
Implementing a Protocol Native Managed Cryptocurrency 

Peter Mell Aurelien Delaitre Frederic de Vaulx Philippe Dessauw 
National Institute Prometheus Computing Prometheus Computing Prometheus Computing 

of Standards and Technology New Market MD, USA New Market MD, USA New Market MD, USA 
Gaithersburg MD, USA aurelien.delaitre@nist.gov frederic.devaulx@nist.gov philippe.dessauw@nist.gov 

peter.mell@nist.gov 

Abstract—Previous work presented a theoretical model based 
on the implicit Bitcoin specifcation for how an entity might 
issue a protocol native cryptocurrency that mimics features of 
fat currencies. Protocol native means that it is built into the 
blockchain platform itself and is not simply a token running 
on another platform. Novel to this work were mechanisms by 
which the issuing entity could manage the cryptocurrency but 
where their power was limited and transparency was enforced 
by the cryptocurrency being implemented using a publicly mined 
blockchain. In this work we demonstrate the feasibility of this the-
oretical model by implementing such a managed cryptocurrency 
architecture through forking the Bitcoin code base. We discovered 
that the theoretical model contains several vulnerabilities and 
security issues that needed to be mitigated. It also contains 
architectural features that presented signifcant implementation 
challenges; some aspects of the proposed changes to the Bitcoin 
specifcation were not practical or even workable. In this work 
we describe how we mitigated the security vulnerabilities and 
overcame the architectural hurdles to build a working prototype. 

Index Terms—Fiat Currency, Cryptocurrency, Bitcoin 

I. INTRODUCTION 

The United States National Institute of Standards and Tech-
nology developed an architecture for a managed cryptocur-
rency that has many of the features of electronic fat currencies 
and includes a governing entity [1]. It is intended to combine 
the strengths of both fat currencies and cryptocurrencies. In 
doing this, it deviates from the goals of most cryptocurrencies 
by introducing concepts such as central banking, law enforce-
ment, and identity proofed accounts. It also deviates from 
a government controlled fat currency world in denying the 
currency administrator absolute power over fnancial controls. 
It enables a currency administrator to enact policy to create a 
specifc cryptocurrency instance from the architecture, usually 
with immutable confgurations that even the administrator 
cannot violate. This can promote public trust in the currency 
since the limits to the administrator’s power are immutably 
recorded on the associated blockchain. The architecture uses 
a public permissionless blockchain approach whereby the ad-
ministrator’s actions are completely transparent. Furthermore, 
a public set of miners maintaining the blockchain can prevent 
the administrator from performing unauthorized actions. At 
the same time, the cryptocurrency is designed to prevent the 
public miners from taking control from the administrator or 
from preventing the administrator’s transactions from being 
processed. This architecture thus creates a ‘balance of power’ 
between the administrator and the public miners. Additional 

features include adding role attributes to cryptocurrency ac-
counts that represent fat currency entities (e.g., commercial 
banks, central banks, and law enforcement) such that there is 
created a tree based hierarchy of nodes with roles for all users 
of the cryptocurrency. 

A major limitation to the approach is that it was pre-
sented only as a theoretical architecture. It demonstrated what 
might be possible to create through modest forks to existing 
cryptocurrencies, specifcally using Bitcoin [2] [3] [4] as 
an example. The empirical work was limited to proposing 
changes to the implicit Bitcoin specifcations in [5] and [6] 
to add the features necessary for this ‘balance of power’ 
managed cryptocurrency approach. No code was developed 
and no implementation was tested. The ability of [1] to modify 
the Bitcoin specifcation to add the needed features indicated 
that a managed cryptocurrency might be able to be built 
through a modest fork of an existing cryptocurrency, but it 
lacked a proof-of-concept prototype built as a protocol native 
implementation. 

In this work, we set out to build such a prototype as an 
applied research endeavor. We tested whether or not such a 
managed cryptocurrency system could be built through modest 
modifcations to the code base of an existing cryptocurrency. In 
this way we explored how to create a protocol native managed 
cryptocurrency built into the blockchain platform itself and 
explore the advantages of this approach. This was non-trivial 
as we did not simply create a token on top of another 
cryptocurrency. We also wanted to see if this could be done 
effciently, with only a modest amount of programming effort 
(we scoped using half a person year, in part due to resource 
constraints). We chose to use Bitcoin since [1] described 
their theoretical model through proposing changes to Bitcoin. 
We wanted to discover the complexity of modifying Bitcoin 
to require identity proofng of accounts, establish accounts 
with roles, enable law enforcement functions, enable central 
banking functions, and create and visualize a hierarchy tree 
of accounts that specifes the scope of control of the various 
management and law enforcement nodes. 

An unattributed quote says that ‘theory is when you know 
everything but nothing works.’ Yogi Berra said, ‘in theory 
there is no difference between theory and practice. But, in 
practice, there is.’ We found these statements to be true 
with regard to our implementation of the theoretical work. 
We discovered that the theoretical model contains several 

mailto:peter.mell@nist.gov
mailto:philippe.dessauw@nist.gov
mailto:frederic.devaulx@nist.gov
mailto:aurelien.delaitre@nist.gov


vulnerabilities and security issues that needed to be mitigated. 
It also contains architectural features that presented signifcant 
implementation challenges; some aspects of the proposed 
changes to the Bitcoin specifcation were not practical or even 
workable. We thus had to augment the material in [1] in order 
to achieve a functional and secure system, especially in areas 
such as preserving the balance of power, law enforcement 
powers, management node powers, bootstrapping the system, 
and the needed movement of accounts within the node hi-
erarchy (e.g., when an account holder changes their account 
manager). We also encountered diffculties using the Bitcoin 
code base which necessitated design changes not foreseen in 
[1]. However, in the end we discovered that it was possible to 
modestly modify Bitcoin to implement this ‘balance of power’ 
managed cryptocurrency approach and to do it with a relatively 
low amount of programming effort. 

In summary, we showed that the theoretical architecture 
provided by [1] works and can be implemented effciently. 
However, we had to change, refne, and augment the original 
design in order to make it function. This paper describes 
these changes and the fnal prototype implementation which 
we have made publicly available on GitHub (any mention of 
commercial products is for information only; it does not imply 
recommendation or endorsement). Note that due to resource 
constraints, our prototype is not a full implementation. The 
largest limitation is that the cryptocurrency policy confgura-
tion is static, while the full design in [1] permits dynamic 
policy changes. While not all features were implemented, the 
core functionality was enabled to provide confdence that the 
system could be effciently constructed. 

The rest of this paper is organized as follows. Section II 
presents the theoretical architecture from [1] and discusses 
relevant Bitcoin architectural features. Section III discusses 
the vulnerabilities and security issues we discovered in the 
architecture. Section IV discusses the architectural hurdles that 
we had to overcome. Section V outlines how we created our 
prototype system and Section VI presents the related work. 
Section VII discusses our future plans for the system and 
Section VIII concludes. 

II. THEORETICAL ARCHITECTURE 

The research in [1] provides an architecture that can be 
instantiated into a cryptocurrency instance through specifying 
a specifc policy confguration. The policy parameters en-
able or disable feature sets while specifying parameters for 
cryptocurrency operation. The fnancially related parameters 
are just examples of what could be (e.g., limits on money 
production) and are not intended to be exhaustive given that 
the identifcation of fnancial controls is a related but separate 
research area. In this architecture, anyone can create an 
account, but an account cannot do anything unless it is granted 
one or more roles. The initial block on the blockchain has a 
‘genesis transaction’ that grants roles to the root administrator 
account and all future role assignments spring from this initial 
root account. The root account grants roles to other accounts, 
and those accounts in turn may grant roles to accounts. This 

Fig. 1. Example Managed Cryptocurrency Hierarchy (from [1]) 

sets up a hierarchy of accounts in a tree structure with the root 
account (or node) being the most authoritative. 

The initial root node is given all possible roles so that it can 
propagate these roles to other accounts. Of particular import 
is the ’M’ currency manager role that enables an account to 
give its roles to other accounts (or withdraw granted roles) 
and to modify cryptocurrency policy. Other roles include ‘U’ 
user, ‘A’ account manager, ‘C’ central banker, and ‘L’ law 
enforcement. Their abilities are summarized in [1] as follows: 

• ‘The U role enables an account to receive and spend 
coins. An account for which the U role has been removed 
has its funds frozen. 

• The A role enables a node to create accounts with the 
U role (and only the U role). It may also remove the U 
label for its descendants. 

• The C role enables the creation of new coins (apart from 
the block mining rewards). 

• The L role enables an account to forcibly move funds 
between accounts, to remove the U label, and to restore 
a previously removed U label. However, these actions can 
only be performed against nodes with the same or greater 
distance from the root.’ 

Note that in this model the currency administrator controls 
the root manager node and thus controls the privileges of all 
other nodes participating in the system. It can thus ensure that 
the A nodes perform identity proofng of U nodes (if desired). 
This can enable law enforcement, at least with a court order, to 
identify individuals within the system. This goes counter to the 
trend in cryptocurrencies where privacy and non-traceability 
are key objectives. An example node hierarchy tree with role 
assignments is shown in Figure 1. 

There are three types of transactions that enable accounts 
with roles to perform their functions: coin transfer mode, role 
change mode, and policy change mode. A large portion of [1] 
specifes how to modify the nValue feld in Bitcoin (which 
normally specifes the amount of coin to transfer) to enable 
the role and policy change functionality while still enabling 
coin transfer (but now only between accounts with the U role). 

Lastly, there are two possible security models. There is 
an independent mining model where the miners are truly 
independent from the currency administrator, but they could 
then as a group deny the inclusion of management transactions 

http:coins.An
http:workable.We


(i.e., role changes and policy changes). This would be similar 
to a 51 % attack [7] being launched against Bitcoin. To prevent 
this there is also a dependent mining model where the miners 
must include a certain number of management transactions 
every so many blocks. This can prevent a large group of 
miners from being able to revolt and exclude management 
transactions as with the independent mining model. However, 
it shifts the balance of power slightly towards the currency 
administrator by allowing them to convey a small fnancial 
advantage to preferred miners. This risk can be arbitrarily 
diminished through making certain permanent policy settings. 

The theoretical architecture defned in [1] proposed mod-
ifying Bitcoin for its implementation. The original Bitcoin 
whitepaper is available at [2] while detailed explanations can 
be found in [3], [4], and [5]. Of import to this work is that 
Bitcoin transfers coins using transactions. The coins are not 
stored in user accounts but are linked to the transactions 
themselves. Thus, each transaction has one or more inputs 
(Vin felds) that bring unspent coins into the transaction and 
one or more outputs (Vout felds) that declare who can next 
spend those coin outputs. As shown in Figure 2, a Vin feld 
from some transaction x brings in an unspent Vout feld from 
some transaction y. Figure 3 shows the format of a Bitcoin 
transaction. 

III. DISCOVERED VULNERABILITIES 
AND SECURITY ISSUES 

We discovered vulnerabilities and security issues in the 
theoretical architecture that needed to be mitigated in order to 
implement the prototype system. The vulnerabilities enabled 
violations of the balance of power, replay attacks, and attacks 
against miners. The security issues included improper scoping 
of manager and law enforcement powers as well as insecure 
bootstrapping for establishing cryptocurrency policy. 

A. Preserving the Balance of Power 

The research in [1] contains a ‘dependent mining model’ 
where the manager can specify that x number of management 
transactions must be included within each interval of y blocks. 
One can set x and y through issuing policy transactions. The 
idea is that this model forces the miners to periodically include 
management transactions. 

However, we have discovered a vulnerability in which the 
manager can use this feature to take over the blockchain. 
The manager can initially set y to be high and wait for 
the community to fully adopt and use the cryptocurrency. 
Once a signifcant amount of value has been invested in the 
cryptocurrency, the manager can issue a policy transaction 
changing y to be very low. The manager then could, for 
example, require management transactions to be issued with 
every block and only send those management transactions to 
miners whom they favor or control. The miners receiving those 
transactions would then not propagate them to other miners, 
preventing the other miners from mining any blocks (since 
per policy all blocks would have to contain a management 
transaction). This way, only miners that the manager favored 

or controlled could publish blocks and the manager could 
effectively take over the blockchain with effects similar to that 
of a 51 % attack [8]. 

Our mitigation is to simply limit how tightly a manager can 
set y. If the specifcation and developed code reject policy 
transactions that set y values below some threshold, then the 
manager is prevented from using this method to take control 
of the blockchain. The manager could also voluntarily set a 
minimum threshold for these values using permanent policy 
transactions issued by the root manager node in order to create 
public confdence in the cryptocurrency. Even with minimums 
set, it should be noted that the manager can still implement this 
attack periodically, favoring their own miners every y blocks if 
they refuse to issue management transactions in the intervening 
blocks. This would give a periodic fnancial advantage to 
manager favored miners but would be highly visible to the 
community and would not result in the manager controlling 
the blockchain. To minimize the impact of this residual attack 
possibility, y should be required to be high enough to make 
the fnancial advantage minuscule. An alternative is to use the 
independent mining model discussed in II, but this opens up 
the possibility for the miners to revolt against the manager. 

B. Preventing Replay Attacks 

The research in [1] modifes the Bitcoin transactions to 
support roles because the architecture requires that all trans-
actions include roles. They are brought into the transaction 
using a modifed Vin feld; in Bitcoin Vin felds are only used 
to bring coin into a transaction. Both uses of the Vin feld 
use the same cryptographic protections and one would assume 
that they would inherit the same security properties. However, 
this is not the case and it results in a vulnerability in the 
architecture. 

Since roles are spent like coins but never get used up (since 
you don’t lose a role through using it), they can be spent an 
infnite number of times. This means that transactions that use 
a role might be able to be replayed. For the typical transactions 
also transferring coin (e.g., to pay a transaction fee), this is 
not a problem as the replayed transaction will be rejected 
because the coin would already have been spent. However, 
if the transaction does not involve coin it could be replayed. 
This might happen if the manager owns miners servers and 
issues management transactions without transaction fees with 
the intention that their miners will publish them. In this case, 
there would be no barriers to performing a replay attack. This 
might result in a situation where law enforcement unlocks 
an account but can never securely lock it again because the 
original unlocking transaction can be replayed by anyone. 

There are several possible solutions. One approach is to 
require that all transactions pay some transaction fee while 
requiring transaction signatures to sign the entire transaction. 
In our attempt to modify Bitcoin as little as possible, our 
approach was to change the theoretical model to truly spend 
roles as if they were coin; once spent they can’t be spent 
again. However, whenever we spend a role by including it in 
a Vin feld we also re-create the same role in one of the Vout 

http:blockchain.To


Fig. 2. Bitcoin Vin[] Field Reference to a Previous Transaction (copied from [5]). 

Fig. 3. Bitcoin Transaction Format for Sending Bitcoin (BTC), copied from [5]. 



felds. The effect is that an account keeps a role when it is 
spent but the transaction containing the active version of their 
role can change. Probably the most elegant approach would 
be to implement the architecture using a cryptocurrency with 
an accounts based model so that roles are not stored within 
transactions, but instead within a record associated with each 
account (discussed more below). 

C. Preventing Managers from Attacking Miners 

In [1] all accounts must have the U role for them to receive 
or spend coin. The purpose is to force all participants in the 
cryptocurrency to be identity proofed by an account manager 
in order to receive the U role. This in turn supports ‘know 
your customer’ laws, which have been a challenge for most 
cryptocurrencies [9]. However, this also creates a vulnerability. 
The manager could keep track of the accounts receiving block 
rewards and remove the U role from those accounts (thus 
freezing the funds). The public miners would then have no 
fnancial incentive to mine and then the manager’s own mining 
servers could take over the majority of mining. This would 
give the manager the ability to launch a 51 % attack [8] and 
to a large degree control the blockchain. 

Our solution is to enable miners to deposit block rewards 
into any account, regardless of whether or not it has been 
registered in the system or has any roles. Also, we handle 
the coin from these coinbase transactions (the mining reward 
transactions) specially such that it can be sent without the 
owning account needing the U role. This prevents the cur-
rency administrator from freezing the mining reward coinbase 
funds. However, once coinbase coin is sent away from the 
original account it becomes normal coin subject to the normal 
requirements (it can’t be spent without the associated account 
having the U role). 

D. Scoping Law Enforcement Powers 

In [1] law enforcement powers are both too limited and 
too relaxed. They are too limited in that law enforcement 
can only lock accounts through removing the U label. Law 
enforcement nodes can’t prevent an account using its other 
roles (M, C, A, or L). This is a major issue in the event that an 
account is stolen. On the other hand, law enforcement powers 
are too relaxed in that law enforcement nodes can effect 
any node higher in the account hierarchy tree regardless of 
whether or not it is on the same branch. This effectively gives 
law enforcement nodes a global reach (which is especially 
problematic if a law enforcement node is compromised). 

Our solution is to refect account locking not through the 
removal of the U role but by setting a locked fag. We use 
one of the unused bits in the nValue feld for role change 
mode to set this fag. If the fag is set it temporarily disables 
all roles, not just the U role. This stops all activity by the 
targeted account, giving law enforcement the powers it needs 
to freeze stolen accounts. At the same time, we put additional 
restrictions on law enforcement nodes by only giving them 
authority over nodes farther from the root on the same branch 
of the node hierarchy tree. More precisely, we defne the scope 

of control of a law enforcement node by traversing backwards 
until the frst node is found with the manager role and then 
by performing a breadth frst search to reveal all nodes within 
scope. This enables law enforcement nodes to ‘hang’ off of 
manager nodes in the tree (they don’t have to be inline on 
each branch). 

E. Management Node Powers 

In [1] management nodes also had powers that were too 
relaxed. They were required to have any role that they would 
want to grant. This resulted in management nodes having 
powers that they had no intention of using. Also, their scope 
of control was the same as law enforcement giving each M 
node low down in the hierarchy tree an almost global reach. 

Our solution was to limit their scope to nodes reachable by 
breadth frst search and to limit management nodes to only 
having the M role. However, in our approach management 
nodes can add any role to other nodes. This gives more 
power to a manager node (which might be seen as decreasing 
security) but it limits that power to a more narrow scope 
creating what we believe is a rational compromise. 

F. Policy Bootstrapping 

In [1], it is not stated how the initial policy is defned 
for an instantiated cryptocurrency. It is implied that some 
confguration fle, apart from the blockchain, must exist that 
provides the original parameter settings. These settings may or 
may not then be subsequently overridden through policy trans-
actions on the blockchain. The result may be that some policy 
is defned on the blockchain and some through an original 
confguration fle. Given that the confguration fle wouldn’t 
have the same cryptographic protections as blockchain trans-
actions, the distributor of the node software for maintaining 
the blockchain could conceivably change policy using software 
updates through modifying the confguration fle. 

Our solution is to eliminate the need for the unsecured initial 
confguration fle. We do this by specifying that all policy is 
initially defned as permissive as possible. We then require that 
all policy parameters be defned explicitly on the blockchain 
within the frst x blocks (as defned in the full node software 
distribution). Thus early in the blockchain, ideally prior to it 
being released publicly, the manager will have to explicitly 
record all possible policy parameters within cryptographically 
secured blocks. 

We also discovered that the original root management node 
should not be used to set the initial policy (except for policy 
settings intended to be permanent). This is because, per [1], 
management nodes closer to the root are more authoritative; 
any root manager node policy decisions will prevent any other 
management node from changing that policy. Also, the root 
management node account ideally should never be used after 
the initial few blocks and its keys should be physically stored 
in a vault to eliminate the possibility of it being compromised. 
Thus, if the root node is used to set policy it should only be 
used to set permanent policy that, by design, will never be 
changed. 

http:possible.We


IV. ARCHITECTURAL CHALLENGES 

Apart from mitigating vulnerabilities in the original de-
sign, we encountered several architectural challenges where 
it was not practical or even possible to directly implement 
the theoretical architecture. In this section we describe the 
primary challenges, how we modifed the theoretical design 
to overcome them, and how we implemented those changes. 

A. Dual Signature Requirements for Coin Transfer Transac-
tions 

In [1] an account must have the U role to both spend and 
receive coin. It specifes that these roles must be brought into 
each coin transfer transaction using two separate Vin felds. 
However, this requires both the sender and receiver to sign the 
transaction which would require off blockchain coordination 
and some unspecifed infrastructure to support this. 

This could be resolved by including the coin transfer 
recipient only in the Vout feld (not the Vin) and requiring full 
nodes to check the U role on the account listed in the Vout 
feld (without explicitly bringing it into the transaction using 
a Vin feld), at the cost of additional tracking overhead. Our 
mitigation was to only require the U role for spending coin. 
Any account then can receive coin, but may not be able to 
spend it. This results in only a single account needing to sign 
coin transfer transactions and eliminates additional overhead. 

B. Node Movement 

In [1] there is no mention of how accounts can change 
position within the node hierarchy graph once they have been 
created. This is necessary, for example, for users that want 
to use different account managers. Besides moving nodes, 
edges in the graph may need to be moved in order to cut out 
compromised nodes but leave the rest of the node hierarchy 
intact. 

To implement the needed functionality, we created the idea 
that if a node adds roles to an account that has no roles, this 
creates an edge in the node hierarchy graph from the node 
adding the roles to the node representing the account gaining 
the roles. If an edge already existed to the node gaining the 
roles (which would happen if an account received roles and 
then deleted them), the prior edge will be deleted in order to 
preserve the required tree structure. 

To prepare a node to be moved, the relevant account can 
unilaterally remove its own roles or else a manager whose 
scope covers the node can remove the roles. Using this 
paradigm, nodes can be moved around the node hierarchy 
tree. It also doesn’t require explicitly coding edge creation and 
deletion within the modifed Bitcoin protocol, which would 
have been unnecessarily complicated. A drawback is that node 
movement requires a two step process: one transaction to 
remove roles and another to add them back in (thus removing 
the old edge and creating the new edge). In our future work 
we will design a format where a single transaction does this 
atomically. Complicating this may be the need for dually 
signed transactions to prevent security violations (which we 
are trying to avoid, see section IV-A). Our current two step 

approach ensures that the role removal, node movement, and 
edge addition only happens through transactions issued by 
nodes authorized to perform those activities. 

C. Determining Transaction Types 

The theoretical architecture in [1] uses the most signifcant 
bits of an nValue feld to determine the type of transaction 
being processed: role change, policy change, or coin transfer. 
The nValue felds, in the original Bitcoin, specify the amount 
of coin to be spent. Using the leftmost bits as control bits is 
conceivably risky because a bug in the code might interpret the 
leftmost control bits as value bits for moving or create large 
amounts of coin. More problematic though is that the Bitcoin 
implementation uses the leftmost bit of the nValue feld as a 
signed bit. 

For these reasons, we chose to deviate from [1] and not 
use the leftmost bits of the nValue feld to determine the type 
of transaction. Instead, we determined the type of transaction 
using the transaction version number; this then determines how 
the nValue felds within a transaction are handled. We created 
three transaction version numbers, each of which correspond 
to the three different modes for evaluating nValue felds (role 
change, policy change, and coin transfer). Lastly, we also 
changed to using the nValue low order bits for specifying roles 
and policy change types in case those nValue felds ever got 
interpreted as coin transfer felds through some bug or attack. 
This would then limit the damage done by having fewer coin 
inadvertently transferred or created. 

D. Transaction Fees 

Since we determine transaction type (role change, policy 
change, or coin transfer) through the transaction version num-
ber, it means that the mode of all the nValue felds in the 
Vout felds are determined by that number. However, it is 
usually necessary to pay a transaction fee for most transactions 
and there is usually change that must be sent back to the 
sender. This is not possible then for the role and policy change 
transactions because the nValue felds of the Vout felds change 
roles/policies; they don’t send coin as in the original Bitcoin 
specifcation. We solved this simply by specifying which Vout 
feld is always the change sent back to the originator of the 
transaction (which may be 0 coin on occasion). 

V. DEVELOPED PROTOTYPE 

Our prototype was developed publicly through Github 
and is available within the project ‘usnistgov/managed-
cryptocurrencies-bitcoin’. We built our prototype through fork-
ing and modifying the C++ Bitcoin codebase available on 
Github at ‘bitcoin/bitcoin’. 

For fexibility, effciency, and portability we ran our modi-
fed bitcoin peer-to-peer network for development and testing 
on a local virtualized environment. For our testing, we thus had 
a single virtual machine (VM) executing the entire distributed 
Bitcoin network. We used the Vagrant virtual machine man-
ager with Virtualbox as the VM provider. Within the VM, we 
used the Docker Engine to run a set of containers to represent 

http:specification.We
http:handled.We


the nodes on the modifed Bitcoin network. This enabled 
us to simultaneously run fve Bitcoin miners within a single 
VM to maintain our test blockchain. Note that we artifcially 
reduced the mining diffculty to enable quick block production 
for testing and demonstration purposes. Lastly, we used the 
GraphViz library to enable us to visualize the node hierarchy 
tree. To make access control decisions for role and policy 
change transactions, it was ineffcient to look up individual 
node roles using the tree. Thus, we separately maintained an 
associative array mapping node names to a list of their roles. 
The tree was only necessary for determining the scope of 
control of one node over others (e.g., for the law enforcement 
and manager nodes). 

An example output tree is shown in Figure 4. Within each 
node in parenthesis is listed the roles activated for that node 
and its state (locked or unlocked). The labels are deciphered as 
follows: M-manager, C-central banker, L-law enforcement, U-
registered user, A-account manager, D-disabled account) Node 
0 is the root node created in the genesis block. It should 
normally never be used directly for security reasons and so 
Node 1 was created as the ‘active’ manager. Node 3 is the 
central banker; it could have hung off of Node 1 but it was 
useful for our example to have it as a child under Node 0. Node 
2 is law enforcement with the scope of all that is reachable 
from Node 1 (all nodes except 0, 3, and 11). Nodes 4 and 5 
are account managers. Node 6 is a user account that has been 
disabled by law enforcement. Nodes 7, 8, and 10 are ordinary 
users. Node 9 is a node who has had all its roles removed 
(either done by Node 9 itself, its account manager Node 5, 
or one of the manager nodes 0 or 1). This might have been 
done because Node 9 was compromised or because it is being 
prepared to move to another part of the tree under a different 
account manager. Node 11 is a node that has been active in the 
cryptocurrency but has no roles and has never had any roles 
(due to their being no edge to it). It represents an account 
created by a miner to store coinbase coins, that can be spent 
without needing any roles. 

VI. RELATED WORK 

To our knowledge, [1] is the only work proposing a man-
aged cryptocurrency that has a balance of power where the 
public can hold the manager accountable. There have been 
many government cryptocurrencies proposed but these differ 
in that they are often not managed, don’t use roles, or don’t 
have a balance of power. 

Multichain [10] is a system that might appear to be similar 
in that it contains management features. However, Multichain 
enables a permissioned chain where what is managed is 
which entities have the privilege of mining. This is opposite 
of our prototype that enables open mining. That said, we 
may explore modifying Multichain to implement [1] while 
leveraging a permissioned chain whose membership is defned 
by the current members (not the manager). 

There are many government cryptocurrencies proposed and 
in development (for example [11], more citations are in [1]). 
However, none of these have yet come to fruition except the 

Venezuelan Petro [12], which to our knowledge is the only 
existing government issued cryptocurrency. 

There is research proposing a Fedcoin [13], a cryptocur-
rency that would support central banks with a permissioned 
blockchain that complies with ‘know your customer’ laws [9]. 
It is based on RS—Coin [14], one of many cryptocurrencies 
advertised to support central and commercial banks with 
international transaction handling. Others argue that central 
banks don’t need a cryptocurrency, but instead a new form 
of electronic money [15]. There are also concerns with the 
amount of power a government could leverage through creat-
ing a Fedcoin [16]. 

VII. FUTURE WORK 

There are two major changes to be made in future iterations 
of the implementation: using an account model and better 
handling of compromised nodes. 

A. Using an Account Model 

Bitcoin uses an unspent transaction output (UTXO) model. 
Coin is not stored within user accounts but within the transac-
tions themselves. All transactions have outputs (representing 
coin) and any unspent output may be spent by another transac-
tion. Who may spend a given output is determined by a script 
that usually specifes the public key of a particular account. 
There is no single data structure on the blockchain that shows 
the coin associated with a particular account. 

This works well for Bitcoin, but immediately became awk-
ward for the implementation of our managed cryptocurrency 
prototype. In the theoretical architecture, accounts have roles 
that specify their privileges in the system and these roles are 
specifed in nValue felds. Without a central data structure for 
each account, the roles had to be treated like coin and be spent 
repeatedly as an account used those roles. In our system, an 
account’s roles are transaction outputs and the active copy (the 
one that hasn’t yet been spent) is temporarily in one particular 
transaction. We simplifed this, compared to the theoretical 
architecture, by requiring that any role additions and removals 
repeat the remaining roles. Thus, all of an account’s roles are 
always designated within a single transaction, not spread out 
among many transactions as would have occurred through a 
direct implementation of the theoretical architecture. 

Our future approach will be to implement the system 
through forking cryptocurrency code that uses an account 
model instead of an UTXO model. This is possible because the 
theoretical architecture is not tied to any particular cryptocur-
rency. A likely candidate replacement cryptocurrency would 
be Ethereum due to its maturity, but this choice would bring 
in the added complexity of a codebase that supports smart 
contracts. A mature Bitcoin-like cryptocurrency without smart 
contract capabilities that uses an account model might be better 
suited. 

B. Handling Compromised Nodes 

In section III-D we expand the law enforcement powers to 
disable all the roles of an account to handle the case where 



Fig. 4. Example Output Showing a Node Hierarchy. 

a node is compromised (in [1] only the ability to send and 
receive coin was disabled). However, this does not allow the 
compromised node to be recovered. To do this, we propose 
that all nodes should have two sets of cryptographic key pairs. 
The frst set is used for the daily signing of transactions for 
the associated account. The second set is stored offine and is 
used only to replace the frst set. This enables account owners 
to unilaterally re-establish control over their accounts without 
having to involve a manager node (one with the M or A role). 
However, it will require the development and implementation 
of a new transaction type to enable this resetting of the frst 
key pair. 

VIII. CONCLUSION 

The theoretical managed cryptocurrency architecture pro-
posed in [1] can be effciently developed from an existing 
cryptocurrency codebase and deployed (despite the many 
implementation issues that had to be overcome). An important 
result of this is that we have shown that the novel balance 
of power concept, whereby a manager and public miners 
jointly control a cryptocurrency, is a feasible mechanism 
to be explored for future cryptocurrencies. Another result 
of our work is to show the practicability of adding roles 
to cryptocurrency accounts and the capabilities that can be 
achieved through these roles (in particular for mimicking fat 
currency mechanisms). Lastly, we note that building such a 
protocol native managed cryptocurrency within a blockchain 
platform itself was non-trivial but we showed that it could be 
accomplished with only a modest cost in programming effort. 

In summary, we have shown that the theoretical system 
in [1] can be implemented in such a way as to not just 
leverage many of the strengths of modern cryptocurrencies, 
but also leverage the capabilities of traditional fat currencies. 
While this goes against the goals and directions of most 
cryptocurrency efforts which are promoting greater privacy 
and autonomy from managing institutions, this result may be 
useful for large institutions (e.g., governments) investigating 
future electronic currency approaches. We do not necessarily 
believe that the architecture in [1] provides the answer for 

such a use case, but it and our applied research in this work 
may open up new research directions to better support large 
institutions issuing their own managed cryptocurrencies. 

REFERENCES 

[1] P. Mell, “Managed blockchain based cryptocurrencies with consensus 
enforced rules and transparency,” in 2018 17th IEEE International 
Conference On Trust, Security And Privacy In Computing And Com-
munications/12th IEEE International Conference On Big Data Science 
And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp. 1287–1296. 

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. 
[Online]. Available: https://bitcoin.org/bitcoin.pdf 

[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. 
Felten, “Sok: Research perspectives and challenges for bitcoin and 
cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium 
on. IEEE, 2015, pp. 104–121. 

[4] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction. 
Princeton University Press, 2016. 

[5] K. Okupski, “Bitcoin developer reference,” 2016. [Online]. Available: 
https://lopp.net/pdf/Bitcoin Developer Reference.pdf 

[6] “bitcoinwiki protocol documentation,” accessed: 2017-12-29. [Online]. 
Available: https://en.bitcoin.it/wiki/Protocol documentation 

[7] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is 
current research on blockchain technology? a systematic review,” PloS 
one, vol. 11, no. 10, p. e0163477, 2016. 

[8] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to betterhow to make 
bitcoin a better currency,” in International Conference on Financial 
Cryptography and Data Security. Springer, 2012, pp. 399–414. 

[9] M. Staples, S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A. Tran, 
I. Weber, X. Xu, and J. Zhu, “Risks and opportunities for systems 
using blockchain and smart contracts,” 2017. [Online]. Available: 
https://publications.csiro.au/rpr/download?pid=csiro:EP175103dsid=DS2 

[10] G. Greenspan, “Multichain private blockchainwhite paper,” 2015. 
[Online]. Available: https://www.multichain.com/download/MultiChain-
White-Paper.pdf 

[11] L. Coleman. An inside look at chinas government controlled 
cryptocurrency project. [Online]. Available: https://www.ccn.com/an-
inside-look-at-chinas-government-controlled-cryptocurrency-project 

[12] D. B. Alexandra Ulmer, “Enter the ’petro’: Venezuela to launch oil-
backed cryptocurrency,” Reuters, Dec. 2017. 

[13] S. Gupta, P. Lauppe, and S. Ravishankar, “A blockchain-
backed central bank cryptocurrency,” 2017. [Online]. Available: 
https://zoo.cs.yale.edu/classes/cs490/16-17b/gupta.sahil.sg687 

[14] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,” 
arXiv preprint arXiv:1505.06895, 2015. 

[15] A. Berentsen and F. Schar, “The case for central bank electronic money 
and the non-case for central bank cryptocurrencies,” 2018. [Online]. 
Available: https://doi.org/10.20955/r.2018.97-106 

[16] T. Aube. The terrifying future of fedcoin. [Online]. Available: 
https://hackernoon.com/the-terrifying-future-of-fedcoin-ddcbef2b9592 

https://hackernoon.com/the-terrifying-future-of-fedcoin-ddcbef2b9592
https://doi.org/10.20955/r.2018.97-106
https://zoo.cs.yale.edu/classes/cs490/16-17b/gupta.sahil.sg687
https://www.ccn.com/an
https://www.multichain.com/download/MultiChain
https://publications.csiro.au/rpr/download?pid=csiro:EP175103dsid=DS2
https://en.bitcoin.it/wiki/Protocol
https://lopp.net/pdf/Bitcoin
https://bitcoin.org/bitcoin.pdf

