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Abstract
Rosenfeld proposed two different scaling ap-
proaches to model the transport properties of
fluids, separated by twenty-two years, one valid
in the dilute gas, and another in the liquid
phase. In this work, we demonstrate that these
two limiting cases can be connected through
the use of a novel approach to scaling trans-
port properties and an empirical bridging func-
tion. This approach, which is empirical and not
derived from theory, is used to generate refer-
ence correlations for the transport properties of
the Lennard-Jones 12-6 potentials of viscosity,
thermal conductivity, and self-diffusion. This
approach, with a very simple functional form,
allows for the reproduction of the most accurate
simulation data to within nearly their statisti-
cal uncertainty.

The correlations are used to confirm that
for the Lennard-Jones fluid the appropriately
scaled transport properties are nearly mono-
variate functions of the excess entropy from
low-density gases into the supercooled phase
and up to extreme temperatures. This study
represents the most comprehensive meta-study
of the transport properties of the Lennard-
Jones fluid to date.

1 Introduction
In 1977 Rosenfeld published a paper suggesting
that transport properties are controlled by the
excess entropy sex;1 the excess entropy is the
change in entropy compared to the ideal gas at
the same temperature and density caused by
intermolecular interactions. Molecular interac-
tions tend to reduce the entropy compared to
the non-interacting ideal gas at the same tem-
perature and density; therefore the excess en-
tropy is generally negative. In other words,
interactions between molecules reduce the al-
lowable microstates of the system, resulting in
a reduction in entropy (compared to the ideal
gas at the same temperature and density).

In this paper we follow the tradition of physi-
cal chemistry by defining the excess entropy by

sex(T, ρ) ≡ s(T, ρ)− s0(T, ρ) (1)

where s is the total entropy per particle and s0

is the ideal gas entropy per particle.
The thermodynamic quantity sex goes by

many other names in the literature, including
residual entropy,2–5 internal entropy,1 and iso-
metric residual entropy.6 In the chemical ther-
modynamics community, the term excess en-
tropy is strictly reserved for deviations from
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Raoult’s law,7 and the term residual entropy
is used in the place of excess entropy, though
the residual entropy has precisely the same def-
inition as the excess entropy in Eq. (1). There
are at least two definitions for excess entropy,
one based upon the difference in entropy be-
tween the given state and the ideal gas at the
same temperature and density and another at
the same temperature and pressure. Whenever
any of these entropy difference terms are used,
they should be defined explicitly.

In his seminal work, Rosenfeld considered
the available simulations for the Lennard-Jones
(LJ) 12-6 fluid, which included four simulations
for shear viscosity, and four simulations for the
self-diffusion coefficient. Since then, the num-
ber of simulations for the Lennard-Jones 12-
6 potential has increased dramatically, due to
the popular approach of modeling the thermo-
dynamic and transport properties of real fluids
by analogy with the Lennard-Jones 12-6 poten-
tial.2,8

Here, in this work, we have collected the
most comprehensive set of transport data for
the Lennard-Jones 12-6 potential from the lit-
erature and applied a novel scaling approach
that is based on approaches proposed by Rosen-
feld.1,9 Following the approach of Ref. 2, we use
reference-quality thermodynamic models in or-
der to minimize the uncertainty in excess en-
tropy.

From the analysis of the data collected in this
work for the Lennard-Jones fluid we offer the
following new insights:

• Modified entropy scaling allows for a
means of connecting the transport physics
of the gas phase with that of the liquid
phase with a single independent variable,
the excess entropy. The macroscopically-
scaled linear transport coefficients are en-
tirely governed by the excess entropy, and
the scaling between excess entropy and
scaled transport properties is valid from
the dilute gas limit to supercooled states
and states at very high temperatures.

• The empirical correlations for the trans-
port coefficients allow for a means of
quantifying the monovariability of this

scaling, and the deviations of the correla-
tions from the simulation data are shown
to be approximately equal to the uncer-
tainty of the simulations.

• The scaled transport data for the LJTS
and LJT+LRC potentials cannot be dis-
tinguished in these scaled coordinates.
Therefore, impacts from truncation of the
potential on the scaled transport property
and residual entropy approximately can-
cel.

• This scaling demonstrates monovariate
collapse of the transport data as a func-
tion of excess entropy even where iso-
morph theory should not be valid (R <
0.9). Entropy scaling appears to have
a wider range of applicability than iso-
morph theory.

2 Background
To demonstrate this relationship between ex-
cess entropy and transport properties from the
primitive numerical data available at the time,
Rosenfeld converted the relevant physical prop-
erties (diffusion coefficient, viscosity, and ther-
mal conductivity) into dimensionless quantities
by using a particular unit system, sometimes re-
ferred to as macroscopic reduced units. These
units, which were used already in the 1930s
by Andrade in his theory of viscosity10–12 are
based on the length unit l0 = ρ

−1/3
N in which

ρN = N/V is the particle number density (V
is volume), the energy unit e0 = kBT , and a
time unit constructed from l0 and e0 as fol-
lows: t0 = l0/

√
e0/m (m is the particle mass;

t0 is the time it takes to travel the distance
l0 if the particle has thermal velocity). Thus
t0 = ρ

−1/3
N

√
m/kBT .

For instance, the diffusion coefficient D is
made dimensionless by dividing by l20/t0, de-
noted the macroscopically reduced diffusion co-
efficient by D̃. Thus

D̃ ≡ ρ
1/3
N

√
m/kBT D . (2)

In this section, we henceforth focus on D;
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the viscosity and heat conductivity are treated
analogously.

Rosenfeld’s excess-entropy scaling is the ob-
servation that D̃ is a unique function of sex
throughout the thermodynamic phase diagram.
For the “ordinary” condensed liquid phase, i.e.,
not very far from the freezing line, the iso-
morph theory explains entropy scaling.13 In this
theoretical framework, which works whenever
the equilibrium fluctuations in the virial of the
system are strongly correlated with those in
the potential energy,14,15 excess-entropy scal-
ing is a consequence of “hidden scale invari-
ance”.13,16 This is the condition that the order-
ing of potential energies of system configura-
tions is maintained upon a uniform scaling of
all particle coordinates (keeping all intramolec-
ular distances unchanged).13,17,18 Hidden scale
invariance applies to a good approximation for
the condensed liquid phase (as well as the crys-
talline phase) of most or all metals and van der
Waals bonded systems, whereas it is not ex-
pected to work for systems with strong direc-
tional bonds like hydrogen-bonded or covalently
bonded systems. Ionic liquids and dipolar sys-
tems constitute an in-between case for which
hidden scale invariance is expected to apply if
the interactions are not very strong.

Hidden scale invariance has been demon-
strated in extensive computer simulations, as
well as in experiments, on van der Waals
bonded molecular liquids (see, e.g., the re-
views given in Refs.13,16,18). In particular, the
LJ system has hidden scale invariance in the
condensed-phase part of the phase diagram.
However, the virial potential-energy correla-
tions of the LJ system decrease when the gas
phase is approached (see Section 4.1 ). Interest-
ingly, excess-entropy scaling still works in this
part of the phase diagram. In fact, Rosenfeld
in 1999 showed that the dilute gas phase obeys
excess-entropy scaling.9 How does one rational-
ize this fact within a theoretical framework that
generalizes the isomorph theory? This is not
clear, but we have identified a novel way of scal-
ing that addresses the challenge of extending
excess-entropy scaling to the gas phase2 and
which may provide a good starting point for
further theoretical developments.

In order to justify the new modified excess-
entropy scaling, which was introduced as a
practical tool in,2 we first consider the liquid
phase. The physics of hidden scale invariance
is the non-trivial fact that the relevant length
scale is not the length parameter σ of the LJ
pair potential. This scale is relevant for deter-
mining the density at moderate pressures, but
hidden scale invariance is independent of the
pressure.15,16,18,19 Instead, the relevant length
scale is the average interparticle distance, which
is ρ

−1/3
N .

Things are different in the gas phase. Here,
the molecule size, which can be identified with
the σ of the LJ pair potential, is one relevant
length scale. There is, however, one more rele-
vant parameter, namely the so-called mean-free
path l (the average distance traveled between
collisions). In the gas phase the relation be-
tween the three lengths, where the third length
is the average particle distance determined by
ρN, is given by20

σ2lρN ∼ 1 . (3)
The diffusion constant scales as follows20

D ∼ lv (4)
in which v ∼

√
kBT/m is the thermal velocity.

These two simple equations are the most impor-
tant identities of kinetic theory, and they are
direct consequences of the physical picture that
a gas behaves like a collection of continuously
colliding hard spheres. In Eq. (3), as number
density ρN goes to zero, l goes to ∞, and as
a consequence, the self-diffusion from Eq. (4)
diverges for a given temperature. We proceed
to derive Rosenfeld’s 1999 result that excess-
entropy scaling works even in the gas phase,
with the following prediction:

D̃ ∝ (−sex/kB)
−2/3 (ρN → 0) . (5)

Combining Eq. (3) with Eq. (4) we get

D ∼ v

σ2ρN
, (6)

which implies that
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D̃ ∼ ρ
1/3
N

σ2ρN
= (ρNσ

3)−2/3 . (7)

On the other hand, sex → 0 as density goes to
zero, so a first-order Taylor expansion results
in sex ∼ −ρNσ

3 at low densities (sex/kB is di-
mensionless and can only depend on density via
the dimensionless combination ρNσ

3; recall also
that sex is negative). Inserting this into Eq. (7)
leads to the following low-temperature scaling

D̃ ∼ (−sex)
−2/3 . (8)

Note that this applies even if the effective hard-
sphere radius σ depends both on temperature
and density.

How does one smoothly connect the gas and
liquid phase descriptions? The challenge is
that, while the only relevant length scale in the
liquid phase is that given by the average inter-
particle distance l0 ≡ ρ

−1/3
N , the gas phase has

two relevant length scales, l and σ, connected
by Eq. (3). This suggests defining different re-
duced units for the gas phase in order to arrive
at the relevant dimensionless variables like D̃.
On the other hand, the macroscopic reduced
units of traditional Rosenfeld scaling have the
advantage that no knowledge about the molec-
ular size is required, i.e., these are pragmatic
units that directly refer to experiments. There
is no gas-liquid transition at supercritical tem-
peratures.

Instead of changing the unit system, we pro-
pose to keep Rosenfeld’s reduced units through-
out the phase diagram but make an entropy-
dependent correction that removes the gas-
phase divergence of Eq. (8). Thus we define
the following new reduced variables:

D+ ≡ (−sex/kB)
2/3D̃ . (9)

This is to be used throughout the phase dia-
gram, i.e., also in the liquid phase. Here, how-
ever, the new factor of (−sex/kB)

2/3 introduces
an excess-entropy dependence that is approxi-
mately exponential throughout the liquid phase
and when approaching the melting line (and
continuing into the supercooled phase if that
is relevant).

2.1 Practical Applications
In recent years there has been a growing inter-
est in making use of Rosenfeld’s discoveries to
develop empirical correlations of the transport
properties of real fluids over the entire fluid do-
main. The review of Dyre13 provides a com-
prehensive view of the application of excess en-
tropy scaling to the transport properties of real
fluids, and we discuss a few studies relevant to
this work here. One of the bedeviling features
of Rosenfeld’s entropy scaling is that the scaled
properties all diverge at zero density (zero ex-
cess entropy), which has led to a number of ap-
proaches for means of circumventing this prob-
lem.

One approach for managing the zero-density
divergence is to subtract the dilute-gas trans-
port properties from the value of the dense
phase, but not apply macroscopic scaling.21

This approach yields the correct values in the
zero-density limit, but does not utilize the
macroscopic scaling required for the application
of isomorph theory.

Another approach proposed in the litera-
ture is to divide the transport properties by
their value in the dilute-gas limit.3,22–28 While
these formulations are able to quite accu-
rately empirically fit the transport properties
of real fluids, they are not suitable to model
small and spherically-symmetric particles such
as the Lennard-Jones fluid.2 The weakness of
the zero-density-limit-scaling approach is that
the zero-density-limit-scaled transport proper-
ties are not equivalent to macroscopic reduction
of the transport properties, a necessary condi-
tion for the application of isomorph theory.

The group of Tom Truskett proposed the gen-
eralized Rosenfeld scaling29–31 which shares fea-
tures with the scaling employed in this work.
The second virial coefficient term B2 + T ·
dB2/dT is used to scale the self-diffusion in the
dilute gas, which is quite similar to the term
(B2 + T · dB2/dT )

2/3 used in this work.
The scaling approach proposed in this work

has a well-characterized limit at zero density,
does not have the zero-density divergence of
Rosenfeld’s liquid-phase scaling, and retains the
required macroscopic scaling throughout the
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dense phases. As such, this scaling repairs the
deficiencies of prior scaling approaches based
on Rosenfeld’s proposals and allows for the ap-
plication of this scaling approach for all fluid
states.

3 Potentials
The Lennard-Jones 12-6 potential is the canon-
ical pair-wise potential for a spherically-
symmetric monatomic molecule (e.g., the noble
gases), and as such has been studied exten-
sively. This potential is given by

VLJ(r) = 4ε

((σ
r

)12
−
(σ
r

)6)
(10)

Two common methods exist for simulating
the Lennard-Jones potential in a finite box.
The first approach is to truncate the potential
(VLJT) at a cut-off distance (rcut)

VLJT(r) =

{
VLJ(r) r < rcut

0 r ≥ rcut
, (11)

Analytical long-range corrections (LRC) to the
energy and pressure are often used to account
for neglecting interactions at r > rcut. The sec-
ond approach is to truncate and shift the po-
tential (VLJTS), yielding

VLJTS(r) =

{
VLJ(r)− VLJ(rcut) r < rcut

0 r ≥ rcut
,

(12)
For both approaches, frequently rcut = 2.5σ.

The Lennard-Jones 12-6 potential has the
characteristics of a real molecular fluid with
both repulsion and attraction; it has liquid
phases, a vapor-liquid critical point, and vapor-
liquid phase equilibrium. The family of fully-
repulsive potentials include the inverse-power-
law, the repulsive part of the Weeks-Chandler-
Anderson decomposition of the Lennard-Jones
potential and many others like the exponen-
tially repulsive EXP pair potential.32,33 The
fully repulsive potentials do not show these
liquid-like features; they have only a fluid phase
and a solid phase.

The exponent 6 of the attractive part of the
Lennard-Jones 12-6 potential is consistent with

theory,34,35 while the exponent 12 of the repul-
sive part has no rigorous meaning. Generalizing
this repulsive exponent yields the Mie family of
Lennard-Jones potentials, which have also been
considered as model systems for transport prop-
erty modeling.36,37 Even though the exponent
12 cannot be justified theoretically, it has been
shown to be suitable to model both thermo-
dynamics and transport properties.38 The EOS
of Lafitte et al.39 could be used to provide the
excess entropy for the Mie potential, but this
equation of state provides erroneous predictions
of some thermodynamic properties.

The inverse-power-law potential (IPL) is di-
rectly related to the family of Mie potentials.
The functional form of the IPL is given by

V (r) = ε
(σ
r

)n
(13)

The IPL is sometimes referred to as the soft-
sphere potential (usually with n = 12). The
IPL potential is a mathematically simple po-
tential; a consequence of its simplicity is that
closed form solutions are possible for some of its
properties. We will refer to the IPL potentials
in the discussion of zero-density limit transport
properties in Section 8.

4 Classical Rosenfeld Scal-
ing

One of the key insights of Rosenfeld is that
the macroscopically reduced transport proper-
ties are what count.1,9 Therefore the macro-
scopically reduced transport properties are in-
dicated with a tilde

λ̃ =
λ

kBρ
2/3
N

√
kBT/m

(14)

η̃ =
η

ρ
2/3
N

√
mkBT

(15)

D̃ =
ρ
1/3
N D√
kBT/m

, (16)

where λ is the thermal conductivity, η is the
viscosity, D is the self-diffusion coefficient, m
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is the mass of one particle, kB is Boltzmann’s
constant 1.380649×10−23 J K−1,40 and T is the
temperature.

In molecular simulations, reduced simulation
units are used, which results in the identi-
cal definitions for the macroscopically reduced
transport properties in simulation units given
by

λ̃ =
λ∗

(ρ∗)2/3
√
T ∗

(17)

η̃ =
η∗

(ρ∗)2/3
√
T ∗

(18)

D̃ =
(ρ∗)1/3D∗

√
T ∗

=
(ρ∗D∗)

(ρ∗)2/3
√
T ∗

(19)

where λ∗ = λσ2/(kB
√

ε/m), D∗ =

D/(σ
√
ε/m), η∗ = ησ2/

√
mε, ρ∗ = ρNσ

3,
T ∗ = kBT/ε, and ρ∗D∗ = (ρND) · (σ2/

√
ε/m).

In the case of self-diffusion, the second sugges-
tive form highlights the similarity of the re-
duced transport properties in simulation units;
each is a reduced transport property divided
by (ρ∗)2/3

√
T ∗. The value ρ∗D∗ is employed as

the scaled transport property rather than D∗

because while D∗ diverges in the zero-density
limit, ρ∗D∗ remains finite.41

Before describing in depth the considered
molecular simulations and their methodology,
we first introduce the Rosenfeld-scaled trans-
port properties for the Lennard-Jones fluid.
The set of data obtained was originally based
on the collection of Lautenschlaeger42 with ex-
tensive data corrections and the addition of
datasets from other publications. Figures 1
to 3 present the macroscopically scaled trans-
port properties as a function of the excess en-
tropy. The evaluation of the excess entropy is
explained in Section 6.1. This scaling results
in a divergence of all three properties at zero
density (zero excess entropy) due to the pres-
ence of the term 1/(ρ∗)2/3. The novel scaling
we propose in this work does not have the zero-
density-limit divergence.

0 1 2 3 4 5
sex/kB

10 1

100

101

102

=
* /

[ (
* )

2/
3

T
*

]

Figure 1: Rosenfeld-scaled viscosity values from
simulations42,42–62 for the Lennard-Jones 12-6
potential. Each marker/color pair is associated
with a given dataset. A larger version of this
figure is available in the SI (Fig. S1), along with
a legend describing each dataset.

0 1 2 3 4 5
sex/kB

0
2
4
6
8

10
12
14

=
* /

[ (
* )

2/
3

T
*

]

Figure 2: Rosenfeld-scaled thermal conductiv-
ity values from simulations42,42,46,50,52–55,57,62–68

for the Lennard-Jones 12-6 potential. Each
marker/color pair is associated with a given
dataset. A larger version of this figure is avail-
able in the SI (Fig. S2), along with a legend
describing each dataset.
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Figure 3: Rosenfeld-scaled self-diffusion val-
ues from simulations41,42,42,46–48,50–53,58,59,69–71

for the Lennard-Jones 12-6 potential. Each
marker/color pair is associated with a given
dataset. A larger version of this figure is avail-
able in the SI (Fig. S3), along with a legend
describing each dataset.

4.1 Range of Applicability
According to the isomorph theory,15,32,72–76

when the correlation between the virial and
the potential energy is strong, the macroscopi-
cally reduced transport properties according to
Eqs. (17) to (19) should be monovariate func-
tions of the excess entropy. It is common prac-
tice within the isomorph literature14,77 to define
a correlation coefficient R greater than 0.9 as
being “strongly correlating”.

The correlation coefficient R between the
virial W and potential energy U fluctuations
can be calculated from NV T simulations using
the formula:

R (T ∗, ρ∗) =
⟨∆W∆U⟩√

⟨(∆W )2⟩⟨(∆U)2⟩
(20)

where ∆ denotes instantaneous equilibrium
fluctuations from the mean value and the brack-
ets that an NVT ensemble average is taken. In
the case of the LJ system the correlation co-
efficient R is increasing toward its maximum
value 1 when either density or temperature is
increased, as can be seen from Fig. 4. State
points which are close to the LJ freezing line
have high correlation coefficient (R > 0.9) while
approaching the gas-liquid coexistence leads to
a decrement in R. In the gas-liquid coexistence
region, the correlation coefficient can be zero or

negative.

0.0 0.4 0.8 1.2 1.6
*

2

4

6

8

10

T
*

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R

Figure 4: Correlation coefficient R for the
Lennard-Jones 12-6 potential from the simula-
tions of Costigliola et al.47 (for ρ∗ ≥ 0.605) and
simulations from this work (for ρ∗ < 0.605).
Triangles indicate state points with R > 0.9,
circles indicate state points with R < 0.9. The
solidus and liquidus lines (indicated by dashed
lines) were obtained from Ref. 78 and Refs.
79,80, respectively.

5 Literature review
We will work with the simulation data pre-
sented in the literature. An overview of the sim-
ulation results that are available is presented in
graphical form in Fig. 5. Tables S1-S3 in the
SI describe the simulation set-up for each of
the literature studies. In general, these vari-
ous methods and set-up parameters yield con-
sistent transport property estimates. However,
the simulation specifications are important to
consider when elucidating the possible source
for a discrepancy between two data sets and to
ensure reproducibility of results. A brief de-
scription of the various simulation approaches
follows.

5.1 Simulation method
Several methods exist for computing transport
properties with molecular simulation. These
methods are classified as either equilibrium or
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Figure 5: Distribution of transport property simulations in the phase diagram as well as excess
entropy calculated for each point. Figure is truncated at T ∗ = 20 (data are available up to T ∗ =
10800) and at ρ∗ = 1.6 (data are available up to ρ∗ = 3.39). The dashed-dotted lines correspond
to the solidus and liquidus lines and were obtained from Ref. 78 and Refs. 79,80, respectively. The
excess entropy −sr/kB varies from 3.6 to 3.9 along the liquidus line for T ∗ < 15, and from 4.3 to
4.7 for the solidus line for T ∗ < 15. The thick solid line is the vapor-liquid equilibrium for the full
LJ potential, the thick dashed line is the vapor-liquid equilibrium for the LJTS potential.
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non-equilibrium molecular dynamics. Equi-
librium molecular dynamics (EMD) follows
an unperturbed MD trajectory, whereas non-
equilibrium molecular dynamics (NEMD) per-
turbs the system and observes the response to
this perturbation.81,82

EMD is ideal for computing multiple trans-
port properties (D, η, and λ) from a single
simulation.83 By contrast, traditional NEMD
methods are only capable of predicting a single
property from a given NEMD simulation, and
typically a sequence of NEMD simulations is re-
quired to extrapolate to the zero perturbation
limit. The exception is the recently proposed
NEMD approach utilized by Lautenschlaeger et
al., which yields all three transport properties
from a single simulation.84

Two related EMD methods are available for
computing transport properties, namely, the
Green-Kubo (GK) and Einstein relationship
(ER). In principle, these two post-processing
approaches should yield indistinguishable re-
sults, however, due to numerical approxima-
tions and some user judgment, deviations of a
few percent between GK and ER are not un-
common.83,85

Several NEMD methods exist where different
perturbations are applied to the system.82 We
refer the reader to the literature for details re-
garding these various NEMD methods.49,84,86–91

For the literature studies considered in this
work, all self-diffusivity data (with the excep-
tion of those from Lautenschlaeger et al.) were
obtained with EMD, while EMD and NEMD
were equally popular for computing thermal
conductivity and viscosity. Frequently, NEMD
values are verified by comparison with their
simpler EMD counterparts, such that some
studies report both EMD and NEMD results.
Agreement between EMD and NEMD values is
typically within the combined uncertainties.92

GK is used for computing thermal conduc-
tivity and viscosity in nearly all of the EMD
studies, while GK and ER are equally popular
for computing self-diffusivity. No single NEMD
method was found to be more popular than the
others.

5.2 Simulation ensemble
Another important distinction among the lit-
erature EMD simulations is the use of the mi-
crocanonical (NVE) or canonical (NVT) ensem-
bles. Both the NVE and NVT ensembles uti-
lize a constant number of molecules (N) and
volume (V). The difference is that the NVE en-
semble enforces a constant overall energy, while
the NVT ensemble maintains a constant tem-
perature (or kinetic energy) by applying a ther-
mostat.93–97 If implemented properly, both the
NVE and NVT ensembles are considered re-
liable for estimating transport properties, al-
though advantages and disadvantages exist for
each ensemble.98

For example, one advantage of the NVT en-
semble is that transport properties are generally
desired at a given temperature, not a given en-
ergy. One potential disadvantage of the NVT
ensemble is the unknown effect of the thermo-
stat on the resultant system dynamics, whereas
NVE dynamics are undisturbed by these artifi-
cial thermostats.98

Approximately the same number of EMD
studies utilize the NVE or NVT ensemble. In-
cluding the NEMD simulations that also uti-
lize thermostats, four different thermostats are
found in the literature with similar popularity.

5.3 Finite-size effects
5.3.1 Number of molecules

Because the literature spans approximately 40
years and computational speed has increased
dramatically during that time, the number of
molecules simulated in recent studies are often
an order of magnitude greater than those in ear-
lier studies. The degree to which results are
impacted by the number of simulation parti-
cles N depends on both the transport property
and the state point. While a well-known lin-
ear relationship exists to relate the system size
(1/N1/3) to D (see below),99,100 the relationship
is less-understood for λ and η. Fortunately, the
influence of N on η and λ is typically negligible
compared to that for D.

In the case of self-diffusion, the analytic
infinite-particle-count self-diffusion limit D∞
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can be obtained by one of two methods:
1. Multiple simulation runs are performed

for several numbers of particles N . The
infinite-particle-count self-diffusion is ob-
tained by extrapolating the linear curve
fit of D versus 1/N1/3 to (1/N1/3 = 0).
This has the significant disadvantage that
multiple simulations must be done at ev-
ery state point.

2. Apply the empirical finite-size correction
term given by99

D∞ = DN +
kBTX

6πηL
(21)

where L = (N/ρN)
1/3, and X = 2.837298.

Conversion to simulation units yields

D∗
∞ = D∗

N +
T ∗X

6πη∗L∗ (22)

where L∗ = (N/ρ∗)1/3.
In this work the second method was se-
lected; the correction term was applied to ev-
ery self-diffusion data point. Unfortunately, the
method of99 was validated for a rather narrow
range of state points.

The viscosity η∗ used in Eq. (22) is evalu-
ated from the correlation developed below in
Eq. (54). This method has the disadvantage
that the uncertainty of the viscosity correlation
will “infect” the self-diffusion data corrected for
finite-size effects. But this is a more satisfac-
tory situation than the converse – errors in self-
diffusion of more than 20% are caused by small
particle counts when the correction for finite-
size effects is ignored (see SI Appendix, Fig.
S8). The inclusion of the uncertainty in the
viscosity correlation increases the uncertainty
in the self-diffusion. For instance, from an un-
certainty propagation analysis (see the SI, Sec-
tion 3.3), considering worse-case uncertainty of
the viscosity correlation of 10%, the uncertainty
in the self-diffusion of Meier41 increases from
an uncertainty of roughly 1% to an uncertainty
of never more than 1.3 % for the simulations
with 1372 particles; the relative uncertainty for
the simulations of Meier with fewer particles are
greater, but still never more than 1.7%.

5.3.2 Cut-off distance

For a truncated Lennard-Jones (but not shifted,
LJT or LJT+LRC) potential, it was tradition-
ally assumed that simulation results do not de-
pend strongly on the reduced cut-off distance
(r∗cut = rcut/σ) for r∗cut ≥ 2.5. Some of the
more recent studies have utilized significantly
larger cut-off distances (r∗cut ≥ 5) to test this
assumption. Analytical long-range tail correc-
tions do not impact self-diffusion calculations
in the NVE or NVT ensemble, but neglecting
this correction may result in deviations for vis-
cosity and thermal conductivity, particularly
for shorter values of r∗cut. Unfortunately, most
studies do not explicitly state whether or not
tail corrections are included, i.e., it is not al-
ways clear if simulations were performed with
the LJT or the LJT+LRC potential. A few
studies also utilize a Lennard-Jones truncated-
and-shifted (LJTS) potential with r∗cut = 2.5.
Although Lautenschlaeger et al. suggest that
the LJTS and LJT+LRC potentials yield in-
distinguishable transport properties at a given
(T ∗, ρ∗) state point,42 the equations-of-state
and, thereby, the excess entropy estimates for
the same T ∗-ρ∗ state point are different for the
LJTS and LJT+LRC potentials.

5.4 Simulation time
Simulations are typically divided into an equi-
libration and production stage, where averages
are only computed during production. With
advancements in computational speed and re-
sources over the last few decades, the reduced
simulation times (t∗ = t/(σ

√
m/ε)) for both

equilibration (t∗eq) and production (t∗prod) have
increased by a few orders of magnitude. The
consequence of the lower t∗eq values prevalent in
earlier studies is the risk of poor equilibration,
while the lower t∗prod values may lead to higher
uncertainties from less sampling.

The reduced simulation time-step (δt∗) varies
by a factor of 5 among studies. Higher values of
δt∗ can result in spurious simulation output.101

This is particularly problematic at higher tem-
peratures because particles travel at increased
velocities and, thus, some configurations may
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contain extremely close-range (repulsive) inter-
actions. Although lower values of δt∗ are more
reliable, they are less preferred in practice be-
cause lower δt∗ values increase the elapsed real
time to simulate a fixed value of t∗prod.

5.5 Data Curation
A screening was used to separate each dataset
into primary and secondary categories. The pri-
mary datasets, indicated in the sections that
follow, were identified based on their cover-
age of the phase space, their internal consis-
tency, the description of their methodology,
and agreement with other datasets.

In addition to categorization of the datasets,
we endeavored to identify points that seemed
to be typographical errors, for instance two
state points at the same temperatures and den-
sities with very different transport properties,
or data points that did not follow the trends of
the neighboring points. Points that were inside
the spinodal of the equation of state were not
considered because empirical equations of state
may yield erroneous values for thermodynamic
properties for the thermodynamically unstable
states between the spinodals (See for instance
Fig. S11 in the SI of2). Data points for temper-
atures T ∗ > 400 were also removed from further
consideration because the collision integral cor-
relations used for the zero-density-limit demon-
strate poor high-temperature extrapolation (see
the SI, Figs. S11a and S11b).

Inspired by the work of Lautenschlaeger,42 we
have provided all of the literature data that
we collected in comma-separated-value tables
in the SI; further information is given in the
SI. The “FLAG” column in the data collection
indicates the reason that we removed the data
point and the presence of an entry in this col-
umn causes the data processing script to ignore
the given datapoint. If the column is empty,
the point was considered in our analysis.

6 Thermodynamic Models
The equation of state for any fluid at low and
moderate densities can be written in virial ex-

pansion form as

Z ≡ p

ρNkBT
= 1 +

∞∑
j=2

Bj(T )ρ
j−1
N , (23)

where Z is the compressibility factor, p is the
pressure, ρN is the number density in particles
per volume, kB is Boltzmann’s constant, T is
the temperature, and Bj is the j-th virial coef-
ficient.

For all thermodynamic states, the reduced
residual Helmholtz energy αr = ar/(kBT ),
where ar is the residual Helmholtz energy per
particle, can be obtained from103

αr =

∫ ρN

0

Z(T, ρN)− 1

ρN
dρN, (24)

and the negative of the reduced residual entropy
can be obtained from

− sr/kB =
1

kB

(
∂ar

∂T

)
ρN

= T

(
∂αr

∂T

)
ρN

+ αr,

(25)
where sr is the residual entropy per particle. As
a reminder, our definition of the excess entropy
is that it is the difference between the total en-
tropy and that of the ideal gas at the same tem-
perature and density, defined to be equal to the
residual entropy, and equal to

sex(T, ρ) ≡ sr(T, ρ) = s(T, ρ)− s0(T, ρ) (26)

where s is the total entropy per particle and s0

is the ideal gas entropy per particle.
In general, if the virial expansion from

Eq. (23) is truncated at B2 ( Bj ≡ 0 for j > 2),
then the excess entropy (equal to residual en-
tropy) can be given by

− sex/kB = ρN

(
T

(
dB2

dT

)
+B2

)
. (27)

This result was also used by Krekelberg et
al.29 in their study of self-diffusion.

6.1 Empirical EOS
Over the last 70 years, the Lennard-Jones po-
tential has been comprehensively investigated
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by molecular simulation in the entire fluid do-
main as well as in the solid state. These data
were used to set up equations of state by sev-
eral different authors. An overview of available
thermodynamic properties as well as the most
prominent equations of state for the fluid region
is given by Thol et al.104 The most recent fun-
damental equation of state for the calculation
of thermodynamic properties of the LJT+LRC
potential was published in the same paper. It
is formulated in terms of the Helmholtz energy
a as a function of temperature T and density
ρ. For simplicity, the Helmholtz energy and its
independent variables are used in a dimension-
less form. Furthermore, the reduced Helmholtz
energy α = a/(kBT ) is separated into an ideal
part α0 and a residual part αr with indepen-
dent variables of reciprocal reduced tempera-
ture τ = T ∗

c /T
∗ and reduced density δ = ρ∗/ρ∗c:

α(τ, δ) =
a0(T, ρ) + ar(T, ρ)

kBT
= α0(τ, δ)+αr(τ, δ)

(28)
The advantage of applying the Helmholtz en-

ergy as the fundamental potential is that it can
be used to calculate every thermodynamic state
property by combining the equation itself and
its partial derivatives with respect to the den-
sity and reciprocal temperature:

Amn = A0
mn + Ar

mn = τmδn
(
∂(α0 + αr)

∂τm∂δn

)
(29)

where m is the order of derivative with respect
to the reciprocal temperature and n with re-
spect to the density.

For instance, the isobaric heat capacity can
be calculated from

c∗p = −(A0
20 + Ar

20) +
(1 + Ar

01 − Ar
11)

2

1 + 2Ar
01 + Ar

02

, (30)

Further mathematical relations for other ther-
modynamic properties are listed in Thol et
al.104 Today, the most accurate equations of
state are empirical multiparameter equations of
state with 15 to 40 temperature and density
dependent polynomial(-like) and exponential

terms. The corresponding parameters are com-
monly adjusted to thermodynamic state prop-
erties such as density, speed of sound, vapor-
liquid-equilibrium data, etc. Due to the large
number of adjustable parameters, a compre-
hensive data set comprising different thermo-
dynamic properties is needed. However, since
these properties are always combinations of
derivatives of the Helmholtz energy, it is not
possible to optimize the fundamental poten-
tial of its derivatives individually. This short-
coming was first addressed by Rutkai et al.105

who presented a novel approach for the devel-
opment of Helmholtz-energy equations of state.
Based on the methodology of Lustig106,107 the
Helmholtz energy and its partial derivatives up
to an arbitrary order can be computed from
molecular dynamics simulations. This allows
for a direct fitting of the equation of state
to the results of molecular dynamics simula-
tions. The fundamental equation of state for
the LJT+LRC potential proposed by Thol et
al.104 is the first equation, which was devel-
oped based on this new approach. Only sim-
ulation data for the Helmholtz derivatives and
exact virial coefficients calculated from statisti-
cal mechanics were included in the fitting pro-
cess. Furthermore, modern fitting techniques
(see e.g., Lemmon et al.108) were employed,
which could be used to ensure a correct extrap-
olation behavior in the low temperature limit
as well as at high temperatures, pressures, and
densities.

There are a number of other empirical equa-
tions of state for the LJ fluid of varying quality
and accuracy.109–113 Thol et al. also developed
an empirical multi-parameter equation of state
for the truncated and shifted potential (LJTS,
with r∗cut = 2.5).114 The LJT+LRC and LJTS
potentials have qualitatively similar behavior,
and their important temperatures and densities
are summarized in Table 1. While the critical
densities are quite similar, the critical tempera-
tures differ significantly. To our knowledge, no
high-accuracy equations of state exist for any
other truncations of the Lennard-Jones 12-6 po-
tential.
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Table 1: Lennard-Jones Helmholtz-
energy-explicit EoS available. Critical
points correspond to the values that were
obtained in the course of the development
of the equation of state. L∗ = L/σ where
L is the box length, i.e., L = V 1/3.

Potential r∗cut T ∗
c ρ∗c T ∗

triple

LJT+LRC104 L∗/2 1.32 0.31 0.661
LJTS114 2.5 1.086 0.319 0.64a

a: Estimated from corresponding states plus a
correction factor

The equations of state for LJT+LRC (with
r∗cut = L∗/2, i.e., half the reduced box length)
and LJTS (with r∗cut = 2.5) represent two treat-
ments that are commonly employed in molecu-
lar simulations. Nonetheless, there are many
simulations that applied neither a truncated
potential at half the box length (which typi-
cally corresponds to r∗cut > 2.5) nor a truncated
and shifted potential for r∗cut = 2.5. There-
fore, some approach must be applied to the in-
between cases. Our approach was to use the
full (LJT+LRC) EOS for all simulations, ex-
cept for cases where the authors explicitly state
that they used a truncated and shifted poten-
tial (LJTS) with r∗cut = 2.5.42,47 For other cases,
such as those of the LJTS potential but trun-
cated and shifted at r∗cut = 5, we utilized the
equation of state for the full (LJT+LRC) po-
tential.

7 Scaled Transport Proper-
ties

7.1 Novel scaling
Rosenfeld9 showed that the values of λ̃, η̃, and
D̃ are each proportional to (−sex/kB)

−2/3 for di-
lute gases of finite density modeled by inverse-
power-law pair potentials for a virial expansion
truncated at the second virial coefficient. The
constant of proportionality is a closed-form con-
stant that is only a function of the hardness
of the IPL potential. The excess entropy of a
dilute gas at zero density is equal to zero by

definition. See the SI for a complete rederiva-
tion of this result (Section 5.1) following the
proposal of Rosenfeld. An empirical scaling ap-
proach based on the same technique (though
it was not fully investigated at that time) was
providentially used by Bell2 to repair the diver-
gence of η̃ in the zero-density limit.

For the Lennard-Jones potential, as will be
shown in the next section, the relationship be-
tween excess entropy and transport properties
in the zero-density limit is not quite as sim-
ple as that of IPL potentials. The IPL poten-
tial, while being unsuitable to model real flu-
ids with high accuracy, provides glimpses into
theory that inspire more complicated modeling
efforts.

We propose new scaled variables η+, λ+, and
D+, with the feature that these scaled units do
not diverge at zero density and they retain the
notion of the scaled transport properties being
proportional to the excess entropy to a power
of -2/3 in dilute gases. Thus, the new reduced
transport coefficients η+, λ+, and D+ are given
by:

η+ ≡ η̃ · (−sex/kB)
2/3 (31)

λ+ ≡ λ̃ · (−sex/kB)
2/3 (32)

D+ ≡ D̃ · (−sex/kB)
2/3 (33)

These ansatz formulations have the characteris-
tic that they are still monovariate relationships
between the macroscopically reduced transport
properties and the excess entropy, while adding
additional desired behavior.

The definitions of the above variables make
no assumption about the form of the interac-
tions between particles. These are simply con-
veniently scaled variables that have some ele-
gant mathematical properties and allow for an
effective scaling of transport properties in gen-
eral, as is demonstrated in the sections that fol-
low.

The selection of the exponent 2/3, while ac-
cidental in the work of Bell,2 can be shown (SI
appendix, Section 1.3) to be the only exponent
that results in a non-zero value of the scaled
transport properties for the zero-density limit.
That is to say, 2/3 is indeed a special expo-
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nent, and no other exponent is possible in this
scaling framework that simultaneously satisfies
the constraints on behavior in the zero-density
limit and the dense phase.

Krekelberg et al.,29 by making the assump-
tion that the product ρ∗D∗ should be constant
in the dilute gas of finite density, arrived at a
similar scaled self-diffusion coefficient.

7.2 Viscosity
Figure 6 presents the newly scaled viscosity η+

in terms of −sex/kB for the Lennard-Jones po-
tentials studied here. As can be seen, the col-
lapse of the data for the Lennard-Jones po-
tentials is similarly tight to the “conventional”
excess entropy scaling of Rosenfeld in Fig. 1.
In addition, the relationship between η+ and
−sex/kB is approximately exponential (linear
in semi-logarithmic coordinates) from the di-
lute gas (at −sex/kB ≈ 0) into the supercooled
liquid region, and the divergence at zero den-
sity has been removed. As these scaled vari-
ables have been proposed for the first time in
this work, the theoretical explanation for this
quasi-exponential behavior remains elusive for
now. While a more comprehensive empirical
model covering the entire domains of the fluid
is presented in Section 9.1, a linear fit to the
data in the liquid region for 1 ≤ −sex/kB ≤ 3
yields

η+ ≈ 0.2163 · exp(1.068(−sex/kB)) (34)

This same quasi-exponential behavior no longer
holds in the supercooled liquid reqion (beyond
−sex/kB of roughly 3.5), where the data are
consistently above the correlation fit to the data
for the liquid phase. Similarly, the data in the
dilute gas region at low excess entropy are also
above the correlation fit in the liquid region.

Nonetheless, this scaling allows for a coherent
picture from zero density into the deeply su-
percooled liquid, even if additional empiricism
might be required to yield a more quantitative
agreement between the model and the simula-
tion data.
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Figure 6: Overview of all of the viscosity data
from simulations42,42–62 with the novel scaling
in Eq. (31) for the Lennard-Jones 12-6 poten-
tial. The solid yellow line represents the corre-
lation from Eq. (34), and the dashed lines the
extrapolation behavior. Each marker/color pair
is associated with a given dataset. A larger ver-
sion of this figure is available in the SI (Fig. S4),
along with a legend describing each dataset.

Figure 7 presents a detailed view of the
gaseous region for the Lennard-Jones potential.
The gaseous region, where −sex/kB is less than
approximately 1, is a region where isomorph
theory should break down (see Fig. 4) and the
thread linking excess entropy and transport
properties should fray. Nevertheless, the dense-
phase exponential behavior continues well into
the gaseous region. At very low densities (very
low −sex/kB), the dense phase correlation does
not reproduce the data even qualitatively, but
the fanning-out behavior can be entirely cap-
tured (aside from uncertainty of the simula-
tions) by the zero-density limit. When the
dilute-gas limiting values are subtracted off
(Section 9.1), the dilute-gas viscosity can be
reproduced to within its simulation statistical
uncertainty. The zero-density limit can be fully
described by theory in the case of the Lennard-
Jones potential, as shown in Section 8.
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Figure 7: Detailed view of the gaseous region
of the novel scaled viscosity data from simu-
lations for the Lennard-Jones 12-6 potential.
The dashed yellow line represents the extrap-
olation of the correlation from Eq. (34). Each
marker/color pair is associated with a given
dataset. A larger version of this figure is avail-
able in the SI (Fig. S5), along with a legend
describing each dataset.

7.3 Self-Diffusion
The scaled data for self-diffusion are presented
in Fig. 8. An absolutely essential element of
analyzing the self-diffusion data from the lit-
erature is to apply the finite-size correction of
Yeh and Hummer99 described in Section 5.3.1.
Above −sex/kB of approximately 1, the data
tell a very coherent story; the data agree very
closely, and the inter-set deviations are gov-
erned by the uncertainty in the viscosity cor-
relation used to correct the self-diffusion data
to infinite system size. In concurrence with the
viscosity data, the monovariability in the liq-
uid phase continues into the supercooled liquid
and solid phases. The zero-density self-diffusion
provides a much larger relative contribution to
self-diffusion than the equivalent contribution
for viscosity. In addition, although we have in-
cluded all the data in the figure, a number of
the gas phase simulations must be considered as
highly suspect. For instance the self-diffusion
data of Lautenschlaeger do not approach the
correct zero-density-limit governed by theory
and described in the next section (see the SI,
Section 3.4.2).

In the same fashion as for viscosity, we fit a

simple correlation of the form

D+ ≈ 0.494 · exp (−0.402(−sex/kB)) (35)

proposed by Rosenfeld9 to the simulation data
for 1 ≤ −sex/kB ≤ 3, and also show the extrap-
olation behavior of this curve outside of this
region.

In the gaseous region, the data of Meier et
al.41 are simultaneously the most comprehen-
sive in their coverage of the thermodynamic
phase diagram and also appear to be of the
highest quality.
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Figure 8: Overview of all of the self-diffusion
data from simulations41,42,42,46–48,50–53,58,59,69–71

with the novel scaling in Eq. (33) for the
Lennard-Jones 12-6 potential. The yellow
curve is the correlation from Eq. (35). Each
marker/color pair is associated with a given
dataset. A larger version of this figure is avail-
able in the SI (Fig. S7), along with a legend
describing each dataset.

7.4 Thermal Conductivity
Figure 9 shows the scaled thermal conductivity
data from molecular dynamics simulations. In
the same fashion as for viscosity, we fit a simple
correlation of the form

λ+ ≈ 1.377 · exp (0.839(−sex/kB)) (36)

proposed by Rosenfeld9 to the simulations for
1 ≤ −sex/kB ≤ 3, and also show the extrap-
olation behavior of this curve outside of this
region. Evidently, the relationship between λ+

and −sex/kB is not even roughly exponential
for the entire fluid domain. A much more ac-
curate empirical model for the scaled thermal
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conductivity is presented in Section 9.3.
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Figure 9: Overview of all the novel scaled
thermal conductivity data from simula-
tion42,42,46,50,52–55,57,62–68 with the novel scaling
in Eq. (32) for the Lennard-Jones 12-6 poten-
tial. The yellow curve is the fitted correlation
from Eq. (36). Each marker/color pair is
associated with a given dataset. A larger
version of this figure is available in the SI
(Fig. S6), along with a legend describing each
dataset.

8 The Zero Density Limit
Carrying Rosenfeld’s thoughts about the trans-
port properties of dilute gases of finite den-
sity to their logical conclusion, we desire to
understand the behavior of these scaled trans-
port properties as the density goes to zero (the
zero-density limit). In Rosenfeld’s derivations,9

the dilute gas transport properties were pro-
portional to the excess entropy to the power
of -2/3, but this formulation is problematic at
zero excess entropy. Nonetheless, the scaling
proposed in Section 7.1 has a well-defined zero-
density limit and it also results in another fasci-
nating connection between transport properties
and thermodynamic properties.

The zero-density transport properties of the
Lennard-Jones 12-6 potential (to first order) are

given by115,116

[η∗ρ→0]1 =
5

16
√
π

√
T ∗

Ω(2,2)∗(T ∗)
(37)

[λ∗
ρ→0]1 =

15

4
[η∗ρ→0]1 (38)

[(ρ∗D∗)ρ→0]1 =
3
√
T ∗

8
√
πΩ(1,1)∗(T ∗)

(39)

and correction terms (f (3)
η , f

(3)
λ , f

(2)
D )117 (all

within 1.2% of unity in 0.3 ≤ T ∗ ≤ 400) are
available to bring the Sonine expansion up to
higher order, as shown in the SI (Section 1.4).
This correction yields

η∗ρ→0 = [η∗ρ→0]1f
(3)
η (T ∗) (40)

λ∗
ρ→0 = [λ∗

ρ→0]1f
(3)
λ (T ∗) (41)

(ρ∗D∗)ρ→0 = [(ρ∗D∗)ρ→0]1f
(2)
D (T ∗) (42)

In the case of η+ (approach is the same for all
three transport coefficients), evaluation of the
zero-density limit of η+ from Eq. (31) is unde-
fined due to the fraction (0/0)2/3. The rule of
de l’Hôpital is used on the limit with a variable
transformation (see the SI, Section 1.2) with a
useful (and exact) intermediate result 1 that

lim
ρ∗→0

(
∂(−sex/kB)

∂ρ∗

)
T ∗

= T ∗
(
dB∗

2

dT ∗

)
+B∗

2 ,

(43)
resulting in

lim
ρN→0

η+ =
η∗ρ→0√
T ∗

[
T ∗
(
dB∗

2

dT ∗

)
+B∗

2

]2/3
. (44)

The approaches for thermal conductivity and
self-diffusion are analogous, resulting in

lim
ρN→0

λ+ =
λ∗
ρN→0√
T ∗

[
T ∗
(
dB∗

2

dT ∗

)
+B∗

2

]2/3
(45)

lim
ρN→0

D+ =
(ρ∗D∗)ρN→0√

T ∗

[
T ∗
(
dB∗

2

dT ∗

)
+B∗

2

]2/3
.

(46)
1This is, coincidentally, the same result obtained

from the derivative of Eq. (27), although no assumption
was needed about the truncation of the virial expansion.
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8.1 Moderate temperatures
For “reasonable” temperatures, the values of
η+, λ+, and D+ in the zero-density limit may
be obtained by leveraging the virial coefficients
B∗

2 obtained from the equation of state of Thol
et al.104 along with the correlations for the
collision integrals of Kim and Monroe.115 Fig-
ure 10 shows the values of the Lennard-Jones
12-6 potential along with the (constant) val-
ues for the hard-sphere potential and selected
inverse-power-law potentials. A similar figure
for the thermal conductivity would be obtained
by multiplying all values by roughly 15/4 (de-
viation from 15/4 based on higher-order cor-
rections differing between thermal conductivity
and viscosity)
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Figure 10: Zero-density limit of Lennard-Jones
12-6 viscosity along with hard sphere and
inverse-power-law results. The IPL potentials
of hardness n are labeled in blue, and the hard
sphere value is shown in red.

The second virial coefficient of the IPL poten-
tial is known exactly, and the virial coefficient
term in the zero-density transport properties for
the IPL potential can be obtained from (see the
SI)

T ∗
(
dB∗

2

dT ∗

)
+B∗

2 =
2π

3
Γ(1−3/n)(1−3/n)(T ∗)−3/n,

(47)

where Γ is the Euler gamma function. There-
fore, as shown in the SI, the value of the scaled
viscosity in the zero-density limit for IPL po-
tentials of hardness n is equal to

lim
ρN→0

η+IPL = Fη,IPL(n) (48)

where Fη,IPL is a parameter that is only a func-
tion of n (see the SI, Eq. 55). The SI provides
tabulated values of Fη,IPL (Table S5) as well as
code in Python to carry out the necessary nu-
merical integration to evaluate Fη,IPL (Section
4.4).

Note that this parameter has no tempera-
ture dependence because the temperature de-
pendence of η+ for IPL potentials has been cap-
tured entirely by the second virial coefficient
term. In the case of n → ∞ (the hard-sphere
limit), the value of η+ in the zero-density limit
is given by

lim
ρ→0

η+HS =
5

16
√
π

(
2π

3

)2/3

(49)

The approach for the self-diffusion is exactly
analogous. Figure 11 shows the values of the
Lennard-Jones 12-6 potential along with the
(constant) values for the hard-sphere potential
and selected inverse-power-law potentials. The
value of D+ for the IPL potential in the zero-
density limit is a unique function of the hard-
ness of the IPL potential (has no temperature
dependence), and is given in the SI (Eq. 58).
The ratio of D+/η+ in the zero-density limit is
in general defined as118

D+
ρ→0

η+ρ→0

=
6

5

Ω(2,2)∗

Ω(1,1)∗ (50)

and in the case of the hard sphere, Ω
(2,2)∗
HS ≡

Ω
(1,1)∗
HS ≡ 1, and thus D+

HS/η
+
HS = 6/5, and

lim
ρ→0

D+
HS =

6

16
√
π

(
2π

3

)2/3

(51)

The SI provides tabulated values of FD,IPL (Ta-
ble S5) as well as code in Python to carry out
the necessary numerical integration to evaluate
FD,IPL (Section 4.4).

17



0 5 10 15 20
T *

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

lim
0D

+

n =

 Lennard-Jones 12-6

n=8
n=12
n=24

Figure 11: Zero-density limit of Lennard-Jones
12-6 self diffusion along with hard sphere and
inverse-power-law results. The IPL potentials
of hardness n are labeled in blue, and the hard
sphere value is shown in red.

8.2 High-temperature limit
At very high temperatures, the dilute Lennard-
Jones 12-6 gas behaves like an inverse-power-
law potential with n = 12 (see14,119,120) because
at high temperatures only the large positive en-
ergies in the r−12 repulsive term are significant
compared to the thermal energies. As such, the
high-temperature limits of the transport prop-
erties should approach those of the n = 12 IPL.

Unfortunately, the high-temperature limit of
the empirical models of Kim and Monroe115 and
Thol et al.,104 for the zero-density-limit trans-
port properties and second virial coefficient, re-
spectively, are incorrect. This can be seen by
consideration of each term individually. The re-
spective figures are shown in the SI Appendix
(Figures S11a, S11b and S12).

9 Semi-Empirical Models
Historically, highly accurate transport property
models for a transport property Y (where here
Y is one of η+, D+ or λ+) have taken the form

Y = Yρ→0 + Yr +∆Ycrit (52)

in which Yρ→0 is the zero-density contribution,
Yr is the residual contribution, and ∆Ycrit is the
critical enhancement contribution.

The motivation for the development of empir-
ical correlations for the transport properties of
the Lennard-Jones fluid is threefold:

1. We posit that the excess entropy is the
parameter that determines the scaled
transport properties (except for dilute
gases). The deviations between correla-
tion and simulation provide a means of
quantifying the monovariability of this re-
lationship.

2. Real molecules that are approximately
spherical are frequently modeled as being
like Lennard-Jones fluids,8 for which fit-
ted values of ε/kB and σ are used to con-
vert between physical units and Lennard-
Jones units.

3. Many non-associating real molecular flu-
ids behave qualitatively like the Lennard-
Jones fluid, and insight gained from de-
veloping correlations for the transport
properties of the Lennard-Jones fluid can
be directly applied to the transport prop-
erty modeling of real fluids

In order to assess the “goodness” of our mod-
els, we consider the conventional average abso-
lute deviation (AAD) of a property Y which we
define by

AADY = 100× 1

N

N∑
i=1

∣∣∣∣Ycorr

Ysim

− 1

∣∣∣∣ . (53)

In addition, while the term “uncertainty” is
frequently used when discussing model fidelity,
in this work we prefer to consider the distri-
bution of deviations, and we define the term
U95 which is the central 95 percentiles of the
signed deviation, from the 2.5 percentile to the
97.5 percentile. If the distribution of deviations
were normally distributed, this would corre-
spond roughly to two standard deviations above
and below the mean.
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9.1 Viscosity
In the case of viscosity, the critical enhance-
ment term ∆Ycrit is usually ignored because
there is only a very narrow region in the re-
gion of the critical point where the critical en-
hancement of viscosity is measureable.121 As
such, engineering transport correlations usu-
ally involve a zero-density limit correlation and
another for Yr; we follow the same approach.
The zero-density-limit is fully captured by the
highly accurate collision integral analysis de-
scribed above, and the zero-density reduced vis-
cosity η+ρ→0 is obtained by the combination of
Eq. (44) and Eq. (40) along with the higher-
order corrections described in the SI, Section
1.4.

Therefore, in order to develop the empiri-
cal correlation for viscosity, we first extract
the residual viscosity by subtracting the zero-
density-limit viscosity (all in reduced coordi-
nates) for the primary datasets. In order
to achieve a reasonable extrapolation behav-
ior in the liquid region, the state points from
Baidakov et al .69 at densities greater than val-
ues corresponding to the solidus line of van
der Hoef78 were not included in the fit. As
the residual reduced viscosity varies over a few
decades, we would like to take the logarithm of
the reduced viscosity, but the logarithm of a
zero residual viscosity in the zero-density limit
is mathematically problematic, so we add one
to the residual viscosity. This results in a value
that is mathematically well defined from zero
density to beyond the solidus line. The resid-
ual scaled viscosity, is shown in Fig. 12. There-
fore, the empirical model for residual viscosity
is expressed as the logarithm of η+ − η+ρ→0 + 1
as a function of −sex/kB. A polynomial in re-
duced excess entropy is fit to the residual vis-
cosity data with conventional least-square poly-
nomial fitting routines (the polyfit function in
the numpy Python library)
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1

Figure 12: Scaled residual viscosity data from
the primary datasets considered in the develop-
ment of the correlation43–45 and the correlation
from Eq. (54). Each marker corresponds to a
single datapoint.

This approach results in the functional form

η+fit = η+ρ→0 + exp

(
N∑
k=1

cη,k (−sex/kB)
k

)
− 1,

(54)
where the coefficients are in Table 2, and the
zero-density viscosity is obtained from Eq. (41).
The value for η∗ is then obtained from:

η∗fit = η+fit
(ρ∗)2/3

√
T ∗

(−sex/kB)2/3
(55)

where Eq. (43) can be used to evaluate
(−sex/kB)/ρ

∗ at zero density. Sample verifi-
cation data are available in Table S6 in the
SI.

Table 2: Coefficients for the correlation
in Eq. (54)

k cη,k

1 0.125364
2 0.220795
3 -0.0313726
4 0.00313907

Figure 13 shows a deviation plot of the cor-
relation for viscosity along with the primary
datasets, and Fig. 14 shows the same figure for
the secondary datasets. In general, the devia-
tions of the model are within the uncertainty of
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the simulations. For instance the data of Meier
et al.43 are estimated to have a statistical un-
certainty of 10% in the gas phase, to 5% in the
liquid phase,43 and a discussion of Meier’s un-
certainty analysis is provided elsewhere.65 The
dilute-gas viscosity correlation is matched ex-
actly, by construction. In the supercooled liq-
uid, the data of Baidakov44 extend beyond the
solidus line, and even for these very extreme
states, the behavior of the correlation is reason-
able; the liquid phase ends at an excess entropy
of approximately −sex/kB = 3.5.
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Figure 13: Deviation plot for the primary vis-
cosity data43–45 compared with the correlation
from Eq. (54).

The secondary datasets are shown in Fig. 14.
These secondary datasets generally correspond
to older simulations in which computational
limitations of the day mandated a smaller num-
ber of particles or a shorter simulation times.
While the bulk of the data are still predicted
within 10% percent, there are some definite out-
liers. The dataset of Heyes51 is both one of the
oldest simulations as well as systematically de-
viating from the bulk of the dense phase data.

An exceptional case is the study of Costigliola
et al.,47 in which simulations were carried out
for some states with T ∗ > 10000 (and many
above T ∗ > 400, in which case they were not

included in further analysis according to our
curation criteria above). Of the modern sim-
ulations, these data correspond to some of the
largest deviations. The origin of these devi-
ations is not currently well understood. One
hypothesis was that the equation of state of
Thol104 provided erroneous values of the ex-
cess entropy at extreme temperatures. The
EOS has a stated maximum temperature of
T ∗ = 9, however confirmatory simulations of
the excess entropy4,5 for temperatures exceed-
ing T ∗ = 1000 showed that the excess entropy
calculations were all within 5% of the predic-
tions of the EOS of Thol.104 A second possible
explanation is that excess entropy scaling does
not work at these extreme temperatures. As the
temperature increases for a given density, the
motion of the particles should become more and
more dominated by repulsion, the correlation
(in the R-simple sense) should increase, and this
should in theory be a part of the phase dia-
gram where excess entropy scaling is the most
successful. Further study is needed to investi-
gate the origin of this breakdown in this scaling
approach. This question is of rather more the-
oretical interest, as a temperature of T ∗ = 400
corresponds to (for argon with an ε/kB on the
order of 100 K) a temperature on the order of
40000 K. Nonetheless, when the deviations be-
tween the data of47 and the correlation are com-
pared with those of other empirical models in
the literature (see Section 9.4), it is clear that
the excess entropy scaling approach is by far
the most successful at capturing the behavior
at extremely high temperatures.
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Figure 14: Deviation plot for the secondary vis-
cosity data42,42,46–62 compared with the correla-
tion from Eq. (54). The range of the ordinate
from -20% to 20% is linearly scaled, and loga-
rithmically scaled outside this range.

9.2 Self-Diffusion
The self-diffusion represents a rather more chal-
lenging modeling problem than either of vis-
cosity or thermal conductivity. The impact of
finite-size effects is rather significant, and the
correction term in Eq. (22) can be as much as
20% of the value of the self-diffusion for some
older datasets. In addition, the self-diffusion
in the zero-density limit is larger in magnitude
than the value in the dense phase, so subtract-
ing off the dilute contribution is problematic.

In the entire fluid domain, the self-diffusion
can be represented by

D+ = (1−W )D+
ρN→0(T

∗) +WD+
dense(−sex/kB)

(56)
where W is a parameter that crosses over from
being approximately 0 in the zero-density limit,
and 1 in the dense phase. In this case we use a
smoothed Heaviside step function given by

W =
1

1 + exp [−κD((−sex/kB)− (−sex/kB)cross)]
,

(57)

where κD is a parameter that controls the
sharpness of the transition (the larger the κD,
the sharper the transition), and (−sex/kB)cross
is the center of the step function. Figure 15
shows a graphical representation of this func-
tion. A similar kind of crossover approach has
been previously used in empirical model devel-
opment.122,123 The dense contribution is given
by a polynomial in excess entropy, in an anal-
ogous fashion to viscosity and thermal conduc-
tivity

D+
dense =

N∑
k=0

cD,k (−sex/kB)
k (58)

Table 3: Coefficients for the correlation
in Eq. (58). The values of the constants
are κD = 10 and (−sex/kB)cross = 0.75.

k cD,k

0 0.342982
1 0.000201587
2 -0.0428472
3 0.00783515
4 -0.000362634

Figure 15 shows the deviations for the pri-
mary datasets. The claimed uncertainties from
Meier et al.41 are on the order of 1% in the gas
phase to 0.5% in the liquid phase, and the em-
pirical model approaches, but does not quite
reproduce the data within these claimed un-
certainties. Nonetheless, the extrapolation into
the supercooled liquid is quite reasonable, and
overall the agreement with the primary datasets
are acceptable. Figure 16 shows the same fig-
ure for the secondary datasets. Here too, simu-
lation data are available up to temperatures of
T ∗ = 400 (and are also available at even higher
temperatures that we did not include), and the
very high temperature data are still reproduced
generally within 20%. This stands in marked
contrast to a number of the empirical models
proposed in the literature (Section 9.4).
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Figure 16: Deviation plot for the secondary
self-diffusion datasets42,42,46–48,50–53,58,70,71 com-
pared with the correlation from Eq. (58). The
range of the ordinate from -20% to 20% is lin-
early scaled, and logarithmically scaled outside
this range.

9.3 Thermal Conductivity
The modeling of thermal conductivity is more
involved than that of the viscosity because of
the presence of critical enhancement. Accord-
ing to the state-of-the-art theory regarding the
critical region, the thermal conductivity is in-
finite at the critical point and decays to its
background value away from the critical power
somewhat slowly.121 The viscosity, while also
infinite at the critical point, decays to its back-
ground value much more rapidly, which is why
the critical enhancement of viscosity was not
included in Section 9.1. The critical enhance-
ment complicates the application of excess en-
tropy scaling because isomorph theory is not ex-
pected to be valid in the vicinity of the critical
point,124 and therefore knowledge of the excess
entropy should not be expected to be sufficient
to predict the thermal conductivity. Indeed, as
we will see, the critical enhancement of thermal
conductivity is significant.

9.3.1 Critical Enhancement

For molecular fluids, the recent engineering ref-
erence correlations use the simplified critical en-
hancement enhancement of Olchowy and Sen-
gers.121,125 In simulation units (see the SI, Sec-
tion 1.5), the critical enhancement is given by

∆cλ
∗ =

RD

6π

ρ∗c∗pT
∗

η∗ξ∗
(Ω− Ω0), (59)

Ω =
2

π

[
(1− κ−1) arctan(y) + κ−1y

]
, (60)

Ω0 =
2

π

[
1− exp

(
− 1

y−1 + (y/δ)2/3

)]
, (61)

Υ∗ =

(
∂ρ∗(T ∗, ρ∗)

∂p∗

)
T ∗

− T ∗
R

T ∗

(
∂ρ∗(T ∗

R, ρ
∗)

∂p∗

)
T ∗

,

(62)

ξ∗ = ξ∗0

(
p∗cρ

∗

Γλ(ρ∗c)
2

)νλ/γλ

[Υ∗]νλ/γλ , (63)

with κ = c∗p/c
∗
v, y = ξ∗/(q−1

D )∗, δ = ρ∗/ρ∗c. The
viscosity is obtained from Eq. (54). If Υ∗ < 0,
the critical enhancement term ∆cλ

∗ is set to
zero. The quasi-universal constants126 are given
by RD = 1.02, νλ = 0.630, and γλ = 1.239. The
values of Γλ = 0.0496, ξ∗0 = 1.2, and (q−1

D )∗ =
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3.2 were obtained by manual optimization.
Figure 17 shows the relative critical enhance-

ment of thermal conductivity from each of the
simulations of thermal conductivity. The crit-
ical enhancement is evaluated from Eqs. (59)
to (63), with the thermodynamic parame-
ters coming from the appropriate equation of
state.104,114
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Figure 17: Critical enhancement of thermal
conductivity as a function of excess entropy,
where the critical enhancement is evaluated
from Eqs. (59) to (63)

9.3.2 Empirical Correlation

When both of the critical and zero-density con-
tributions to the thermal conductivity are sub-
tracted off, all that remains is the residual con-
tribution, which is a nearly monovariate func-
tion of −sex/kB, as can be seen in Fig. 18.
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Figure 18: Scaled residual thermal conductivity
data from the primary datasets57,63–65 consid-
ered in the development of the correlation and
the correlation from Eq. (65). Each marker cor-
responds to a single datapoint.

The residual reduced thermal conductivity is
defined by

λr,+ ≡ λ+ − λ+
ρ→0 −∆λ+

crit, (64)

and we fit the residual thermal conductivity by
the polynomial

λr,+
fit =

N∑
k=1

cλ,k (−sex/kB)
k , (65)

where the coefficients are in Table 4. A similar
fitting approach is used to that of the viscosity.
The thermal conductivity is then obtained from

λ∗ =
(ρ∗)2/3

√
T ∗

(−sex/kB)2/3
(
λr,+
fit + λ+

ρ→0 +∆λ+
crit

)
,

(66)
where again, Eq. (43) can be used to evaluate
(−sex/kB)/ρ

∗ at zero density.

Table 4: Coefficients for the correlation
in Eq. (65)

k cλ,k

1 1.02796
2 0.439252
3 0.487628
4 -0.0679026

Figure 19 shows a plot of the deviations be-
tween the simulation data and the correlation
scheme for the primary datasets. In this case,
the deviations between the correlations and the
primary datasets are all less than 6%. The data
are evenly distributed around the zero devia-
tion line, and are represented within their un-
certainties. Unlike for viscosity, the data are
mostly found in the liquid phase, and only a
few datapoints approach, or indeed enter, the
supercooled domain.
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Figure 19: Deviation plot for the primary ther-
mal conductivity data57,63–65 compared with
the correlation from Eq. (65). The dashed ver-
tical lines indicate the excess entropy evalu-
ated at the critical point of the LJTS and full
Lennard-Jones 12-6 potentials.

Figure 20 shows the same figure for the sec-
ondary datasets. Aside from a few outliers,
the data are all generally represented within
10%. There are a few datapoints from Baidakov
et al.66 that are in the deeply supercooled
(−sex/kB & 4) region, and even those points
are well-represented by the correlation. In the
critical region, indicated by the two dashed
lines, there are a few points that deviate more
strongly from the correlation, but they are in-
deed outliers, and the general behavior of the
correlation is a faithful representation of the
data, even in the critical region and for super-
cooled states.
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Figure 20: Deviation plot for the secondary
thermal conductivity data42,42,46,50,52–55,62,66–68

compared with the correlation from Eq. (65).
The dashed vertical lines indicate the excess en-
tropy evaluated at the critical point of the LJTS
and full Lennard-Jones 12-6 potentials.

9.4 Model comparison
There are several empirical models available in
the literature for the transport properties of
the Lennard-Jones fluid; Lautenschlaeger and
Hasse42 provide a small review of the existing
models. These empirical models were generally
fit to the simulations carried out by the author
that proposed the model. We summarize the
average absolute relative deviation (AAD) of
the models according to the primary and sec-
ondary datasets, and list them in Table 5. Ad-
ditional figures are available in the SI (see Sec-
tion 7) with deviation plots corresponding with
each model.

For viscosity, the empirical model of Galliero
and Boned is able to reproduce the simula-
tion viscosity data with an AAD lower than
the AAD of the correlation proposed in this
work. Their empirical model has 6 adjustable
parameters while ours has 4, but suffers from
poor extrapolation at extreme temperatures,
and to a lesser extent, high densities. The
representation of the data of Costigliola47 with
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Table 5: AAD of the model predictions according to the primary and secondary
datasets. (AAD1: AAD for the primary datasets; AAD2: AAD for the secondary
datasets)

Prop. 1st Author AAD1 AAD2

η∗ Galliero45 3.0% 8.48×107%
η∗ Lautenschlaeger42 19.8% 18.5%
η∗ Rowley59 3.66×1023% 5.04×1075%
λ∗ Galliero63 2.2% 3.9%
λ∗ Lautenschlaeger42 3.2% 3.9%
λ∗ Bugel67 4.1% 6.8%

ρ∗D∗ Lautenschlaeger42 11.3% 951.5%
ρ∗D∗ Ruckenstein127 12.4% 12.3%
ρ∗D∗ Rowley59 667.7% 153.0%

the correlation of Galliero and Boned is much
worse than our proposed model. The empirical
model of Lautenschlaeger and Hasse42 is able
to reproduce their own data within 10%, but
yields much larger errors in prediction for other
datasets. As published, the correlation of Row-
ley and Painter has two typographical errors
(as corrected in Woodcock128 and also fixed in
our implementations in the SI); its extrapola-
tion behavior into the supercooled liquid phase
is erroneous, and results in quite poor predic-
tions. The model of Woodcock128 could not
be compared because the typographical errors
could not be corrected as of publication, but in
general it produces similar predictions to those
of.59 Lötgering-Lin et al.27 also provide a cor-
relation for the Lennard-Jones viscosity, but it
is only valid in a portion of the liquid phase.

Thermal conductivity is the transport prop-
erty for which the models are in the best agree-
ment. All three models in the literature yield
AAD that are less than 5% for the primary
datasets. The secondary datasets are predicted
somewhat more poorly, just as is the case for
our study. Again, the correlation of Galliero
and Boned63 is the empirical model that comes
closest to reproducing the AAD of the model
presented in this work.

In the case of self-diffusion, the existing
empirical models42,59,127 provide exceptionally
poor predictions of the finite-size-corrected
transport properties of the Lennard-Jones fluid.
Two primary factors contribute to this unfortu-

nate state of affairs:
• The correlations were fit to uncorrected

self-diffusion data, and the finite-size cor-
rection shifts the self-diffusion data sig-
nificantly for some of the older datasets.

• In the case of Rowley and Painter,59 the
maximum temperature of the correlation
is below the maximum temperature of the
newer dataset from Meier,41 and the ex-
trapolation behavior of the correlation is
poor.

9.5 Verification Data
A Python script is provided in the supplemen-
tal information that implements the necessary
parts of the equation of state of Thol et al.104

as well as the transport property correlations
provided in this work. In order to ensure repro-
ducibility of these results, sample values calcu-
lated from the correlations were programmat-
ically generated from that script and are pre-
sented in Table S6 in the SI. In the event of dis-
crepancies between the description in this work
and the script, the script in the SI should be
considered as the canonical source of informa-
tion.

10 Conclusions
The empirical correlations developed in this
work are based on the most comprehensive
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study to date of the transport properties of
the Lennard-Jones 12-6 model system, and they
represent the most accurate transport property
correlations published in the literature for the
Lennard-Jones 12-6 fluid. These correlations
demonstrate excellent extrapolation to extreme
temperatures and densities.

The condition of the Pearson coefficient be-
tween the virial energy and the potential energy
being greater than 0.9 (the Roskilde-simpleness
condition) seems to be a strong indicator of
whether or not entropy scaling (or equivalently,
thermodynamic scaling) will apply, but it does
not appear to be a necessary condition. Con-
sidering the data in the gaseous phase, where
the correlation parameter R is much less than
0.9 (see Fig. 4), the gas phase data still collapse
in the same way as the liquid phase.

The new scaling of viscosity is to a sur-
prisingly good approximation given by η+ ∝
exp(−sex/kB) from the dilute gas phase well
into the supercooled liquid. So too, thermal
conductivity and self-diffusion demonstrate a
very strong correlation between the excess en-
tropy and our novel scaled transport properties.
We hope that these results will form the basis
of new theoretical insights.
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