
Asynchronous Distributed Matrix Balancing and Application to Suppressing
Epidemic

Van Sy Mai and Abdella Battou

Abstract— This paper presents an efficient asynchronous dis-
tributed algorithm for the problem of balancing a nonnegative
matrix using a network of processors, each of which has access
to a portion of the global matrix. The goal of the algorithm
is for the processors to collaborate through local informa-
tion exchange so that each processor can determine its local
weighting coefficients that balance the matrix. Our algorithm
is of Gauss-Seidel type with strict relaxation and converges
geometrically under mild assumptions on the communication
model between neighboring processors. The analysis of our
algorithm is based on a novel reformulation of matrix balancing
as a network consensus problem, from which an upper bound
on the convergence rate can be derived. Finally, we demonstrate
the applicability of the algorithm to a problem of optimally
allocating curing resources for suppressing epidemic spread in
a directed weighted network, where the spreading dynamic is
captured by a susceptible-infected-susceptible model.

I. INTRODUCTION

Matrix balancing and scaling refer to problems of adjust-
ing the entries of a matrix to meet some prior consistency
requirements, e.g., to have a certain zero-nonzero structure,
or equal row and column sums. Such problems appear
frequently in various fields, including economics, statistics,
demographics, numerical analysis, transportation planning
and image reconstruction; see [1], [2] for a survey.

This paper revisits the problem of finding a positive
diagonal matrix X such that, for a given nonnegative matrix
A, the matrix XAX−1 is balanced, i.e., each row sum equals
the corresponding column sum. Such an X is said to balance
A and its diagonal elements are called balancing coefficients.
This problem arises in economics, e.g., in adjusting social
accounting matrices that represent the flow of funds between
agents/accounts in a country’s economy, where the direct es-
timate of such a matrix is never balanced due to inconsistent
data–an inherent problem associated with statistical methods
for estimating underlying economic models [3]. Osborne
[4] was the first to study this problem in the context of
preconditioning matrix A in order to increase the accuracy of
the computation of its eigenvalues. The paper [4] proposed an
iterative algorithm for computing X , also known as diagonal
similarity scaling, where each step involves scaling each
row and the corresponding column appropriately. Variations
and generalizations to this classical algorithm have been
subsequently developed and analyzed [5]–[7]. More efficient
centralized algorithms for this problem exist (see, e.g., [1],
[8]) but do not admit efficient parallelization, and thus
become limited in dealing with very large-scale problems,
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where data could be dispersed over a network of machines
and gathering/processing the whole matrix in a centralized
unit may be impractical, not to mention possible privacy
issues.

Our Contributions: This paper proposes an efficient dis-
tributed solution to the matrix balancing problem by relying
on the presence of a network of processors, where each pro-
cessor has access to part of the global matrix. In particular,
(i) We present an iterative algorithm to be implemented

on the network of processors so that each processor,
through local and asynchronous computations and com-
munications, can obtain an estimate of its corresponding
local balancing coefficients.

(ii) We derive a novel relation between our nonlinear algo-
rithm and a linear time-varying consensus model, based
on which global exponential convergence to an optimal
solution is demonstrated under certain assumptions on
bounded asynchronism. As an important consequence,
the ε-approximate convergence time of our algorithm is
linear in log(1/ε), which is an improvement over known
bounds for Osborne’s type updates.

(iii) We demonstrate the applicability of the algorithm for
solving a large-scale epidemic control problem, where
the spreading dynamic in a weighted directed network
is captured by a susceptible-infected-susceptible (SIS)
model and the objective is to optimally allocate curing
resources to prevent the epidemic spread.

The rest of the paper is organized as follows. We review
related work in Section II. In Section III, we describe the
matrix balancing problem and the setup of a network of
processors on which our intended distributed algorithm is
implemented. Our main results are given in Sections IV,
where we present our algorithm and analyze its convergence.
In Section V, we present a new application of matrix bal-
ancing to an epidemic control problem, where our algorithm
is particularly suited. Finally, numerical examples are given
in Section VI to illustrate the efficiency of our algorithm.

II. RELATED WORK

The work in [4] was specialized for matrix balancing in
the `2 (vector) norm. Parlett and Reinsch [9] generalized
Osborne’s algorithm to the matrix balancing problem in any
`p norm. Another algorithm for (approximate) ε-balancing in
`1 norm was given in [5], which exploits the relation between
matrix balancing and an unconstrained convex optimization
problem whose optimal solution can be approximated by an
ellipsoid algorithm. Bounds on the running time of Osborne’s
algorithm was provided in [7] for `∞ norm and in [6] for the



`p case–the latter also showed an upper bound of O(1/ε2)
on the convergence time. In a slightly different setting, [10]
presented a distributed algorithm for constructing a balanced
weight matrix for a given network structure.

Closely related to matrix balancing is the Matrix Scaling
problem, where for given nonnegative vectors r and c the
goal is to find diagonal positive matrices X and Y such that
r and c are, respectively, the row and column sums of XAY .
The literature on this problem is even much richer; see, e.g.,
[2], [11] and references therein. A well-known algorithm for
matrix scaling is called RAS (see, e.g., [12], [13]), which
is similar to Osborne’s algorithm in that a pair of row and
column is scaled at every iteration. Matrix scaling can also
be reduced to a convex optimization problem–this is used
in [14] to obtain an algorithm for ε-approximate solution.
In [15], a distributed algorithm is proposed for a slightly
different problem, namely, assigning weights to edges in a
directed network (given structure) so that the weight matrix
is doubly stochastic, i.e., row and column sums are all 1.

It is also well-known that both Osborne’s and RAS
algorithms can be viewed as coordinate descent iterations
for a convex optimization problem, of which the dual is a
maximum entropy problem with linear equality constraints;
see, e.g., [2], [5], [14]. Using this duality, [16] studied local
convergence and asymptotic rate of convergence of some
methods of Gauss-Seidel and Jacobi types. More complicated
methods, e.g., Newton and interior-point methods, have been
employed to obtain algorithms that run in polynomial time
[13], [17] as well as nearly linear time [8].

III. PRELIMINARIES

A. Notation and terminology

R denotes the set of real numbers. For a finite set A,
|A| denotes its cardinality. For a matrix A = [aij ], let aij
denote its (ij) element, AT its transpose, and λi(A) its i-th
largest (in magnitude) eigenvalue. Vectors are boldfaced, e.g.,
x=[x1, ..., xn]T, 1=[1, ..., 1]T. ‖x‖p denotes p-norm (or `p
norm) of x. If f : Rn→R is differentiable, ∇f denotes its
gradient and ∂if the i-th partial derivative. A directed graph
G=(V, E) consists of a set of nodes V and a set E ⊆ V ×V
of direct edges. A directed path is a sequence of edges in the
form (i1, i2), (i2, i3), ..., (ik−1, ik). G is strongly connected if
there is a directed path from each node to any other node. For
i∈V , N+

i and N−i denote the sets of in-neighbors and out-
neighbors of i, respectively, i.e., N+

i = {j ∈ V | (i, j)∈E}
and N−i ={j ∈ V | (j, i)∈E}. Moreover, N±i := N+

i ∪N
−
i .

B. Problem Statement and Convex Reformulation

We are interested in the following problem:
Given a nonnegative matrix A, design an asynchronous

distributed algorithm for balancing A.
The following result characterizes the existence of a bal-

ancing matrix and an equivalent optimization problem.
Lemma 1: (e.g., [1]) For any matrix A ∈ RN×N+ , let GA

denotes the weighted directed graph associated with A. Then
the following statements are equivalent:
(i) A positive diagonal matrix X that balances A exists.

(ii) The graph GA is strongly connected.
(iii) There exists a positive vector x that solves the following

minx>0 G(x) :=
∑

1≤i,j≤N aijxi/xj . (1)

Moreover, matrix X and vector x are unique up to scalars.

Thus, the existence of a solution can be checked by
verifying condition (ii) of this lemma. Moreover, the diagonal
elements of matrix A do not play any role in the problem
and thus can be assumed to be zeros. Formally, we assume
the following throughout the rest of the paper.

Assumption 1: Matrix A has zero diagonal entries and the
graph GA is strongly connected.

We now briefly describe a class of algorithms for finding
a balancing A based on Osborne’s classical algorithm, which
iteratively balances row-column pairs in a fixed round-robin
order, starting from matrix A. Specifically,
• At t = 0, A(0) = A.
• For each t > 0, balance an index i of A(t):

A(t+ 1) = D(t)A(t)D−1(t), (2)

where D(t) is a diagonal matrix with djj(t) = 1 for
j 6= i and dii(t) =

√∑
1≤k≤N aki(t)/

∑
1≤j≤N aij(t).

In each step, the algorithm scales the i-th row by dii(t) and
the i-th column by d−1

ii (t). Recently, Ostrovsky [6] obtained
bounds on the convergence rate of this algorithm under vari-
ous choices of balancing index order (namely, greedy, round-
robin, and randomized balancing). The algorithm is based
on sequential coordinate updates, and thus is amenable for
distributed implementation. But, there has been no analysis
on the version of this algorithm with delays. Moreover, it
cannot be implemented fully in parallel–the synchronous
version may not converge while the asynchronous update
requires certain ordering of the balancing index selection that
is not distributed; see also Remark 2 below.

In this paper, we approach the problem from the geometric
program in (1), where the optimal value and an optimal
solution are denoted by G∗ and x∗, respectively. By a change
of variables yi = log xi, (1) is equivalent to the following:

miny∈RN F (y) :=
∑

1≤i,j≤N aije
yi−yj . (3)

Let Y ∗ be the set of optimal solutions to this problem. Then

y∗ ∈ Y ∗ ⇔ ∇F (y∗) = 0, (4)

where each partial derivative is given by

∂iF (y) =
∑

1≤j≤N aije
yi−yj −

∑
1≤k≤N akie

yk−yi . (5)

Remark 1: Note that F is not strictly convex, its gradient
∇F is not Lipschitz continuous and the level set {y |F (y)≤
c} is either empty or unbounded. Thus, most (linearized)
descent algorithms are not readily guaranteed to converge
as their step size design depends on either the Lipschitz
parameter of ∇F or boundedness of level sets (see, e.g.,
[18]). Moreover, it can be shown that the nonlinear Jacobi
algorithm may not converge, while the nonlinear Gauss-
Seidel can be used to solve the problem but has some caveats



described in Remark 2 below. As suggested in [18], these
algorithms do converge if one coordinate is fixed. However,
the convergence rate of such modified algorithms has not
been analyzed and distributed election of such a fixed index
requires further communications.

C. Problem Decomposition
Suppose G = (V, E) be the directed graph generated by A,

where V = {1, ..., N} and E is the set of edges such that aij
is the weight of link (i, j) ∈ E . Since our goal is to design
a distributed algorithm for solving the matrix balancing
problem, we will assume the presence of a network of
computing entities, hereafter called processors. This network
is denoted by G̃ = (Ṽ, Ẽ), where Ṽ = {1, ...,m} and each
processor c ∈ Ṽ is assumed to have access to a subpart Cc
of G (i.e., c has access to both row i and column i of A,
∀i ∈ Cc). Moreover, {Cc}mc=1 forms a partition of G. We also
denote by Cc the processor c. Cc and Cd are neighbors if
∃(i, j) ∈ E with i ∈ Cc and j ∈ Cd; see Fig. 1. We assume
in this paper that two neighboring processors can exchange
information without any communication noise. Moreover, the
following is also a blanket assumption.

Assumption 2: G̃ is undirected and connected.
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Fig. 1. An example of an overlay network of processors, where dotted
lines represent bidirectional asynchronous communication links.

Note that the assumption on the bidirectional communica-
tion between neighboring processors in G̃ will be critical to
the implementation of our algorithm below; the main reason
is to enable local evaluation of partial derivatives given in
(5). It is also important to remark that we do not require
instantaneous bidirectional information exchanges; instead,
messages between Ci and Cj can arrive at different times.

IV. ALGORITHM AND CONVERGENCE ANALYSIS

A. Algorithm Description
Let time be discretized into slots and denoted by t∈N, and

let each processor Cc maintain and update a set of estimates
{yi}i∈Cc . At t= 0, Cc freely initializes {yi(0)}i∈Cc . At any
t>0, Cc independently decides whether to update some (or
all) of its estimates {yi}i∈Cc . Let Ti denote the set of times
at which yi is updated. Then, yi(t+1)=yi(t) if t 6∈Ti and

yi(t+ 1)=hi
(
yi(t), {yv(t− τ (i)

v (t))}v∈N±i
)
, ∀t ∈ Ti, (6)

where hi is a local update function (specified below) and the
delay τ (i)

v (t) represents the amount by which the information
about yv available to processor Cc is outdated. Subsequently,
Cc sends yi(t+1) to those neighbors that require it (e.g., for
the network in Fig. 1, C3 needs to send y9 to C4 but not C1).

We now specify the choice of the update function hi. Let

y(i)
v (t)=yv(t− τ (i)

v (t)), v ∈ N±i (7)

ỹi(t)= 1
2 log

[∑
k∈N+

i
akie

y
(i)
k (t)/

∑
j∈N−i

aije
−y(i)j (t)

]
(8)

hi=yi(t) + αi(ỹi(t)− yi(t)), (9)

where αi ∈ (0, 1) is a step size. Here, y(i)
v (t) represents a

buffer with the most recently received yv that is available to
the processor associated with node i∈V . The update for ỹi(t)
is obtained from the optimality condition (4), namely, setting
∂yiF (y) = 0,∀i∈V , and taking communication delays into
account. Intuitively, processor Cc uses (possibly outdated)
information from its neighbors to find ỹi(t) satisfying

∂yiF (ỹi(t), {y(i)
v (t)}v∈V) = 0, ∀i ∈ Cc, (10)

and then marches towards ỹi(t) with a step length equal
to αi(ỹi(t) − yi(t)). Detailed implementation is shown in
Algorithm 1 below, where we use the variables x = ey to
avoid multiple exp() and log() operations.

Algorithm 1: Asynchronous Distributed Balancing

1 init: Cc sets αi∈(0, 1), xi(0), {x(i)
v (0)}v∈N±i , ∀i∈Cc

2 for t = 1, 2, . . . do
3 forall i ∈ Cc, c ∈ Ṽ do
4 x

(i)
v (t)← xv(t− τ (i)

v (t)), v ∈ N±i
5 if t ∈ Ti then
6 xi(t+1)←xi(t)

[ ∑
k∈N+

i
akix

(i)
k (t)

x2
i (t)

∑
j∈N−

i
aij/x

(i)
j (t)

]αi
2

7 Send xi(t+ 1) to neighboring processors
8 else
9 xi(t+ 1)← xi(t)

10 Cc ← {x∗i }i∈Cc

Our algorithm belongs to the class of asynchronous it-
erative algorithms ([18]). The main novelty here is the
requirement of strict relaxation αi ∈ (0, 1) when applied
to matrix balancing. This also enables us to develop a new
tailored analysis for the convergence rate of the algorithm.
Although we assume that αi is fixed, as will be seen later
in our analysis, time-varying step sizes are also possible.

Remark 2: (Gauss-Seidel Algorithm as a Limit Case)
Consider a particular scenario corresponding to the nonlinear
Gauss-Seidel algorithm, where τij(t) = 0, Ti = i+ tN and
αi = 1 for all t ≥ 0, i ∈ V . Then, line 6 of Algorithm 1
becomes xi(t+1) =

(∑
k∈V akixk(t)/

∑
j∈V aijx

−1
j (t)

)1/2
.

It can be verified that this is indeed equivalent to Os-
borne’s classical algorithm (2), which iteratively balances
row-column pairs in a fixed cyclic order. To implement this
algorithm in a distributed fashion, its update, however, needs
to follow a coloring scheme on the graph G, the design of
which usually necessitates a centralized computing entity
(see, e.g. [18]). In the next section, we show that such
a requirement is not needed for the convergence of our
algorithm; in fact, geometric convergence can be ensured
whether the algorithm is implemented in full parallel or in
an asynchronous distributed fashion.



B. Convergence Analysis

We will study convergence of Algorithm 1 under the
following further mild assumptions (see, e.g., [18]):

Assumption 3: There exist constants T0, T1 ∈ N such that:
(a) Each yi is updated as in (6) at least once during any

iteration interval of length T0.
(b) All delay functions τ (i)

v are bounded by T1 and τ (i)
i ≡

0,∀i∈V,∀v∈N±i .
Note that T0 and T1 are not needed for the algorithm

implementation. These assumptions simply mean that all
nodes contribute sufficiently in optimizing the global cost
F . We now establish the convergence of the algorithm to an
optimal solution y∗ of (3) as well as a linear convergence
rate in terms of nodal variables {yi}. An upper bound on the
convergence rate will be given, which depends on both T0

and T1, i.e., the degree of asynchronism of the algorithm.
Theorem 1: Consider Algorithm 1 through y = log(x)

with any y(0) ∈ RN and α ∈ (0, 1)N . Let {y(t)}t≥0 be
a sequence generated by the algorithm. Then {y(t)}t≥0 is
bounded. Moreover, ∃y∗ ∈ Y ∗ such that

|yi(t+1)− y∗i | ≤ Γµt, ∀i ∈ V,∀t ≥ 0 (11)

with Γ = 2 1+γ−T

1−γT ‖y(0)−y∗‖1, µ= (1 − γT )
1
T , T =NT1 +

(N−1)T0, γ = mini∈V min{1− αi, αiηi/2} and

ηi = min
l∈N±i

min
z∈Ȳ

( alie
zl∑

k∈V akie
zk

+
aile
−zl∑

j∈V aije
−zj

)
,

where Ȳ ⊂ RN is any closed box containing {y(t)}t≥0.
Before proving this result, we note that the boundedness

of {y(t)}t≥0 is necessary for the compactness of Ȳ , which
in turn assures strict positivity of ηi and γ, and hence µ < 1.
We will prove the theorem by showing the equivalence of our
algorithm and a network consensus problem, the convergence
of which is demonstrated in the following result:

Theorem 2 ([19]): Consider εi(t) ∈ R that satisfies the
following iteration for i = 1, . . . , N and t = 0, 1, 2, . . .

εi(t+ 1)=wii(t)εi(t)+
∑
j∈V\{i}wij(t)εj(t−τij(t)), (12)

where τij(t) ∈ [0, T1 − 1],∀i, j, t for some T1 > 0, and
W (t) :=[wij(t)]∈RN×N+ satisfies the following for all t≥0:
(a) W (t)1 = 1 and ∃γ̃ ∈ (0, 1) such that wii(t) ≥ γ̃ and

wij(t) ∈ {0} ∪ [γ̃, 1) for any i, j = 1, . . . , N
(b) ∃T0 > 0 such that the union of all graphs associated

with W (t), . . . ,W (t+ T0) is strongly connected.
Let T = (N−1)T0 +NT1. Then, there exists an ε̄ ∈ R such
that

|εi(t+ 1)− ε̄| ≤ Γµt, ∀i ∈ V,∀t ≥ 0, (13)

where Γ = 2 1+γ̃−T

1−γ̃T
∑
j∈V |εj(0)− ε̄| and µ = (1− γ̃T )

1
T .

Proof of Theorem 1: The proof is structured into the
following steps:
(i) We first show that any sequence {y(t)}t≥0 generated

by Algorithm 1 is bounded.
(ii) The error ε(t) = y(t) − y† satisfies the condition in

Theorem 2 for any y† ∈ Y ∗.

(iii) Finally, y(t) converges geometrically to some y∗ ∈ Y ∗.
Step (i): Consider any {y(t)} generated by Algorithm 1. Let

gi(y) := 1
2 log

(∑
k∈V akie

yk/
∑
j∈V aije

−yj
)
, ∀i ∈ V

y(i)(t) := [y
(i)
1 (t), . . . , y

(i)
N (t)]T, ∀t ≥ 0, i ∈ V,

where y(i)
j (t) is given by (7) and y(i)

j (t) = 0 whenever j /∈
N±i . Clearly, gi is continuously differentiable and by (8),

gi(y
(i)(t)) = ỹi(t), ∀t ∈ Ti.

Fix a y†∈Y ∗ (existence follows from Lemma 1) and define

ε(t) := y(t)− y†.

It then follows from (6)–(9) that if t ∈ Ti, then εi(t+ 1) =
(1− αi)εi(t) + αi

(
gi
(
y(i)(t)

)
− y†i

)
; otherwise εi(t+ 1) =

εi(t). Using the fact that gi
(
y†
)

= y†i (i.e., the optimality
condition in (4)) and the Mean Value Theorem, we have

gi(y
(i)(t))− y†i = ∇gi

(
z(i)(t)

)T
(y(i)(t)− y†)

with z(i)(t)=[1−c(i)t ]y(i)(t)+c
(i)
t y† for some c(i)t ∈ [0,1]. Thus,

εi(t+1)=(1−αi)εi(t)+αi
∑

l∈V\{i}

∂lgi
(
z(i)(t)

)
εl(t−τ (i)

l (t))

for any t ∈ Ti. Here, straightforward calculations show that

∂lgi
(
z
)

=
1

2

[
alie

zl∑
k∈V akie

zk
+

aile
−zl∑

j∈V aije
−zj

]
(14)

for all z ∈ RN . Clearly, ∂lgi(z) = 0,∀l /∈ N±i and

∂lgi(z) > 0 and ∂igl(z) > 0, ∀l ∈ N±i . (15)

Moreover,
∑
l∈V ∂lgi(z) = 1,∀z ∈ RN ,∀i ∈ V.

Now let W (t) = [wij(t)] be defined as follows for t ≥ 0

wij(t) :=


1, t /∈ Ti, j = i

1− αi, t ∈ Ti, j = i

αi∂jgi
(
z(i)(t)

)
, t ∈ Ti, j ∈ N±i

0, otherwise.

(16)

Then, it follows that W (t) ≥ 0 and W (t)1 = 1,∀t ≥ 0, i.e.,
W (t) is always a stochastic matrix, showing that

εi(t+ 1) =
∑
j∈V wij(t)εj(t− τ

(i)
j (t)), ∀i ∈ V (17)

is an asynchronous linear consensus iteration with delays as
in (12). This means that at any iteration, εi(t+ 1) is always
a convex combination of {εj(t− τ (i)

j (t))}j∈V . Define

ε(t) = min
i∈V,t−T1+1≤s≤t

εi(s), ε̄(t) = max
i∈V,t−T1+1≤s≤t

εi(s),

for t ≥ T1, where T1 is the maximum delay as per As-
sumption 3. Clearly, {ε(t)} is a nondecreasing sequence and
{ε̄(t)} a nonincreasing one. Indeed, the following hold

ε(t) ≤ ε(t+ 1) ≤ ε̄(t+ 1) ≤ ε̄(t), ∀t ≥ T1. (18)

Thus, both sequences {ε(t)}t≥0 and {ε̄(t)}t≥0 are bounded.
As a result, {ε(t)}t≥0 is bounded and then so is {y(t)}t≥0.

Step (ii): From above, it remains to verify that both
conditions (a) and (b) in Theorem 2 hold.



Clearly, condition (b) holds because of (15), (16) and
Assumption 3 (a). For condition (a), we need to show
that wij(t) in (16) is either zero or strictly positive and
bounded away from zero. Equivalently, we will demonstrate
that ∂jgi

(
z(i)(t)

)
is either 0 or bounded below by a positive

constant for all i, j, t. To this end, let Ω ⊂ RN be any
closed box containing {y(t)}t≥0 and y†. Thus, Ω is convex
and compact (because of the boundedness of {y(t)}t≥0)
and {y(i)(t)}t≥0 ⊂ Ω,∀i ∈ V . Since z(i)(t) is a convex
combination of y(i)(t) and y†, it follows that z(i)(t) ∈
Ω,∀t ∈ Ti. Hence, we now consider ∂jgi on Ω for any
(i, j) ∈ E . By continuity and positivity of ∂jgi (see (14)
and (15), respectively) and compactness of Ω, we have
infz∈Ω minl∈N±i

∂lgi(z) is achieved and strictly positive.
Thus, there exists γ̃ > 0 such that

γ̃ := min(i,l)∈E minz∈Ω{1− αi, αi∂lgi(z)}.

This and (16) imply that W (t) is stochastic and satisfies
wij(t)≥ γ̃ if wij(t)>0, thereby verifying condition (a).

Step (iii): It follows from Theorem 2 that ∃ε̄ ∈ R such
that as t → ∞, ∀i ∈ V , yi(t) → y†i + ε̄ at a rate bounded
above by µ = (1−γ̃T )

1
T . Now, define y∗ := y†+ε̄1. Clearly,

F (y∗) = F (y†), hence y∗ ∈ Y ∗. Moreover, y∗ ∈ Ȳ since
limt→∞ y(t) = y∗ and {y(t)}t≥0⊂ Ȳ (which is closed by
definition). Therefore, Y ∗ ∩ Ȳ must be nonempty. Since the
above arguments hold for any y† ∈ Y ∗, we can consider
y† ∈ Ȳ . Thus, the convergence rate µ can be refined by
selecting Ω = Ȳ and γ̃ = γ, as in the theorem statement.

Clearly, the convergence rate bound µ in (11) depends on
the asynchronism degree, characterized by T and bounded
above by N(T0+T1), the network G through parameters N
and {ηi}, the step sizes {αi}, and initializations y(0). In
general, solving for ηi exactly may not be practical since it
requires not only A but also Ȳ , which depends on {y(t)}.

Remark 3: (Step Size Selection) First, each Cc can choose
local step sizes {αi}i∈Cc arbitrarily in (0, 1), and the algo-
rithm still converges geometrically. On the one hand, this
brings about simplicity in the algorithm implementation;
on the other hand, optimal step sizes that maximize the
convergence rate are hard to determine, even in a centralized
manner. Second, it can be seen from the proof above that
Algorithm 1 still converges geometrically under time-varying
step sizes αi(t)∈ [αi, ᾱi]⊂(0, 1) for some αi and ᾱi.

Remark 4: (Relation to Network Flow Problem) The dual
of (3) is a strict convex network flow problem with entropy
cost functions, which was studied in [18, § 7.2] and Al-
gorithm 1 can be viewed as an extension of the partially
asynchronous algorithm therein that uses a uniform step
size. It should be emphasized, however, that our convergence
analysis is totally different from that in [18]; moreover,
while the convergence rate was not established in [18], our
approach gives rise to the geometric convergence.

V. APPLICATION TO EPIDEMIC CONTROL

Applications of matrix balancing appear in diverse fields
[2]. To the best of our knowledge, application to an optimal
epidemic control problem is presented here for the first time.

A. Epidemic Network
Epidemic spreading processes appear in a range of net-

work phenomena, such as social behaviors, diffusion of
infections in people or computers, and cascading failures;
see, e.g., [20]–[23]. Here, we adopt a continuous-time model,
called the N -intertwined SIS, proposed in [22], [24]; see also
[25]. Given a network of N agents with the contact graph G=
(V, E), each agent i∈V can be either susceptible or infected.
The transition between these two states is characterized by
its curing rate δi > 0 and infection rates of its neighbors
βij > 0, (i, j)∈E . Thus, the network can be represented by
a Markov model with 2N states. Since an exact analysis of
this model is difficult for large networks, the following first
order mean-field approximation ([22], [24]) is often used:

ṗ(τ)=
(
1−pi(τ)

)(∑
j∈N+

i
βijpj(τ)

)
− δipi(τ), ∀i ∈ V,

where pi(τ)∈ [0, 1] denote the infection probability of node i
at time τ ∈R+. This model exhibits two equilibria, namely,
a disease-free state, where the network is cured eventually,
i.e., p∞ := limτ→∞ p(τ) = 0, and an endemic state, where
each agent is infected with a strictly positive probability, i.e.,
p∞>0; see [24]. The phase transition is characterized by

λc := max1≤k≤N Re{λk(B −D)}, (19)

where D=diag(δi), B=[βij ], and Re{λk(B−D)} is the real
part of λk(B−D). Specifically, if λc>0, the network enters
an endemic state, while the disease-free state is reached
asymptotically if λc≤0, in which case, λc is also an upper
bound on the decay rate of p(τ). (Note that the susceptible-
infected-removed model in [26] also has the same threshold.
Thus, our results below can as well be applied to this model.)

B. Optimal Allocation of Curing Rates
Suppose the cost per curing unit associated with node

i ∈ V is given by wi > 0. Then, for a given curing profile
δ=[δ1, ..., δN ]T, the total network-wide cost is simply wTδ
where w = [w1, ..., wN ]T. This linear cost is similar to
those in [27], [28]. We consider the problem of finding least
amount of resources to prevent the epidemic spread:

δ∗ = arg minδ≥0

{
wTδ | λc ≤ 0

}
. (20)

It has been shown [29] that (20) is equivalent to the following

minu>0 G̃(u) :=
∑

(i,j)∈E wiβijuj/ui (21)

in the sense that δ∗i =
∑
j∈V βiju

∗
j/u
∗
i , and G̃∗=

∑
i∈V wiδ

∗
i .

Now, let x and A= [aij ] be such that xi = 1/ui and aij =
wiβij , ∀i, j. Then, (21) becomes exactly (1) and thus can
be solved in a distributed fashion by Algorithm 1. In this
connection, Algorithm 1 can be seen as an extension of the
synchronous algorithm in [29] to the asynchronous setting.

Finally, we remark that (20) is closely related to the fol-
lowing problems: (i) Determine a cost-optimal curing profile
for a desired recovery rate λ0≤0, i.e., minδ≥0

{
wTδ |λc≤

λ0

}
; (ii) Given a sufficient budget U > G̃∗, optimize the

recovery rate, i.e., minδ≥0

{
λc |wTδ≤U

}
; and (iii) When

budget U is insufficient, suppress the endemic size, namely,
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minδ≥0

{
1Tp∞ |wTδ≤U

}
. In fact, it is shown in [29] that

both (i) and (ii) are equivalent to (20), a solution of which
can as well be used to obtain suboptimal solutions to (iii).

VI. NUMERICAL EXAMPLES

Example 1: Consider the network in Fig. 1, where the
edge weights are selected uniformly at random (u.a.r.) in
(0, 1). Fig. 2 (a) shows the performance of Algorithm 1 with
αi=0.8,∀i∈V and under various choices of (R,D), where
R is the number of active nodes (selected u.a.r. in [1, N ]) at
each iteration and all delays are selected u.a.r. in [1, D] with
D=T0−1. In each case (except for (R,D)=(n, 0) and GS),
we show the average and dispersion of 100 runs. To assess
the effect of αi, we consider the case (R,D) = (6, 5) with
several choices of αi≡α. The results are shown in Fig. 2 (b),
where it appears that larger α yields faster convergence.

Example 2: To examine the scalability of Algorithm 1, we
apply it to a set of topologies {line, cycle, ER} and with
various sizes N ∈ {10, 50, 100, 500, 1000, 5000, 104}, where
ER networks are giant components (of size at least 0.8N )
of Erdos-Renyi graphs generated with parameter p = 2

N−1 .
For each network, we run 100 simulations (each with edge
weights selected u.a.r. from (0, 1), R=N and τ (i)

j ∈{0, 5})
and find the average running time Tε=min{t | f(t)≤εf(0)}
where ε=10−3 and we use f(t)=‖∇F (y(t))‖2 to measure
the total imbalance at iteration t. The results shown in Fig. 2
(c) suggest that Tε is not exponential in N .
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