
TMPS: Ticket-Mediated Password Strengthening

Abstract
We introduce the notion of Ticket-Mediated Password
Strengthening (TMPS), a technique for allowing users to
derive keys from passwords while imposing a strict limit
on the number of guesses of their password any attacker
can make, and strongly protecting the users’ privacy. We
describe the security requirements of TMPS, and then
a set of effcient and practical protocols to implement
a TMPS scheme, requiring only hash functions, CCA2-
secure encryption, and blind signatures. We provide sev-
eral variant protocols, including an offine symmetric-
only protocol that uses a local trusted computing environ-
ment, and online variants that avoid the need for blind
signatures in favor of group signatures or stronger trust
assumptions. We formalize the security of our scheme by
defning an ideal functionality in the Universal Compos-
ability (UC) framework, and by providing game-based
defnitions of security. We prove that our protocol real-
izes the ideal functionality in the random oracle model
(ROM) under adaptive corruptions with erasures, and
prove that security w.r.t. the ideal/real defnition implies
security w.r.t. the game-based defnitions.

1 Introduction

In many real-world cryptosystems, the user’s password
is the greatest practical weakness. Commonly, the user
enters a memorized password or passphrase, which is pro-
cessed using a password-based key derivation function,
to get a symmetric key. Knowledge of this key allows the
attacker to completely violate the security of a system he
has physically compromised–to read the user’s fles, sign
arbitrary things with her private key, spend her bitcoins,
etc.

Deriving a key from a password is an old, well-studied
problem [18, 25, 30]. The practical diffculty comes from

the ability of an attacker to run a parallel password search.
After stealing the user’s device, the attacker is able to
run an offine attack, perhaps trying billions of different
password guesses per second until the user’s password is
found. Few users can memorize a password capable of
withstanding such an attack for long.

In this paper, we propose a novel method to approach
this problem, called Ticket-Mediated Password Strength-
ening (TMPS). Informally, this works as follows: When
the user wants to produce a new password-derived key,
she creates and stores some local data, and runs a pro-
tocol with a server to produce a set of t tickets. Later,
when she wants to unlock this key using her password,
she runs another protocol with the server, providing (and
discarding) one of these tickets. The password can only
be used to unlock the user’s key with the server’s help,
and the server will not provide this help without a ticket
that has never before been used.

The result is that the user can establish a hard limit
on the number of possible guesses of the password any
attacker can make–if she has only 100 tickets on her
device, then an attacker who compromises the device can
never try more than 100 guesses of her password.

Our approach provides strong privacy guarantees for
the user w.r.t. the server, and unlike many proposed
password-hardening schemes in the literature, is focused
on user-level key derivation problems, rather than on on-
line authentication to some web service. We also provide
a mechanism to allow the server to control which users it
provides services to, without violating the users’ privacy.

Among other advantages, our scheme gives users a
security metric that is human-meaningful–the maximum
number of guesses the attacker can ever have against their
password. Hardness parameters of password hashes, or
entropy estimates of a password, are meaningful only
to security experts; the maximum number of attacker

1

guesses that will be allowed is much easier to understand.
On the other hand, our scheme imposes the need to be
online in order to unlock a key secured by a password.
(Though we provide variant schemes which can be used
offine.)

1.1 Our Results
• We introduce the notion of Ticket-Mediated Pass-

word Strengthening (TMPS), a mechanism for al-
lowing users to derive keys from passwords while
imposing a strict limit on the number of guesses of
their password any attacker can make, and strongly
protecting the users’ privacy.

• We formalize the security requirements of our new
notion of TMPS, both by introducing game-based
defnitions (See Appendix B) as well as defning a
corresponding ideal functionality in the Universal
Composability (UC) framework (See Section 5).

• We present effcient protocols realizing our new no-
tion. Our basic protocol requires only hash func-
tions, CCA2-secure encryption, and blind signatures
(See Section 4).

• We prove that our protocol UC-realizes the afore-
mentioned ideal functionality in the random ora-
cle model (ROM) under adaptive corruptions with
erasures (See Appendix C) and prove that secu-
rity w.r.t. the Ideal/Real defnition implies security
w.r.t. the game-based defnitions (See Appendix B).

• We present several variants of our protocol, includ-
ing an offine version of our protocol using a local
hardware security module (HSM) or trusted exe-
cution environment, and variants that make use of
group signatures, proofs of work, or weaker security
assumptions to ensure user privacy while still pre-
venting overuse of server resources (See Section 6).

• Finally, we discuss effcient implementations and
performance, and consider some questions left open
by this research, in Section 7.

1.2 Related Work
A long list of work (e.g., [5, 6, 31]) focuses on Password
Authenticated Key Exchange (PAKE) protocols where
the user and server share a password to securely establish
a session key. These protocols have some similarities
to our scheme (in particular the use of a trusted server),
but their details (key generation) and usage are quite dif-
ferent. Typically, the PAKE protocols are vulnerable to
offine dictionary attacks after server compromise which

has been tackled in recent proposals such as Qpaque pro-
tocol [16]. Another related concept known as Password
Protected Secret Sharing (PPSS) as described in [15], re-
quires many servers to hold some share of a key; a secret
sharing scheme is used to reconstruct them, secured by a
password.

Many signifcant works on password security focuses
on password-based authentication systems. In [24], Mani
describes a scheme that uses a server to assist in pass-
word hashing, but without any concern for user privacy–
the goal in that scheme was to harden the password
fle by incorporating a PRF computed on a single-
purpose machine. Similarly, [2,26,27] describe a scheme
with a separately-stored secret key in a crypto-server to
strengthen password hashing, an informal description of
the concept of password hardening, later formally defned
in [12, 22, 28]. Our scheme differs in goal; however, is
related to password hardening in using a separate server
or device, in order to limit (online) brute-force attacks.

Another signifcant proposal by Lai et al. [21] defnes
a password hardening encryption scheme which provides
substantial protection from password-cracking attacks by
rate-limiting password cracking attempts assuming the
crypto server is not compromised. Our scheme differs
in many ways, most notably in the use of tickets for
decryption, and in the assurance of user privacy. Also,
our scheme focuses on the setting of password-based key
derivation on the user’s device, rather than on a server
the user trusts with her data.

Still another line of work introduces the notion of
password-based threshold authentication [1] for token-
based authentication in single sign-on setting–in their
scheme, any subset of ` of n servers participate in verify-
ing the user’s password and generating a token.

There is also a rich literature in server-assisted compu-
tation [3, 13, 19, 20] which preserves the user’s privacy.
Our scheme differs from most of this work in that we are
not trying to offoad computational work to the server,
we are just using a server to limit the number of times
some computation may be done. In our proposal, we use
standard algorithms, and provide a great deal more fexi-
bility to choose the underlying cryptographic functions
than is available in these schemes.

2 Preliminaries

2.1 Notation

Let k ∈ N. The set of bitstrings of length k is denoted as
{0,1}k . The concatenation of two bitstrings x and y is
denoted by x k y. The exclusive-OR of two bitstrings x

2

and y of same length is denoted as x⊕ y. We let bk denote
the string with k successive repetitions of bit b. If X is a
set, we let x ←$ X denote sampling a uniformly random
element x from X . The security parameter is denoted
by n ∈ N. Unless otherwise specifed, we assume all
symmetric keys and hash outputs to be n bits in length.

2.2 Underlying Primitives and Functions
We use the following primitives in our protocols:

• HASH(X): The cryptographic hash of input X .

• HMAC(K,X): The HMAC of X under key K.

• PH(S,P): Hash of the password P using salt S.

• KDF(K,D, `): `-bit key derived from the secret value
K and public value D.

• ΠENC := (GEN, ENC, DEC): An encryption system
where ENC(K,X) is encryption of plaintext X under
the key K, and DEC(K,Y) is decryption of ciphertext
Y under the key K.

• ΠBSIG := (GEN, BLIND, UBLIND, SIGN, BVERIFY): A 2-
move blind signature scheme where

– M∗ ← BLIND(M): The user blinds the message
M to obtain M∗ and sends to the signer.

– σ∗ ← SIGNSK (M∗): The signer outputs a signa-
ture σ∗ on input of message M∗ and private key
SK and sends to the user.

– F ← UBLIND(σ∗): The user unblinds the signa-
ture σ∗ to obtain F . Note that the user inputs
additional private state to the UBLIND algorithm,
which we leave implicit.

– BVERIFYPK (M,F): Verifcation of signature
F on message M under public key PK as
valid/invalid.

Next, we defne two internal functions: VE(D,KP) pro-
vides verifable encryption of KP with D and DV(D,Z)
decrypts KP after checking the correctness of D. Both
functions assume that D, KP and hash outputs are n bits
long.

Algorithm 1 Verifably encrypt KP with D.

1: function VE(D, KP)
2: Z ← HASH(0 k D) k (HASH(1 k D) ⊕ KP)
3: return(Z)

Algorithm 2 Verifably decrypt Z with D.

1: function DV(D, Z)
2: X ← Z0...n−1
3: Y ← Zn...2n−1
4: X∗ = HASH(0 k D)
5: if X == X∗ then
6: return(HASH(1 k D) ⊕Y)
7: else
8: return(⊥)

3 Ticket-Mediated Password Strengthen-
ing

In Ticket-Mediated Password Strengthening, or TMPS,
users frst interact with a server to get a set of tickets.
Each ticket entitles the user to assistance from the server
with one attempt to unlock a master secret (called the
payload key) using a password. Later, users (or anyone
else with access to the tickets) may use the tickets to
attempt to unlock the payload key using the password.

TMPS requires a setup phase, and two protocols:
REQUEST and UNLOCK. During setup, the server es-
tablishes public encryption and signing keys and makes
them available to its users.

In order to get tickets, the user chooses a payload key
and a password, and runs the REQUEST protocol with
the server, requesting t tickets. If the protocol terminates
successfully, the user ends up with t tickets, each of which
entitles her to one run of the UNLOCK protocol.

In order to use a password to unlock the payload key,
the user must consume a ticket–she runs the UNLOCK
protocol with the server, passing the server some infor-
mation from the ticket and some information derived
from her ticket and her password. When the protocol
runs successfully, the user recovers the payload key.

The security requirements of a TMPS scheme are:

1. REQUEST

(a) The server learns nothing about the password
or payload key from the REQUEST protocol.

(b) There is no way to get a ticket the server will
accept, except by running the REQUEST pro-
tocol.

(c) Each ticket is generated for a specifc pass-
word and payload key; tickets generated for
one password and payload key give no help in
unlocking or learning any other password or
payload key.

2. UNLOCK

3

(a) An UNLOCK run will be successful (it will
return the correct KP) if and only if:

i. This ticket came from a successful run of
the REQUEST protocol.

ii. This ticket has never been used in another
UNLOCK call.

iii. The same password used to request the
ticket is used to UNLOCK it.

(b) From an unsuccessful run of the UNLOCK pro-
tocol, the user gains no information about the
payload key.

(c) From an unsuccessful run of the UNLOCK pro-
tocol, the user learns (at most) that the pass-
word used to run the protocol was incorrect.

(d) The server learns nothing about the payload
key or password from the UNLOCK protocol.

(e) The server learns nothing about which user
ran the UNLOCK protocol with it at any given
time.

Note that these requirements don’t describe the gener-
ation of the payload key or the selection of the password.
If the payload key is known or easily guessed, then TMPS
can do nothing to improve the situation. In any real-world
use, the payload key should be generated using a high-
quality cryptographic random number generator.

The strength of the password matters for the security
of ticket-mediated password strengthening, but in a very
limited way–each run of UNLOCK consumes one ticket
and allows the user to check one guess of the password.
An attacker given N equally-likely passwords and t tick-
ets thus has at most a t/N probability of successfully
learning the password.

3.1 Discussion

The usual way password-based key derivation fails is that
an offine attacker tries a huge number of candidate pass-
words, until he fnally happens upon the user’s password.
He then derives the same key as the user derived, and may
decrypt her fles. A TMPS scheme avoids this attack by
requiring the involvement of the server in each password
guess, and (more importantly) by limiting the number of
guesses that will ever be allowed. If the user of a TMPS
scheme requests only 100 tickets from the server, then
an attacker who compromises her machine and learns
the tickets will never get more than 100 guesses of her
password. If he cannot guess the password in his frst 100
guesses, then he will never learn either the password or
the payload key. Even if he is given the correct password

after he has used up all the tickets, he cannot use that
password to learn anything about the payload key.

The security of a TMPS scheme relies on the server
being unwilling to allow anyone to reuse a ticket, and
the inability of anyone to unlock a payload key with a
password without running the UNLOCK protocol with a
server, and consuming a fresh ticket in the process.

A corrupt server can weaken the security of TMPS,
but only in limited ways. It cannot learn anything about
the password or payload key. It cannot determine which
user is associated with which ticket, or link REQUEST
and UNLOCK runs. But it can enable an attacker who
has already compromised a user’s tickets to reuse those
tickets as many times as he likes.

4 The Basic Protocol

In this section, we describe a set of protocols that imple-
ment Ticket-Mediated Password Strengthening in a con-
crete way. Our protocols require a secure cryptographic
hash function, a public key encryption scheme providing
CCA2 security1, and a blind signature scheme. (Note
that there are variants that do not need a blind signature
scheme described in Section 6.)

A ticket gives a user enough information to enlist
the server in helping carry out one password-based key
derivation. Each ticket contains an inside part (which the
user retains and does not share with the server) and an
outside part (which the user sends to the server). The
different parts of a ticket are bound together with each
other and with the specifc password and key derivation
being carried out, and can’t be used for a different key
derivation.

We make two assumptions about this protocol: First,
all messages in this protocol take place over an encrypted
and authenticated channel. Second, the user somehow
demonstrates that he is entitled to be given tickets by the
server; we assume the user has already done this before
the REQUEST protocol is run. There are many plausible
ways this might be done, such as:

1. The user may pay per ticket.

2. The user may demonstrate his membership in some
group to whom the server provides this service.

3. The server may simply provide this service for all
comers.

The specifc method used is outside our scope. However
the user demonstrates his authorization to receive tick-
ets, it is very likely to involve revealing her identity. In

1An attacker who can alter a ciphertext to get a new valid ciphertext
for the same plaintext can attack our scheme.

4

order to protect the user’s privacy from the server, the
REQUEST protocol must thus prevent the server linking
tickets with this identifying information, or linking tick-
ets issued together.

4.1 Server Setup

The steps given below are done once by the server
(though presumably the server rolls over keys from time
to time).

• The server establishes an encryption keypair
PKS,SKS for some algorithm that supports CCA2
security. Server distributes its public key to all users.

• The server establishes a signature keypair PKS
0 ,SK0 S

for some algorithm that supports blind signatures.

• The server establishes a list to store previously-seen
tickets.

4.2 REQUEST: Protocol for Requesting
Tickets

The basic ticket requesting protocol is illustrated below.
The user starts out with a password P and a payload
key KP, and generates t tickets with the assistance of the
server.

In order to create a ticket without revealing any iden-
tifying information to the server, the user will do the
following steps:

1. Randomly generate an n-bit salt S and an n-bit secret
value B.

2. Encrypt B using the public encryption key PKS of
the server, producing E.

3. Run a protocol to get a blind signature on E from
the server–this is F .

4. Derive a one-time key from the password and the
secret B:

D ← HMAC(B,PH(S,P))

5. Encrypt the payload key under the one-time key:
X ← VE(D, KP)

The ticket will consist of (S,E,F,Z); the user must
irretrievably delete all the intermediate values above.
The user repeats the steps t times to get t tickets. Below,
we show the REQUEST protocol:

Protocol: REQUEST(P, KP, t):

User Server
for i = 1 . . . t

S ←$ {0,1}n

B ←$ {0,1}n

E ← ENC(PKS,B)

E∗ ← BLIND(E)

E∗

σ
∗ ← SIGNSK0 (E

∗)
S

σ
∗

F ← UBLIND(σ∗)

C ← PH(S, P)

D ← HMAC(B,C)

Z ← VE(D,KP)

Forget B,C,D,E∗ , σ∗

Ti ← (S,E,F,Z)

endfor
return(T1,2,...,t)

At the end of this protocol, the user constructs t tickets
she can use to run the UNLOCK protocol. The server, on
the other hand, knows only that it has issued t tickets–it
knows nothing else about them!

4.3 UNLOCK: Protocol for Unlocking a
Ticket

In order to use a ticket along with a password P̂ to unlock
KP, the user does the following steps:

1. Hash the password: Ĉ ← PH(S, P̂).

2. Send (E,F,Ĉ) to the server.

3. If the signature is invalid or E is being reused, then
the server returns ⊥.

4. Otherwise:

(a) The server stores E,F as a used ticket.
(b) B ← DEC(SKS, E)
(c) D ← HMAC(B,Ĉ)
(d) The server sends back D.

5. The user tries to decrypt Z with D. If this succeeds,
she learns KP. Otherwise, she learns that P̂ was not
the right password.

5

Protocol: UNLOCK(S, E, F,Z, P̂):
User

Ĉ ← PH(S, P̂)

Server

E, F,Ĉ

IF
E fresh AND

VERIFYSK0 (E,F)
S

THEN
B ← DEC(SKS,E)

D ← HMAC(B,Ĉ)

ELSE
D ← ⊥

D

KP ← DV(D,Z)

return(KP)

Note that in these two protocols, the server never learns
anything about KP, P, or P̂, and has no way of linking a
ticket between REQUEST and UNLOCK calls.

5 Security Analysis

In this section, we provide a security analysis and some
security proofs for our basic protocol. Our approach
comes in three separate parts: First, we defne an ideal
functionality for the system. Second, we prove that our
basic protocol is indistinguishable from the ideal func-
tionality in the UC framework. Finally, we provide sev-
eral game-based security defnitions, and prove bounds
on an attacker’s probability of winning the games when
they are interacting with the ideal functionality. These
game-based defnitions show that the ideal functionality
we’ve defned actually provides the practical security we
need from this scheme.

The ideal functionality makes use of a table τ–a key-
value database indexed by a ticket T . T can be any n-bit
string, or the special values ⊥ and *.

A user calls REQUEST to get a new ticket2. We as-
sume a two-sided authenticated and secure channel for
REQUEST–the ideal functionality knows the user’s iden-
tity, and the user knows she is talking with the ideal func-

2The ideal functionality is defned for one ticket, but in our protocol,
we defne REQUEST to return t tickets at a time. This is equivalent to
just rerunning the REQUEST ideal functionality t times.

tionality. Also, REQUEST requires an interaction with the
server, in which the server also learns the user’s identity.
At the end of the REQUEST call, the user either has a
valid ticket, or knows she did not get a valid ticket.

Algorithm 3 Ideal Functionality: Initialize and
REQUEST

1: function INITIALIZE(SID)
2: SID.τ ← {}
3: function REQUEST(U, SID,P,KP)
4: T ←$ {0,1}n

5: SID.τ[T] ← (P,KP,⊥)
6: Send to server SID: (SID, REQUEST,U)
7: if server SID compromised then
8: Wait for response (SID, REQUEST,U,R).
9: else

10: R ← 1
11: if R = 1 then
12: Send to source U : (SID, REQUEST,T)
13: else
14: Send to source U : (SID, REQUEST,⊥)

The user makes use of a ticket and a password to re-
cover her payload key with an UNLOCK call. We assume
the UNLOCK call is made over a secure channel which is
authenticated on one side–the user knows she is talking
with the ideal functionality, but the ideal functionality
doesn’t know who is talking to it. UNLOCK also requires
an interaction with the server, in which the server is not
told the identity of the user. At the end of the UNLOCK
call, the user either learns the payload key associated with
the ticket she has used, or receives an error message (⊥)
and knows the UNLOCK call has failed.

Before stating our theorem, we note that we assume
that the protocols for REQUEST and UNLOCK given in
Sections 4.2 and 4.3 are executed in a hybrid model,
where an ideal functionality for secure, two (resp. one)-
sided authenticated channels, Fac (resp. Fosac), (see
e.g. [8]) is invoked each time a message is sent. We
require that the VE scheme used is the one given in Al-
gorithms 1 and 2. We assume three independent random
oracles: Hpw,HKD,HVE. Hpw is the password hash. HKD

is used to model the HMAC key derivation as a random
oracle and HVE is the random oracle for the verifable
encryption scheme given in Algorithms 1, 2.

Theorem 5.1. Under the assumption that ΠENC is a
CCA2-secure encryption scheme (see Defnition A.5),
ΠBSIG is a 2-move blind signature scheme (see Defni-
tion A.7) and the assumptions listed above, the proto-
cols for SETUP, REQUEST and UNLOCK given in Sec-
tions 4.1, 4.2 and 4.3, UC-realize the ideal functionality

6

Algorithm 4 Ideal Functionality: UNLOCK

If ticket and password good, return KP.

Otherwise, return ⊥.
1: function UNLOCK(SID, T, P̂)
2: if T ∈ SID.τ then
3: (P,KP,α) ← SID.τ[T]
4: else

α = ∗ signals invalid ticket.
5: (P,KP,α) ← (⊥,⊥, ∗)
6: R ← 0
7: if α = ⊥ then

Fresh ticket
8: α ←$ {0,1}n

9: R ← 1
10: else

Reused or invalid ticket
11: R ← 0

Server can see whether it’s getting invalid,

repeated, or fresh ticket.
12: Send to server SID: (SID, UNLOCK, α)

If server is NOT compromised, we know R.

If server IS compromised, we must ask it

how to respond.
13: if Server SID compromised then
14: Wait for (SID, UNLOCK, R) # R ∈ {0,1}

Send back the right response to the user.
15: if R = 0 then

Server returns ⊥, no decryption possible.
16: Respond to caller: (SID, UNLOCK,⊥)
17: else if R = 1 then

Server plays straight.
18: if P̂ = P then
19: Respond to caller: (SID, UNLOCK,KP)
20: else

Server returns value, decryption fails.
21: Respond to caller: (SID, UNLOCK,⊥)

provided in Algorithms 3 and 4 under adaptive corrup-
tions, with erasures.

We note that our protocols can be generalized to work
with multi-round blind signature schemes, and the same
security proof goes through.

The proof of this theorem appears in Appendix C.

6 Variants of the Basic Protocol

In this section we discuss some variants and modifca-
tions of the basic protocol which may be useful in specifc
situations.

6.1 Limiting Password Attempts
Ticket-mediated password strengthening permits a user
to request a large number of tickets at once, and this
may make sense for reasons of effciency or convenience.
However, if the user has chosen a very weak password, it
would be helpful to limit any attacker who compromises
the user’s machine to a very small number of password
guesses. For example, many systems have a limit of ten
password attempts before locking an account. There is
a straightforward way to get this same limit with ticket-
mediated password strengthening, even when requesting
hundreds or even thousands of tickets at a time.

Suppose the user has successfully created 1000
password-hashing tickets, T0,1,2,...,999. Each successful
use of a password ticket derives the payload key, KP.
In order to implement a limit of at most ten password
guesses, we do the following steps:

1. Setup:

(a) KT ← KDF(KP,“ticket encryption”,n)
(b) Using any AEAD scheme, individually en-

crypt all but ten tickets under the key KT

2. Each time a ticket is successfully used to unlock KP

(a) KT ← KDF(KP,“ticket encryption”,n)
(b) Decrypt the next few encrypted tickets with

key KT , until we have ten tickets left unen-
crypted.

Consider an attacker who gets access to the stored
data at some point. He has only ten tickets available.
Assuming the KDF is secure, he cannot decrypt any other
tickets without access to KP, which he can get only by
successfully using a ticket.

This technique can be used with our basic protocol or
with any of our variants, described below.

7

6.2 Adding Offine Access user’s device is compromised, the attacker is no longer

It is possible to add a second offine mode of access to
the payload key. This may be a practical requirement in
many cases, where a user needs to have access even when
internet access is not available. However, this represents
an explicit tradeoff between security and usability–the
number of tickets no longer provides a limit on how
many passwords may be guessed by an attacker who
compromises the user’s device.

If offine access is added, the frst question is: how
much computation should be required to unlock the pay-
load key offine? We propose the following steps for
adding offine access, if this is necessary, making use of
the “pepper” idea of Abadi et al. [25]:

1. Determine the largest acceptable amount of com-
puting time on the device that would be acceptable
to get offine access. Let this parameter be W . For
example, we might require ten minutes’ continuous
computing on the user’s device in order to unlock
the offine access. (Note that in many cases, the
constraint may be battery life rather than time.)

2. Determine an acceptable time for the initial gener-
ation of the offine access information, I, such that
I ×2q = W for some integer q. For example, I might
be 15 seconds on the user’s device.

3. Calculate q ← lg(W /I).

4. Generate a random salt S∗ ←$ {0,1}n for offine ac-
cess.

5. Compute D ← PH(S∗ ,P), using parameters for the
password hash that require I seconds to compute.

6. Store Z∗ ← VE(D,KP)

7. Set the low q bits of S∗ to zeros.

8. Forget D.

If this is done, we strongly suggest using a memory-
hard function for PH, with parameters set to the largest
memory requirements that can be reasonably accommo-
dated on the user device–this will make the offine attack
more expensive and diffcult, and may prevent the at-
tacker using commodity graphics cards to parallelize the
attack. Throwing away a few bits of the salt (following
Abadi et al.) allows us to only do the work necessary
to compute one instance of PH during setup, while still
requiring an offine user (or attacker) to compute 2q in-
stances of PH.

6.2.1 Analysis

Consider a user who provides offine access requiring W
work, alongside a TPMS scheme for online access. If the

limited to t password guesses–instead, he frst makes t
password guesses “for free,” and then does W work per
additional password guess.

Providing offine access throws away one of the ma-
jor usability advantages available with ticket-mediated
password strengthening: the ability of a user to choose
a relatively low-entropy password safely. A random dic-
tionary word or six-digit number provides substantial
security against an attacker who has only ten guesses.
Further, most users can probably understand what kind of
passwords are necessary to withstand an attacker who is
limited to ten guesses; few can properly estimate whether
their password will survive an offine attack given the
attacker’s budget and the value of W .

The advantage of using a TMPS scheme in this situa-
tion is that it allows the work per offine guess to be set to
some extremely high value, hopefully making the offine
guessing attack too expensive for an attacker in practice,
while the user can still get access her data with very little
delay as long as she has internet access.

This technique can be used with our basic protocol,
or with any of the variants described below. (Though it
would not make much sense for the Offine Variant with
HSM.)

6.3 An Offine Variant with HSM

Consider the situation where a user has a trusted com-
puting environment or trusted hardware security module
(HSM). We defne an offine variant of ticket granting
and unlocking protocol which uses an HSM and does
not need any external server. However, we emphasize
that this variant is secure only if the HSM is secure–an
attacker who can extract the secret from or reload past
states into the HSM can recover the KP with a simple
password search.

6.3.1 Starting Assumptions

We assume that the HSM can be loaded up with a secret
value, B, which can not be released from the HSM after-
ward. We further assume that the HSM supports one-time
use of the value B which is updated at each interface as
described in Algorithm 5. Note that HSM_Step must be
an atomic operation–if any value of D is returned, then B
must be updated.

We also assume that the user can load a new value of B
into the HSM at any time which overwrites the previous
existing value.

8

Algorithm 5 Access Secret and Update HSM Inter-
nal State

1: function HSM_STEP(C)
2: D ← HMAC(B,C)
3: B ← HASH(B)
4: return(D)

6.3.2 HSM REQUEST Protocol

In order to generate t tickets, the user frst chooses a
password, P and generates a random payload key KP,
and then follows the steps listed in Algorithm 6.

Algorithm 6 Create Tickets for the HSM Protocol

1: function HSM_REQUEST(P,KP, t)
2: S ←{0,1}n

3: B ←{0, 1}n

4: C ← PH(S,P)
5: Load B into the HSM as the new secret value.
6: for i ← 1 . . . t do
7: Di ← HMAC(B,C)
8: Zi ← VE(Di,KP)
9: B ← HASH(B)

10: Forget D1,2,...,t , C, B
11: return(S,Z1,2,...,t)

The protocol uses a fxed random salt S for generat-
ing all t tickets. As we do not need privacy from the
HSM, reusing the salt and getting same C is acceptable.
Similarly, there is no need for public key encryptions or
signatures. Guessing the password is equally diffcult as
the password-derived value C is never stored. The value
B is updated after each computation of Zi, resulting t-
different Di’s. The t-tickets {Z1,Z2, . . . ,Zt } consist only
of the encryptions of KP under different keys Di. As a
result, the user storage as single S and Z1,2,...,t .

Note that the same protocol can be used to gener-
ate new tickets when the old ones are running out. In
that case, the user simply runs the HSM_UNLOCK al-
gorithm (Algorithm 7) to recover KP, and then runs the
HSM_REQUEST algorithm (Algorithm 6) with P and KP

to get more tickets for the same password and payload
key.

6.3.3 HSM UNLOCK Protocol

The process of unlocking the tickets is straightforward;
however, it needs sequential run of the protocol starting
from ticket number 1 to t and hence, requires a strong
synchronization between the HSM and the user. Specif-

ically, the synchronization ensures the computation of
the correct value of B and fnally the KP when correct
password is provided. The protocol as shown in Algo-
rithm 7 starts with accepting a password P̂ from the user,
which is used to derive a challenge value Ĉ. The HMAC
of this challenge value along with the current value of B
inside the HSM is computed by the HSM and returned to
the user as D̂, and then B is again updated by the HSM.
These computations inside the HSM follows the steps of
Algorithm 5. Finally, the correctness of D̂ is verifed by
analyzing the output K obtained at Step 4 of the Algo-
rithm 7. The correct value of D̂ implies K is the desired
KP.

Algorithm 7 Use an HSM Ticket to Unlock KP

1: function HSM_UNLOCK(P̂,S,Z)
2: Ĉ ← PH(S, P̂)
3: D̂ ← HSM_Step(Ĉ)
4: K ← DV(D̂ , Zi)
5: if K = ⊥ then
6: return(⊥)
7: else
8: return(K)

The user must delete all old values of Z, in order to
ensure that he can always determine which ticket is to be
used next.

It is possible that some software error will lead to
the HSM and user software getting out-of-synch. The
best strategy for handling this is to attempt to unlock the
payload key using the password and the fnal ticket, and
to keep trying until the payload key is unlocked.

6.3.4 Analysis

Note that this scheme is not covered by our security
proofs. Here, we provide some arguments for the security
of the scheme.

Consider the situation where the user has produced t
tickets, and then her laptop was stolen by an attacker who
cannot violate the security of the HSM. Informally, what
can we say about the attacker’s chances of learning KP?

The attacker needs to guess the correct value of C =
PH(S,P). Each guess of the password leads to a guess of
C.

The user has tickets corresponding to the next t values
of B that will be used by the HSM. For i = 1,2, . . . , t, a

9

ticket Zi is used as follows:

Di = HMAC(Bi,C)

Zi = VE(Di,KP)

Bi+1 = HASH(Bi)

The HSM will only carry out one computation with
each value of Bi–this can be used to derive the decryption
key Di, but only if the attacker guesses the right value of
C. Each value of Bi inside the HSM allows a new guess
of C, and each value of Zi in the attacker’s hands allows
the guess to be checked.

After t guesses, the HSM has a value of B for which the
attacker has no corresponding values of Z. At this point,
the attacker can learn nothing about KP from interacting
with the HSM. Since he also cannot break the encryption,
this imposes a hard limit–the attacker gets only t guesses
of the password.

In this setting, we have no privacy concerns w.r.t. the
HSM. However, it’s worth noting that the HSM never
sees the password or any value it could use to check a
password guess. (Though if the HSM was also used to
generate the salt S, this would no longer be true.).

We assume that the HSM is able to securely keep B
secret. Along with whatever tamper-resistance features
are incorporated into the HSM, since B is updated each
time it is used, side-channel attacks are very unlikely to
succeed.

6.4 Different Ways to Authorize Tickets

In the basic protocol, we assume that the server issues
blind signatures to allow the server to limit how much
assistance it is required to provide. (That is, the server’s
owner presumably wants it to only provide TMPS ser-
vices to users who have paid for them, or to users who are
somehow affliated with the entity running the server.).
A blind signature works well to protect the user’s pri-
vacy, but makes strong demands on the signature scheme
used. In particular, most proposed post-quantum signa-
ture schemes have no known blind signature defned.
Below, we discuss alternative ways for the server to limit
access to its services without the need for a blind signa-
ture.

Our possible approaches fall into two broad categories:

1. Offine–the REQUEST operation is done without any
interaction with the server or any other party.

2. Online–the REQUEST protocol is almost unchanged,
but some other operation is substituted for the blind
signature protocol.

Note that the security proof on our basic protocol
doesn’t cover these variants, though we believe it could
be modifed to cover them without too much diffculty.
For each variant, we provide a short sketch of why we
believe the variant is secure. Also note that we still as-
sume that the public key encryption used below is CCA2–
specifcally, it must not be possible to modify a ciphertext
without changing the plaintext.

6.4.1 Third Party Signer (Online)

A very lightweight (but imperfect) technique for ensur-
ing user privacy from the server is simply to separate the
authorization of getting a ticket from the unlocking of
tickets. Suppose we have two trusted parties: the Bank
and the Server. The Bank authorizes tickets, and can rec-
ognize a ticket, but is never shown tickets by the Server;
the Server unlocks tickets but can’t recognize them. In
this protocol, we need an ordinary signature, nothing
more.

The REQUEST protocol works as follows. Note
that this is almost the same protocol as with the blind
signatures, except it is done with the Banker instead of
the Server.

Protocol: ThirdParty_REQUEST(P, KP, t):
User Banker
for i = 1 . . . t

B ←$ {0,1}n

E ← ENC(PKS,B)

E

F ← sign(SKB,E)

F

S ←$ {0,1}n

C ← PH(S, P)

D ← HMAC(B,C)

Z ← VE(D,KP)

Forget B,C,D,E∗ , σ∗

Ti ← (S,E,F,Z)

endfor
return(T1,2,...,t)

The unlocking protocol is exactly the same except for
the public key used to verify the signature.

10

Security This scheme is almost identical to the basic 6.4.3 Proof of Work (Offine)
protocol–the only difference is that the REQUEST proto-
col is run with a different server, and no blind signature is
used. The user’s privacy from the server is ensured by sep-
aration of information–the banker knows the signatures
it issued to the user, but doesn’t share that information
with the server. An attacker who compromises the user’s
device has exactly the same probability of success in this
scheme as in the main protocol.

6.4.2 Group Signatures (Offine)

If we want to use TMPS with a signature scheme which
doesn’t allow blind signatures, but allows group or ring
signatures, then a small variation of the protocol can be
done. We assume here that the user has a group public
key PK and a personal private key SKU for the group
signature scheme. We also assume that the server knows
PK.

Algorithm 8 Use Group Signature to Create Tickets

1: function GROUP_REQUEST(P,KP, t)
2: for i ← 1 . . . t do
3: B ←$ {0,1}n

4: E ← ENC(PKS,B)
5: F ← GroupSign(SKU ,E)
6: S ←$ {0,1}n

7: C ← PH(S,P)
8: D ← HMAC(B,C)
9: Z ← VE(Di,KP)

10: Forget D1,2,...,N , C, B
11: Ti ← (S,E,F, Z)
12: return(T1,2,...,t)

The corresponding UNLOCK protocol is almost
unchanged–the server simply verifes that F signs E us-
ing the group public key PK rather than its own signature
public key PKS

0 .

Security Consider an attacker who compromises the
user’s device, and thus learns his tickets and his signing
key. The attacks possible to him are the same as in the
basic protocol–he can request new tickets, but without
knowing KP or P, these will give him no help in learning
the correct value of P or KP. Despite knowing the signing
key, he cannot alter tickets to give himself more guesses,
because the public key encryption used is CCA2.

The server can’t learn which user is UNLOCKing her
key at any given time, because the group signature tells
the server only that she is a member of the group.

If the server’s main concern is having its resources wasted
rather than being paid for its services, a simple alternative
is to require a proof of work for each new ticket. Let’s
add two new functions:

y ← MakePOW(x,W) does approximately W work to
create a proof of work, y, associated with input value x.
CheckPOW(x,y, W) returns 1 if the proof of work is

valid, and 0 otherwise.
With these two, we can defne an entirely offine proof-

of-work version of our protocol, where W is assumed to
be a known systemwide parameter.

Algorithm 9 Use Proof of Work to Create Tickets

1: function POW_REQUEST(P,KP, t)
2: for i ← 1 . . . t do
3: B ←$ {0,1}n

4: E ← ENC(PKS,B)
5: F ← MakePOW(E,W)
6: S ←$ {0,1}n

7: C ← PH(S,P)
8: D ← HMAC(B,C)
9: Z ← VE(Di,KP)

10: Forget D1,2,...,N , C, B
11: Ti ← (S,E,F, Z)
12: return(T1,2,...,t)

Protocol: POW_UNLOCK(S,E,F,Z, P̂):
User

Ĉ ← PH(S, P̂)

Server

E, F,Ĉ

IF
E fresh AND

CheckPOW(F, E,W)

THEN
B ← DEC(SKS,E)

D ← HMAC(B,Ĉ)

ELSE
D ← ⊥

D

KP ← DV(D,Z)

return(KP)

11

Security The use of the proof of work eliminates any
information about the user in the ticket, and in fact, makes
the REQUEST protocol non-interactive.

An attacker who compromises the user’s device can
make up additional tickets, but without knowing KP or P,
these do not help him learn the correct values of P or KP.
Again, the attacker cannot alter the value of E, because
the public key encryption is CCA2 secure.

7 Implementation

The TMPS protocol requires the use of a public key en-
cryption scheme (e.g. RSA or El Gamal), a hash function
(e.g. SHA2, SHA3, or Blake2) and an HMAC computa-
tion, a password-hashing scheme (e.g. PBKDF2, scrypt,
or Argon2), a blind signature protocol (e.g. RSA or El
Gamal). The protocol permits a great deal of fexibility in
choice of underlying cryptographic primitives. Notably,
all of these (except possibly the last) can be accomplished
using existing quantum-resistant algorithms.

We implemented our protocol in Python 3, using the
Cryptography module, which provides a Python fron-
tend for OpenSSL calls. The protocol allows a choice
of underlying primitives; we used RSA with 3072-bit
moduli for signing and public key encryption, along with
SHA256 for hashing, and PBKDF2_HMAC_SHA2 for
password-hashing.

All measurements were performed on a Macbook Pro
(3.5 GHz Intel Core i7).While this is not an optimized im-
plementation, it allows us to obtain concrete performance
numbers.

Requesting 1000 tickets took a total of 83.9 seconds, of
which 76.3 was taken up by the server. This was mostly
the work of doing an RSA blind signature–the library
we used didn’t have a blind signature call, so we im-
plemented one ourselves–this is much slower than the
library call. In our implementation, each ticket took about
0.0763 seconds to produce on the server side, and about
0.0076 seconds on the user side. The blind signature done
on the server side consists of a modular exponentiation
with the exponent d, and should take no more time than a
normal RSA signature. A better estimate for an optimized
Python implementation’s server work would be about 1.6
seconds for 1000 tickets, or about 0.0016 seconds per
requested ticket. Unlocking 1000 tickets took a total of
6.7 seconds, of which 1.8 seconds was taken up by the
server. Thus, the server required 0.0018 seconds to assist
in the unlocking of a ticket, while the user needed about
0.0049 seconds. We provide these performance numbers

3We will make its source code available on a public-facing git
repository

to demonstrate that the protocol is practical–even with
an unoptimized Python implementation.

8 Conclusion and Open Questions

In this paper, we have proposed a new mechanism for
strengthening password-based key derivations, called
TMPS (Ticket-Mediated Password Strengthening). We
have also proposed a set of protocols that implements a
TMPS scheme, proved its security in the UC model, and
provided a number of variant schemes which allow for
different implementation constraints and tradeoffs.

There are several questions left open by this research.
First, whether it is possible to construct TMPS schemes

which provide privacy for the user, allow the server
to restrict access to only authorized users, and do not
need blind or group signatures. The variant protocols in
Section 6 that avoided these primitives imposed other
requirements–either a willingness to trust a third party
with user privacy, a willingness to provide the service to
all comers, or the use of group signatures.

Second, investigating other settings where one can
use tickets bound to a computation to obtain a novel
functionality. For example, it may be possible to use this
kind of mechanism to limit accesses to a local encrypted
database, or computations of a key derivation function.

Third, whether there are more elaborate restrictions
that can be imposed on these tickets, without losing the
users’ privacy. For example, is it be possible to rate-limit
UNLOCK requests from a given user without revealing
which user was using the scheme?

Finally, incorporating a mechanism for key rollover,
for situations where a server’s key may have been com-
promised, would be a useful addition to the scheme. At
present, our solution would be to REQUEST a large set
of replacement tickets using the server’s new public key.

References

[1] AGRAWAL, S., MIAO, P., MOHASSEL, P., AND
MUKHERJEE, P. PASTA: password-based thresh-
old authentication. In ACM Conference on Com-
puter and Communications Security (2018), ACM,
pp. 2042–2059.

[2] AKHAWE, D. How dropbox se-
curely stores your passwords. https:
//blogs.dropbox.com/tech/2016/09/
how-dropbox-securely-stores-your-passwords/,
2016. Online; accessed 4 January 2019.

12

https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/
https://blogs.dropbox.com/tech/2016/09/how-dropbox-securely-stores-your-passwords/

[3] BELLARE, M., KEELVEEDHI, S., AND RISTEN-
PART, T. Dupless: Server-aided encryption for dedu-
plicated storage. IACR Cryptology ePrint Archive
2013 (2013), 429.

[4] BELLARE, M., MICCIANCIO, D., AND WARIN-
SCHI, B. Foundations of group signatures: For-
mal defnitions, simplifed requirements, and a con-
struction based on general assumptions. In EURO-
CRYPT 2003 (May 2003), E. Biham, Ed., vol. 2656
of LNCS, Springer, Heidelberg, pp. 614–629.

[5] BELLARE, M., POINTCHEVAL, D., AND ROG-
AWAY, P. Authenticated key exchange secure
against dictionary attacks. In Proceedings of the
19th International Conference on Theory and Ap-
plication of Cryptographic Techniques (Berlin, Hei-
delberg, 2000), EUROCRYPT’00, Springer-Verlag,
pp. 139–155.

[6] BELLOVIN, S. M., AND MERRITT, M. Encrypted
key exchange: Password-based protocols secure
against dictionary attacks. In IEEE SYMPOSIUM
ON RESEARCH IN SECURITY AND PRIVACY
(1992), pp. 72–84.

[7] CAMENISCH, J., DRIJVERS, M., GAGLIARDONI,
T., LEHMANN, A., AND NEVEN, G. The won-
derful world of global random oracles. In EU-
ROCRYPT 2018, Part I (Apr. / May 2018), J. B.
Nielsen and V. Rijmen, Eds., vol. 10820 of LNCS,
Springer, Heidelberg, pp. 280–312.

[8] CAMENISCH, J., ENDERLEIN, R. R., AND NEVEN,
G. Two-server password-authenticated secret
sharing UC-secure against transient corruptions.
Cryptology ePrint Archive, Report 2015/006, 2015.
http://eprint.iacr.org/2015/006.

[9] CANETTI, R. Security and composition of multi-
party cryptographic protocols. Journal of Cryptol-
ogy 13, 1 (Jan. 2000), 143–202.

[10] CANETTI, R., DAMGÅRD, I., DZIEMBOWSKI, S.,
ISHAI, Y., AND MALKIN, T. On adaptive vs. non-
adaptive security of multiparty protocols. In EU-
ROCRYPT 2001 (May 2001), B. Pftzmann, Ed.,
vol. 2045 of LNCS, Springer, Heidelberg, pp. 262–
279.

[11] CANETTI, R., FEIGE, U., GOLDREICH, O., AND
NAOR, M. Adaptively secure multi-party computa-
tion. In 28th ACM STOC (May 1996), ACM Press,
pp. 639–648.

[12] EVERSPAUGH, A., CHATERJEE, R., SCOTT, S.,
JUELS, A., AND RISTENPART, T. The pythia PRF
service. In 24th USENIX Security Symposium
(USENIX Security 15) (Washington, D.C., 2015),
USENIX Association, pp. 547–562.

[13] FORD, W., AND JR., B. S. K. Server-assisted gen-
eration of a strong secret from a password. In 9th
IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enter-
prises (WETICE 2000), 4-16 June 2000, Gaithers-
burg, MD, USA (2000), IEEE Computer Society,
pp. 176–180.

[14] HOHENBERGER, S., LEWKO, A., AND WATERS,
B. Detecting dangerous queries: A new approach
for chosen ciphertext security. Cryptology ePrint
Archive, Report 2012/006, 2012. http://eprint.
iacr.org/2012/006.

[15] JARECKI, S., KIAYIAS, A., KRAWCZYK, H., AND
XU, J. TOPPSS: Cost-minimal password-protected
secret sharing based on threshold OPRF. In
ACNS 17 (July 2017), D. Gollmann, A. Miyaji, and
H. Kikuchi, Eds., vol. 10355 of LNCS, Springer,
Heidelberg, pp. 39–58.

[16] JARECKI, S., KRAWCZYK, H., AND XU, J.
OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In EUROCRYPT
(3) (2018), vol. 10822 of Lecture Notes in
Computer Science, Springer, pp. 456–486.

[17] KATZ, J., AND LINDELL, Y. Introduction to Mod-
ern Cryptography, Second Edition. CRC Press,
2014.

[18] KELSEY, J., SCHNEIER, B., HALL, C., AND WAG-
NER, D. Secure applications of low-entropy keys.
In ISW’97 (Sept. 1998), E. Okamoto, G. I. Davida,
and M. Mambo, Eds., vol. 1396 of LNCS, Springer,
Heidelberg, pp. 121–134.

[19] KRAWIECKA, K., KURNIKOV, A., PAVERD, A.,
MANNAN, M., AND ASOKAN, N. Safekeeper: Pro-
tecting web passwords using trusted execution envi-
ronments. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018,
Lyon, France, April 23-27, 2018 (2018), P. Champin,
F. L. Gandon, M. Lalmas, and P. G. Ipeirotis, Eds.,
ACM, pp. 349–358.

[20] KRAWIECKA, K., PAVERD, A., AND ASOKAN,
N. Protecting password databases using trusted

13

http://eprint.iacr.org/2015/006
http://eprint.iacr.org/2012/006
http://eprint.iacr.org/2012/006

hardware. In Proceedings of the 1st Workshop
on System Software for Trusted Execution, Sys-
TEX@Middleware 2016, Trento, Italy, December
12, 2016 (2016), ACM, pp. 9:1–9:6.

[21] LAI, R. W. F., EGGER, C., REINERT, M., CHOW,
S. S. M., MAFFEI, M., AND SCHRÖDER, D. Sim-
ple password-hardened encryption services. In 27th
USENIX Security Symposium (USENIX Security
18) (Baltimore, MD, 2018), USENIX Association,
pp. 1405–1421.

[22] LAI, R. W. F., EGGER, C., SCHRÖDER, D., AND
CHOW, S. S. M. Phoenix: Rebirth of a cryp-
tographic password-hardening service. In 26th
USENIX Security Symposium (USENIX Security
17) (Vancouver, BC, 2017), USENIX Association,
pp. 899–916.

[23] LINDELL, A. Y. Adaptively secure two-party
computation with erasures. In CT-RSA 2009
(Apr. 2009), M. Fischlin, Ed., vol. 5473 of LNCS,
Springer, Heidelberg, pp. 117–132.

[24] MANI, A. Life of a password. Real World
Crypto 2015, 2015. https://rwc.iacr.org/
2015/Slides/RWC-2015-Amani.pdf.

[25] MARTIN ABADI, T. M. A. L., AND NEEDHAM,
R. Strengthening passwords. Technical report,
1997. https://users.soe.ucsc.edu/~abadi/
Papers/pwd-revised/pwd-revised.html.

[26] MUFFETT, A. Facebook: Password hashing &
authentication. Presentation at Passwords 2014
Conference, NTNU, 2014. https://video.adm.
ntnu.no/pres/54b660049af94.

[27] MUFFETT, A. Life of a password. Presentation at
Real World Crypto 2015, 2015.

[28] SCHNEIDER, J., FLEISCHHACKER, N.,
SCHRÖDER, D., AND BACKES, M. Eff-
cient cryptographic password hardening services
from partially oblivious commitments. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna,
Austria, October 24-28, 2016 (2016), E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds., ACM, pp. 1192–1203.

[29] SCHRÖDER, D., AND UNRUH, D. Security of blind
signatures revisited. In PKC 2012 (May 2012),
M. Fischlin, J. Buchmann, and M. Manulis, Eds.,
vol. 7293 of LNCS, Springer, Heidelberg, pp. 662–
679.

[30] SÖNMEZ TURAN, M., BARKER, E. B., BURR,
W. E., AND CHEN, L. SP 800-132. recommen-
dation for password-based key derivation: Part 1:
Storage applications. Tech. rep., National Insti-
tute of Standards & Technology, Gaithersburg, MD,
United States, 2010.

[31] WU, T. The SRP authentication and key exchange
system. RFC 2945 (2000), 1–8.

A Defnitions

In this section, we mention the key defnitions used in
the security analysis of our protocol to facilitate better
understanding. Our exposition closely follows [4, 14, 17,
29].

Defnition A.1. [Encryption System] An encryption
system can be defned as a tuple of probabilistic
polynomial-time algorithms ΠENC(GEN,ENC,DEC) such
that:

1. The key-generation algorithm GEN takes as input the
security parameter 1n and outputs a key K.

2. The encryption algorithm ENC takes as input a key
K and a plaintext message M ∈ {0,1}∗, and outputs
a ciphertext C where C ← ENCK (M).

3. The decryption algorithm DEC takes as input a key
and a ciphertext, and outputs a message. We as-
sume without loss of generality that the decryption
algorithm corresponding ENCK is DECK such that
M = DECK (C) and for every n, every key K out-
put by GEN(1n), and every M ∈ {0,1}∗, it holds that
DECK (ENCK (M)) = M.

The Chosen-Ciphertext Attack (CCA) security ex-
periment PrivKcca (n): Consider the following exper-A ,ΠENC

iment for an encryption system ΠENC = (GEN,ENC,DEC),
adversary A , and value n for the security parameter.

1. A random key K is generated by running GEN(1n).

2. The adversary A is given input 1n and oracle access
to ENCK (·) and DECK (·). It outputs a pair of messages
M0, M1 of the same length.

3. A random bit b ← {0,1} is chosen, and then a ci-
phertext C ← ENCK (Mb) is computed and given to
A . We call C the challenge ciphertext.

4. The adversary A continues to have oracle access to
ENCK (·) and DECK (·), but is not allowed to query the
latter on the challenge ciphertext itself. Eventually,
A outputs a bit b0

14

https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://rwc.iacr.org/2015/Slides/RWC-2015-Amani.pdf
https://users.soe.ucsc.edu/~abadi/Papers/pwd-revised/pwd-revised.html
https://users.soe.ucsc.edu/~abadi/Papers/pwd-revised/pwd-revised.html
https://video.adm.ntnu.no/pres/54b660049af94
https://video.adm.ntnu.no/pres/54b660049af94

5. The output of the experiment is defned to be 1 if
b0 = b, and 0 otherwise.

Defnition A.2. [CCA Security] An encryption system
ΠENC has indistinguishable encryptions under a chosen-
ciphertext attack (or is CCA-secure) if for all probabilistic
polynomial-time adversaries A there exists a negligible
function negl such that:

1
Pr[PrivKcca (n) = 1] ≤ + negl(n),A ,ΠENC 2

where the probability is taken over all random coins used
in the experiment.

Other variants of the CCA Security defnition are de-
fned below.

Defnition A.3. [Chosen Plaintext Attack (CPA) Se-
curity] Similar to the security experiment of CCA except
that the Adversary A is not given access to decryption
oracle at step 2 and step 4.

Defnition A.4. [Non-adaptive CCA or CCA1 Secu-
rity] Similar to the security experiment of CCA except
that the Adversary A is not given access to decryption
oracle at step 4.

Defnition A.5. [Adaptive CCA or CCA2 Security]
Similar to the security experiment of CCA where the Ad-
versary A is allowed to perform a polynomially bounded
number of encryptions, decryptions or other calculations
over inputs of its choice except on the challenge cipher-
text.

Defnition A.6. [Signature Scheme]: A signature
scheme is a tuple of probabilistic polynomial-time al-
gorithms ΠSIG(GEN,SIGN,VERIFY) such that:

1. The key-generation algorithm GEN takes as input
a security parameter 1n and outputs a pair of keys
(PK,SK). These are called the public key and the
private key, respectively.

2. The signing algorithm SIGN takes as input a private
key SK and a message M from some underlying
message space. It outputs a signature F represented
as F ← SIGNSK (M).

3. The deterministic verifcation algorithm VERIFY
takes as input a public key PK, a message M, and
a signature F . It outputs a bit b represented as
b = VERIFYPK (M,F) where b = 1 means valid and
b = 0 means invalid.

We require that for every n, every (PK,SK) output by
GEN(1n), and every message M in the appropriate under-
lying plaintext space, it holds that

VERIFYPK (M,SIGNSK (M)) = 1.

We say F is a valid signature on a message M if
VERIFYPK (M,F) = 1.

Defnition A.7. [Blind Signature] A 2-move blind sig-
nature scheme is an interactive signature scheme with
signer S and user U and can be defned as a tuple
of probabilistic polynomial-time algorithms ΠBSIG =
(GEN,BLIND,UBLIND,SIGN,BVERIFY) such that:

1. The key-generation algorithm Gen takes as input
a security parameter 1n and outputs a pair of keys
(PK,SK). These are called the public key and the
private key, respectively.

2. Signature Issuing. The parties execute the following
protocol, denoted hU(PK,M),S(SK)i:

(a) M∗ ← BLIND(M): The user blinds the mes-
sage M to obtain M∗ and sends to the signer.

(b) F∗ ← SIGNSK (M∗): The signer outputs a sig-
nature F∗ on input of message M∗ and private
key SK and sends to the user.

(c) F ← UBLIND(F∗): The user unblinds the sig-
nature F∗ to obtain F . Note that the user in-
puts additional private state to the UBLIND al-
gorithm, which we leave implicit.

3. The deterministic verifcation algorithm BVERIFY
takes as input a public key PK, a message M, and
a signature F . It outputs a bit b where b = 1 means
valid and b = 0 means invalid.

We require that for every n, every (PK,SK) output by
GEN(1n), and every message M ∈ {0, 1}n and any F out-
put by U in the joint execution of hU(PK,M),S(SK)i,
it holds that

BVERIFYPK (M,F) = 1.

The security of blind signature schemes requires two
properties, namely unforgeability and blindness.

Defnition A.8. [Unforgeability] A 2-
move blind signature scheme ΠBSIG =
(GEN,BLIND,UBLIND,SIGN,BVERIFY) is called un-
forgeable if for any effcient algorithm A the probability
that experiment UnforgeΠBSIG (n) evaluates to 1 isA
negligible (as a function of n) where

Experiment ForgeA
ΠBSIG

15

1. (SK, PK) ← GEN(1n)

, (Mk+1,Fk+1)) ← Ah·,S(SK)i2. ((M1,F1), · · ·
∞
(PK) Re-

turn 1 iff

(a) Mi 6= M j for 1 ≤ i < j ≤ k + 1 and
(b) BVERIFYPK (Mi,Fi) = 1 for all i = 1,2, · · · ,k +

1, and
∞(c) at most k interactions with h·,S(SK)i were

completed.

Defnition A.9. [Blindness] A 2-move blind signature
scheme ΠBSIG = (GEN,BLIND,UBLIND,SIGN,BVERIFY)
is called blind if for any effcient algorithm A the prob-
ability that experiment BlindΠBSIG

BSIGN∗ (n) evaluates to 1 is
negligibly close to 1

2 where

Experiment BlindΠBSIG
BSIGN∗

1. (PK,M0,M1, st f ind) ← A(f ind,1n)

2. b ←{0,1}
,hU(PK,M1−b),·i13. stissue ← AhU(PK,Mb),·i1

(issue,st f ind)
and let Fb,F1−b denote the (possibly undefned) lo-
cal outputs of U(PK,Mb) resp. U(PK,M1−b)

4. set (F0,F1) = (⊥, ⊥) if F0 = ⊥ or F1 = ⊥

5. b∗ = A(guess,F0,F1,stissue)

6. return 1 iff b = b∗ .

Defnition A.10. [Group Signature] A group signature
scheme ΠGSIG = (GKg,GSIGN,GVERIFY,OPEN) consists
of four polynomial-time algorithms:

1. The randomized group key generation algorithm
GKg takes input a security parameter 1n and 1m

where m ∈ N is the group size and outputs a tuple
(gPK,gmSK,gSK), where gPK is the group public
key, gmSK is the group manager’s secret key, and
gSK is an n-vector of keys with gSK[i] being a secret
signing key for player i ∈ [m].

2. The randomized group signing algorithm GSIGN
takes as input a secret signing key gSK[i] and a
message M to return a signature of M under gSK[i]
i ∈ [m].

3. The deterministic group signature verifcation algo-
rithm GVERIFY takes as input the group public key
gPK, a message M, and a candidate signature F for
M to return either 1 or 0.

4. The deterministic opening algorithm OPEN takes as
input the group manager secret key gmSK, a mes-
sage M, and a signature F of M to return an identity
i or the symbol ⊥ to indicate failure.

Correctness: The scheme must satisfy the follow-
ing correctness requirement. For all n,m ∈ N, all
(gPK,gmSK,gSK) ∈ [GKg(1n ,1m)], all i ∈ [n] and all
M ∈ {0,1}∗

GVERIFY(gPK, M,GSIGN(gSK[i],M)) = 1 and

OPEN(gmSK,M,GSIGN(gSK[i],M)) = i

Defnitions of security in the Universal Composabil-
ity (UC) framework. We refer to previous work [9,
10, 23] for defnitions of UC secure computation in the
adaptive-corruption setting.

B Game-Based Security Defnitions and
Proofs

Theorem 5.1 ensures that the basic protocol behaves like
the ideal functionality, but does not tell us exactly what
security properties the ideal functionality provides. In
this section, we consider some game-based security def-
initions, and show that the ideal functionality makes it
easy to prove a bound on an attacker’s probability of
winning these games. Combined with Theorem 5.1, we
thus prove that no attacker interacting with our basic pro-
tocol can win these games with probability more than
negligibly higher than these bounds.

B.1 User Compromise: Stealing Tickets

The most practically important attack to consider involves
the compromise of a user’s data. For example, Bob steals
Alice’s laptop with an encrypted hard drive; he knows all
her tickets, and can impersonate her to the server, but he
doesn’t know Alice’s password. The security goal of our
scheme in this case is straightforward: after Bob steals
Alice’s t tickets, he gets only t guesses for her password.
We can defne this in terms of the following game:

Security Game: User Compromise

1. The game is parametrized by security parame-
ter n, dictionary size N and number of tickets t,
where t < N.

2. The challenger generates a list of N distinct
passwords, P1,...,N .

3. The challenger randomly generates a payload
key, KP ←{0,1}n .

16

4. The challenger chooses a random ` ∈
{1, . . . ,N}.

5. The challenger honestly runs ServerSetup
and RequestTickets the to generate t tick-
ets T1,...,t using password P̀ and payload key
KP.

6. The challenger provides the attacker with the
list of N passwords and t tickets.

7. The attacker may send any messages he likes
to the server, and may do any computation he
likes, up to some very generous limits.

8. The attacker may request new tickets by run-
ning RequestTickets with the challenger.

9. The attacker must return a guess of KP. If his
guess is correct, he wins; otherwise he loses.

A losing transcript (LT) is any transcript which is not
a winning transcript.

Fact. Given a winning transcript, the attacker has (at
most) a probability of one of winning the game.

This is trivially true of any condition, though an at-
tacker with a winning transcript actually has exactly a
probability of one of winning the game.

We write Pr[WT] to denote the probability of getting
a winning transcript, and Pr[WT |A] to denote the proba-
bility of adversary A getting a winning transcript.

Defnition B.2. Well-Behaved Adversary
Consider an adversary given tickets T1,2,...,t and pass-
words P1,2,...,N . A well-behaved adversary (WBA) makes
queries to the ideal functionality according to the follow-
ing rules:

1. Never make a REQUEST query.

2. For each UNLOCK query:

In this game, we explicitly assume that the server being
used is not compromised.

Consider an attacker allowed to make at most 2k

queries to the server, and at most 2k trial decryption
attempts to DV. The protocol meets its security target
against this attacker if he wins the game with probability
at most N

t + negl (n − k).

B.1.1 Practical Relevance

This game directly relates to the attack we are most con-
cerned with in this system–the one where Bob learns
all of Alice’s stored information, and tries to guess her
password so he can decrypt all her fles. If Alice keeps
only t tickets on her computer, this must translate to Bob
getting no more than t guesses at her password, in order
for our system to be secure.

B.1.2 Proof

We now will prove that an adversary interacting with
the ideal functionality and limited to at most 2k trial de-

tcryptions with DV has at most a N + 2k−n probability of
winning this game.

Defnition B.1. Winning Transcript
An attacker has a winning transcript (WT) when the
transcript of his interactions with the ideal functionality
includes at least one response to an UNLOCK request
which contains the correct value of KP.

(a) Use a ticket T ∈ T1,...,t .

(b) Never use the same ticket in more than one
UNLOCK query.

(c) Use a password P̂ ∈ P1,...,N .

(d) Never use the same password in more than one
UNLOCK query.

Lemma B.1. A WBA has a probability of at most N
t of

having a winning transcript.

Proof:

1. Every WBA UNLOCK query has a valid ticket. (Def-
inition of WBA (a,b) and Defnition of Game (step
5))

2. Every WBA UNLOCK query returns (1,⊥) if its
password is incorrect, and (1,KP) if its password is
correct. (Ideal functionality, lines 26 and 29)

3. WBA makes at most t queries. (WBA defnition,
(a,b))

4. P[GT] = P[correct password appears in one of
WBA’s UNLOCK queries]. (Implication of step 2.)

5. P[correct password appears in one of WBA’s
queries] ≤ t

N

(a) WBA makes t queries, each with a different
password.

(b) One password is correct, but adversary has no
information about which.

17

(c) Thus, WBA has at best a t chance of includ-N Proof:
ing the right password in one of its queries.

1. GT: No adversary has more than t
N +2×2k−n prob-

6. Thus, a WBA has at most a t
N probability of having ability of getting a winning transcript when interact-

a winning transcript. (Previous two steps.) ing with the ideal functionality. (Lemma B.2.)

Lemma B.2. There is no adversary A such that
Pr[W T |A] > Pr[W T |W BA] + 2 × 2k−n .

2. LT: Given a losing transcript, an adversary who
can make no more than 2k trial decryptions with DV

Proof: By showing that violating any of the fve condi-
tions of being a WBA can never raise P[W T] by more

has a probability of at most 2k−n of determining KP.
(Game defnition with KP chosen randomly.)

than a negligible amount. 3. Union Bound: The probability of the attacker
1. Making a REQUEST call never raises P[W T].

tknowing KP is thus no higher than N + 3 × 2k−n

(Summing GT and LT conditions.)
(a) A WT is a transcript in which an UNLOCK

returns KP.

(b) Tickets generated by a REQUEST permit an
UNLOCK with the same payload key as ap- B.2 Server Compromise: Learning the
peared in the REQUEST. User’s Password

(c) The value of KP is selected randomly from all
possible n-bit strings. Another critical security property of this scheme is that

(d) The adversary may make at most 2k REQUEST
the server must never learn anything about the user’s
password. We capture this with the following game, in

calls. which we assume the server is corrupted:
(e) Thus, the probability of the adversary putting

the right value of KP in one of those REQUEST
calls (which will enable an UNLOCK call with Security Game: Learn User’s Password

the right value of KP) is no greater than 2k−n . 1. The game is parametrized by security parame-

2. Using a ticket that’s not in the valid set of tickets
never raises P[W T]. (Only tickets T1,2,...,t have pay-

ter n, dictionary size N and number of tickets t,
where t < N.

load key KP. 2. The challenger generates two random pass-

3. Reusing a ticket never raises P[W T]. (A reused
words, P1,P2.

ticket always gets (⊥,⊥). 3. The challenger randomly generates a payload
key, KP ← {0,1}n .

4. Using a password that’s not in P1,...,N never raises
P[W T]. (Only an UNLOCK with P̀ will get back 4. The attacker is allowed to play the role of the
(1,KP), any other password will get (1,⊥).) server in the protocol.

5. Reusing a password never raises P[W T]. (If the pass- 5. The challenger honestly runs ServerSetup
word was used with a valid fresh ticket in a previous and RequestTickets with the attacker play-
UNLOCK call, then future UNLOCK calls with fresh ing the role of the server, using password P1

tickets will get the same result. Thus, the probability and payload key KP. to generate t tickets T1,...,t .
of KP appearing in the transcript is never raised.)

6. The challenger runs UNLOCK using password
6. Thus, P[W T |non-W BA] ≤ P[W T |W BA] + 2k−n . P1 and each ticket in succession.

7. The challenger generates a random bit b, and

Theorem B.3. With the ideal functionality and an un- sends the attacker Pb,Pb⊕1.

compromised server, no adversary who can make at most
2k queries to DV or the ideal functionality can win this

8. The attacker must guess b to win the game.

game with probability higher than t
N + 2× 2k−n .

18

B.2.1 Practical Relevance

If a compromised server can learn anything about the
user’s password, then it becomes a major security threat–
a single server being compromised might lead to the leak
of thousands of users’ passwords. If there’s no attacker
who can win this game with probability more than 1 , then 2
the server learns nothing at all about the user’s password–
not even enough to distinguish the correct password from
an incorrect one when given both values. An attacker
who can’t distinguish correct and incorrect passwords
also cannot mount a brute-force password search.

B.2.2 Proof

Theorem B.4. No attacker can win the Learn User’s
Password game when the attacker and challenger are
interacting via the ideal functionality with probability
higher than 1

2 .

Proof: In the ideal functionality, the server never re-
ceives any information about the password P provided by
the user. With no information about the correct password,
the attacker has no strategy better than a random guess
for determining b.

B.3 Server Compromise: Violating the
User’s Privacy

The user trusts the server to assist her in key derivation,
but may not want the server to be able to determine when
she is deriving her key. This game captures a critical
privacy property–the server must not be able to determine
which user is unlocking her key at any given time.

Security Game: Violate User Privacy

1. The game is parametrized by security parame-
ter n, and number of tickets t.

2. The challenger generates two random pass-
words, P1,P2, and two payload keys KP1 and
KP2.

3. The attacker is allowed to play the role of the
server in the protocol.

4. The challenger honestly runs ServerSetup.

5. The challenger honestly runs REQUEST to gen-
erate t tickets with password P1 and payload
key KP1, identifying itself as user 1.

6. The challenger honestly runs REQUEST to gen-
erate t tickets with password P2 and payload
key KP2, identifying itself as user 2.

7. For i = 1 . . . t − 1:

(a) The challenger asks the attacker which
user should make the next UNLOCK call,
and whether he should use the right pass-
word or not.

(b) The challenger makes the UNLOCK call
as directed.

8. The challenger generates a random bit b.

9. The challenger runs UNLOCK using password
Pb and one of user b + 1’s tickets.

10. The attacker must guess b to win the game.

B.3.1 Practical Relevance

We want to guarantee that the user retains privacy from
the server–she doesn’t give the server the power to track
each time she decrypts her hard drive. This game captures
the user’s privacy goal–an attacker who has compromised
the server cannot learn which user ran the UNLOCK pro-
tocol with him in any given instance, even if he knows
which user requested each ticket and has observed many
other uses of the same password. Note that this assumes
that the server isn’t able to simply track the user by IP
address–network-level anonymization of the user is out-
side the scope of our work.

B.3.2 Proof

The proof is trivial: the ideal functionality does not in-
form the server which user is making an UNLOCK call,
so the server dealing with the ideal functionality never
learns this information.

C Proof of Theorem 5.1

Before re-stating our theorem, we note that the only ran-
dom oracle that gets programmed in the proof is HVE.

4We note that for UC composition to hold in the programmable
random oracle model, one must, in general, assume that an independent
random oracle is used for each SID instance. In our case, we essentially
use the programmability of the random oracle to implement a non-
committing encryption scheme (see [11]), by adjusting the outcome
of HVE to ensure that the string Zi decrypts to the correct KP value.

19

4

We also assume that honest users securely erase their
tickets after an unlock attempt with that ticket has been
made (as well as any other part of their state which no
longer needs to be stored).

Theorem 5.1. Under the assumption that ΠENC is a
CCA2-secure encryption scheme (see Defnition A.5),
ΠSIG is a 2-move blind signature scheme (see Defni-
tion A.7) and the assumptions listed in Section 5, the
protocols for SETUP, REQUEST and UNLOCK given in
Sections 4.1, 4.2 and 4.3, UC-realize the ideal function-
ality provided in Algorithms 3 and 4 under adaptive cor-
ruptions, with erasures.

To prove the theorem, we provide a simulator Sim
and prove that the resulting Ideal and Real distributions
are computationally indistinguishable. Throughout, we
assume that the same ticket (resp. alias) is never issued
twice during a REQUEST (resp. UNLOCK) procedure in
an Ideal execution with a single SID. Since each of these
events occurs with at most λ02/2n probability, where λ0

is the total number of tickets issued, this assumption can
only reduce the adversarial distinguishing probability by
at most 2 · λ02/2n, which is negligible.

C.1 Description of Simulator Sim

Simulator Sim under adaptive corruptions of parties

Note that since we assume secure channels, Sim only
needs to begin simulating the view at the moment that
some party is corrupted.

Fix an environment Env, Server Server, users
U1, . . . ,Um and adversary A . Recall that we allow the
environment Env to choose the inputs of all parties.
Simulator Sim does the following:

1. Initialization: Initialize tables B,E ,S , Z,Tgen,Tused

to empty and counters counti for i ∈ [m] to 0.

2. Preprocessing: Let λ0 i be the maximum number of
tickets for each party Ui. For i ∈ [m], j ∈ [λ0 i]: Gener-
ate Bi

j ←{0,1}n , Si
j ←{0,1}n , Zi

j ←{0, 1}2n . Add
all generated Bi

j (resp. Si
j,Z

i
j) values to B (resp.

Camenisch et al. [7] showed that some natural non-committing encryp-
tion schemes in the programmable random oracle model can be proven
secure in the UC setting, since the simulator only needs to program the
random oracle at random inputs, which have negligible chance of being
already queried or programmed. We anticipate that a similar argument
would work for our scheme, since Di

j is unpredictable and with very
high probability will not be queried in any other session before being
programmed in the target session. However, our formal proof is only
for the case where an independent random oracle is assumed for each
session.

S ,Z). Let λ0 be the total number of (Bi
j,S

i
j,Z

i
j) tu-

ples generated.

3. Responding to corruption requests:

Corruption of a party Ui: Sim corrupts the
corresponding ideal party and obtains
its internal state, consisting of unused
tickets t1

i , . . . , t
λ
i

i
. For j ∈ [counti], mod-

ify entry (Ui , Si
j,B

i
j,E

i
j,Fj

i ,Zi
j, ⊥) ∈ T

to (Ui , Si
j,B

i
j,E

i
j,Fj

i ,Zi
j, t

i
j). For

j ∈ {counti + 1, . . . ,λi}:
(a) Generate Ei

j = ENCPKS (B
i
j) and Fj

i as a
blind signature of Ei

j using SKS (note that
since λi − counti > 0, Sim must have al-
ready generated (PKS,SKS,PKS

0 ,SKS
0)).

(b) Add (Ui , Si
j,E

i
j,Fj

i ,Zi
j, t

i
j) to T and Ei

j to
set E .

Sim releases tickets (Si
j,E

i
j,Fj

i , Zi
j).

Corruption of Server: Sim corrupts the corre-
sponding ideal party and obtains its ideal
internal state If an Initialize query has not
yet been submitted to the ideal functional-
ity, Sim returns ⊥. Otherwise, if the server’s
keys have not yet been sampled, Sim sam-
ples (PKS,SKS,PKS

0 ,SKS
0). Let α1, . . . ,αλ be

the aliases in the ideal internal state (if any).
Associate each row in Tused with a random
alias so each entry in Tused contains a value
from {α1, . . . ,αλ} in its fnal column. For
i ∈ [λ −|Tused|], Generate Bi ← {0,1}n , Ei =
ENCPKS (Bi) and Fi as a blind signature of Ei.
Add all tuples (Bi,Ei, Fi,αi) to Tused. For each
row of Tused, release (Ei,Fi).

4. Responding to random oracle queries to Hpw,HKD:
Sim forwards the query to the oracle and forwards
the response back.

5. Responding to random oracle queries to HVE: Sim
maintains a table THVE . The table is initialized as
empty. Each time A queries HVE on input x, Sim
checks the table to see if an entry of the form (x,y)
appears in the table for some y. If yes, Sim returns
y. Otherwise, Sim chooses a random y, adds entry
(x,y) to THVE and returns y to A.

6. When responding to oracle queries, Sim also does
the following:

• Bad Event 1: If Server is corrupted and A
makes a query to Hpw with input of the form

20

Si
j||P̂i

j, where Si
j ∈ S and (Si

j, ·, ·, ·, ti
j) ∈/ T (for

ti
j 6= ⊥) then Sim aborts.

• Bad Event 2: If Server is not corrupted and A
makes a query to HKD with input of the form
(Bi

j||Ĉi
j), where Bi

j ∈ B , then Sim aborts.

• If Server is corrupted and A makes a
query to Hpw with input of the form
Si

j||P̂i where Si ∈ S , Sim fnds the tu-j j
ple of the form (Si

j, ·, ·, ·, ti
j) ∈ T and sub-

mits UNLOCK(SID, ti
j, P̂

i
j) to the ideal func-

tionality. Sim receives (UNLOCK, SID,α)
from the ideal functionality, and returns
(SID, UNLOCK,1). If the ideal functionality re-
turns ⊥, Sim forwards Ĉi

j = Hpw(Si
j||P̂i

j) to A .
If the ideal functionality returns KP, Sim com-
putes Ĉi

j = Hpw(Si
j||P̂i

j), D
i
j = HKD(Bi

j||Ĉi
j)

and entries for (0||Di
j,y1),(1||Di

j, y2) such
that y1||y2 = Zi

j ⊕ (0n ,KP)) to THVE . Sim re-
turns Ĉi

j to A. Bad Event 3: If at this point
0||Di

j or 1||Di
j have already been queried to

HVE, Sim aborts.

7. Responding to messages from the REQUEST pro-
tocol issued by a corrupted Ui when Server is not
corrupted. Sim does the following:

(a) Generate (PKS,SKS,PKS
0 ,SKS

0) if not yet gen-
erated.

(b) Submit REQUEST(Ui, SID, 0,0) to the ideal
functionality and receive back ticket t.

(c) Place (Ui,∗,∗,∗,∗, t) ∈ Tgen.

(d) Play the part of an honest signer with secret
key SKS

0 in the blind signature protocol with
the corrupted user.

8. Responding to (SID, REQUEST,Ui) messages from
Ideal Functionality. Sim does the following:

(a) Set counti := counti + 1 and j := counti.

(b) Generate Ei
j := ENCPKS (B

i
j).

(c) Participate in a blind signature protocol on
message Ei

j with the corrupted Server to obtain
signature Fj

i .

(d) Store (Ui,Si
j,B

i
j,E

i
j,Fj

i ,Zi
j,⊥) ∈ Tgen.

9. Responding to messages from the UNLOCK proto-
col issued by adversary A when Server is not cor-
rupted. A sends (Ê, F̂ ,Ĉ) to the server.

• If a tuple of the form (·, Ê, ·, t̂, ∗) ∈ Tused, then
send UNLOCK(SID, t̂, ⊥) to the ideal function-
ality.

• Otherwise, if the signature does not verify sub-
mit UNLOCK(SID,⊥,⊥) to the ideal function-
ality.

• Otherwise, if Ê = Ei
j ∈ E :

(a) Find an entry of the form (·, ·, Ê, ·, t̂) ∈ T .
Add (B̂, Ê, F̂ , t, ∗) to Tused.

(b) Bad Event 4: If there is more than one
oracle query that returned Ĉ, Sim aborts.

(c) If the unique query exists, extract the pass-
word guess P̂ (with bit length at most
n0). If it does not exist, set P̂ to ⊥. Send
UNLOCK(SID, t̂, P̂) to the ideal function-
ality. Bad Event 5: If Ĉ = Hpw(Si

j,∗), for
some Si

j ∈ S , but A did not make an ora-
cle query returning Ĉ, Sim aborts.

(d) If the ideal functionality returns a value
KP, then set Di

j = HKD(Bi
j||Ĉ). Add

(0||Di
j, y1),(1||Di

j, y2) to THVE such that
y1||y2 = Zi

j ⊕ (0n ,KP)) Return D j to A .
Bad Event 6: If A has already queried
HVE on 0||Di

j or 1||Di
j, Sim aborts.

(e) Otherwise, return Di = HKD(Bi
j||Ĉi

j).j

• Otherwise if Ê ∈/ E , Sim does the following:
(a) Bad Event 7: If there is no entry of the

form (∗,∗,∗,∗, t̂) ∈ T , Sim aborts.
(b) Find an entry of the form (∗,∗, ∗,∗, t̂) ∈

T and remove it.
(c) Decrypt Ê using SKS to obtain B̂. Bad

Event 8: If B̂ ∈ B , Sim aborts.
(d) Make an UNLOCK request to the ideal

functionality UNLOCK(SID, t̂,⊥)
(e) Continue the execution honestly to re-

cover D̂ = HKD(B̂||Ĉ). Return D̂ to A .

10. Responding to (UNLOCK, SID,α) messages from
Ideal Functionality. If Sim receives a message
(SID, UNLOCK,α) (which does not stem from an
UNLOCK request submitted by Sim) then Sim does
the following:

(a) If there is some (B̂, Ê, F̂ , ∗,α) ∈ Tused. Then
Sim forwards (Ê, F̂) to Server, along with a
random value for Ĉ.

(b) If not, update the next tuple of the form
(B̂, Ê, F̂ , ∗,⊥) ∈ Tused, to (B̂, Ê, F̂ , ∗,α). For-
ward (Ê, F̂) to Server, along with a random
value for Ĉ.

21

(c) If Server returns ⊥, then return 0 to the ideal
functionality.

(d) Otherwise, Sim receives back a D value
from Server and checks whether D was
computed correctly with respect to B̂ and
Ĉ. If yes, Sim sends (SID, UNLOCK,1) to
the ideal functionality. Otherwise, Sim sends
(SID, UNLOCK,0) to the ideal functionality. If
tuples of the form (0||D, y1), (1||D,y2) are not
in THVE , Sim chooses random y1,y2 and adds
(0||D,y1),(1||D,y2) to THVE . Bad Event 9: If
y1||y2 ⊕Z = 0n||∗, for some Z ∈ Z, Sim aborts.

We begin by bounding the probability that the Bad
Events occur. It is clear by inspection that Bad Event 1
occurs with probability at most q · λ0/2n , and that Bad
Event 4 occurs with probability at most q2/2n, where q is
the total number of oracle queries made by the adversary
and Sim. Moreover, it is clear that if Bad Event 2 does
not occur, then Bad Events 3 and 6 occur with probability
at most q2/2n each. We proceed to bound the remaining
events (Events 2, 5, 7, 8).

Lemma C.1. Bad Event 5 occurs with at most negligible
probability in the Ideal experiment.

We upper bound the probability of Bad Event 5 by an-
alyzing the probability that Ĉ = H(Si

j,x), for some value
of x ∈ {0, 1}n0 . This probability can be upper bounded by
2n0

, since there are 2n0 possible strings of the form Si
j||x2n

and each of these gets mapped to a particular string Ĉ
with probability 2

1
n . Setting parameters appropriately, we

have that 2n0
is negligible. 2n

Lemma C.2. Assuming the CCA2 security of encryp-
tion scheme ENC (see Defnition A.5), the probability that
Bad Event 2 or Bad Event 8 occurs is at most negligible
in the Ideal experiment.

The proof proceeds by showing that if Bad Event 2 or
Bad Event 8 occurs with non-negligible probability, then
there must be some i ∈ [m], j ∈ [λ0 i] and effcient Env, A
(who did not corrupt Server) such that A queries HKD

on the value, Bi
j, or, in an UNLOCK request, sends an en-

cryption Ê ∈/ E that decrypts to Bi
j, with non-negligible

probability. We will use Env, A to obtain another eff-
cient adversary A 0 who breaks the security of the CCA2
encryption scheme ENC.

The adversary A 0 breaking the CCA2 security of the
encryption scheme ENC proceeds as follows: A 0 plays
the part of Sim in the Ideal experiment, with the excep-
tion that (1) It knows all the honest users passwords and

keys (since it controls Env); (2) It receives PKS exter-
nally from its CCA2 challenger (and does not know the
corresponding SKS), (3) It aborts and outputs 0, 1 with
probability 1/2 if A requests a Server corruption. Sim
chooses random strings Bi

j,B
0i
jB . Upon corruption of

party Ui, A 0 Sim sends Bi
j,B

0i
j back to its CCA2 chal-

lenger. The CCA2 challenger chooses b̃ ← {0,1} and
returns an encryption of Bi

j if b̃ = 0 and an encryption of
B0ij if b̃ = 1. Let E∗ denote the challenge ciphertext that
A 0 receives in return. A 0 continues to play the part of Sim,
but includes challenge ciphertext E∗ in the information
returned for the corruption request for party Ui, instead
of a newly generated ciphertext. When responding to
UNLOCK queries (Ê, F̂), Sim must decrypt using SKS

if Ê ∈/ E . But in this case, either (1) A 0 has not yet re-
quested/received its challenge ciphertext from the CCA2
challenger or (2) Ê =6 E∗, since E∗ ∈ E . So A 0 forwards
the decryption query Ê to its CCA2 oracle. Recall that
throughout the experiment, A 0 (playing the part of Sim)
monitors all queries made to the random oracles. If an
UNLOCK request is made with a valid ticket that includes
E∗ and a Ĉi

j value corresponding to the correct password,
A 0 chooses a value for Di

j at random (without querying
oracle HKD). If, at any point, Case 1: a query to HKD of
the form (Bi

j,∗) is made or some CCA2 decryption ora-
cle query yields value Bi

j, then A 0 aborts the experiment
and returns 0 to its challenger. If, at any point, Case 2: a
query to HKD of the form (B0ij,∗) is made or some CCA2
decryption oracle query yields value B0ij, then A 0 aborts
the experiment and returns 1 to its challenger. If the ex-
periment completes without the above cases occurring,
A 0 fips a coin and returns the outcome to its challenger.

Now, note that if Bad Event 2 or 8 occur with
non-negligible probability ρ = ρ(n), then we must
have that Pr[b̃ = 0 ∧ Case 1 occurs] = Pr[b̃ = 1 ∧
Case 2 occurs] = ρ/2.

On the other hand, it is always the case that Pr[b̃ =
0 ∧ Case 2 occurs] = Pr[b̃ = 1 ∧ Case 1 occurs] =
q/2n+1 + λ0/2n+1, where q is the total number of dis-
tinct oracle queries made during the experiment. This is
because when b̃ = 0, there is no information at all about
B0ij contained in adversary A’s view (unless B0ij = Bi

j
0
0

for some (i0 , j0) 6= (i, j), which occurs with probability
at most λ0/2n+1) and so A can only happen to query the
oracle on B0ij at random. The case for b̃ = 1 follows by
identical reasoning.

Thus, the distinguishing advantage of CCA2 adversary
A 0 is ρ/2 − q/2n+1 − λ0/2n+1, which is non-negligible,
since ρ is non-negligible. This implies a contradiction to
the CCA2 security of the underlying encryption scheme.

22

Lemma C.3. Assuming the unforgeability of the blind
signature scheme (see Defnition A.7), Bad Event 7 oc-
curs with at most negligible probability in the Ideal ex-
periment.

The proof proceeds by showing that if Bad Event 7 oc-
curs with non-negligible probability for some effcient ad-
versary A, then, by defnition, we obtain an effcient adver-
sary A 0 who submits a larger number of valid UNLOCK
requests than there are valid tickets obtained from the
ideal functionality. But note that each valid UNLOCK re-
quest is accompanied by a fresh blind signature F̂ . More-
over, the number of valid signatures obtained from the
signer corresponds to the number of valid tickets obtained.
Thus, adversary A can be used to obtain adversary A 0

such that, according to Defnition A.7, breaks the security
of the blind signature scheme.

Conditioned on the Bad Events not occurring, the only

difference between a Real and Ideal execution, is that
in the Ideal execution in Step (10b) the simulator sub-
mits the next available (Ê, F̂) pair, whereas in the Real
execution the order of submitted (Ê, F̂) pairs depends
on which party is making the UNLOCK request. How-
ever, the blindness property of the blind signature scheme
ensures that given a set of interactions and message sig-
nature pairs, the signer cannot tell in which order the
message signature pairs were generated. Indeed, this is
the case even when (PKS

0 ,SKS
0) are adversarially gener-

ated. Thus, the view of the adversary is indistinguishable
in the two cases. We therefore conclude with the follow-
ing lemma.

Lemma C.4. Assuming the blindness of the blind sig-
nature scheme (see Defnition A.7), the Ideal and Real
output distributions are computationally indistinguish-
able.

23

	Introduction
	Our Results
	Related Work

	Preliminaries
	Notation
	Underlying Primitives and Functions

	Ticket-Mediated Password Strengthening
	Discussion

	The Basic Protocol
	Server Setup
	Request: Protocol for Requesting Tickets
	Unlock: Protocol for Unlocking a Ticket

	Security Analysis
	Variants of the Basic Protocol
	Limiting Password Attempts
	Adding Offline Access
	Analysis

	An Offline Variant with HSM
	Starting Assumptions
	HSM Request Protocol
	HSM Unlock Protocol
	Analysis

	Different Ways to Authorize Tickets
	Third Party Signer (Online)
	Group Signatures (Offline)
	Proof of Work (Offline)

	Implementation
	Conclusion and Open Questions
	Definitions
	Game-Based Security Definitions and Proofs
	User Compromise: Stealing Tickets
	Practical Relevance
	Proof

	Server Compromise: Learning the User's Password
	Practical Relevance
	Proof

	Server Compromise: Violating the User's Privacy
	Practical Relevance
	Proof

	Proof of Theorem 5.1
	Description of Simulator Sim

