U7atZtN2N0IJfQXePGgiFd/kjf/jds2B219YeHhnRl25g1TwbVx3W+ntLG5tb1T3q3s7R8cHlWPT9o6yRRDnyUiUd2QahRcom+4EdhNFdI4FNgJJ3fzeucJleaJfDDTFIOYjiSPOKPGWq1oUK25dXchsg5eATUo1BxUv/rDhGUxSsME1brnuakJcqoMZwJnlX6mMaVsQkfYsyhpjDrIF4vOyIV1hiRKlH3SkIX7eyKnsdbTOLSdMTVjvVqbm//VepmJboKcyzQzKNnyoygTxCRkfjUZcoXMiKkFyhS3uxI2pooyY7Op2BC81ZPXoX1V9yy3vFrjtoijDGdwDpfgwTU04B6a4AMDhGd4hTfn0Xlx3p2PZWvJKWZO4Y+czx/Iz4zj</latexit>

 
learned by algorithm

Prediction 
P̂ = f(D)

<latexit sha1_base64="zIEC8FFt/E5syxE3vi5mBHVzALo=">AAACC3icbZC7SgNBFIbPxluMt1VLQYYEITZh10YbJaCFZQRzgWQJs5PZZMjshZlZISzb2/gA6XwCGwtFbH0BO9/G2SSIJv4w8PGfc5hzfjfiTCrL+jJyS8srq2v59cLG5tb2jrm715BhLAitk5CHouViSTkLaF0xxWkrEhT7LqdNd3iZ1Zt3VEgWBrdqFFHHx/2AeYxgpa2uWewMsEo6PlYDgnlSS1N0jrzyj3GVHnfNklWxJkKLYM+gVD0cjx8BoNY1Pzu9kMQ+DRThWMq2bUXKSbBQjHCaFjqxpBEmQ9ynbY0B9ql0ksktKTrSTg95odAvUGji/p5IsC/lyHd1Z7ajnK9l5n+1dqy8MydhQRQrGpDpR17MkQpRFgzqMUGJ4iMNmAimd0VkgAUmSsdX0CHY8ycvQuOkYmu+sUvVC5gqDwdQhDLYcApVuIYa1IHAPTzBC7waD8az8Wa8T1tzxmxmH/7I+PgGfYic3Q==</latexit><latexit sha1_base64="lNpN+6Q3Eb5yITjcGxeYwhnQFNY=">AAACC3icbZDLSsNAFIYn9VbrLerSzdAi1E1J3OhGKejCZQV7gSaUk+mkHTq5MDMRSsjeja/ixoUibn0Bd76NkzaItv4w8PGfc5hzfi/mTCrL+jJKK6tr6xvlzcrW9s7unrl/0JFRIghtk4hHoueBpJyFtK2Y4rQXCwqBx2nXm1zl9e49FZJF4Z2axtQNYBQynxFQ2hqYVWcMKnUCUGMCPG1lGb7Afv3HuM5OBmbNalgz4WWwC6ihQq2B+ekMI5IENFSEg5R924qVm4JQjHCaVZxE0hjIBEa0rzGEgEo3nd2S4WPtDLEfCf1ChWfu74kUAimngac78x3lYi03/6v1E+WfuykL40TRkMw/8hOOVYTzYPCQCUoUn2oAIpjeFZMxCCBKx1fRIdiLJy9D57Rha761a83LIo4yOkJVVEc2OkNNdINaqI0IekBP6AW9Go/Gs/FmvM9bS0Yxc4j+yPj4Bom2mq0=</latexit>

P̂ = f(D)
<latexit sha1_base64="zIEC8FFt/E5syxE3vi5mBHVzALo=">AAACC3icbZC7SgNBFIbPxluMt1VLQYYEITZh10YbJaCFZQRzgWQJs5PZZMjshZlZISzb2/gA6XwCGwtFbH0BO9/G2SSIJv4w8PGfc5hzfjfiTCrL+jJyS8srq2v59cLG5tb2jrm715BhLAitk5CHouViSTkLaF0xxWkrEhT7LqdNd3iZ1Zt3VEgWBrdqFFHHx/2AeYxgpa2uWewMsEo6PlYDgnlSS1N0jrzyj3GVHnfNklWxJkKLYM+gVD0cjx8BoNY1Pzu9kMQ+DRThWMq2bUXKSbBQjHCaFjqxpBEmQ9ynbY0B9ql0ksktKTrSTg95odAvUGji/p5IsC/lyHd1Z7ajnK9l5n+1dqy8MydhQRQrGpDpR17MkQpRFgzqMUGJ4iMNmAimd0VkgAUmSsdX0CHY8ycvQuOkYmu+sUvVC5gqDwdQhDLYcApVuIYa1IHAPTzBC7waD8az8Wa8T1tzxmxmH/7I+PgGfYic3Q==</latexit><latexit sha1_base64="lNpN+6Q3Eb5yITjcGxeYwhnQFNY=">AAACC3icbZDLSsNAFIYn9VbrLerSzdAi1E1J3OhGKejCZQV7gSaUk+mkHTq5MDMRSsjeja/ixoUibn0Bd76NkzaItv4w8PGfc5hzfi/mTCrL+jJKK6tr6xvlzcrW9s7unrl/0JFRIghtk4hHoueBpJyFtK2Y4rQXCwqBx2nXm1zl9e49FZJF4Z2axtQNYBQynxFQ2hqYVWcMKnUCUGMCPG1lGb7Afv3HuM5OBmbNalgz4WWwC6ihQq2B+ekMI5IENFSEg5R924qVm4JQjHCaVZxE0hjIBEa0rzGEgEo3nd2S4WPtDLEfCf1ChWfu74kUAimngac78x3lYi03/6v1E+WfuykL40TRkMw/8hOOVYTzYPCQCUoUn2oAIpjeFZMxCCBKx1fRIdiLJy9D57Rha761a83LIo4yOkJVVEc2OkNNdINaqI0IekBP6AW9Go/Gs/FmvM9bS0Yxc4j+yPj4Bom2mq0=</latexit>

FIG. 2. Structure of machine-learned QCVV tech-
niques. Using ML algorithms to learn a QCVV technique
requires different components from traditional, model-based
QCVV techniques. In particular, the statistical model M(θ)
is replaced by an ML algorithm A that learns over a hypoth-
esis class of candidate functions. This learning is done using
training data taken from a data collection C. After training,
the algorithm outputs a prediction map f : D → P.

own right called “quantum machine learning” (QML)
[25–28]. Research in QML can be divided into 3 parts:
machine learning algorithms that would be run on fault-
tolerant hardware [29, 30], “quantum-inspired” algo-
rithms that de-quantize a quantum algorithm to yield
a new classical algorithm [31–33], and using classical ML
algorithms to characterize quantum systems [34–45].

We consider data generated by performing measure-
ments on a QIP. That measurement record (i.e., the ex-
perimental data) is classical in nature. We will use clas-
sical ML algorithms for processing that data. Conse-
quently, this work falls into 3rd category (“classical ML
for quantum systems”).

II. USING ML TO GENERATE NEW QCVV
TECHNIQUES

There are several ways ML algorithms could be used
to create a QCVV technique. Here, we lay out one par-
ticular rubric – which we believe to be somewhat general,
but not universal – for using supervised learning to do so
[46]. In this rubric, there are 7 general components, 5 of
which are depicted in the “Training” box in Figure 2.

1. The property of interest, P

The property P is the answer to the question “What
do we want to know about the QIP?” In supervised learn-
ing, the property is used to label the training data: for
each value of P, some data is generated, and the ML al-
gorithm has access to both that data and its associated
label. This allows the algorithm to recognize what data
are “typically” generated by a QIP with that value of
the property. In this work, we focus on a binary prop-
erty of interest. In general, other types of properties can
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be learned as well: for example, supervised regression al-
gorithms could be used to estimate error rates or other
continuous properties.

2. An experiment design, defining experimental data D

The experiment design defines which experiments will
be run to produce a dataset D, and optionally the order
in which they are run. Many QCVV experiments can be
described by quantum circuits; the QIP performs these
circuits, and generates outcomes. So “data” means “The
outcomes that result from running all the circuits in the
experiment design.” If the QIP’s behavior is assumed to
be stationary, then D can simply consist of the aggre-
gated outcome frequencies of the circuits [47]. Otherwise
D comprises the time-stamped outcome (“click”) for each
repetition (“shot”) of a each circuit.

3. A feature map φ for embedding data into a feature space

Making QCVV data amenable to analysis by ML al-
gorithms requires embedding it into a feature space, F ,
which is typically isomorphic to Rn for some n. The em-
bedding is described by a feature map, φ, mapping each
QCVV data set D to a feature vector f (i.e., φ : D → f ∈
F).

If ML algorithms do not perform very well on data
embedded using a given φ, there are at least 2 ways to
improve performance by modifying it: feature engineer-
ing and feature selection.

Feature engineering augments F with new features de-
rived by applying functions to existing features. Feature
engineering changes the geometric structure of the data,
and can make properties learnable by the algorithm. Fea-
ture engineering helps ML algorithms that are under-
fitting the data to perform better by giving them new
features to learn on. Feature engineering can be done ex-
plicitly or implicitly (e.g., using kernel methods.) We use
and discuss feature engineering later (see Section IV C).

Feature selection removes redundant and unnecessary
features by determining which features are useful or nec-
essary for a given task and disregarding others. Feature
selection helps ML algorithms avoid overfitting the data.
We do not consider feature selection here.

4. A data processing pipeline, centered around an ML
algorithm A

The choice of algorithm A depends strongly on P and
the kind of QCVV data the algorithm will have access to.
For example, properties that are categorical would re-
quire classification algorithms, whereas properties that
are continuous would require regression algorithms. In
addition, if the training data can be labeled with known

values of the property, then supervised learning algo-
rithms would be appropriate; in contrast, if the data
was unlabeled unsupervised learning algorithms would be
necessary.

ML algorithms can be complicated, but at their heart,
they consist of parameters θ that index a hypothesis for
the relationship between data and the property of inter-
est. That is, a fixed value of θ defines a particular map
fθ : D → P. During training, the algorithm updates
these parameters in response to training data to find an
element of the hypothesis class (i.e., a map fθ) that can
predict the property with high accuracy.

5. A performance measure P used to evaluate predictions

Some measure of performance is necessary to evaluate
whether a given map fθ is a good one. It measures the
quality of fθ’s predictions. Typically, the performance
measure is defined in terms of a loss function to quantify
the penalty for an incorrect prediction. For binary or
discrete classification, the loss function is usually “0/1”:
a penalty of 1 is applied for an incorrect classification
and no penalty is applied for a correct one. For continu-
ous regression problems, the loss function quantifies the
distance between the predicted value of P and its true
value. During training, ML algorithms update the pa-
rameters θ to minimize the loss. Phrased another way,
training is a search over the hypothesis class to find the
best prediction map, as quantified by the performance
measure.

The performance of a classifier (map fθ) can be easily
evaluated: use the classifier to classify a feature vector
and compare the label it assigns to the true label. Evalu-
ating the performance of an algorithm is a slightly harder
task. A common way to do so is to use cross-validation.
The data is split into two parts, a training set and a
testing set. The algorithm then learns using data from
the training set, and the performance of the classifier it
learns is computed the testing set.

6. A specification of (or search protocol over) the
algorithm’s hyperparameters

Hyperparameters are user-controllable parameters
that affect the algorithm’s behavior, and the algorithm’s
performance depends on their values. In simple cases
the hyperparameters can be specified a priori. In other
cases, a procedure for varying the hyperparameters to
find good values is necessary. Such hyperparameter turn-
ing can be time consuming, because the algorithm’s per-
formance must be evaluated for each hyperparameter set-
ting. However, without hyperparameter tuning, the ac-
curacy of the prediction map learned by the algorithm
may be artificially low.
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7. Labeled training data from which the algorithm can learn

ML algorithms learn using training data. Conse-
quently, a machine-learned QCVV technique requires a
collection of training data C that the ML algorithm can
learn from. In supervised learning, each data set Dj in
the collection carries with it a label defined by an instance
of the property of interest, Pj .

In practice, C is a sample of all possible data sets that
could be observed. For this reason, checking whether
C is representative of the infinite-sample collection is
vital to ensuring the prediction function learned by the
ML algorithm will do well when inferring the property
of interest on new data (i.e., how well the rule will
generalize). Assuming C is sufficiently representative,
cross-validation over C is a sensible way of estimating
how well the prediction map will generalize to new data.

Note the first two components in this rubric (the
property and the experiment design) need to be specified
for any QCVV technique. Several of the others could –
at least in principle – be discovered themselves by other
machine learning algorithms: the experiment design (at
least partly, via reinforcement learning [48]), the feature
map φ (via automated feature engineering/synthesis
[49]), and the choice of the hyperparameters (via
automated hyperparameter tuning [50]).

We now demonstrate exactly how to specify these com-
ponents for the simple but relevant problem we consider.

III. A MACHINE-LEARNED QCVV
TECHNIQUE FOR DISTINGUISHING

SINGLE-QUBIT COHERENT AND STOCHASTIC
NOISE

To demonstrate the above rubric, we consider a simple
QCVV task, “Estimate the coherence of noise.” Quan-
tifying the coherence of noise is important because the
noise’s coherence affects the relationship between aver-
age and worst-case error rates [51], and potentially the
performance of quantum error-correcting codes [52–56].
An existing QCVV technique for estimating the noise’s
coherence is unitarity benchmarking [23, 24]. Gate set
tomography [6, 57, 58] can also do so.

Estimating the noise’s coherence is a regression task,
since the property of interest is a continuous number.
While there exist ML algorithms for that type of task,
here we instead focus on a highly-idealized and highly-
specialized variant of this problem. We assume the noise
is either coherent or stochastic (general noise is a com-
bination of coherent, stochastic, and other types of er-
ror), which means the task “estimate the coherence of
the noise” becomes “determine whether the noise is co-
herent or stochastic.”

This is a classification problem, and well-suited to ML
algorithms. Phrased another way, if ML algorithms can-
not perform the task “distinguish coherent from stochas-

tic noise”, there’s little reason to expect they can per-
form the more general task “estimate the coherence of the
noise.” We emphasize that our interest in this work lies
in answering the question “Can ML algorithms be used
to develop a QCVV technique?”, and not “What novel
QCVV techniques can be learned by ML algorithms?”
As noted in Section I, characterizing NISQ processors is
challenging for many reasons. Our goal here is to prove
the principle, so we simplify by considering a single-qubit
QIP.

In the remainder of this section, we specify each of the
components of the rubric described in the previous sec-
tion. Readers interested solely in our results may proceed
to Section IV.

1. Property P: “Are the gate errors coherent or
stochastic?”

The single-qubit QIP we consider will be assumed to
have five operations: initialization of some fiducial state
ρ0, three logic gates corresponding to idling and π/2 ro-
tations around the X and Y axes of the Bloch sphere
(GI , GX , and GY , respectively), and a terminating mea-
surement, E. The collection {ρ0, E, {GI , GX , GY }} we
refer to as the gate set of the QIP.

An ideal unitary gate G0 is described by a completely
positive, trace-preserving (CPTP) map. A common rep-
resentation of this action is G0[ρ] = UρU†, where U is
generated by a 2 × 2 Hermitian matrix H0: U = e−iH0 .
A different representation of that same unitary action is
G0[ρ] = eH0 [ρ], where now H0 is a 4 × 4 matrix acting
on density matrices as H0[ρ] = −i[H0, ρ].

The real gate E will deviate from G0. This deviation is
the error in the gate, and a variety of errors are possible.
As noted above, we are interested in two specific classes
of errors, and consider an idealized scenario where the
gate errors are either fully coherent, or fully stochastic.
To make this precise, we define the following models of
fully coherent and fully stochastic gate errors, which we
describe by their generators.

If E ’s error is purely coherent, then it still acts unitarily,
but with an additional Hamiltonian term, He:

G0[ρ]→ E [ρ] ≡ e−i(H0+He)ρei(H0+He). (1)

This action can be also written as

E = eH0+He , where He[ρ] = −i[He, ρ]. (2)

An error is purely coherent if and only if it is of this form.
Coherent errors often result from imperfect calibration of
classical control fields.

Regarding “stochastic” noise, we use a particular defi-
nition generally consistent with the way the word is used
in the quantum computing community. The concept our
definition captures is this: stochastic errors are what oc-
cur when control fields are fluctuating around the desired
value in a random way, but the expected value of those
fluctuations is zero.
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FIG. 3. Example: realizations of coherent and stochas-
tic noise. Suppose ρ0 = |0〉〈0|, G0 = RY (α) is a rotation
about the Y -axis by an angle α = π/2, and the POVM is
{|0〉〈0|, |1〉〈1|}. The pictures above show a cross-section of
the qubit Bloch sphere under the action of: the ideal gate
(center), a gate with a coherent over-rotation by an angle θ
(left), and a gate with a simple stochastic noise model (right).

This concept is most straightforwardly seen when con-
sidering an imperfect idle operation (where the target
gate is GI). This operation has purely stochastic errors
if its noisy version can be written as a convex combina-
tion of unitary operations and it is invariant under time
reversal:

E [ρ] =

n∑

j=1

wjUjρU
†
j , (3)

E = E†. (4)

We generalize this definition to nontrivial unitary gates
G0 = eH0 via the generators for stochastic noise appear-
ing in the canonical Lindblad equation. Letting S repre-
sent a parameterized generator, then the noisy gate is

E = eH0+S . (5)

Details of these definitions are given in Appendix A.
Stochastic errors can have several causes, including fluc-
tuations of the classical control fields and weak coupling
to a rapidly mixing quantum bath.

Both of these noise models are Markovian: for a fixed
realization of the noise, wherever G0 occurs in a circuit
the QIP is supposed to perform, the same CPTP map E
is applied by the QIP. Figure 3 shows specific examples
(realizations) of how purely coherent or purely stochastic
noise affect a simple circuit for a single qubit.

As discussed in Section III 7, we generate random re-
alizations of stochastic and coherence noise for training
and testing. Details of our simulation method are given
in Appendix A. In generating realizations of these two
noises we control the strength of the error with a pa-
rameter η. The coefficient or “rate” r that multiplies
each generator of stochastic or coherent noise is randomly
distributed, and 〈|r|〉 = O(η). For small η, this means
|E −G0| = O(η) as well.

2. Experiment design: gate set tomography (GST) circuits

We use a general purpose experiment design that
provides information about any Markovian property;
namely, the circuits prescribed for gate set tomography
(GST) [6, 57, 58]. This ensures the property we are in-
terested in can be inferred from experimental data. GST
seeks to completely reconstruct the QIP’s gate set, and
so its experiment design must be sensitive to everything
about Markovian noise – including the binary “coherent
vs. stochastic” property. The data we consider are the
outcome probabilities (or, in the case of real finite-sample
data, the observed frequencies) of the circuits used for
GST. Each circuit cj in the GST experiment design is
of the form FM ◦ (gm)l ◦ FS where FS , FM , and gm are
short subcircuits comprised of the elementary gates from
the QIP’s gate set [59], and the “germ” gm is repeated l
times.

GST doesn’t prescribe a single, specific experiment de-
sign, because it has some configurable parameters. One
is the maximum depth of the longest circuit in the experi-
ment design, denoted L. The experiment design includes
circuits with l = 1, 2, 4, ... repetitions of each germ, but
only up to the point where the depth of glm exceeds L.
Increasing L adds new, longer circuits to the experiment
design, which amplify noise more.

For a fixed value of L, the circuits in the experiment
design have depth at most L + O(1). In what follows,
we use L as an index to specify the experiment design.
For instance, the “L = 1 experiment design” consists of
all the circuits used in L = 1 GST, and so on for higher
values of L.

Each circuit cj terminates with a measurement M . For
single-qubit GST, M is a 2-outcome POVM, with out-
comes “0” and “1”. The random outcomes of running
each experiment in the experiment design constitute the
experimental data. When analyzing this data, we of-
ten assume the noise is stationary, meaning the order of
the outcomes is irrelevant. This means all the informa-
tion about the noise is contained in the circuit’s outcome
probability pj , which can be estimated by counting the
number of times a given outcome was observed, and di-
viding by the total number of times the circuit was re-
peated, Nsamples:

p̂j = fj ≡
# “0” outcomes seen when running cj

Nsamples
. (6)

For a given experiment design, a GST data set D is a
list [Nsamples, (c1, f1), (c2, f2), · · · , (cd, fd)]. Here, d is the
total number of circuits (not the Hilbert space dimension,
which is 2 throughout this paper!), which depends on the
index L.

3. Feature space F : the unit hypercube

A GST data set is usually presented as a list of count
statistics, one for each circuit. But ML algorithms rep-
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FIG. 4. Feature space dimension d grows with the GST
experiment design index L. We use a simple feature map
φ to embed GST data sets into a “base” feature space F . As
the experiment design index L is increased, the number of
circuits in the experiment design grows, which increases the
dimension of the base feature space. This growth is roughly
logarithmic in L, and even at the largest value of L considered
here, the feature space dimension is not too large for the ML
algorithms we use.

resent data as feature vectors. So we need to map a GST
data set into a feature vector f in a feature space F . Any
way of doing so is called a feature map, denoted φ.

The most obvious feature map comes from arranging
the estimated outcome probabilities for each circuit into
a vector:

φ(D) ≡ f = (f1, f2, · · · , fd) (7)

φ : D → f ∈ [0, 1]d. (8)

The feature space defined by this φ is the unit hypercube
in Rd:

F = [0, 1]d. (9)

The dimension of F is d, the total number of circuits
in the experiment design. This varies with L. If D is
generated from an L = l experiment design, we call f an
“L = l GST feature vector”. Figure 4 shows d versus L,
which shows that d grows logarithmically with L. More-
over, even the largest GST experiment designs considered
here are quite manageable for ML algorithms, which can
learn well on feature spaces that have dimension up to
d = 105.

Figure 5 plots examples of L = 1 GST feature vec-
tors, and shows how the components of the feature vec-
tor change under particular realizations of coherent and
stochastic noise.

The “base” feature space defined above is just a start-
ing point. In principle, it contains all the necessary in-
formation for classifying whether the noise is coherent
or stochastic (since GST circuits are designed to capture
and amplify every property of Markovian noise). As we
shall see, that information may not be easily accessible
to linear classifiers, meaning new feature maps will be
defined to enable those algorithms to learn using GST
feature vectors.
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FIG. 5. GST data sets as feature vectors. For the L = 1
GST experiment design, we plot the (infinite-sample/exact)
feature vectors for: a noiseless gate set (orange), a gate set
where each gate has been affected by an independent coherent
error (green), and a gate set where each gate has been affected
by an independent stochastic error (blue). Both realizations
of the noise strength η = 0.1.

4. Algorithm A: supervised binary classifiers

We use supervised classifiers because synthetic train-
ing data can be easily generated. The general task of
supervised learning (for binary classification) is: “Given
a collection of feature vectors C = {(fj , yj)}Nj=1, with
yj ∈ {±1} indicating which class the feature vector
fj ∈ F belongs to, learn a classifier c : F → {±1}.”

A classifier is a decision surface: the label assigned
by the classifier depends on which side of the decision
surface the feature vector falls on. All such algorithms
seek a classifier that performs well; they differ in (1) how
they search for a good decision surface, and (2) how they
try to avoid overfitting.

Every binary classification algorithm learns a decision
surface dividing the feature space into two parts. Linear
classifiers are particularly simple: the decision surface is
an affine hyperplane. It can be described by a normal
vector and a scalar offset. We focus primarily on
linear classifiers here. We also consider two intrinsically
nonlinear classifiers. Because linear classifiers are so
important to our analysis, we now briefly review the
geometry of affine hyperplanes.

a. Affine hyperplane geometry

Consider a fixed vector β ∈ Rd and a fixed scalar β0.
Together, these define an affine hyperplane H; namely,
the set of vectors xj ∈ Rd satisfying β ·xj +β0 = 0. The
distance from any point x ∈ Rd to any point x0 ∈ H is

d(x,x0) = |β · x + β0|/||β||. (10)

As the relation above is independent of x0, we may refer
to “the distance from x to H” without ambiguity, which
we denote as d(x, H).

The classification rule c learned by a linear classifier is
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an affine hyperplane:

c(f) = sign [β · f + β0] . (11)

SupposeH separates a collection of labeled feature vec-
tors C (i.e., c(fj) = yj ∀ j). The geometric margin of H
(hereafter, “margin ofH”), MH , is the minimum distance
from any feature vector to H:

MH = min
fj∈C

d(fj , H) =
1

||β||min
fj∈C

|β · fj + β0| . (12)

Suppose H is a fixed separating hyperplane for C. Its
margin MH has a nice geometric interpretation: any fea-
ture vector perturbed by an amount greater than MH

along β̂ would be misclassified byH. As such, MH relates
to the robustness of the decision surface learned by the
classifier: higher-margin hyperplanes are more robust to
perturbations of the data. Hence, a large-margin hyper-
plane is desirable. When there are multiple hyperplanes
that separate the training data, the optimal hyperplane
is the one that maximizes MH . If H has the largest ge-
ometric margin of all hyperplanes that could separate C,
then it follows that c would generalize well when classi-
fying feature vectors that are small perturbations on the
feature vectors in C. The margin becomes especially im-
portant when the training data are limited, or when the
QCVV data to be classified has finite sample noise (see
Section IV E).

b. Algorithms for supervised binary classification

We examine and compare the performance of several
algorithms for supervised binary classification. We con-
sider five simple, widely-used algorithms. Three are lin-
ear classifiers: linear discriminant analysis (LDA), per-
ceptrons, and linear support vector machines (SVMs).
Two are intrinsically nonlinear: quadratic discriminant
analysis (QDA), and radial basis function (RBF) SVMs.
We explain each of these algorithms below. Further dis-
cussion can be found in Hastie et al. [12]. We used
the implementations of these algorithms available in the
open-source Python package scikit-learn [60].

One class we do not consider is neural networks. Neu-
ral networks have a complex internal structure that
makes them very powerful, but their behavior is difficult
to understand and explain.

LDA and QDA approach binary classification from a
statistical perspective. They are derived from a Gaussian
ansatz that assumes the feature vectors for each class are
normally-distributed with means µ1 and µ2 and covari-
ances Σ1 and Σ2. Under this assumption, the optimal
decision surface can be derived from a likelihood ratio
test. “Training” these algorithms simply means assum-
ing that the means and covariances are unknown, and
estimating them from the training data. We denote the
estimated means and covariances by µ̂j and Σ̂j , respec-
tively.

LDA assumes the two covariance matrices are identi-
cal, in which case the optimal decision surface is a hy-
perplane. The classification rule learned by the LDA
algorithm is

cLDA(f) = sign
[
fT Σ̂−1(µ̂1 − µ̂2)

+ (µ̂T1 Σ̂−1µ̂1 − µ̂T2 Σ̂−1µ̂2)/2
]
.

(13)

QDA allows the two covariance matrices to be different,
which produces an optimal classification rule of the form

cQDA(f) = sign

[
log

(
|Σ̂2|
|Σ̂1|

)
+ (f − µ̂2)T Σ̂−12 (f − µ̂2)

− (f − µ̂1)T Σ̂−11 (f − µ̂1)
]
. (14)

The classification rule for QDA is equivalent to LDA if
Σ̂1 = Σ̂2.

Estimating the means µ1 and µ2 is relatively straight-
forward as long as there are significantly more training
examples than the feature space dimension d. But un-
biased estimation of the covariance matrices would re-
quire much larger training sets (more than d2 examples),
so both LDA and QDA regularize the estimated covari-
ance matrices. LDA does so through a hyperparameter
τ affecting the dimension of β, by controlling the rank
of (Σ̂)−1. QDA introduces a hyperparameter s, where

0 ≤ s ≤ 1, and replaces Σ̂k by sΣ̂k + (1− s)I.
The perceptron [61, 62] is one of the oldest supervised

binary classification algorithms. It makes no assump-
tions about the distribution of the feature vectors, but
learns a separating hyperplane using a simple, iterative
training algorithm whose only hyperparameter, Nepochs,
determines the maximum number of iterations before the
algorithm terminates. The result is a linear classification
rule:

cPerceptron(f) = sign [β · f + β0] . (15)

Support vector machines (SVMs) [63] address a no-
table flaw of the perceptron algorithm: the perceptron
will find some separating hyperplane (if one exists), but
not necessarily an optimal (“maximal-margin”) one. The
soft-margin SVM explicitly optimizes the margin of the
hyperplane it learns, subject to a regularization penalty
C. The classification rule learned by the linear SVM is

cLinear SVM(f) = sign



N∑

j=1

yjcj(fj · f) + β0


 , (16)

where 0 ≤ cj ≤ C. The regularization penalty C is a
hyperparameter for this algorithm, and controls a trade-
off between maximizing MH and minimizing the number
of mis-classified points. The classification rule explicitly
depends on the some of the feature vectors in C: if cj 6= 0,
the corresponding feature vector fj is called a support
vector.
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The radial basis function (RBF) SVM is intended
for situations where the data can only be separated
by highly-curved (and thus, highly-nonlinear) hypersur-
faces. The RBF SVM uses a kernel K : F ⊗ F → R
[64, 65] to implicitly map the data to a high-dimensional
feature space where a linear decision surface can sepa-
rate the data. In the original feautre space, the surface
is nonlinear. The RBF SVM thus implicitly performs a
particular kind of feature engineering, akin to what we
do explicitly later in this paper (Section IV C). The RBF
SVM classification rule is

cRBF SVM(f) = sign



N∑

j=1

yjcjK(fj , f) + β0


 , (17)

where K(x,y) = exp
[
−γ||x− y||2

]
, and again 0 ≤ cj ≤

C. The RBF SVM has two hyperparameters: C (which
plays the same role as in the linear SVM), and γ, which
controls the width of the kernel.

5. Performance measure P

To search over its hypothesis class, an ML algorithm
needs a measure of how good any hypothesis in the class
is. Here, we use a simple performance measure for a given
hypothesis:

A =

{
1 if c(fj) = yj

0 otherwise
, (18)

for which the average accuracy equals the probability of
correct classification. The quantity (1 − A) is the “0/1
loss” introduced in Section II.

We typically use a “K-fold shuffle-split” cross-
validation approach when evaluating an algorithm: the
data is split K times into training and testing data sets
(with resampling). We usually take the number of fea-
ture vectors in the testing set to be 10% of the feature
vectors in the data collection.

6. Hyperparameter specification

All of the algorithms discussed in Section III 4 b have
hyperparameters that affect their behavior. For each
algorithm, we performed hyperparameter tuning using
brute-force grid search over the values listed in Table II;
see Appendix C for details.

7. Data collection C

We generated a large collection of labeled training data
– simulated GST datasets for many realizations of purely
stochastic and coherent noise – which we use for train-
ing and cross-validation. To produce this data, we nu-
merically simulated GST data sets for several different

values of L, using noisy gate sets. All of the noisy gate
sets were perturbations around a noiseless target gate set
G = {ρ0 = |0〉〈0|, {I, Xπ/2, Yπ/2}, E = {|0〉〈0|, |1〉〈1}}.

We chose 19 values for the noise strength η (see Table
I). For each noise type (stochastic or coherent) and noise
strength η, we generated 300 random noisy gatesets (see
Appendix A), each one obtained by adding a randomly-
sampled error generator to the generator for each gate in
the gate set. We used these noisy gate sets to generate
GST data sets using pyGSTi [66]. Our main focus is on
the N → ∞ exact-sampling limit, where the estimated
frequencies equal the exact outcome probabilities, but we
consider finite-sample effects in Section IV E.

The collection of labeled feature vectors generated
this way, for a specific value of L, is denoted CL. So
CL = {(fj , yj)}Nj=1, where fj = φ(Dj) ∈ Rd, d depends
on L, and yj is the binary label indicating “stochas-
tic” or “coherent”. For each value of L, there are
N = 2 × 19 × 300 = 11400 labeled feature vectors that
can be used for training or testing.

Many ML algorithms perform best on data with zero
mean and unit variance. So we standardized the feature
vectors in CL so that they had this property. The stan-
dardized feature vectors are easily computed: let µ̂ (Σ̂)
denote the estimated mean (covariance) of the feature
vectors. For each fj , its standardized version is

fj → diag(Σ̂)−1(fj − µ̂). (19)

Using this standardization technique, 〈f〉 = 0 and

Cov(fj , fk) = I. We scale by diag(Σ̂) rather than Σ̂ itself
so as to adjust each component of f independently, mean-
ing no correlation is introduced between the features.

IV. RESULTS

Our goal was to determine how ML algorithms can
be usefully applied to QCVV tasks. In this section, we
present results showing supervised classifiers can, in fact,
learn a high-accuracy decision surface for distinguishing
between coherent and stochastic noise, but that their ac-
curacy depends strongly on both the GST experiment
design and the use of feature engineering.

A. Classifying GST feature vectors

1. Testing whether linear classification is feasible

Three of the classification algorithms presented in Sec-
tion III 4 learn a linear decision surface. If CL is not
linearly separable, then those algorithms cannot perform
well. So for each L, we began our analysis by determining
whether CL was linearly separable. In the literature, this
is usually checked by running the perceptron algorithm
with Nepochs >> 1. If the algorithm converges to a sep-
arating hyperplane, then clearly CL is linearly separable.
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Target gate set G ρ0 = |0〉〈0|, {GI , GX , GY }, E = {|0〉〈0|, |1〉〈1|}
Noise type Coherent or stochastic (see Appendix A)

GST experiment design index L (1, 2, 4, 8, 16, 32, 64, 128, 256)

Noise strength η {1, 2.15, 4.64} × {10−4, 10−3, 10−2},
{1, 1.19, 1.43, 1.71, 2.04, 2.44, 2.92, 3.49, 4.18, 5} × 10−1

Noise realizations for fixed η and noise type 900 (1 for each gate in G, yielding 300 noisy gate sets,
generated as specified in Appendix A)

TABLE I. Data set description. For each value of L, a collection of data CL was generated using noisy versions of the target
gate set G. The noise strength η quantifies the discrepancy between the ideal gate set and its noisy version.

Classification algorithm Hyperparameter Default value Values used in this work

LDA τ 10−4 10−5, 10−4, 10−3, 10−2, .1, .25, .5, .75, 1

QDA s 0 0, .25, .5, .75, 1

Linear SVM C 1 1,2,5,10,20,50,75,100,150,200,250

RBF SVM C 1 1,2,5,10,20,50,75,100

γ 1/d .01, .1, 1, 10, 100

Perceptron Nepochs 5 5, 50, 100 250, 300, 500, 750, 1000

TABLE II. Algorithm hyperparameters. To do hyperparameter tuning, we use a brute-force grid search over the hyperpa-
rameter values above. We choose the hyperparameter values that give the best performance. (Default values are those used in
scikit-learn 0.19.1.)

However, a failure to converge does not guarantee that
CL is linearly inseparable.

Instead of using the perceptron to check for linear sep-
arability, we constructed a linear program to test for sep-
arability that either finds a separating hyperplane or (if
the data are inseparable) constructs a provable witness
to that fact (Appendix B).

We found that each CL was linearly separable except for
L = 1 (“linear GST” data). Therefore, no linear classifi-
cation algorithm can attain 100% accuracy in classifying
coherent and stochastic noise using L = 1 GST feature
vectors, even in principle. This says something nontriv-
ial about the geometry of the hypersurfaces that could
separate the data: they aren’t hyperplanes (see Section
IV B).

However, this only holds true when the range of values
for the noise strength η is quite large, extending 3 orders
of magnitude from 10−4 to 0.5. We found that subsets of
C1 with a restricted range of η were almost always linearly
separable (see Table III). We conclude that this QCVV
problem gets harder (at least somewhat) when the gate
errors are allowed to be very large. This is unsurpris-
ing; similar challenges afflict randomized benchmarking
and GST, and most QCVV methods focus on the regime
where gate errors are perturbative.

For L > 1, CL was always linearly separable. How-
ever, we considered the possibility this might have been
an artifact of finite data (undersampling of the noise re-
alizations), rather than an indication that the two noise
classes can always be separated using linear classifiers.
That is, CL may not have been a representative sample

Value(s) of η in subset Subset is separable?

[10−4, 0.5] (full range) No

Fixed Yes

[10−4, 0.34] Yes

[10−4, 10−3] Yes

[10−4, 10−2] Yes

[10−2, 10−1] Yes

TABLE III. Testing for linear separability of subsets of
C1. Over the full range of η ([10−4, 0.5]), the data collection C1
is linearly inseparable. However, subsets of C1 for a fixed value
of η, or where η varies over a restricted range, are linearly
separable.

of all possible feature vectors.

To check for this, we trained a linear soft-margin SVM
(C = 104) using the full 11400 feature vectors in CL,
and then tested the accuracy of the decision surface it
learned on 20900 previously-unseen feature vectors. The
accuracy remains stable between the training and testing
data (see Table IV), suggesting that for L > 1, CL is in
fact linearly separable, and that we were not undersam-
pling the noise realizations. Note that in the following
analysis, we do not use the extra 20900 feature vectors.
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L Train accuracy Test accuracy

2 0.9997 0.976

4 1.0 0.963

8 1.0 0.965

16 1.0 0.975

TABLE IV. Determining whether noise realizations
were undersampled. To evaluate whether we had under-
sampled the noise realizations – and were thereby erroneously
concluding CL was linearly separable for L > 1 – we trained a
soft-margin SVM on all feature vectors in CL and tested the
accuracy of the hyperplane it learned on 20900 previously-
unseen feature vectors. The stability between the test and
train accuracies suggests we have not undersampled the noise
realizations.
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FIG. 6. Swarmplot of K = 20 cross-validated classifi-
cation accuracies as a function of L. As L increases, the
accuracy increases in a classifier-dependent way. Top: Un-
der default hyperparameters, the QDA algorithm typically
performs best. Bottom: Hyperparameter tuning boosts the
accuracy of the linear SVM, perceptron, and RBF SVM algo-
rithms.

2. Classification accuracy depends on L, and
hyperparameter tuning is necessary

When CL is linearly separable, a linear classifier could
in principle successfully learn a separating hyperplane.
Whether such an algorithm succeeds in practice depends
very much on its hyperparameters. Figure 6 plots the
cross-validated accuracies of the ML algorithms as a func-
tion of the GST experiment design index L. In the top
panel, no hyperparameter tuning was performed, while
in the bottom, grid search was used to identify good hy-
perparameter choices. (See Appendix C for results of the
grid search.)

In general, classification accuracy increases with L.
This should be expected, because as L goes up, addi-
tional circuits are added to the experiment design whose
outcome probabilities depend on the underlying gates in
an increasingly non-linear fashion. These extra features
give the classifier a richer set of data to learn from.

For L ≥ 16, the behavior of the QDA algorithm im-
plies that quadratic decision surfaces are good classifiers.
However, because the perceptron and linear SVM algo-
rithms also do (fairly) well, we can conclude that the
curvature of the separating surface is small; the surface
can be well-approximated by a hyperplane.

The L = 2 case illustrates why hyperparameter tun-
ing can be necessary. The separability witness (Section
IV A 1) indicated that C2 was linearly separable, yet all of
the linear classifiers performed poorly under their default
hyperparameters. Hyperparameter tuning improved ac-
curacy, sometimes substantially so.

The LDA algorithm performs poorly, even after hyper-
parameter tuning. This implies that the assumption of
isotropically Gaussian-distributed data is a bad one. Of
course, there’s no a priori reason to expect GST data
sets under coherent and stochastic noise have this prop-
erty, so the poor performance of the LDA algorithm is
not too surprising in that regard.

Unsurprisingly, the linear classifiers continue to per-
form poorly on C1, even with hyperparameter tuning.
Given that C1 isn’t linearly separable, this result is to be
expected. However, through the use of feature engineer-
ing – creating new features out of existing ones – we can
make L = 1 GST data learnable using linear classifiers.

In the following subsections, we restrict our attention
to C1. In the next subsection, we use dimensionality re-
duction techniques to probe the structure of C1. The
insights about this structure inform the design of new
feature maps in Section IV C that take L = 1 GST data
sets and map them into a feature space where coherent
and stochastic noise becomes linearly separable (Section
IV D).

B. Probing the structure of C1 by dimensionality
reduction

The feature vectors in C1 lie in a 92-dimensional feature
space. Reasoning about the geometric properties of the
data is hard, because those properties cannot be easily
visualized. To visualize the structure of high-dimensional
data, dimensionality reduction techniques are used to em-
bed data from a (d >> 1)-dimensional feature space into
a (k << d)-dimensional space. In this section, we use
two dimensionality reduction techniques to examine C1:
principal component analysis and multidimensional scal-
ing. We eschew a commonly-used technique, t-stochastic
neighborhood embedding [67], because it changes the ge-
ometric structure of the embedded data.

Principal component analysis (PCA) [68–70] is a tech-
nique that projects the data onto the directions along
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which it maximally varies. These directions (the prin-
cipal components) are the eigenvectors of the estimated

covariance matrix Σ̂:

Σ̂ =

E∑

j=1

σ2
jeje

T
j , where Σ̂ej = σ2

jej . (20)

The number of eigenvectors E is less than or equal to
min(d,N), and σ2

j is the variance of the data along ej .
The principal components can be used to define a pro-
jector Πk from Rd to Rk:

fj → yj ≡ Πk[fj ] =

k∑

j=1

ej(ej · fj). (21)

The dimension of the projector, k, is a hyperparameter
of this algorithm. In practice, k < E, because only the
principal components that have large eigenvalues are kept
in Equation (21): if σj ∼ 0, the principal component ej
is an “uninformative” direction.

Multdimensional scaling (MDS) [71–75] is another ap-
proach to dimensionality reduction. It defines an ideal
embedding as one that preserves, as much as possible, all
pairwise distances between the feature vectors. So the
MDS embedding is a solution to a particular optimization
problem. Let dmn denote the distance (or more generally,
the dissimilarity) between the feature vectors fm and fn.
Given the set of all pairwise distances {dmn}Nm,n=1, the
MDS embedding is

{yj}Nj=1 = argmin
Rk

N∑

m,n=1

(||xm − xn|| − dmn)
2
, (22)

where yj is the embedded version of the feature vector
fj . We take the dissimilarity measure to be the Euclidean
distance: dmn = ||fm − fn||2.

Figure 7 plots the k = 2-dimensional embeddings of C1
using PCA or MDS. The top row colors the embedded
points by noise type, and the bottom row colors them by
noise strength. Both plots indicate that C1 bears some re-
semblance to a high-dimensional radio dish: the “bowl”
of the dish is formed by feature vectors arising from co-
herent noise, while the “antenna” comes from feature vec-
tors arising from stochastic noise. This picture illustrates
why C1 is linearly inseparable: the two parts of a radio
dish cannot be separated using a hyperplane.

These embeddings are low-dimensional approxima-
tions to high-dimensional feature spaces, leading to the
question “Are these ‘radio dishes’ real?” A simple argu-
ment suggests the answer is “mostly yes.” The circuits
used for L = 1 GST generate a feature vector that de-
pends on the gate set in an almost linear fashion [76].
The deviations from linearity are small, so the geometry
of C1 is similar to the structure of the underlying gate
sets generating the feature vectors.

This structure can be understood by mapping the gate
set to a quantum state using the Choi-Jamio lkowski isom-
etry [77]. A gate set is the direct sum of the constituent
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FIG. 7. 2-dimensional embeddings of C1. Both: C1 ap-
pears to have a structure similar to a high-dimensional radio
dish. Top: The embedded feature vectors for stochastic noise
appear to be “surrounded” by those for coherent noise. Bot-
tom: As η → 0, the feature vectors for coherent and stochas-
tic noise approach one another, which is to be expected, as at
η = 0, the “noisy” gate set generating the feature vectors is
the ideal (noiseless) one.

gates (a linear operation), and the Choi-Jamio lkowski
isometry is a linear map from gates (channels) to quan-
tum states. Hence, a linear map exists taking gate sets
into quantum state space. A gate affected by purely
coherent noise maps to a pure state, and a gate af-
fected by purely stochastic noise maps to a mixed state.
Just as pure states form the extremal points of quantum
space, “enveloping” the mixed states, gates affected by
purely coherent noise “envelop” those affected by purely
stochastic noise. This behavior is analogous to that ob-
served with C1, although the exact structure may not be
comparable. (Again, there are small deviations from a
linear relationship between feature vectors and gate sets
for L = 1 GST.) This strongly suggests that the struc-
ture present in C1 is genuine, and not an artifact of our
simulations.

Given this knowledge about the geometry of C1, we
can use feature engineering to change the geometry of
the feature vectors. In particular, C1 can be “unrolled”
in such a way that linear classifiers achieve high accuracy.
We introduce two new feature maps in the next subsec-
tion, and Section IV D shows that the perceptron and
linear SVM algorithms learn a high-accuracy separating
hyperplane in these new feature spaces.

C. Overcoming linear inseparability of C1 using
feature engineering

Linear classifiers on the base feature space performed
poorly on C1, because the natural separating surface has
curvature. A linear classifier can learn a curved decision
surface in the base feature space, but only if they are
given access to new features. That is, by adding new fea-
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tures to the base feature space, and “unrolling” the radio
dish structure present in C1, then linear classifiers could
potentially achieve accuracies comparable to intrinsically
nonlinear algorithms.

As noted in Section II, adding new features to a base
feature space is called feature engineering. We do feature
engineering here, and define two new feature maps. Both
add new components to the feature vectors on top of the
base features defined by φ, thereby enlarging the feature
space.

Let D be a GST data set with outcome frequencies
(f1, f2, · · · , fd). Define two new feature maps φSQ and
φPP as

φSQ : D → f ∈ [0, 1]2d

φSQ(D) =

(
⊕
j
fj

)
⊕
(
⊕
j
f2j

)
,

(23)

and

φPP : D → f ∈ [0, 1]d(d+3)/2

φPP(D) =

(
⊕
j
fj

)
⊕
(
⊕
j<k

fjfk

)
.

(24)

Note that φPP only adds unique pairwise products, since
fjfk and fkfj are redundant. As an example of how these
maps act, consider a data set D with outcome probabil-
ities [f1, f2]. Then φSQ(D) = (f1, f2, f

2
1 , f

2
2 ) ∈ R4, and

φPP(D) = (f1, f2, f1f2, f
2
1 , f

2
2 ) ∈ R5.

Both feature maps create new features that are simple
polynomial functions of the features in the base feature
space, but they affect the feature space in different ways.
φSQ adds a quadratic nonlinearity while preserving the
coordinate axes, whereas φPP allows quadratic nonlin-
earity together with rotation of the coordinate axes. If
the coordinate axes have significance, φSQ is preferable,
while φPP is preferable if correlations between different
variables are important. Also, note that φPP gives classi-
fiers quadratically more parameters than φSQ and hence,
the classifiers may overfit the data more.

D. Feature engineering of C1 enables linear
separability

Having defined two new feature maps that should, in
principle, enable L = 1 GST data sets to be classified
by linear classifiers, we first check whether the result-
ing feature vectors are in fact linearly separable. The
separability witness (Appendix B) indicates that under
the action of φSQ and φPP, the previously-inseparable
L = 1 GST data sets become linearly separable in the
new feature spaces. Because of this, linear classifiers
should perform better than they did on C1. Figure 8
shows feature engineering does boost the performance of
the linear classifiers, and that this boost can be increased
using hyperparameter tuning. See Figure 11 in Appendix
C for results of the hyperparameter sweep.
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FIG. 8. Feature engineering boosts accuracy of some
classification algorithms (L = 1). Cross-validated accu-
racies of the algorithms under their default hyperparameters
(top) and with tuned hyperparameters (bottom). The perfor-
mance of the RBF SVM algorithm under the base feature map
φ indicates nonlinear separating surfaces are best. The QDA
algorithm’s performance under the φPP feature map suggests
a “quartic surface” – a 4th order polynomial in the circuit
outcome probabilities – is a sufficient amount of nonlinear-
ity. The performance of the linear SVM and perceptron al-
gorithms implies quadratic separating surfaces work well as
approximations to the nonlinear surfaces learned by the RBF
SVM and/or QDA algorithms.

In Figure 8, the performance of the RBF SVM algo-
rithm on the base feature space indicates that nonlin-
ear separating surfaces are generally best. However, the
amount of nonlinearity required is modest: the perfor-
mance of the QDA algorithm on φPP feature vectors sug-
gests a “quartic surface” – a 4th order polynomial in the
features – is a sufficient amount of nonlinearity. Recall
that QDA learns a quadratic classification rule, and φPP

uses all pairwise products. Therefore, the classification
rule is a quartic function of the features in the base fea-
ture space.

The fact that linear SVM and perceptron algorithms
also work well implies quadratic separating surfaces are
good approximations to the nonlinear surfaces learned by
the RBF SVM and/or QDA algorithms. Therefore, while
the curvature of a natural separating surface may deviate
from a flat curvature, those deviations can be captured
by quadratic surfaces.

As noted in Section IV A 1, there is always a risk of
under-sampling the number of noise realizations. We
again checked for undersampling effects, and did not find
any (Table V in Appendix C).

In summary: feature engineering makes C1 lin-
early separable, so the accuracy of (some) linear
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classifiers becomes comparable to that of intrin-
sically nonlinear algorithms.

E. Robustness to finite-sample effects

The tests and analysis done up to this point have
been performed in the exact-sampling limit. However,
real QCVV data sets have finite-sample fluctuations. Fi-
nite sampling means the outcome frequency of a circuits
run on a QIP will fluctuate around the exact outcome
probabilities by O(1/

√
Nsamples). If the amount of fluc-

tuation is sufficiently small, then classifiers trained on
fluctuation-free data should still be able to reliably clas-
sify a feature vector with finite-sample effects. The rea-
son is simple: suppose a hyperplane H had been learned
by training a classification algorithm on fluctuation-free
data. H would also do well in classifying finite-sample
data, provided the statistical fluctuations are less than
the geometric margin MH .
MH is a property of both the hyperplane H and the

data it separates [recall Equation (12)]. Hyperplanes
with larger margins are more robust to finite-sample fluc-
tuations, so a hyperplane that maximizes the margin is
preferable. Consequently, the SVM is the ideal ML al-
gorithm for learning a separating hyperplane that would
later be used to classify finite-sample data.

To demonstrate the robustness of the linear SVM algo-
rithm, we restrict our attention to C1. We do so for two
reasons: the L = 1 GST experiment design is the sim-
plest one possible, and because we can examine the in-
terplay of feature engineering, finite-sample fluctuations,
and classification accuracy.

To evaluate how the hyperplane learned by the SVM
algorithm performs in the presence of finite-sample ef-
fects, we first start by training a soft-margin SVM (C =
105) on the fluctuation-free data in the feature spaces de-
fined by φSQ and φPP. This training yields a separating
hyperplane H = (β, β0). This fixed hyperplane is then
used to classify noisy data sets. We generate these data
sets by taking the fluctuation-free feature vectors and
adding finite-sampling noise by simulating independent
Binomial(Nsamples, fj) random variables for each compo-
nent of the feature vector.

After the noisy version of f is generated, then the either
of the maps φSQ or φPP is applied. The resulting data
collection is then mean-standardized (see Section III 7)
using the estimated mean of the fluctuation-free data.
(Mean-standardization doesn’t distort the margin of H,
and also helps with the training of the SVM.) Finally,
f ′ is classified using H, and the label assigned by the
decision surface is compared to the actual label. We use
50 independent realizations of the finite-sample noise for
each value of Nsamples.

Results of this test are shown in Figure 9. The vertical
grey line shows the margin of the hyperplane learned by
the SVM algorithm [78]. Once the statistical noise is less
than the margin of the hyperplane, classification accu-
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FIG. 9. Classification accuracy under finite-sampling
effects using feature engineering (L = 1). A soft-margin
linear SVM (C = 105) was trained using noiseless feature-
engineered feature vectors, and then the accuracy of the hy-
perplane it learned was evaluated using noisy versions of that
data. The geometric margin of the hyperplane learned by the
SVM algorithm was comparable between the two feature en-
gineering maps, and is indicated by the dashed vertical line.
Once the statistical noise is less than the geometric margin,
the accuracy goes to 1.

racy increases to 1. This test confirms the intuition
that maximum-margin hyperplanes are more ro-
bust for classifying noise in the presence of finite-
sample effects.

The two feature engineering maps considered here add
terms of the form p̂2j or p̂j p̂k to the original feature vec-

tor. Simple algebra shows that the fluctuations in p̂2j and

p̂j p̂k both go as O(1/
√
Nsamples). Thus, adding these

components doesn’t make the engineered feature vec-
tor more sensitive to finite-sample effects. However, it
doesn’t make the feature vector less sensitive, either. An
open question is whether there are other feature engineer-
ing approaches that would still enable linear classifiers to
perform well on C1, while decreasing the sensitivity of the
feature vector to finite-sample noise.

V. DISCUSSION AND CONCLUSIONS

As quantum computing enters the NISQ era, determin-
ing what NISQ processors are useful for becomes increas-
ingly important, and to extend their computational ca-
pability. More computational power requires longer cir-
cuits, which demand lower error rates [79]. If the QIP’s
error rate is ε, a circuit whose size exceeds O(1/ε) will
most likely output the wrong answer. Characterizing a
processor helps to improve its performance, but charac-
terizing NISQ processors comes with its own set of unique
challenges. New QCVV techniques are needed.

What we have demonstrated here is that machine
learning algorithms can help develop new QCVV tech-
niques, as discussed in Section I A. ML algorithms don’t
model the underlying complexity of a QIP in detail. In-
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stead, they operate from the premise that a QCVV tech-
nique simply needs to approximate the functional rela-
tionship between data and a QIP property. ML algo-
rithms excel at learning approximations to functions, so
they can help automate that task.

This doesn’t mean that QCVV practitioners are un-
necessary. Expertise is still needed to propose relevant
QIP properties to be characterized, or devise an appro-
priate experiment design. Experts are needed to choose
between algorithms, evaluate their performance, write
code, interpret results, etc. ML algorithms augment the
expertise of QCVV practitioners, rather than replacing
it.

Domain-specific expertise helps can guide wise choices
for the feature map, suggest good feature engineering
techniques, or help corroborate intuition gleaned from
purely ML-based approaches. As we saw in Section IV C,
knowing how coherent and stochastic noise affects gate
sets helped confirm the intuition that C1 looked like a
radio dish, and provided a measure of confidence the di-
mensionality reduction techniques we used were actually
showing us something about the structure of C1.

At the same time, QCVV practitioners using ML will
need to be conversant in the language, methodologies,
and vagaries of ML algorithms. Because there are a
plethora of ML algorithms for a wide variety of tasks,
QCVV practitioners will need to make informed and pru-
dent judgements about which algorithms to deploy. Here,
supervised binary classifiers were the right choice because
the characterization task involved inferring a particular
binary property of the QIP, and because generating syn-
thetic training data was easy.

Our work showed that some of these algorithms can
successfully learn a QCVV technique for distinguishing
single-qubit coherent and stochastic noise. Their success
depended strongly on the algorithm’s own hyperparam-
eters and the feature map used to embed experimental
data into a feature space.

The success in deploying classification algorithms sug-
gests that regression algorithms could be used as well to
estimate the coherence of the noise. One of the advan-
tages in using ML is that, with a sufficiently rich and well-
described data set, different algorithms can be deployed
using the same data, to solve different tasks. For exam-
ple, if the training data contained feature vectors, noise
labels, and a measure of the noise strength, then both
classification and regression algorithms could be trained.

We generated synthetic experimental data using com-
puter simulations of noisy single-qubit QIPs. Scaling
these simulations up will be difficult. Simulation will be-
come harder once quantum supremacy has been shown,
or quantum advantage attained, simply because of the
number of qubits to be simulated. Even if the noise acts
only on a sparse number of qubits, ensuring the data
collection is representative could be challenging. One
possible way to remedy these difficulties is to use well-
calibrated devices to generate training data by, e.g., de-
liberately injecting specific kinds of noise into the QIP

when it is running circuits.
This work used machine learning algorithms as part

of a data processing pipeline. The other major task
of a QCVV practitioner is coming up with a good
experiment design whose outcome probabilities are
useful for inferring the property of interest. We alluded
to the question of machine-learned experiment design
Section I A. Experiment design is a non-trivial problem,
which is why this work borrows the experiment design
for gate set tomography. We see at least two ways that
“machine-learned experiment design” could be pursued.
The first is to use ML algorithms for feature selection
by selecting, out of a candidate set of circuits, a smaller
subset that is useful for characterizing a property. An-
other approach is to use reinforcement learning (RL) [48]
to construct QCVV experiment designs from scratch,
as RL has already been used for other quantum com-
puting tasks [80], and classical experiment design [81, 82]

As QIPs advance and the rate of their advance-
ment increases, QCVV theorists are faced with the
challenge of developing increasingly-powerful characteri-
zation techniques in ever-shorter timeframes. We hope
and anticipate that leveraging ML algorithms can help
them do so.

VI. ACKNOWLEDGEMENTS

The authors are grateful for those who write and main-
tain code for the following software packages: cvxpy
[83, 84], Jupyter [85], matplotlib [86], NumPy [87], pan-
das [88], pyGSTi [66], Python 2.7 [89], scikit-learn [60],
SciPy [90], and seaborn [91]. TLS thanks Giacomo Torlai
and Justin C. Johnson for feedback on earlier drafts of
this paper. TLS acknowledges the Center for Quantum
Information and Control (CQuIC) at the University of
New Mexico, where the bulk of this work was carried out
during his PhD. The authors also thank various internal
reviewers for their thoughtful and detailed feedback.

Sandia National Laboratories is a multimission labo-
ratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Ad-
ministration under contract de-na0003525. This paper
describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Govern-
ment. Contributions to this work by NIST, an agency of
the US government, are not subject to US copyright. Any
mention of commercial products is for informational pur-
poses only, and does not indicate endorsement by NIST.

http://arxiv.org/abs/de-na/0003525


16

Appendix A: Numerically simulating purely
coherent or purely stochastic noise

Both coherent and stochastic noise (as defined in Sec-
tion III 1) are Markovian. The most general Markovian,
continuous-time dynamics of a d-dimensional quantum
system is described by the Lindblad master equation [92–
94]:

ρ̇ = − i
~

[H(t), ρ] +

d2−1∑

j,k=1

hjk(t)

[
AjρA

†
k −

1

2
{A†kAj , ρ}

]

≡ L[ρ],

(A1)

where H(t) is the Hamiltonian and the set of operators
{Aj} forms an orthonormal basis for Hermitian matri-
ces. The first term in the Lindblad equation generates
unitary dynamics, while the second generates noisy dy-
namics such as dephasing, amplitude damping, or bit-flip
noise.

In our simulations, we make a simplification to Equa-
tion (A1) by assuming H and the set {Aj} are all time-
independent. Under this simplification, Equation (A1)
is time-invariant. For the time-invariant Lindblad equa-
tion, the evolution of ρ can be written as ρ(t) = eLt[ρ(0)].
In the circuit model, the updates are discrete (from one
timestep of the circuit to the next); the corresponding
quantum channel is E [ρ] = eL[ρ].

As noted in Section III 1, we imagine that regardless of
when the Hamiltonian generating an ideal gate is turned
on when the QIP performs the gate, the exact same set
of noise operators are turned on at the same time.

For purely coherent noise, the dynamics generated by
the Lindblad equation must be purely unitary, so the
jump coefficients hjk are all 0:

ρ̇ = − i
~

[H, ρ]. (A2)

Letting H0 be the generator of the ideal gate, the total
Hamiltonian can be written as H = H0 + He, with He

as the error. Each parameter in H0 is usually associated
with some external classical control field:

H0 =
∑

j=X,Y,Z

cjσj , (A3)

where the coefficient cj controls the evolution of the qubit
about the σj axis. Thus, a natural choice for He is to
draw it from the Gaussian unitary ensemble:

He = aσX + bσY + cσZ a, b, c ∼ N (0, η2). (A4)

For this model of purely coherent noise, each control cj is
subject to independent and identically distributed noise
with mean zero, variance η2, and is constant in time.

For purely stochastic noise on a single qubit, there
should be no unitary dynamics except the action of H0:

ρ̇ = − i
~

[H0, ρ]+

3∑

j,k=1

hjk

[
AjρA

†
k +

1

2
{A†kAj , ρ}

]
. (A5)

Defining a superoperator S as

S[ρ] =

3∑

j,k=1

hjk

[
AjρA

†
k +

1

2
{A†kAj , ρ}

]
, (A6)

the noisy channel can be written as

E = eH0+S [ρ]. (A7)

We take the jump operators to be the Pauli matrices:
Aj = σj . To simulate stochastic noise, we generate the
coefficient matrix h as

hjk = (S−1DS)jk

D = diag(a, b, c)

a, b, c ∼ |N (0, η2)|,
(A8)

where the columns of S form a randomly-chosen basis for
R3. The variables a, b, c are drawn from a folded normal
distribution.

We call a particular randomly-generated value for He

or the coefficient matrix h a realization of the correspond-
ing noise type. Again, we emphasize that because we are
using a time-invariant master equation, once a realiza-
tion has been generated, then any time G0 occurs in the
compilation of a given unitary, it is replaced by the same
noisy version. Commonly when simulating these noise
types, different realizations of the noise are generated
each time G0 occurs. We do not use this approach.

For both coherent and stochastic noise, as η → 0 both
He and h vanish. (That is, at η = 0, the channel is
noiseless.) The role of η can be formalized as follows. For
purely coherent noise, the average over all realizations of
the error Hamiltonian He is 0:

〈He〉 = 〈a〉σX + 〈b〉σY + 〈c〉σZ = 0. (A9)

The variance of the error Hamiltonian is non-zero, how-
ever:

(∆He)
2

= 〈H2
e 〉 − (〈He〉)2

=
〈

(aσX + bσY + cσZ)
2
〉

= 3η2I,

(A10)

because the noise realizations a, b, c are i.i.d. random
variables. Therefore, the fluctuations in the noise are
isotropic, and their magnitude is proportional to η2.

For purely stochastic noise, consider the expected value
of the coefficients hjk in Equation (A5). To compute
〈hjk〉, it’s important to note the randomly-chosen basis
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for R3 is independent of the random variables a, b, and c,
which means

〈hjk〉 = 〈(S−1DS)jk〉 =
∑

qr

〈(S−1)jqDqrSrk〉

=
∑

r

〈(S−1)jrSrk〉 〈Drr〉︸ ︷︷ ︸
η
√
2π

∝ η. (A11)

Unlike the case of coherent noise, the expected value of
the noise generator is non-zero. The expected value of
h2jk is

〈h2jk〉 =

〈∑

qr

(S−1)jqDqrSrk
∑

q′r′

(S−1)jq′Dq′r′Sr′k

〉

=

〈∑

qq′rr′

(S−1)jqSrk(S−1)jq′Sr′kDqrDq′r′

〉

=
∑

qq′

〈(S−1)jqSqk(S−1)jq′Sq′k〉〈DqqDq′q′〉

=
∑

q 6=q′
〈(S−1)jqSqk(S−1)jq′Sq′k〉〈Dqq〉〈Dq′q′〉

+
∑

q=q′

〈(S−1)jqSqk]2〉〈D2
qq〉 ∝ η2.

(A12)

Similar to the case of purely coherent noise, as η → 0, the
noise terms more and more tightly concentrate around 0.

Appendix B: Testing for linear separability as a
linear programming problem

There is a straightforward test for determining whether
a given data set is linearly separable using linear pro-
gramming. Various formulations of this problem have
been put forth [95, 96]. Our formulation is simple – if
the data is not linearly separable, the corresponding lin-
ear programming problem should not be feasible. The
derivation below closely follows the line of reasoning pre-
sented in [97].

Consider two data sets A = {a1, · · ·an} and B =
{b1, · · ·bm} where aj ,bk ∈ Rd. If A and B are lin-
early separable, there exists a hyperplane H defined by
a normal vector β and scalar offset β0 such that

β · aj > β0, β · bk < β0 ∀ j, k. (B1)

Note this implies that the label for A is 1, while the label
for B is −1, as the classification rule implied by this
hyperplane is f → sign [β · f − β0].

Multiplying the first inequality by −1 flips the sign of
the inequality, resulting in the following conditions:

−β · aj + β0 < 0,

β · bk − β0 < 0 ∀ j, k. (B2)

These two inequalities can be formulated as a single ma-
trix inequality by defining a new vector β̃ = (β, β0) and
new feature vectors aj → (−aj , 1) and bk → (bk,−1).
In terms of these variables, the inequality constraints be-
come




−aT1 , 1
−aT2 , 1

...

−aTn , 1
b1,−1

...

bm,−1




β̃ < 0. (B3)

Defining D to be the (n+m)× (d+1) matrix above, it
follows that if A and B are linearly separable, there
exists a β̃ such that Dβ̃ < 0. Determining if any such
β̃ exists can be done by recasting the problem as a linear
programming problem:

β̃ = argmin
x∈RN+1

0 · x

s.t. Dx < 0.
(B4)

If A and B are linearly separable, there exists at least
one feasible solution to this problem. If Equation (B4) is
feasible, then a convex optimization problem should be
able to solve it. Suppose, though, that a solver didn’t find
a solution – how could we tell that this happened because
the problem was in fact infeasible, and not because the
solver terminated or crashed prematurely?

Equation (B4) defines a strict system of inequalities.
For any such problem, a theorem of alternatives [98, Ex-
ample 2.21] gives the conditions under which it is feasible.
Given a system of strict inequalities

Ax < b, (B5)

the system is infeasible if, and only if, there exists y
satisfying

y 6= 0, y > 0, ATy = 0, y · b ≤ 0. (B6)

Thus, suppose that in the course of solving Equation
(B4), a solver doesn’t find a solution. We can easily
check whether the problem is infeasible by demonstrat-
ing a solution to the following problem:

y 6= 0, y > 0, DTy = 0. (B7)

This system is nothing more than the dual problem of the
original LP (Equation (B4)). Thus, determining whether
a given data set is linearly separable gives rise to a set
of alternatives: if the primal problem is feasible, the data
is linearly separable, whereas if the dual problem is fea-
sible, the data is linearly inseparable; what’s more, the
primal and dual problems cannot both be feasible simul-
taneously. This allows us to certify that a given data set
is inseparable, by forming the dual problem and finding
a solution.

In sum, A and B are separable if, and only if,
the optimization problem (B4) is feasible.
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FIG. 10. Classification accuracy on CL depends on the
hyperparameter of the classification algorithm. For
the top 4 plots, the hue indicates the value of L. For the
bottom 2, the average classification accuracy is indicated in
the heatmap.

Appendix C: Hyperparameter sweeps

As noted in the main text, the performance of ML al-
gorithms can depend quite strongly on their hyperparam-
eters. Table II gives the values of the hyperparameters
we considered in this work.

To determine which hyperparameter choices were best,
we cross-validated the accuracy of the ML algorithms us-
ing 20 independently sampled training and testing sets,
with 10% of the data used for testing. Figure 10 show the
results of sweeping the hyperparameters and evaluating
classification accuracy on CL. Figure 11 shows results for

the feature engineered feature vectors. Table V gives best
hyperparameter values for learning using the engineered
feature vectors, as determined by mean cross-validation
accuracy (“Mean accuracy” column). We evaluated the
chosen hyperparameters using a “hero test”: each algo-
rithm was trained using all the feature-engineered vec-
tors in C1 with the hyperparameters set to their opti-
mal values. Then, the classifier learned by the algorithm
was evaluated on 20900 previously unseen feature vec-
tors. The accuracy is comparable to that evaluated un-
der cross-validation, which suggests we have not inadver-
tently over-fit the training data.
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