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ABSTRACT 
Variability in product quality continues to pose a major 

barrier to the widespread application of additive manufacturing 
(AM) processes in production environment. Towards addressing 
this barrier, monitoring AM processes and measuring AM 
materials and parts has become increasingly commonplace, and 
increasingly precise, making a new wave of AM-related data 
available. This newfound data provides a valuable resource for 
gaining new insight to AM processes and decision making. 
Machine Learning (ML) provides an avenue to gain this insight 
by 1) learning fundamental knowledge about AM processes and 
2) identifying predictive and actionable recommendations to 
optimize part quality and process design. This report presents a 
literature review of ML applications in AM. The review 
identifies areas in the AM lifecycle, including design, process 
plan, build, post process, and test and validation, that have been 
researched using ML. Furthermore, this report discusses the 
benefits of ML for AM, as well as existing hurdles currently 
limiting applications. 

Keywords: additive manufacturing, machine learning, deep 
learning, data analytics, algorithm, survey, review 

1. INTRODUCTION 
Additive Manufacturing (AM) is an advancing and 

increasingly popular manufacturing technology that embodies 
the revolutionary progress of the modern manufacturing industry 
[1]. It is a process in which a part is made by joining material, 
layer by layer, directly from 3D model data [2]. AM offers 
competitive advantage over traditional manufacturing 
techniques by enabling fabrication of low volume, customized 
products with complex geometries and material properties, in a 
cost-effective and time-efficient way [3]. The rapid proliferation 
of AM technologies has resulted in seven well-defined sub-

categories of AM, several of which are capable of producing 
metallic parts [2]. With continuing technological advances, AM 
has evolved from being limited to fabricating prototypes to 
producing end-use metallic parts in various applications (e.g., 
aerospace, defense, biomedical, and automotive) [4].  

Despite the growth of and advancements in the AM industry, 
achieving consistency with part quality and process reliability in 
AM remains a challenge [3]. The fundamental reason for this 
situation is that both the shape and material properties of a part 
are formed during the AM process. Realizing any AM part 
involves intricate design, material, and process interactions over 
the course of a complex multi-stage process that includes five 
major steps: designing, process planning, building, post-
processing, and testing and validation [5]. The controlled and 
precise execution of each of these steps is needed to fabricate a 
qualified part.  

Recent efforts to reduce AM part variability have focused on 
learning as much as possible about parts and processes through 
monitoring and inspection [6]. Advancements in sensor 
technologies, sensor fusion and data acquisition methods [7], 
have led to an unprecedented increase in AM data, encompassing 
many of the aspects of “big data” (Table 1). The different types 
of data generated throughout the design-to-product 
transformation cycle are creating new opportunities (Figure 1) 
for knowledge discovery throughout AM processes [8].  

Table 1. Characteristics of AM Data 
Volume ~0.5 TB of in-situ monitoring data per build [9] 

~TBs of CT scan data 
Velocity Up to 600 variables logged per second during the build  

75 GB/s of image data [11] 
Variety  Numerical (machine logs, process parameters) 

2D images (thermal, optical) 
3D (CAD models, CT scans) 
Audio (acoustic signals) and videos (thermal, optical) 
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Figure 1. AM Lifecycle, Examples of Associated Data, and Decision Making Applications

In a sense, AM has become a manufacturing domain that is 
data-rich but knowledge-sparse. Extracting knowledge from the 
vast amounts of available AM data can be a tedious process. 
Despite the advances in measurement science and increasing 
number of datasets from the AM lifecycle, there is limited 
scientific understanding to characterize AM materials-geometry-
process-structure-property-performance relationships. 
Advanced computational and analytical tools are needed to 
process the high dimensional and complex data. To this end, new 
developments in the domain of Machine Learning (ML) offer 
great potential to transform AM data into insightful knowledge.  

ML techniques offer the ability to discover implicit 
(formerly unknown) knowledge and identify relationships in 
large manufacturing data sets, transforming unprecedented 
volumes of data into actionable and insightful information 
[10,11]. For AM, ML offers new opportunities to optimize and 
better control AM processes [12]. In this paper, we explore the 
state-of-the-art literature on the applications of ML techniques 
throughout the AM lifecycle.  

2. MACHINE LEARNING FOR AM 
2.1 Overview of Machine Learning Techniques 

Machine learning concerns the construction and study of 
systems that can automatically learn patterns from data. Models 
built with ML can be used for prediction, performance 
optimization, defect detection, classification, regression, or 
forecasting [10]. The largest factor in determining the 

effectiveness of ML is the data used to train the ML model. ML 
models are only as good as the training data has prepared them 
to be.  

ML techniques [13] generally fall into two categories: 
supervised learning and unsupervised learning. In supervised 
learning, a labeled set of training data provides examples of 
input values and the corresponding correct output. The ML 
algorithm trains the model using this labeled dataset, inferring 
the functional relationship between the input and output 
domains. Supervised learning can be used for both classification 
and regression. In unsupervised learning, there is no labeled 
training data set available. Instead, the ML algorithm tries to 
automatically separate the training dataset into different clusters 
by grouping parameters in the dataset and identifying target 
classes. Unsupervised learning is useful for applications such as 
detecting anomalous conditions. The decision between using a 
supervised or unsupervised ML approach will depend on 
perceived benefits for a given scenario.  

The typing of supervised and unsupervised models provides 
a high-level classification in which different ML algorithms can 
be further categorized. Some popular ML models used for both 
classification and regression are Support Vector Machines 
(SVMs) and Neural Networks (NNs). An SVM model identifies 
hyperplanes that separate the data into different classes. A NN is 
a computational model that consists of a network of nodes 
(“neurons”) and weighted edges between nodes. NNs are very 
powerful because they can automatically identify features in the 
raw data that are needed to make good predictions. These 
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capabilities make NNs very suitable for many AM problems 
where identifying features in the input data may be difficult.  

ML algorithms such as deep learning neural networks are 
especially useful for very complex tasks such as image and audio 
processing. Deep learning systems employ several hierarchical 
layers of processing nodes, which help to identify progressively 
complex features in the input data. Convolutional neural 
networks (CNNs) are a special type of deep learning model and 
are particularly useful for processing image data. A CNN is 
composed of special processing layers that process image pixels 
represented as matrices. CNNs progressively extract complex 
features from an image, such as edges, textures, and shapes, 
which are used to classify the image, for example as a faulty or 
good layer in an AM process. 

The follow sections introduce how some of the approaches 
described above have been applied to AM. 

2.2. Overview of Literature Survey on ML Applications 
in AM  

In this paper we review research related to ML applications 
throughout the AM lifecycle. Findings have been gathered from 
an extensive review of literature published over the last ten years 
using keyword queries such as “additive manufacturing” and its 
subcategories [2], coupled with the concepts of “ML.” After 
sifting through hundreds of query results, we analyzed over 50 
papers, including journal articles and conference papers. The 
aims of this review are to 1) identify where ML techniques have 
been successfully applied in the AM lifecycle, and 2) summarize 
and organize findings from the existing state-of-the-art research 
in this domain so that new opportunities can be identified. 

Figure 1 categorizes the AM design-to-product 
transformation cycle based on decision support needs and ML 
opportunities. Here, we have focused on the following four 
categories: 1) Design, 2) Process and Performance Optimization, 
3) In-Situ Process Monitoring and Control, and 4) Inspection, 
Testing and Validation. In each of these categories, we focused 
on a few functions that are currently being analyzed using ML 
by the research community. For example, in the build phase, 
research on In-situ Process Monitoring and Control has focused 
on defect detection, machine-condition monitoring, and real time 
process control. The following sections delve into the main 
findings of this survey.  

3.   AM DESIGN  
The AM design process can be decomposed into several 

stages [5]. Several functions within these stages are currently 
being implemented using a variety of ML techniques: design 
recommendations, topology and lattice optimization, tolerancing 
and manufacturability assessment, and material design and 
selection. Table 2 presents a summary of the ML techniques used 
to provide Design Decision Support. 

3.1. Design Recommendations  
Design-recommendation systems using ML have been 

developed to assist AM designers. Yao et al. [14] developed a 
hybrid, machine-learning algorithm to provide design feature 
recommendations and to assist inexperienced designers in the 

AM conceptual design phase. Their algorithm combines 
unsupervised learning (hierarchical clustering) with a trained, 
supervised classifier (support vector machine (SVM)). 
Furthermore, they indicate a plan to use ontology-based expert 
systems to represent more complex AM design knowledge.  

Table 2. Overview of ML techniques used to provide Design 
Decision Support 

AM Application ML Technique Reference 
Design feature 
recommendation 

Hierarchical 
clustering, SVM 

Yao et al., 2017 [14] 

Part mass, support 
material and build-time 
prediction 

NN Murphy et al., 2019 
[15] 

Build-time prediction  NN 
 
 
 

Munguía et al., 2008 
[16] 
Di Angelo and Di 
Stefano, 2011 [17] 

Cost estimation Dynamic clustering, 
LASSO, Elastic net 
regression 

Chan et al., 2018 [18] 

Topology optimization Genetic algorithms, 
NN 

Gaynor et al., 2015 
[19] 

Geometry compensation 
to counter thermal 
shrinkage and 
deformation  

Feed-forward NN 
with back-
propagation 

Chowdhury and 
Anand, 2016 [20] 

Shape deviation 
prediction (tolerancing) 

Bayesian Inference Zhu et al., 2018 [21] 

Classification of AM 
powders 

CNN, Random Forest 
Network (RFN) 
 
SVM 

Ling et al., 2017 [22] 
 
DeCost et. Al, 2017 
[23] 

Researchers are also employing ML techniques to help 
novice designers predict design for AM (DfAM) attributes such 
as expected build time and required support structures. Murphy 
et al. [15] employed 1) an autoencoder NN that was trained to 
compress and reconstruct voxelized part designs followed by 2) 
predictive NNs to predict part mass, support material, and build 
time. Their existing efforts have achieved limited prediction 
accuracy; consequently, they plan to implement CNNs in the 
future to improve accuracy by recognizing and representing local 
geometries such as lattices.  

Munguía et al. [16] used an NN to predict build time for 
Laser Powder Bed Fusion (L-PBF). NN was used for two 
reasons. First, it can learn and adapt to different cases. Second, 
it provides accurate estimates regardless of the different types of 
machine models. These estimates were calculated using only 
three parameters: Z-height, part volume, and bounding-box 
volume. Compared to analytical and parametric time estimators, 
which have prediction errors rates between 20-25 percent, the 
NN resulted in error rates between 2-15 percent. Similarly, Di 
Angelo and Di Stefano [17] also implemented a NN-based build-
time estimator. However, they used a parametric approach to 
capture a more complete set of build-time factors that considered 
both the dimensional and the geometric features of the object. 
The authors claim that their custom-designed NN, which used 
eight build-time driving factors, yielded successful results. 

Additionally, researchers are using ML techniques to 
develop cost-estimation frameworks for AM by leveraging the 
large amounts of available product and production-related data. 
For example, Chan et al. [18] predicted the cost for a new print 
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job based on historical data from similar parts. They used the 
similarities in the 3D geometry and printing processes of parts to 
extract important features from the part geometry. ML 
algorithms for dynamic clustering, least absolute shrinkage and 
selection operator (LASSO), and elastic net regression are 
applied to feature vectors to predict cost based on historical data.  

3.2 Topology Optimization 
Topology optimization is a more critical problem in AM 

than traditional, subtractive processes because of the enormous 
customizability offered by AM processes. Optimization, in this 
case, usually means selecting the topology that minimizes the 
total mass of the structure. Gradient-based optimization 
algorithms, stochastic algorithms such as genetic algorithms, and 
NNs have all been explored for topology optimization in AM 
[19].  

Chowdhury and Anand [20] developed a geometry-
compensation method to counteract thermal deformation in AM 
parts caused by temperature gradients during AM fabrication. 
Their methodology uses a back-propagation NN, trained on 
surface data from the CAD model, to predict the surface of the 
fabricated part. The trained network can modify the 
stereolithography (STL) file whenever the CAD surface data for 
a new part predicts poor surface quality of the final part. The 
authors successfully demonstrated a reduced error in 
manufactured parts’ conformity to CAD design by using their 
NN results. 

3.3 Tolerancing and Manufacturability Assessment 
Zhu et al. [21] proposed a prescriptive, deviation-modelling 

method coupled with ML techniques to accurately model shape 
deviations in AM. Bayesian inference is used to estimate 
geometric deviation patterns by statistical learning from different 
shape data, thus supporting more accurate tolerancing for AM 
parts. 

In addition to tolerancing, researchers are using ML to 
assess the manufacturability of AM-designed parts. Balu et al. 
[24] proposed a deep-learning-based approach for assessing 
manufacturability. Deep learning is used to learn different 
Design for Manufacturing (DFM) rules from labeled voxelized 
CAD models, without additional shape or process information. 
AM is mentioned as an applicable technology that could benefit 
from such a deep-learning-based DFM framework. 

3.4 Material Classification and Selection  
Machine-learning techniques have been explored to uncover 

knowledge about the fundamental physical, mechanical, 
electrical, electronic, chemical, biological, and engineering 
properties of materials [25]. This knowledge is particularly 
useful for the classification of AM powders. Ling at el. [22] used 
deep-learning techniques to classify SEM images of AM 
powders based on the different powder-size distributions. A 
CNN was used to transform images and extract features. A 
random forest network (RFN) classifier was used to sort the 
transformed images into different size distributions.  

DeCost et al. [23] developed a feature, detection-and-
description algorithm to create micro-structural-scale, image 
representations of AM powders. The algorithm applied 

computer-vision techniques to capture the image of the real 
object. Scale-invariant feature transformations, together with a 
vector of locally aggregated descriptors, were then used to 
encode that image into a digital representation. The authors used 
this encoding approach, over a NN-based representation, due to 
its strong rotation and scale invariances. This feature is important 
because AM powder micrographs do not have any natural 
orientation. After applying the algorithm, the authors used an 
SVM to classify the various representations into different 
material systems, with an accuracy greater than 95 percent.  

4. AM PROCESS AND PERFORMANCE 
OPTIMIZATION 

A growing field of study is using data-driven analysis to map 
the complex relationships among process (P) parameters, final 
material structure (S), properties (P) and performance (P), also 
known as PSPP, of the AM part [26]. While finite element 
modeling (FEM) methods have provided some success in 
mapping complex PSPP relationships, accurately representing 
AM processes using high fidelity modeling is difficult. Physics-
based models are complex, requiring a deep understanding of 
material properties and the physical laws governing the AM 
process. Low fidelity models suffer from lack of information 
about physical properties, specially due to variabilities from 
machine to machine and material to material [27].  

ML techniques have the potential to successfully discover 
complex PSPP relationships, overcoming many of the 
limitations associated with the techniques listed above. The 
gamut of such techniques generally focuses on understanding 
either process response or performance response [26], by either 
using data-driven approach, or combining both physics-based 
and data-driven approaches. Table 3 presents a summary of 
literature reviewed in this domain.  

Table 3. Overview of ML techniques used for AM Process and 
Performance Optimization 

AM Application ML Technique Reference 

Build precision 
(deposition height) 
prediction  

Back propagation (BP) 
NN, LS-SVM 

Lu et al., 2010 [28] 

Process parameter 
optimization (melt pool 
depth and height) 

Genetic algorithm, Self-
organizing maps 

Fathi and 
Mozaffari, 2014 
[29] 

Powder spreading 
prediction  

BP NN Zhang et al., 2017 
[30] 

Melt pool width 
prediction  

Gaussian Process 
Regression 

Yang et al., 2018 
[31] 

Material toughness 
optimization  

Self-Consistent 
Clustering  

Yan et al., 2018 
[32] 

Porosity prediction  RFN Kappes et al., 2018 
[33] 

Wear strength 
prediction  

Genetic programming, 
NN 

Garg and Tai, 2014 
[34] 

Part density prediction  Kriging, Polynomial 
regression, NN 

Yang et al., 2018 
[35] 

4.1 Data-Driven Approaches to Characterize Process 
Response 

Lu et al. [28] used a variety of ML techniques to monitor 
responses in a Directed Energy Deposition (DED) process. 
Specifically, they map the complex, non-linear relationship 
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between DED process parameters - laser power, scanning speed, 
and feed rate – and one performance response – building 
precision as measured by deposition height. The authors adapted 
a back propagation NN (BP NN) with an adaptive, learning rate, 
and a momentum coefficient algorithm. The modifications 
accelerated the training time and improved the results. 

Similarly, Fathi and Mozaffari [29] developed a data-driven 
framework for optimizing process parameters in L-PBF. The 
authors used a bio-inspired, optimization algorithm, called 
Mutable Smart Bee algorithm, and a fuzzy inference system to 
relate process parameters to melt-pool depth and layer height. 
Derived relationships were combined with a non-dominated, 
sorting, genetic algorithm to optimize process parameters. 
Additionally, they proposed using an unsupervised, machine-
learning approach - known as self-organizing maps - to further 
post-optimize the process.  

4.2 Physics-Based-Simulation Approaches to 
Characterize Process Response 

In lieu of empirical data, another ML approach is creating 
surrogate models from physics-based simulation data. For 
example, Zhang et al. [30] used ML to predict powder-spread 
parameters as a function of spreading speed and surface 
roughness of the powder bed. They developed a synergistic, 
multi-step framework combining 1) a Discrete Element Method 
(DEM) to simulate a powder spreading process with 2) a BP NN 
to regress between the highly non-linear results obtained from 
DEM. The result is a powder-spreading process map that can be 
used by AM operators to manufacture parts with desired surface 
roughness. 

Yang et al. [31] used the results from an L-PBF, single-track, 
heat-transfer simulation to predict melt-pool width for different 
combinations of processing conditions. Their prediction 
approach combines a Dynamic Variance-Covariance Matrix, the 
kriging method, Gaussian Process Regression, and genetic 
algorithms to optimize process parameters. Their approach led to 
a maximum, relative, error magnitude (MREM) less than 0.03 
percent and an average, relative, error magnitude (AREM) less 
than 0.005 percent for the AM case study.  

4.3 Combined Approaches to Characterize 
Performance Response 

The process response, together with the raw-material 
properties and the final-design structure, are critical factors in 
predicting the performance response of AM-fabricated parts. Yan 
et al. [32] proposed combining physics-based models, process 
models, material models, and data-mining techniques to better 
understand those factors and their relationship to performance. 
In this case, the performance response was the mechanical 
toughness of the built part. The authors combined self-consistent 
clustering analysis with a reduced-order modeling technique to 
predict the toughness. They did so by mapping the 
microstructural descriptors to toughness. However, they 
discovered that ML techniques like Kriging and NN are better 
suited for evaluating larger databases. They propose to use this 
discovery in the future for comprehensive modeling of PSP 
relationships. 

Kappes et al. [33] focused on predicting three performance 
responses for AM-built parts: fraction porosity, median pore-
diameter and median pore-spacing. Their goal was to predict 
responses by combining information/models about the process 
(L-PBF), the structure (sample position and orientation), and the 
material (Inconel 718). The authors used an RFN to make those 
predictions for two reasons. First, RFN is capable of both 
classification and regression. Second, RFN is insensitive to 
irrelevant features. These capabilities were important because, in 
AM, not all processing conditions are consistently important 
across different processes and materials.  

In another approach, Garg and Tai [34] combined genetic 
programming and NN using the least squares method. This 
combined model was used to predict the wear strength of 
aerospace parts produced using Fused Deposition Molding 
(FDM). The final structure and raw material for each part were 
known in advance. The process variables were layer thickness, 
orientation, raster angle, raster width, and air gap. The values of 
these variables provided the inputs into both the GP and the NN. 
The authors showed that their combined approach gave better 
statistical predictions than using a single ML algorithm. 

Similarly, Yang et al. proposed a super-metamodeling 
framework (SMOF) to predict relative density of AM parts as a 
function of process parameters such as scanning speed, scanning 
spacing and laser pulse frequency in an L-PBF process [35]. The 
SMOF was built by aggregating Kriging, polynomial regression, 
and NN into a weighted composite to improve overall prediction 
accuracy while being insensitive to dataset variation. The results 
positively indicated the superiority of SMOF over individual 
metamodels, with a final AREM of only 5.47 percent.  

5. IN-SITU PROCESS MONITORING AND CONTROL 
One of the most focused areas of machine-learning 

applications in AM is in-situ process monitoring and control. In-
situ monitoring technologies are rapidly growing; they now 
include highs-speed optical cameras, thermocouples, 
pyrometers, and photo-detectors, among other sensors [6]. 
However, achieving real-time control for AM is still at a nascent 
stage – despite the streams of “big,” multi-modal, sensing data 
capable of being collected. This is due to a few reasons. First, it 
is still unclear which sensor data is most meaningful for 
implementing control strategies. Second, the “data-fusion” 
techniques needed to understand all that sensor data do not exist. 
Finally, the ML techniques needed to analyze that fused data do 
exist; but, they have only recently been applied in AM.  

Nevertheless, by using in-situ data to characterize the 
current “state” of a part, combined with a priori knowledge of 
part and process, we can predict the “state” of the final part [6]. 
Using ML to improve real-time control of AM fabrication 
processes has a significant potential benefit – post-process-
inspection tasks might be reduced – possibly significantly. By 
moving some of that post-process inspection upstream, as part of 
the fabrication process, potential defects in the final parts could 
be detected earlier. This saves inspection time; but, it also saves 
materials and processing [36]. 

 Current efforts towards using ML to realize the vision of 
real-time control for AM processes are primarily focused on 
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monitoring the state of either the built part, or the AM machine 
itself. Some elementary work on process control has also been 
done. Table 4 provides a summary of literature reviewed in this 
domain.  

Table 4. Overview of ML techniques used for in-situ process 
monitoring and control 

AM Application ML Technique Reference 
Part Defect Detection and Prediction 

Porosity detection  SVM, k-Nearest Neighbors 
(k-NN), feed forward NN 

Imani et al., 
2018 [37] 

Quality of fusion and 
defect detection  

Bayesian classifier Aminzadeh and 
Kurfess, 2018 
[38] 

Anomaly detection 
and classification  

Bag-of-keypoints (words), K-
means unsupervised 
clustering, CNN 

Scime and 
Beuth, 2018 
[39,40]  

Melt pool features and 
spatter detection  

SVM, CNN Zhang et al., 
2018 [41] 

Defect detection and 
classification with 
acoustic emissions 

Spectral CNN  Shevchik et al., 
2018 [42] 

Probabilistic graph-based 
deep belief networks 

Ye et al., 2018 
[43] 

Fault detection from 
multi-sensor data 

Support Vector Data 
Description (SVDD) 

Grasso et al., 
2018 [44] 

Quality monitoring 
using heterogeneous 
sensors in FDM 

Bayesian Dirichlet process, 
Evidence Theory, NN, Naïve 
Bayes clustering, SVM, 
Quadratic discriminant 
analysis 

Rao et al., 2015 
[45] 

Defect detection for L-
PBF using in-situ 
images coupled with 
ex-situ CT scans 

SVM, NN  
 
SVM ensemble classifier 

Petrich et al., 
2017 [46] 
 
Gobert et al., 
2018 [47] 

Machine-Condition Monitoring 
Machine-condition 
monitoring  

k-NN, Bayes Classifier, NN, 
SVM 
 

Uhlmann et al., 
2017 [48] 

FDM machine-
condition monitoring 
using acoustic 
emissions 

SVM, K-means clustering, 
Hidden semi-Markov model 

Wu et al., 2015 
[49][50][51] 

Process Control 
PID process control 
for FDM 

SVM Liu et al., 2017 
[52] 

Image-guided process 
control for L-PBF 

Markov Decision Process Yao et al., 2018 
[53] 

5.1. Part Defect Detection and Prediction  
AM parts can have several different types of defects 

including porosity, poor surface finish, layer delamination, 
cracking, and geometric distortion, to name a few [54]. Detecting 
defects is important to identifying failed builds and predicting 
the final properties of the part.  

5.1.1 Defect Detection with Visual Data 
Imani et al. [37,55] presented a qualify-as-you-build model 

where ML techniques use real-time sensor data to identify 
process conditions that are likely to cause porosity. The authors 
analyzed the relationship between laser power, hatch spacing, 
and velocity, on the size, frequency and location of pores in parts 
produced through L-PBF. Statistical features are extracted from 
layer-by-layer in-situ images. These features are subsequently 

classified by ML techniques like SVM, k-NN, and feed forward 
NN to identify process conditions most likely to produce pores.  

Aminzadeh and Kurfess [38] developed an online 
monitoring system, using computer vision and Bayesian 
inference, to inspect both the porosity and the quality of parts in 
metal L-PBF. They created a labeled dataset of defective and 
non-defective features from in-situ camera images of each layer. 
They extracted frequency-domain features from those images 
and used a Bayesian classifier to identify of defective vs non-
defective parts.  

Instead of using layer wise images of the powder after laser 
interaction, Scime and Beuth [39] used computer vision and ML 
techniques to detect and classify anomalies and flaws in the 
powder prior to fusion. They investigated six different types of 
powder bed anomalies captured in labeled images from an L-
BPF machine. The bag-of-keypoints ML technique used to 
detect and classify anomalies was able to detect the presence of 
an anomaly in 89 percent of cases, with 95 percent accuracy in 
correctly identifying the type of anomaly. Separately, the authors 
showed that accuracy can be further improved by implementing 
a multi-scale CNN for autonomous anomaly detection and 
classification [40]. 

Zhang et al. [41] used Principal Component Analysis (PCA) 
with SVM to enable using CNN to recognize features in the laser 
melting process. Features include melt pool, spatter, plume, and 
anomalies. The accuracy is reported to be 92.7 percent. 

5.1.2 Defect Detection with Acoustic Data 
Acoustic emissions (AE) have also been used for defect 

detection. AE sensors are non-intrusive to the build process and 
provide high throughput for real-time monitoring. Ye et al. [43] 
developed a method of analyzing acoustic signals with deep 
belief networks (DBN) to detect defects in the L-PBF process. 
Temperature changes from melting to solidification create 
variations in the acoustic signals. The authors trained a DBN to 
recognize defects based on the categorizations of balling, 
keyholing, and cracking, using the sparking sound spectrum in 
the time domain and the signal power spectral density in the 
frequency domain. 

Shevchik et al. [42] investigated the use of AE combined 
with CNN to detect various defects due to lack of fusion. The 
authors used a fiber Bragg grating acoustic sensor to detect the 
airborne AE signals, generated from the melting, sparking, 
spattering, and solidification processes. The signals collected in 
the time domain are transformed to the frequency domain using 
the wavelet packet transform, an extension of the traditional 
wavelet transform. The Spectral CNN, an extension of CNN with 
improved efficiency in classification and regression, is used to 
recognize features in the frequency domain that correspond to 
defects in the L-PBF process. The confidence level in SCNN is 
between 83 to 89 percent, according to the authors. 

5.1.3 Defect Detection with Multi-Sensor Data  
As aforementioned, data gathered from in-situ monitoring 

of AM processes is highly varied. Registering and fusing 
together data from multiple sensors provides a rich context for 
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fault detection. Therefore, a growing area of research involves 
multi-sensor data fusion for process monitoring and control.  

Grasso et al. [44] explored data fusion methodologies to 
combine in-situ data from multiple sensors embedded in 
Electron Beam PBF systems. The Support Vector Data 
Description (SVDD) ML technique is used to classify in-control 
vs. out-of-control process signals. The SVDD automatically 
detects faults and process errors that can be related to the stability 
of embedded signals from multiple sensor data streams. The 
limitation of their approach is that it applies only to serial 
production of the same product. 

Rao et al. [45] fused data from a heterogeneous sensor suite 
as part of an online-monitoring system for FDM. The suite 
comprises of thermocouples, accelerometers, an infrared 
temperature sensor, and a real-time, miniature, video borescope. 
Process failures (such as nozzle clog) are detected from the fused 
sensor data using the non-parametric Bayesian Dirichlet process 
mixture model and evidence theory, achieving a prediction 
accuracy of up to 85 percent. In comparison, existing 
approaches, such as probabilistic NN, Naïve Bayes clustering, 
and SVM had poorer performance.  

Petrich et al. [46] and Gobert et al. [47] used multi-sensor 
data fusion to detect discontinuity defects – such as pores, over-
heating areas, and unmolten powders – in L-PBF. They merged 
together homogenous sensor data (eight sets of layer-wise 
images of the powder bed under varying lighting conditions, pre- 
and post-sintering) with heterogenous sensor data (post build CT 
scans). Ground-truth labels (anomalous or normal) extracted 
from the CT scans were used to train NN and SVM [46], as well 
as SVM ensemble classifiers [47] to detect defects directly from 
images. Ensemble classifiers can analyze multiple images under 
different lighting conditions with a high classification accuracy 
(85 percent) as compared to classification using images from 
only a single lighting condition (65 percent accuracy).  

5.2. Machine-Condition Monitoring 
Another approach to in-situ monitoring is observing the 

machine logs or build condition instead of monitoring the part. 
Clustering techniques can classify features extracted from 
machine logs and identify normal or problematic build states 
[48]. In a series of papers, Wu et al. [49–51] developed an 
approach for FDM machine condition monitoring using AE data 
to identify normal and abnormal machine states. They extracted 
time- and frequency-domain features from the data and used a 
variety of ML algorithms (SVM with radial bias function kernel 
[49], K-means clustering [50], and hidden semi-Markov model 
[51]) to classify normal vs. abnormal machine-condition states. 
Their monitoring method can be used as a diagnostic tool to 
identify failure states such as material runout or filament 
breakage.  

5.3. Process Control 
Liu et al. [52] developed an online closed-loop controller for 

FDM. Their control architecture consists of 1) real-time image 
acquisition, 2) a tool for image analysis, and 3) a Proportional-
Integral-Derivative (PID) controller for closed-loop control. 
They identified two types of defects, overfill and underfill, at 

different severities. After extracting textural features from the 
image data collected from a microscope, they used SVM to 
differentiate those features into two groups: normal and 
defective. Then they used another SVM to identify the severity 
of defects. The PID controller used the results of that analysis to 
modify the feed rate to mitigate each type of defect.  

Yao et al. [53] developed a smart, closed-loop optimal 
control system for L-PBF. They used multifractal analysis to 
estimate the defect condition of each layer, and then predicted 
the future evolution of defects in following layers. Finally, they 
modeled the stochastic dynamics of layer-to-layer defect 
conditions as a Markov decision process for deriving an optimal 
control policy.  

6. INSPECTION, TESTING AND VALIDATION 
ML techniques are used for final AM part inspection and 

validation. The focus is primarily on surface metrology, and 
defect detection and classification using ex-situ measurements, 
such as X-CT data. Table 5 presents an overview of the literature 
reviewed in this domain (excluding X-CT). 

Table 5. Overview of ML techniques used for post-process 
inspection and validation 

AM Application ML Technique Reference 
Classification of 
dimensional variation 
from laser scanned 3D 
point cloud data 

Sparse representation, k-
NN, NN, Naïve Bayes 
SVM, Decision tree 

Tootani et al., 
2017 [56] 

Defect detection 
(porosity)  

Augmented layer-wise 
spatial log Gaussian Cox 
process (ALS-LGCP) 

Liu et al., 2018 
[57] 

Tootooni et al. [56] developed a new method to classify 
dimensional variations in parts made with FDM based on 
spectral graph theory. They used Laplacian Eigenvalues as 
extracted features from laser-scanned 3D point cloud data, 
followed by supervised ML techniques to classify dimensional 
variation, including sparse representation, k-NN, NN, naïve 
Bayes, SVM, and decision tree. The sparse representation 
technique provided the highest classification accuracy (F-score 
> 95 percent). Their approach requires a priori knowledge of the 
part for training, thus limiting applications to other parts.  

Liu at al. [57] proposed an augmented layer-wise 
spatiotemporal log Gaussian Cox process (ALS-LGCP) model 
to quantify the spatial distribution of pores within each layer of 
an AM part and track sequential evolution across layers. They 
applied the ALS-LGCP to binder-jetted parts, and used Bayesian 
predictive analytics to predict porosity prone areas in successive 
layers, achieving statistical fidelity approaching 85 percent.  

Senin and Leach [58] developed a smart information-rich 
surface metrology technique using multi-sensor data fusion and 
ML. They identified AM as an example where advanced 
measurement techniques are needed due to complex geometries 
and lack of uniform material properties. 

7. CONCLUSION  
This paper presents a detailed review of ML applications 

throughout the AM design-to-product transformation cycle. We 
have categorized the literature based on the applications as they 
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pertain to the different phases in the AM product lifecycle. With 
most of the reviewed research published in 2017 or later, the ML 
methods identified throughout this paper are the beginnings of 
what is sure to be a growing effort of ML applications for AM. 
We observed why ML methods are well suited to solve problems 
in the AM domain and which methods are most commonly being 
used. To date, ML for AM research has been opportunistic, where 
researchers have identified areas rich with data, such as in in-situ 
process monitoring and control. The high dimensionality and 
complexity of AM data makes it well-suited for popular ML 
algorithms. For instance, supervised learning techniques, such as 
NN and SVM, are most popular due to the availability of labeled 
datasets. This paper lays a foundation for a more methodical 
approach to ML for AM moving forward.  

While ML techniques are rapidly being adopted into AM 
applications, there are many opportunities for improved future 
applications. For instance, unsupervised learning techniques are 
not as widely adopted. However, with the increasing amounts of 
unlabeled AM datasets, these techniques are likely to become 
more popular and thus should be further investigated. 
Alternatively, as ML algorithms require training data, increased 
interest in ML for AM will lead to new approaches for supervised 
ML.  

ML models are very poor at diagnosing conditions that have 
not been previously encountered. This limitation puts an 
emphasis on collecting data for training by creating scenarios 
that will address a wide range of operating conditions and 
dimensionality space. A major challenge in the maturation of ML 
for AM is the lack of availability of accurate, accessible, and 
extensive databases for AM processes, products, and materials 
[26]. While each build can generate terabytes of data, there is a 
lack of standard practices for handing datasets characterized by 
high volume and velocity in real time.  

Absence of a common data structure, and standard methods 
for data integration and fusion, prevents rich, multifaceted, data-
driven analysis. Furthermore, generating exemplar data via 
experimentation is difficult and expensive. Even if data is 
available, poor quality of data makes it unsuitable for ML 
algorithms. Low resolution of in-situ optical data, limited fields 
of view, and high temporal load result in poor quality data sets 
[6]. This hinders feature selection for ML algorithms. The 
development of feature libraries for AM feature characterization 
would help address some of the current challenges that make it 
difficult to select a suitable ML algorithm compatible with the 
available data.  

8. FUTURE WORK 
As reviewed in this paper, there already are many AM 

applications that are benefitting from ML techniques. However, 
even more applications areas remain unexplored. For instance, 
in the domain of AM design, deep learning techniques could be 
used to train on voxelized CAD models to make better 
predictions of DfAM attributes such as part mass, support 
structures, and build time. The in-situ, monitoring-and-control 
domain could benefit from the advantages of deep learning 
techniques for use in fault detection and build failures. CNN, for 
example, can detect and classify both macroscopic and 

microscopic faults using layer-wise, optical-sensor data. Moving 
forward, potential opportunities like these will continue to be 
identified. 

Identifying new opportunities in the AM lifecycle is simply 
a precursor to the data challenges that will arise when seeking to 
take advantage of these opportunities. For instance, further 
research is needed for in-situ data sensor fusion. The fusion of 
thermal, acoustic, optical and other build environmental data can 
create a more holistic, reliable and accurate information source 
for real-time defect detection and correction with feedback 
control. Other opportunities include using ML to build models 
correlating in-situ and ex-situ data, such as IR videos with NDE 
X-CT data. Such an approach could enable the “qualify-as-you-
build” goal for AM and reduce dependence on post build NDE 
qualification. As new AM data sets continue to emerge so will 
new opportunities to leverage ML techniques to improve the 
fabrication of AM parts. 
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