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Role of non-linear data processing 
on speech recognition task in the 
framework of reservoir computing
Flavio Abreu Araujo   1*, Mathieu Riou2, Jacob Torrejon3, Sumito Tsunegi   4, 
Damien Querlioz5, Kay Yakushiji4, Akio Fukushima4, Hitoshi Kubota   4, Shinji Yuasa4, 
Mark D. Stiles   6 & Julie Grollier   2

The reservoir computing neural network architecture is widely used to test hardware systems for 
neuromorphic computing. One of the preferred tasks for bench-marking such devices is automatic 
speech recognition. This task requires acoustic transformations from sound waveforms with varying 
amplitudes to frequency domain maps that can be seen as feature extraction techniques. Depending 
on the conversion method, these transformations sometimes obscure the contribution of the 
neuromorphic hardware to the overall speech recognition performance. Here, we quantify and separate 
the contributions of the acoustic transformations and the neuromorphic hardware to the speech 
recognition success rate. We show that the non-linearity in the acoustic transformation plays a critical 
role in feature extraction. We compute the gain in word success rate provided by a reservoir computing 
device compared to the acoustic transformation only, and show that it is an appropriate bench-mark for 
comparing different hardware. Finally, we experimentally and numerically quantify the impact of the 
different acoustic transformations for neuromorphic hardware based on magnetic nano-oscillators.

Artificial neural network algorithms outperform humans on recognition tasks like image or speech recognition, 
by leveraging deep networks of interconnected non-linear units called formal neurons1. The goal of neural net-
works is to extract the features and classify input data through learned non-linear transformation. Running such 
algorithms on a classical computer is costly energetically: to overcome this issue, neuromorphic approaches2,3 
propose to implement them physically. In particular, reservoir computing4,5 is a kind of recurrent neural network 
that has been widely used to test the efficiency of hardware for neuromorphic computing6–8 because it has a sim-
plified architecture and learning procedure. The input is sent to a neural network with fixed recurrent connections 
called a reservoir. The goal of the reservoir is to separate the different kinds of inputs, such that after this trans-
formation, the classification can be done by a linear transformation. The response of the neurons of the reservoir 
are combined linearly with trained connections to construct the output. Since the connections in the reservoir are 
random and fixed, it is easier to fabricate it in hardware and then train the output connections, often emulated in 
software, with linear regression.

Speech recognition is a widely used class of benchmark tasks performed to test the efficiency of a neural 
network. It is especially employed in the case of reservoir computing because the recurrent connections of the 
reservoir create an intrinsic memory that is useful to classify time-varying inputs. Generally, this task requires 
frequency decomposition9–11 prior to the neural network because the acoustic features are contained in the fre-
quency rather than in the amplitude of the time-varying signal. These decompositions return the amplitude of the 
signal in different frequency channels as a function of time. The neural network then extracts the acoustic features 
contained in the frequency information. Several frequency decomposition methods have been reported in the 
literature: Mel-frequency cepstral coefficients (MFCC) and Lyon’s cochlear model (cochleagram) are the most 
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common methods since they mimic the filtering that occurs biologically9,12,13. However, the actual contribution 
of the acoustic filter to the total speech recognition rate is generally not investigated while performing speech 
recognition benchmarks with reservoir computing hardware, even if its influence on the final recognition rate 
may not be negligible8. Furthermore, both of these methods were developed before reservoir computing became 
popular and, thus they were designed to extract the useful features of an audio signal independent of modern 
machine learning.

Here, we first show how the choice of different filtering methods drastically affects the final speech recognition 
rate. We quantify the contributions of the acoustic filtering and the neural network, respectively, for a spoken digit 
recognition task using four frequency decomposition methods with different non-linear characters: Lyon’s ear 
cochleagram, MFCC filter, linear spectrogram R( (Spectro)), and Spectro HP = | | | |−R(Spectro HP sin (Spectro)  
| | | |Icos (Spectro) ). In a first step, we show that the cochleagram, the Spectro HP and the MFCC filter are pow-
erful stand-alone features extractors that can achieve by themselves (without additional processing by a neural 
network) very high recognition levels: up to 95.8%, 89.0%, and 77.2% for cochleagram, Spectro HP, and MFCC, 
respectively. In contrast, the linear spectrogram never achieves recognition levels statistically better than random 
sampling, 10%. However, by adding various levels of non-linearity to the real part of the spectrogram we were able 
to show a large increase of the recognition rate from about 10% (linear) to 88% (strong non-linearity). These 
results indicate that the high recognition level of the cochleagram and MFCC approaches is mainly due to the 
non-linear character of these frequency decomposition methods and not to the reservoir itself.

In a second step, we evaluate the gain in recognition rate provided by a particular hardware approach to 
reservoir computing, based on magnetic nano-oscillators. In order to compare to other hardware implementa-
tions in the literature, we model a neural network based on a single dynamical non-linear magnetic node in the 
framework of the reservoir computing approach6–8,14–16. We find that the contribution of the neural network is 
dominant for linear spectrogram filter and only plays a small role for the non-linear cochleagram and MFCC 
filter. Finally, we present experimental results using a non-linear and tunable magnetic nano-oscillator exhibiting 
excellent agreement with our simulations.

Methods
We perform a benchmark task called spoken digit recognition that is common in the reservoir computing com-
munity for software10 and hardware7,8,14,17–21 implementations. The input data, taken from the TI-46 database, are 
audio waveforms of clean isolated spoken digits (0 to 9) pronounced by five different female speakers (see exam-
ple in Fig. 1a), as it is usual in the hardware reservoir computing communit6–8,10,14,17,20,22–25.

The chosen part of the TI-46 spoken digit database contains 500 (5 speakers × 10 digits × 10 utterances) audio 
files, which we index using the Greek letter σ. To perform speech recognition on these spoken digits, each audio 
temporal trace in the database is transformed from time-domain to a mixed time/frequency domain with differ-
ent acoustic filters, two of which are known to create a better representation of human voice characteristics. These 
acoustic filters give rise to different instances of our speech database containing the following elements: τ σX f ,

filter 
where filter ∈ {Cochlear, MFCC, Spectro, Spectro HP}, f  is the index for the different frequency channels, and τ 
is the index of a new time representation that depends on the time frame window used while performing the 
time- to frequency-domain transformation. The number of time steps τN  naturally depends on the digit length, 
while the number of frequency channels Nf  only depends the type of acoustic filter. For instance, =N 78f

Cochlear , 
=N 13f

MFCC , and =N 65f
Spectro  while τN Cochlear ranges from 16 to 41, τNMFCC ranges from 31 to 83, and τN Spectro 

ranges from 24 to 67. Digits with τN  lesser than the maximum value are padded with zeros.
The construction of the supervised learning task in the reservoir computing framework starts with associating 

each digit σX  with its corresponding target ∈σ
× τT N Nd  where Nd is the number of categories to classify (here 

=N 10d  as the goal is to recognise the 10 different digits). Each target matrix σt  is constructed column-wise and 
the τN  columns correspond to the same target vector σt  (the target vector σtd ,  with ∈ ..d [0 9] is zero almost every-
where but is one where d is equal to the corresponding digit number). The σT  matrices would allow us to perform 
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Figure 1.  Principle of spoken digit recognition. (a) Audio waveform corresponding to the digit 1 pronounced 
by speaker 1. (b) Filtering to frequency channels for acoustic feature extraction. The signal during each time 
interval τ is decomposed in Nf  frequency channels. The cochlear model filters each point of the audio waveform 
in 78 frequency channels (13 in the case of the MFCC model and 65 for the spectrogram model). The frequency 
channels are concatenated in intervals of duration τ to form the filtered input. (c) The filtered input is injected in 
the neural network or directly used to construct the output (No neural network). The neural network is 
composed of N  interconnected filtered inputs. (d) For each digit, the response of the neural network (or directly 
the filtered output) is constructed from a linear combination of neuron states θτ σV ,  (there are 10 classifiers in 
total).
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τ-wise recognition (partial digits for instance) but in this study we choose to make entire-digit-wise recognition 
by averaging out the estimated target matrices σt̂  over the different columns (τ direction) to end up with estima-
tors σt̂  of the target vectors σt  as shown below (see Eq. (3)).

Our reservoir is a time multiplexed single device as described in ref. 8. Rather than a set of θN  physical neurons, 
our reservoir consists of a single physical neuron evaluated at θN  periodic times. To input the data to these virtual 
neurons, we multiply each value by a time series of length θN  consisting of ones and minus ones and send the 
resulting time series to the single device. The output of the reservoir is determined by the resulting state of the 
device at each of the θN  times for each element of the input data string. This output is multiplied by the output 
weight matrix to give the results. Training consists of determining the optimum set of output weights, which can 
be found through straightforward linear algebra.

The key computational concept supporting the reservoir computing approach is a nonlinear dynamical trans-
formation of the processed information, i.e. sending the input data to a new space, in which simple linear algebra 
gives the read-out of the results26. In this work, the non-linear transformation is the purpose of our spin-torque 
nano oscillator represented by the function ⋅STNO( ) in Eq. (1). The information is then encoded and injected into 
this nonlinear dynamical system after flattening the data and multiplying each element of the flattened σX  by a 
random binary mask ∈ ×θM N Nf  of 1’s and −1’s. This binary masks starts the time-multiplexing technique as the 
value times the mask gives the input to each virtual neuron. As a result, the mask distributes the frequency con-
tent of each time step τ of the input data into a fixed neural network layer (the reservoir) of θN  nodes. To summa-
rise, Eq. (1) shows the details of our Reservoir Computing implementation:
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where flatten(·) takes a m by n matrix as input and outputs a vector of length mn and reshape(·) does the reverse 
operation, i.e. takes a vector of length mn as input and outputs a m by n matrix.

Training (learning) is performed using a simple linear classifier. In this work, good performance is achieved 
using the Moore-Penrose pseudo-inverse after building the weight matrix W optimisation problem with a subset 
of Ntrain digits 

 … 
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No regularisation technique is used. The testing (recognition) step is then achieved using the computed 
weights W applied to the complementary (unseen) subset of Ntest digits:
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The estimator for a specific digit is given by =σ σˆd̂ targmax( ) (this corresponds to the Winner-Takes-All strat-
egy, adequate for the present task). Digit σ is well recognised when =σ σd̂ targmax( ) and the main performance 
estimator used in this work is the Word Success Rate (WSR) and corresponds to the percentage of well recognised 
digits over the total number of digits to recognise (N )test . Another common performance estimator, useful for 
identifying overfitting issues, is the Mean Squared Error (MSE): MSE = −σ σ σˆ ˆt t t( ) [( ) ]2 .

In all cases, the training and testing sets do not overlap. To avoid any learning bias while selecting samples 
randomly from the database when choosing the training and testing sets, we organise the 500 input files into 10 
subsets of 50 files. Each subset contains one utterance of each digit pronounced by each of the five speakers. A 
random selection would produce an over-representation of some speakers and an under-representation of others. 
We take N  utterance subsets (50 audio files, one for each digit and each speaker) for training (total training set 
size N × 50), and − N10  utterance subsets for testing (total testing set size (10 − N) × 50). To minimise the fluc-
tuations that occur in the results due to random choices between the training and testing sets, we employ a 
cross-validation technique and therefore average over all possible choices. That is, when N  utterance subsets are 
used for training, we average over −N N10!/[ !(10 )!] possible ways to choose the training and testing sets. This 
procedure also allows us to determine a width to the distribution of individual outcomes indicated by the shaded 
regions in Fig. 2. All word success rate results reported in the paper are cross-validated test results.

In reservoir computing, training is fast and always converges due to the basic linear algebra algorithms. 
This behaviour stands in contrast to standard recurrent neural-network approaches for which learning can be 
time consuming and does not necessarily converge to the desired solution. In reservoir computing, the learning 
process only modifies the read-out weights whereas in other types of recurrent neural network it modifies the 
weights in all the other constituent layers in the neural network under complex feed-forward/back-propagation 
algorithms.

The contribution of the frequency filtering and the reservoir computing, respectively, are then analysed sepa-
rately. In order to evaluate the impact of the frequency filtering on the input separation capability, a linear 
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classifier is trained directly on the different frequency channels. The classification results with both influence of 
the frequency filtering and the reservoir are computed by injecting the filtered input in a neural network com-
posed of θN  interconnected neurons. Here, we use =θN 400 input neurons that are connected to all of the fre-
quency channels for each time interval τ, Fig. 1c, as this number allowed reaching maximum test accuracy. In the 
framework of reservoir computing, these fixed connections have random weights. To reach high classification 
rate, 400 neurons are sufficient6,8. The features of the magnetic neurons that we consider are specified in section 
IV. A linear classifier is trained to map the neuron outputs to the desired results. The contribution of the reservoir 
to the ultimate success is extracted from the results by subtracting the success rate found using only the frequency 
filtering methods.

Acoustic filter: role of non-linearity.  First, we compute the digit recognition rate as a function of the 
number of utterances used in training for the cochleagram and the MFCC methods as shown in Fig. 2(a). The 
recognition rate increases with the number of trained utterances and then saturates in the case of the cochlear 
model. It remains almost constant for the MFCC model. Both filters achieve a high recognition rate. In particular, 
the cochlear model is an excellent acoustic feature extractor with recognition rates up to 95.8% (for 9 trained 
utterances) whereas the MFCC filter is less powerful, reaching recognition rates up to 77.2%.

These filters are commonly used for speech recognition tasks, because of their similarity to audio signal pro-
cessing in biological ears, which perform complex frequency decompositions with high non-linearities. Both 
MFCC and cochlear methods use non-linearities to transform the audio data. For MFCC the transformed rep-
resentation corresponds to the log-energy of the Mel frequency filter output9. In the cochleagram approach, the 
main non-linear ingredient corresponds to a set of interconnected automatic gain controls12,13. The successful 
separation of the data achieved by these filtering methods appears to be mainly due to the non-linear character 
of the transformation with a moderate influence of the kind of non-linearity (similarly to reservoirs that can have 
different kinds of non-linearity that work).

To establish the critical role of the non-linearity contained in the filtering methods to recognition perfor-
mance, we start by investigating the separation achieved by a very simple linear spectrogram filter. This filter is 
based on standard Fourier transforms of the audio input over finite time windows. The Fourier transform is a 
linear operation that outputs a real and an imaginary part. We consider only the real part in the following in order 
to avoid introducing non-linearities by computing the norm. After the Fourier transforms, σZ  is the matrix of the 
real parts of the spectrogram with dimension × τN Nf  where Nf  is the number of frequency channels and τN  is 
the number of time steps, which depends on the particular digit. We normalise the data, = | |σ σ σX Z Z/ max( ) and 

∈ −τ σX [ 1, 1]f ,  for ∈ ..f N{1 }f  and τ ∈ .. τN{1 }. The normalisation is crucial to ensure that there exists at least 
one τ σXf ,  that is equal either to 1 or to −1 for each σX  when non-linearities are introduced into the transform.

To study the influence of a non-linear transformation on the normalised input data σX , we choose to apply a 
point-wise operation, namely the exponent α ∈ , giving rise to the transformation on each element of 

→τ σ τ σ
αX X( )f f,

filter
,

filter . The impact of the non-linear exponent α on the recognition rate is shown in Fig. 2(b). The 
recognition rate oscillates strongly as a function of the non-linear exponent and decreases for large α. Some par-
ticular values of the recognition rate can be easily understood. For α = 0: ∀ i and j, =τ σX 1f , , and it becomes 
impossible to discriminate between different digits σX  and the success rate is equal to 10% (random choice). As α 
approaches zero, the success rate decreases drastically and drops to 10%. For such exponents, all inputs get 

Figure 2.  Spoken digit recognition for filtered inputs. (a) Spoken digit cross-validated test recognition rates as a 
function of the number of data subsets N  used for training (total size of the training set × × N5 10 ) of the 
filtered input (without neural network) corresponding to four different methods: cochleagram, MFCC filter, 
Spectro HP and linear spectrogram α =( 1). (b) Spoken digit recognition as a function of non-linear coefficient 
for spectrogram methods (Inset: Word success rate for large non-linear coefficient values from 1000 to 1004). 
Here, 9 data subsets (90% of the database) are used for training our reservoir computing model and the 
remaining subset (10% of the database) is used to perform the recognition task. The shaded region corresponds 
to the uncertainty of the recognition rate, here the standard deviation).
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mapped to the same output making data separation impossible. For α = 1 the real part of the spectrogram corre-
sponds to a linear transformation of the input data, thus there is no non-linear data separation and the word 
recognition rate  10% (random choice).

The evolution shown in Fig. 2(b) can be understood by decomposing the exponent α into an integer part 
∈n  and a real part ε ∈  around n (ε ∈ − . .] 0 5, 0 5]): α ε= +n . For <τ σX 0f , , → =τ σ τ σ

ε− − +X X( )f f
n

, ,  
πε πε| | − +τ σ

ε− +X i( 1) (cos( ) sin( ))f
n n

, and for τ σ ⩾X 0f , , → = | |τ σ τ σ
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, , , . For simplicity, we 
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From Eq. (4), for <τ σX 0f ,  there is an additional factor πε−( 1) cos( )n  compared to >τ σX 0f , . Consider the 
particular case where ε = 0, then in the case of values of τ σXf ,  that were initially negative, the values τ σRf ,  have the 
sign −( 1)n. So, depending on the parity of n, there are two possibilities. If n is even, there is at least one value τ σRf ,  
in σR  equal to 1 for each σR  (digit in the database). If n is odd, the σR  digits originating from an input σX  where at 
least one = −τ σX 1f ,  have a corresponding = −τ σR 1f ,  (at least one =τ σR 1f ,  otherwise). Therefore, the oscillat-
ing behaviour of the success rate shown in Fig. 2b is related to what happens to the negative input data as shown 
in Eq. (4).

The poorer performance for the recognition task for odd n comes from the fact that the phase from the Fourier 
transform is essentially arbitrary. When n is even, the important elements of σR  are always positive, but for odd n 
they are sometimes positive and sometimes negative. The greater variation in the latter case makes it essentially 
impossible for the neural network to connect the input date to the appropriate output. This behaviour is most 
easily seen in the limit that n becomes large as shown in the inset of Fig. 2b.

From Eq. (4) we can evaluate the effect of our non-linear transformation for → ∞n : | | =τ σ
→∞

Xlim 0
n

f
n

,  for 
| | <τ σX 1f ,  and ∀ n | | =τ σX 1f

n
,  when | | =τ σX 1f , . In practice, due to the numerical truncation on a computer, for 

n 100 and | | <τ σX 1f , , | | =τ σX 0f
n

, . So, for very large n, the resulting vector σR  contains only zeros and at least 
one element that is equal to 1 or −1 after the non-linear transformation.

There are 500 digits in our spoken digit database and for very large odd values of n, there are 253 σR  vectors 
with one =τ σR 1f ,  and 247 with one = −τ σR 1f , . For each of these vectors, all other elements are mapped to zero. 
For large even values of n, all the 500 σR  contain one =τ σR 1f ,  with all others equal to zero. In this large-exponent 
limit, the classification task is simple to understand. The non-linearity selects the largest magnitude frequency/
time component from the transformed audio file. If this component is constant between speakers, the digit can be 
identified. For large values of n, there are 2 different success rate values depending on the parity of n. As shown in 
the inset of Fig. 2b, for large values of α α >( 1000), the success rate behaviour tends to a square function alter-
nating between very low values (12%) around odd values of α, i.e. α ∈ + . + .n n[2 0 5, 2 1 5], and a slightly higher 
value (25.8%) around even values of α, i.e. for α ∈ − . + .n n[2 0 5, 2 0 5], where ∈n  (for large values of α, when 
α = + .n 0 5, the success rate is not defined). The difference arises because of the random phases that arise from 
the Fourier transform. For even n, the phases are irrelevant, but for odd n, sometimes the value gets mapped to 
one and sometimes to minus one, making it much more difficult to classify.

Overall, as shown in Fig. 2(b), for a wide range of values of α, the non-linearity drastically improves the recog-
nition rate. In particular, the recognition rate is very high for low exponents α. An optimum non-linearity is 
reached for α = .0 2 providing the highest recognition rate of 88%, which is comparable to those obtained for the 
cochleagram.

We use a t-Distributed Stochastic Neighb our Embedding (t-SNE) technique27 to represent our Nf  channels 
data in a 2D plot (see Fig. 3) in order to visualise how the data separation occurs and understand the recognition 
capacity of the different filtering methods. t-SNE is a nonlinear dimensionality reduction technique used for 
embedding high-dimensional data into a low-dimensional space of two or three dimensions. During the data 
reduction, the probability of two vectors to be neighbours is conserved, allowing visualisation of the structure in 
the data. Each digit is represented by coloured dots for all data points of the utterances. For instance, Fig. 3a shows 
that for the spectrogram with α = 1 (linear) for which the recognition rate is about 10% (random choice), there 
is no data separation as all the coloured points seem to be randomly distributed. In particular the digits of a same 
class do not form separated clusters. On the other hand, for the spectrogram with α = .0 2 (optimal non-linearity), 
data separation can clearly be seen in Fig. 3b correlating with the better recognition rate of 88% compared to the 
linear spectrogram α =( 1). Furthermore, t-SNE shows data separation capability for both the cochleagram and 
the MFCC filter. As shown in Fig. 3c,d, well defined clusters corresponding to the spoken digits appear and cor-
roborate the high recognition rates exhibited by the two filtering methods.

To summarise this section, we show that the non-linear transformation applied to the input data by the MFCC 
filter and the cochleagram plays a similar role as the non-linear nodes in the reservoir neural network prior to the 
linear classifier. We highlight that these stand-alone feature extractors perform data separation due to their inter-
nal non-linear transformations. We indeed obtain recognition performance that are close to what is found with 
these approaches by adding a simple non-linear transformation to the individual elements of the conventional 
spectrogram. Depending on the non-linearity, the recognition rate can strongly vary from around 10% to 95.8%.
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Neural network: Reservoir computing based on non-linear oscillators.  Having shown that 
non-linear filtering methods can by themselves achieve high recognition rates, we turn to evaluating the gain in 
overall performance provided by a reservoir neural network taking as inputs the output of these acoustic filters. 
We implement the reservoir with a single non-linear oscillator6. In this approach, recurrent chains of non-linear 
transformations occur in time instead of space. The loss of parallelism is compensated by time-multiplexing, in 
turn requiring that the input be preprocessed. To do that, each point of interval τ  in Fig. 1(b) is multiplied by a 
random binary matrix (of dimensions × θN Nf ) to induce transient behaviour. This transformation is linear and 
does not affect the final recognition rate. Each point of the input audio file is converted in a binary sequence of 
duration τ composed of =θN 400 points separated by time steps θ. The time step θ is set shorter than the relaxa-
tion time of the oscillator to keep the oscillator in the transient regime and generate temporal cascades at each 
sequence τ of the pre-processed input.

We have developed a simple model based on a non-linear magnetic oscillator28 taking into account the main 
ingredients for neuromorphic computing: non-linearity (square root dependence of the amplitude on the input 
current) and memory (relaxation time of the oscillator between two different output voltage levels). The dynamics 
of the evolution of the oscillator output microwave voltage vi

osc as a function of the input voltage vi
in at time step i 

can be solved numerically16:

= − + ⋅∞ −Δ
−

−Δv v e v e(1 ) , (5)i i
t T

i
t Tosc /

1
osc /relax relax

where Trelax is the relaxation time towards the asymptotic value ∞vi  given by29:

= − −∞v c I v R I/ , (6)i iDC
in

c

with c, a constant related to the initial bias condition, i.e. the initial emitted voltage of oscillator, R the DC resist-
ance of the oscillator and Ic the threshold current above which auto-oscillations can occur. In order to simulate 
the oscillator response to a time varying input V( )i

in , we solve Eq. (5) numerically with the following parameters: 
Δ =t 5 ns, = ±V R/ 3i

in  mA, =I 6DC  mA, = .I 4 9c  mA, =T 410relax  ns. These parameters, which constitute 
huperparameters of our system, are extracted from experiments as reported elsewhere8.

Even if the recognition rate by the non-linear filters (MFCC and cochleagram) is already high, there is still 
room for improvement with the inclusion of a recurrent neural network. The increase in the recognition rate 

Figure 3.  2D representation of the two t-SNE components for: (a) the spectrogram with α = 1, (b) the 
spectrogram with α = .0 2, (c) the cochleagram, and (d) the MFCC filtering methods.
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induced by the emulated non-linear oscillator is shown in Fig. 4a. We determine the increase in recognition rate 
due to the neural network by subtracting from the total recognition rate the contribution from acoustic filters pre-
viously calculated in Fig. 2(a) and normalising the result with the total recognition rate. The gain provided by the 
non-linear oscillator is low for the non-linear filters (training over 9 data subsets): 3.8% for the cochlear method, 
9.6% for the Spectro HP method, and 22% for MFCC method. The increase is small because the total recogni-
tion rate (filter + network) is close to a perfect success rate: up to 99.6%, 98.6%, and 99.2% for the cochleagram, 
Spectro HP, and the MFCC filter respectively. On the other hand, the neural network drastically improves the rec-
ognition gain up to 55.6% (for 9 data subsets trained) but the final recognition rate (filter + neural network) is not 
as good, around 65.2%. The simulations have been obtained for a specific neural network based on the non-linear 
dynamics of an oscillator with time multiplexing in the framework of reservoir computing. As mentioned earlier, 
we choose this particular framework because it is frequently used for hardware implementations. However, these 
conclusions hold for very general types of (spatial or temporal) neural networks and learning processes because 
the limitation of the gain in recognition in the case of MFCC, Spectro HP, and cochlear filters is not due to the 
neural network but to the already excellent separation properties of the filtering.

We compare these simulations to the behaviour of an experimental non-linear oscillator. In particular, we 
choose a magnetic nano-oscillator that was recently demonstrated to be an excellent building block for neuro-
morphic computing8,16,30. This kind of oscillator is small (nanoscale), performs low power computing, has a high 
signal to noise ratio for high reliable computation, and allows a tunable non-linearity through the spin transfer 
torque mechanism. Our nanoscale oscillators are circular magnetic tunnel junctions, with a 6 nm thick FeB free 
layer and a diameter of 375 nm. The magnetisation in the FeB layer has a vortex structure as its ground state for 
these dimensions. In a small region called the vortex core, the elsewhere in-plane-curling magnetisation points 
out of the plane. Under dc current injection, the core of the vortex steadily gyrates around the centre of the dot 
with a frequency in the range 250 MHz to 400 MHz. Vortex dynamics driven by spin-torque are well-understood, 
well-controlled and have been shown to be particularly stable (more details can be found elsewhere31).

The experimental implementation of the spoken digit recognition task is described in ref. 8. The preprocessed 
input signal (filtered digits with time multiplexing) is generated and sent to the sample using an arbitrary wave-
form generator. Then, the microwave voltage across the magnetic tunnel junction is measured by a real time 
oscilloscope and fast oscillations are observed. The amplitude of oscillator response is obtained by inserting a 
microwave diode between the sample and the oscilloscope and is processed as the output signal. The oscillation 
amplitude is robust to noise thanks to the confinement provided by the counteracting torques exerted by the 
injected current and the magnetic damping. In addition, the voltage amplitude is highly non-linear as a function 
of the injected current. The current depends on the voltage amplitude similarly to our simulated oscillator (square 
root dependence) in Eq. (3). Furthermore, the amplitude of the oscillator voltage intrinsically depends on past 
inputs when the time step θ is shorter than the relaxation time of the magnetic nano-oscillator. Therefore, this 
single nano-device has the two most crucial properties of neurons: non-linearity and memory.

Tables 1 and 2 show the word success rates, as well as mean squared error obtained by simulations and exper-
imentally. The gain on the spoken digit recognition for the different acoustic filters induced by the experimental 
magnetic nano-oscillator is shown in Fig. 4(b). There is very good agreement between the experimental results 
and the simulations. When 9 data sets are used while doing the training process the gain is 3.8% for the coch-
leagram, 10.8% for the Spectro HP filter, 22% for the MFCC filter, and 70.4% for linear spectrogram. We see 
in Tables 1 and 2, as well as Fig. 4 that, for some cases, the magnetic nano-oscillator exhibits slightly higher 
recognition gain than the simulations even though the latter neglects the intrinsic noise. We believe the better 
performance is mainly due to the higher complexity in the dynamics of the magnetic nano-oscillators, including 
a relaxation time that varies with current. Finally, the observation shows that overfitting effects are quite minimal. 

Figure 4.  Spoken digit recognition for a neural network. (a) Spoken digit gain on cross-validated test 
recognition rates as a function of the number of subsets N  used during training for a non-linear oscillator 
modelled with Eqs. (2 and 3) and (b) experimental spin torque nano-oscillator driven by spin polarised current. 
The coloured region corresponds to the uncertainty of the recognition rate, here twice the standard deviation.
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Some overfitting with respect to the mean squared error (MSE) can be seen when using cochleagram filters. This 
is due to the fact that in this situation, the role of the reservoir is quite minimal, whereas it uses the same number 
of parameters as in the other situations. However, the overfitting occurs in the MSE does not make the overall 
performance for the word success rate (WSR) on the test set significantly worse.

The different contributions to the spoken digit recognition task are summarised in Fig. 5 for the case in which 
nine utterances are used during the learning step and one during the recognition. The random choice level is 10% 
and is shown in grey. The contribution of the filtering methods is shown in blue (not visible in the case of the 
linear spectrogram, α = 1). Figure 5 also shows the net contribution of a neural network, in our case under the 
reservoir computing approach, to the spoken digit task. The simulated version of our neural network, i.e. using 
the simulated dynamics of the spin-torque vortex oscillators is shown in purple, while the results for the experi-
mental magnetic nano-oscillators are shown in green. The main contribution to the spoken recognition task 
brought by the neural network happens when there is a lot of work to perform, i.e. when starting from the random 
choice level (linear spectrogram). Nevertheless, when our neural network is coupled with well performing 
stand-alone feature extraction techniques like the cochleagram or the MFCC filter, it is capable of bringing the 
recognition rate level to state-of-the-art values (overall WSR of 99.8% for the MFCC and the Spectro HP fil-
ters + experimental spin-torque vortex oscillator).

More challenging spoken digit database.  The TI-46 database is based on clean audio waveforms from 
a limited number of speakers. We describe above how this database is rather limited for testing a neural network 
when combined with substantive preprocessing. We are able to test our nano-oscillator based reservoir comput-
ing approach by limiting the preprocessing to a basic linear preprocessing filter (linear spectrogram) and demon-
strate its effectiveness. However, we can test the combination of effective preprocessing with reservoir computing 
by using a larger data set with a broader set of speakers and a variety of background noise types and levels. In this 

Filter

Training Testing Overfitting

WSR (std) MSE (std) WSR (std) MSE (std) MSEtest/MSEtrain

Cochleagram 100.0% (0.0%) 0.0133 (1.1 · 10−4) 99.6% (0.8%) 0.0193 (2.3 · 10−3) 1.451

MFCC 99.8% (0.1%) 0.0259 (1.1 · 10−4) 99.2% (1.0%) 0.0283 (8.2 · 10−4) 1.093

R(Spectro) 75.7% (0.6%) 0.0708 (1.1 · 10−4) 65.2% (4.2%) 0.0738 (7.3 · 10−4) 1.042

Spectro HP 99.2% (0.2%) 0.0362 (9.9 · 10−5) 98.6% (1.9%) 0.0384 (6.5 · 10−4) 1.061

Table 1.  Results for a simulated STNO neural network with N = 400 nodes.

Filter

Training Testing Overfitting

WSR (std) MSE (std) WSR (std) MSE (std) MSEtest/MSEtrain

Cochleagram 100.0% (0.0%) 0.0192 (1.1 · 10−4) 99.6% (0.8%) 0.0222 (1.3 · 10−3) 1.156

MFCC 99.8% (0.1%) 0.0262 (1.4 · 10−4) 99.8% (0.6%) 0.0274 (1.0 · 10−3) 1.046

R(Spectro) 90.2% (0.4%) 0.0699 (1.5 · 10−4) 80.0% (4.1%) 0.0726 (1.5 · 10−3) 1.039

Spectro HP 100.0% (0.0%) 0.0327 (7.1 · 10−5) 99.8% (0.6%) 0.0344 (7.7 · 10−4) 1.052

Table 2.  Results for a experimental STNO neural network with N = 400 nodes.
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Figure 5.  Contributions to the spoken digit cross-validated test recognition rate. Random choice level is shown 
in grey, the filtering methods in blue, and the neural network under the reservoir computing approach in purple 
and green for the simulations and experiments, respectively. Here, 9 data subsets (90% of the database) are used 
for training our reservoir computing model and the remaining subset (10% of the database) is used to perform 
the recognition task.
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section, we simulate the performance of our theoretical reservoir computing implementation (simulated STNO 
neural network) on the AURORA-2 database32,33.

The AURORA-2 database provides the data for the task of recognising digits taken from the TIDigits data-
base34 in noise and channel distorted environments (artificially corrupted). To simulate noisy telephony environ-
ments, the clean utterances are first down-sampled to 8 kHz, and then additive and convolutional noise is added. 
The AURORA-2 database has both clean and multi-condition training and test sets. Each type of noise is added 
into a subset of clean speech utterances, with seven different levels of signal-to-noise ratios (SNRs). This process 
generates seven subgroups of test sets for a specified noise type, with clean (infinite signal-to-noise ratios) and 
signal-to-noise ratios of 20, 15, 10, 5, 0, and −5 dB.

We simulate the preprocessing and reservoir computing on all available isolated spoken digits from 0 to 9 in 
the training and testA datasets from 214 female and male speakers. The training dataset contains 2196 clean digits 
and several subsets of noisy (corrupted) digits with 4 different noise types (subway, babble, car, and exhibition hall 
noise) at different signal-to-noise ratios. During the training of our model, we select the 2196 clean digits and the 
corrupted digits with SNR = 20 dB (451 digits), SNR = 15 dB (444 digits), and SNR = 10 dB (430 digits). With this 
dataset, we train the model in mixed conditions.

The recognition (testing) is performed on testA dataset containing 4 types of added noise at different 
signal-to-noise ratios. The different noise types are the same as in the training set (unlike for the testB and testC 
subsets of AURORA-2 that we do not use). The testA dataset contains a subset of 1040 clean digits and several 
subsets containing each 1040 digits corrupted with subway, babble, car, and exhibition hall noise. We choose the 
following 4 subsets: clean and with corrupted with SNR = 20 dB, 15 dB, and 10 dB. To summarise, training is per-
formed on 3521 digits and testing on 1040 unseen digits from the same categories as the training set. The test set 
contains 22.8% of the total number of digits (1040/4561).

Tables 3 and 4 give the simulated results for spoken digit recognition using the nano-oscillator based reservoir 
computing approach combined with the two filtering methods, MFCC, and cochlear, respectively. The results are 
given in word success rate (%). In parenthesis, we give the gain compared to the baseline (control test without the 
nano-oscillator based reservoir). Not surprisingly, the results are not as good as the results presented above for the 
TI-46 database. While the preprocessing filters do much worse without the reservoir than they do on the TI-46 
database, they still do much better than linear preprocessing. In all cases, inclusion of the reservoir substantially 
improves the success rate compared to the baseline.

Comparison of Tables 3 and 4 shows that the MFCC filter is more robust to noise than the cochlear filter and 
gives better results in most cases. Interestingly, it does worse in almost all cases without the reservoir, but appears 
to allow the reservoir to make much larger improvements in the success rate. The average word success rate of the 

SNR (dB) Subway Babble Car Exhibition AVG

clean 95.15 (+56.34) 94.96 (+54.65) 90.98 (+45.88) 90.73 (+45.94) 92.96 (+50.70)

20 83.58 (+49.62) 90.70 (+57.75) 85.88 (+50.59) 74.90 (+43.63) 83.77 (+50.40)

15 79.48 (+47.39) 85.66 (+54.65) 83.92 (+51.76) 68.73 (+44.79) 79.45 (+49.65)

10 64.93 (+39.18) 79.46 (+55.82) 72.16 (+46.28) 57.92 (+36.30) 68.62 (+44.40)

AVG 80.79 (+48.13) 87.70 (+55.72) 83.24 (+48.63) 73.07 (+42.67) 81.20 (+48.79)

Table 3.  Word success rate (in percent) for a simulated STNO neural network with =N 2000 nodes after 
filtering the inputs with the MFCC filter combined with the reservoir. These results are for a reservoir trained 
with all noise levels and types and then tested for each part of the test set with the different noise levels and 
types. Each entry gives the overall word recognition rate and in parentheses, the gain achieved by adding the 
reservoir to the preprocessing filter. The first column gives the noise level for different parts of the test set and 
the top row gives the noise type. The bottom row gives the results over all levels of noise for each noise type and 
the right column gives the results for each noise level over all types of noise. The bottom right entry is the 
average result over the whole test set.

SNR (dB) Subway Babble Car Exhibition AVG

clean 88.81 (+23.88) 87.21 (+24.81) 89.02 (+29.02) 91.51 (+25.87) 89.14 (+25.90)

20 67.54 (+23.51) 69.77 (+20.16) 69.02 (+26.67) 56.76 (+22.01) 65.77 (+23.09)

15 70.15 (+27.61) 63.57 (+16.96) 68.63 (+23.14) 59.46 (+28.57) 65.45 (+24.07)

10 55.97 (+18.66) 53.49 (+14.73) 56.86 (+21.17) 53.28 (+21.62) 54.90 (+19.05)

AVG 70.62 (+23.42) 68.51 (+19.17) 70.88 (+25.00) 65.25 (+24.52) 68.82 (+23.02)

Table 4.  Word success rate (in percent) for a simulated STNO neural network with =N 2000 nodes after 
filtering the inputs with the cochlear filter combined with the reservoir. These results are for a reservoir trained 
with all noise levels and types and then tested for each part of the test set with the different noise levels and 
types. Each entry gives the overall word recognition rate and in parentheses, the gain achieved by adding the 
reservoir to the preprocessing filter. The first column gives the noise level for different parts of the test set and 
the top row gives the noise type. The bottom row gives the results over all levels of noise for each noise type and 
the right column gives the results for each noise level over all types of noise. The bottom right entry is the 
average result over the whole test set.
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testing set containing only clean digits is 92.96% for the MFCC filter. The training was performed on clean and 
corrupted digits (mixed conditions). The improvement over the baseline is 50.70% (given in parentheses) implying 
that the baseline value is 42.26% (=92.96% − 50.70%). When the cochlear filter is used, the average gain brought by 
the neural network is +25.90% when testing clean digits and is about two times smaller than for the MFCC filter. 
The same holds when noisy conditions are tested. The overall gain is +48.79% (+23.02%) for an overall average rec-
ognition rate of 81.20% (68.82%) when the input is preprocessed with the MFCC filter (cochlear filter). The baseline 
is lower for the MFCC filter than for the cochlear filter but as the gain is much larger (about 2 times), the absolute 
performance of our neural network is larger in noisy conditions for the MFCC filter. We suspect that similar results 
would hold for the class of MFCC-like filters, some of which are even more robust against the inclusion of noise.

There are many differences between the simulations performed on the TI-46 and AURORA-2 databases. For 
the TI-46 database, there are only 5 female speakers uttering each digit 10 times. Training is performed on some 
utterances and recognition is performed on the others and the success rate is the average success rate over all 
combinations. For the AURORA-2 database, there are 214 speakers, half of them are female and half are male, 
and they typically utter each digit twice. In contrast to TI-46, the speakers in the training set are different from the 
speakers in the testing set. Even without added noise, the test is much more difficult and involves almost 9 times 
more digits than for TI-46 (4561 digits in AURORA-2 vs 500 digits in TI-46).

Our results without the reservoir are consistent with previous results. Cochlear filtering achieves approxi-
mately a 60% word success rate (around 40% for MFCC) by itself on clean isolated digits of AURORA-2 data-
base25. We obtain 63.24% (89.14–25.90%, see the last column of the first line of Table 4) for the cochlear filter and 
42.26% (92.96–50.70%, see the last column of the first line of Table 3) for the MFCC filter.

Conclusion
We test different frequency filtering methods as stand alone feature extractors. Training a linear classifier on the 

σR  vectors for the classic TI-46 spoken digit data base, both the cochleagram and the MFCC filter give high iden-
tification rates without further processing. On the other hand, the real part of a linear spectrogram does not 
separate the inputs of different digit classes. Non-linearly transforming the spectrogram, gives similar results to 
the cochleagram and MFCC filters, stressing that the separation found for the MFCC and cochlear classifiers is 
due to the presence of non-linearity, with a minor effect due to the particular type of non-linear transformation.

In a second part, a non-linear oscillator is added to process the filtered input. The gain in word recognition 
due to the non-linear oscillator is computed for each filtering method. The non-linear oscillator is simulated and 
found to be in excellent agreement with experimental results with magnetic nano-oscillators. For the non-linear 
methods MFCC, Spectro HP, and cochleagram, the gain of word recognition is small, despite a nearly perfect 
word recognition. On the the other hand, for the linear spectrogram, the gain of word recognition is much higher 
even if the final word recognition is maximum 80%.

An important lesson is that when evaluating hardware systems with speech recognition tasks, the final word 
recognition rate should be interpreted with caution. If a very efficient filtering is used to preprocess the input, the 
hardware system may not be adding much performance. A hardware system only adds something if it provides 
improved word recognition. It should be noted that the use of more complicated datasets, such as the proprietary 
spoken digits dataset used in21,25, or the inclusion of babble noise in the dataset would lead to significantly different 
results. The takeaway of our work is that, in order to test and compare hardware systems, using a linear spectro-
gram eases the interpretation of the results, because it does not introduce any separation of the input prior the 
hardware system. Furthermore, we show that a simple but powerful transformation like our Spectro HP filter start-
ing from a simple spectrogram achieves state-of-the-art results (simulations and experimentally) without applying 
any specific acoustic filter that mimics the human auditory system (like the cochleagram or the MFCC filter).

Testing on the AURORA-2 dataset reveals that under noisy conditions the cochlear filter performs better 
by itself than the MFCC filter but the gain brought by the neural network is two times better on average for the 
MFCC filter and the overall word success rate is higher for the MFCC filter than for the cochlear filter.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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