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Abstract 
Integrating finite element analysis (FEA) with systems engineering (SE) 

would improve traceability, consistency, interoperability and collaboration 
between SE and FEA activities in multiple engineering disciplines. The first 
step in achieving this is a software-independent description of FEA models, 
which are characterized by numerical approximations of partial differential 
equations (PDEs) derived from physical laws, and finite elements representing 
unknown physical quantities. In previous work, we presented a finite element 
mathematics specification that is formal and understandable by most engineers. 
It provides all information needed for generation of shape functions for 
physical quantities. In this work, we propose a specification of physics in FEA 
to complement our earlier mathematics specification. 

 
We first compare existing FEA physics descriptions and their software 

implementations to highlight the benefits of domain-independent model 
descriptions used by PDE solvers. A significant drawback of PDE 
representations is they do not show all physical quantities from which they are 
derived. To tackle this, we represent the physical laws and derivations needed 
for FEA PDEs in human- and machine-readable graphs. Instead of classifying 
physics problems by the kind of PDE, as in PDE solver packages, we formalize 
problems as paths through these graphs. This increases transparency by 
capturing modelling decisions currently done on paper or in electronic 
documents. 

 
We combine the graph-based specification of FEA physics above with the 

finite element mathematics specification developed earlier to generate linear 
system of equations (algebraic FEA models) for solving the problem 
numerically. This combination will enable FEA engineers to design their own 
libraries (potentially automatically) if they choose, or associate existing 
solvers. It also generalizes mappings from physics to FEA models, a task 
currently repeated across specific disciplines. The framework could be 
standardized and integrated with SE modeling languages, improving 
interoperability and collaboration between systems and FEA engineers.   
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1. Introduction and motivation  
Simulation-driven design has increased efficiency of product development 

using computer aided design (CAD) and repeated evaluation of these models 
with simulations. Software tools for simulation, such as finite element analysis 
(FEA), computational fluid dynamics (CFD), multibody dynamics (MBD) fall 
into the category computer aided engineering software (CAE). 

Among these kinds of simulations, FEA is one of the most popular 
numerical methods to test virtual models. For example, FEA helps find the 
location of maximum stress on a body and therefore assess if and where a 
product may fail. After identifying weak design locations in simulation results, 
the design can be digitally corrected using CAD software. By alternating 
between design and simulation, the virtual model can be refined to eventually 
meet product requirements. This reduces the need for expensive physical 
prototypes to test designs. This simulation-design loop helps improve decisions 
at an early stage of engineering by choosing the best solution candidates in the 
design space. 

Deciding whether a solution meets all requirements also includes reaching 
agreement between stakeholders. Cross-functional development teams, parallel 
processes and integrated CAE are necessary to be competitive, but efficient 
collaboration between FEA engineers, designers and other disciplines is 
essential for a project success. Difficulties in sharing information and 
miscommunication increase the time to reach agreement over design 
alternatives. Such problems are further complicated by use of multiple 
discipline specific models, often uncoupled and regenerated throughout the 
design cycle. 

Systems engineering (SE) is increasingly used to overcome these problems. 
Traditional SE provides methodologies, processes and documentation to 
support such cross-disciplinary development process. In recent years, model-
based SE (MBSE) significantly increased efficiency by exchanging models 
instead of documents [1]. In an MBSE scenario, systems are described by 
information models, in the same way software code is described by an 
architecture model. 

The Systems Modeling Language (SysML®) [2], an extension of the 
Unified Modeling Language (UML®) [3], is the common language used to 
describe and exchange models among system engineers. These system models 
are digital artefacts, similar to 3D dimensional designs or simulation models, 
enabling mappings between other simulation data and SysML. Such 
transformation or integration is facilitated by standard data exchange for 
simulation models in particular domains. This reduces integration to the 
interfaces between the domain standards and SysML. For example, Modelica 
[4], an open and standardized language for time-only simulations, has a 
standard integration with SysML [5]. Data integration of simulation models 
with SysML enables traceability to requirements. When information exchange 
at the interface between a simulation model and SysML is bidirectional, it can 
lead to simulation automation by synchronizing system requirements changes 
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with simulation parameters and testing validity of system modifications with 
simulations. This is also true of simulation optimization, a process critically 
dependent on bidirectional model mappings. 

For FEA, there is, unfortunately no open language to create models or 
exchange them. As a result, model-based integrations of FEA are platform 
specific. The absence of standardization leads to point to point integration 
between FE solvers, often a highly laborious manual or individually scripted 
process that must be repeated between each pair of points, which is expensive 
to maintain and sensitive to software updates. 

To overcome these problems, we propose a new language for future 
standardization that helps share reusable information about FEA library models 
and generate finite element code, with inputs that are understandable by most 
engineers. This language goes beyond the specific usage of FEA, because it 
can be applied to physical system modeling in general. It enables FEA 
engineers to understand relationships between physical quantities within a 
physical theory and capture modelling decisions. It formalizes the otherwise 
time consuming modelling process currently done on paper or electronic 
documentation. 

Section 2 describes FEA workflow, data generated at each stage, and 
reviews standards or formats that support data exchange. Section 3 outlines 
challenges currently hampering data exchange, one related to converting CAD 
to mesh data in the context of simulation driven design, and another related to 
the describing library elements independently of tools. Section 4 presents a 
new FEA solver integration framework that uses graph structures to capture 
physical laws, modelling decisions and all model parameters required for a 
numerical solver. Associated with a mesh standard with virtual topology 
capabilities, this framework could lead to a new FEA software ecosystem that 
helps engineers to create and specify their library models. Section 5 concludes 
the paper. 

2. FEA data and standardization  
FEA standardization is complex as it requires harmonizing geometric data 

exchange between CAD and meshes, a unified description of FEA library 
models and a common format to share simulation results. These three data 
models are digital artefacts created during FEA simulation, which has three 
steps: 1) meshing CAD geometry, 2) solving a simulation model, and 3) 
processing results [6]. 

a. Meshing 
The first step, meshing, requires access to CAD geometry. Such access is 

facilitated by International Organization for Standardization (ISO) 10303 
STandard for the Exchange of Product model data (STEP), a CAD file format 
supported by all CAD tools [7]. There are many available automatic and semi-
automatic meshing algorithms, classification of such algorithms can be found 
in [8], as well as open source code that generate meshes from STEP files. A 
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mesh or grid approximates a desired geometry with a collection of discrete 
shapes in 2D or discrete volumes in 3D used as the computational elements for 
FEA. Unfortunately, the STEP format for meshes is not widely adopted, the 
only popular formats being associated with FEA software or meshing tools [9]. 
In general, mesh information can be stored using a finite element (shape or 
volume) to node data structure, where each indexed finite element of the mesh 
refers only to their nodes coordinates or by storing the complete mesh 
topology, which adds connectivity between the elements that compose mesh 
shapes or volumes. The first reduces storage space, while the second optimizes 
data access to volumes, faces and edges for adaptive FEA algorithms such as h-
p refinement [10]. 

b. Solving 
The second step of FEA simulation is selection, parametrization and 

solving of FEA models. There are two groups of FEA solvers, one that 
abstracts numerical information, and another that abstracts physical domains, 
which consequently have different inputs. For both models, spatial regions of 
the mesh, later associated to boundary conditions values, need to be selected 
and stored. 

The first group of FEA solvers provides domain-specific models to solve 
mechanical (solid or fluid), electrical or thermal problems or a combination of 
them (multi-physics problems). Each model, called a library element, is 
associated with a template where material, additional geometric parameters, 
and initial and boundary conditions values can be set. These models, often 
identified by proprietary codes, do not provide source code and numerical 
choices are unknown most of the time. Simulation documentation contextualize 
the model and guide set-up of the input deck, most often represented as an 
ASCII file storing mesh, library model reference codes, and boundary and 
initial conditions. Graphical user interfaces (GUIs) of modern FEA software 
help in model set-up. 

The second group of FEA solvers are partial differential equations (PDE) 
solvers that uses the finite element method (FEM). PDE solvers, such as 
Diffpack [11], identify models by PDE type, while others like FENics [12] or 
FreeFem++ [13] create models by entering the weak or variational form of the 
PDE, a multilinear functional, constructed by integrating PDEs by parts. The 
unknown variables of the weak form, usually physical quantity kinds, are 
substituted by one or more interpolation functions, called finite elements. 
Domain-independent models are defined with symbolic expressions using a 
domain-specific language like FreeFem++ or multi-purpose language such as 
Python [14] for FEnics. 

c. Post-processing 
The third and final step of FEA simulation is post-processing and 

evaluation of results. After solving the linear equations, solutions are post-
processed if other model quantities are required. For example, in mechanics, 
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stress fields can be post-processed from displacement fields. Domain-specific 
solvers store relations between model quantities in their closed source code. 
Writing additional post-processing code is very often required for domain-
independent software.  

Evaluating results is facilitated by visualizing physical field quantities by 
projecting results onto the meshed geometry. Most commercial software 
solutions provide visualization. The open source visualization platform, 
Paraview [15], seems to be the most popular open source solution. Its VTK 
format [16], serialized in a proprietary text format or XML [17], is a de facto 
standard to exchange simulation results. 

3. Current problems and proposals 
There are two main problems related to FEA data exchange. First, design-

simulation loops are more frequent, but current geometry standards do not 
facilitate integration between disparate CAD and CAE models, i.e., design 
geometries and analysis meshes. The other is lack of formal identification of 
numerical and physics models, which could be resolved using domain-
independent models. 

a. CAD/CAE integration 
The traditional FEA workflow (see subsection 3.b) has five types of digital 

assets: detailed CAD models or master CAD models, digital mockups,1 CAD 
STEP files, FEA mesh proprietary files with boundary conditions, and FEA 
results files.  These are regenerated and maintained whenever the master CAD 
source is modified. Strategies for CAD/CAE integration framework are 
detailed in [18].  

An intermediary neutral CAD file format, e.g., ISO 10303, provides 
platform independency between CAD and CAE software, but introduces 
substantial work due to geometric errors and meta-data losses during the 
conversion process from CAD proprietary formats to the STEP standard. 
Geometric errors are due to proprietary modelling of tolerances by CAD 
systems, requiring correction of the resulting “dirty geometry” [19][20]. In 
addition, most STEP translators usually omit construction history, parameters 
and constraints [21], and do not maintain storage of other meta-data, e.g., part 
names or material data. 

The benefit of parametric associative CAD software is that modifications of 
some parameters, e.g., length, will update all related geometry downstream as 
well as keep constraints and meta-data associations. Product functionality is 
maintained by separate administration of geometry and constraints. Ideally, 
CAE information, such as material and boundary conditions, should be 

                                                 
1 FEA is usually preceded by either defeaturization or idealization of the detailed CAD 

design. The resulting simplified models, called digital mock-ups help evaluate system 
assemblies or kinematics, perform MBD or FEA simulations and visualize FEA results on 
assemblies or parts [23]. 
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maintained at the CAD level in order to be reused between CAx applications, 
e.g., MBD and FEA. Most CAD programs provide data interfaces, e.g., product 
data management (PDM), to enrich CAD models with metadata.  

To provide CAD/CAE integration, current trends in CAD technology lean 
towards solutions that combine CAD and CAE in the same environment, 
further reducing compatibility between platforms [22]. Before future geometry 
standards arrive, an intermediary solution could be developing a standard that 
enables CAD environments to exchange mesh data structures with virtual 
topology capabilities, as described in [23], by keeping topological 
correspondence between CAD and mesh. Metadata associated with regions of 
the mesh could with a standard be exchanged between FEA application and 
CAD. In comparison to curved geometries in CAD systems, tessellated 
geometries with polygons faces do not suffer the same problems with 
tolerances. By moving the CAD/CAE interface from CAD to mesh, workflow 
efficiency of parametric CAD software is still maintained and platform 
independence of CAE solvers could be guaranteed. A general topology mesh 
data structure that captures the connectivity of all mesh elements, as detailed in 
[25], could maintain topological correspondence between CAD and mesh, 
enabling mesh regions of interest to be defined, such as material, interfaces or 
boundary conditions, improving data access, e.g., generation of internal nodes 
for higher degree finite elements. The mesh could be exchanged with the JSON 
data format [26], a key-value pairs data structure, that would facilitate data 
access to the mesh and the virtual topology. The keys, acting as pointers, could 
link CAD metadata and simulation information to geometric information 
required by the solver. 

b. Formal CAE model identification 
Another problem is lack of formal standards that provide enough 

information to run a simulation with any solver interchangeably. STEP AP209, 
the standard for FEA model exchange [27], targets mainly domain-specific 
software, capturing software name, version, and software models identified 
with proprietary reference codes. The standard provides taxonomies to classify 
simulation models, but they are too informal to associate a specific solver. 
Model reconciliation with STEP AP209, evaluating if two models are 
equivalent, is not possible because source code and numerical assumptions are 
closed for domain-specific software. This is problematic for solution migration 
when companies decide to change FEA software; for supplier collaboration 
when two companies use different software; and for long-term archiving if the 
software is not supported in the future. Resolving these challenges associated 
with STEP AP209 is undertaken as a common effort by various groups at 
different levels. For example, LOTAR’s (Long Archiving and Retrieval) 
Engineering Analysis and Simulation Workgroup (EAS) develops, publishes 
and maintains standards for archiving and retrieval of key FEA input/output 
characteristics at various stage of development in a robust and repeatable 
fashion [28]. For collaboration, MOSSEC (Modeling and Simulation 
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information in a collaborative Systems Engineering Context), develops 
methods for organizing and sharing Modeling and Simulation meta- data and 
information in a collaborative system, and for capturing context to enable 
traceability [29]. Tools to analyze and visualize STEP file are developed by 
NIST [30]. 

In comparison, domain-independent software solutions require details 
about numerical choices. Their models are reusable in multiple physical 
domains that have the same mathematical structure. For example, a physics 
problem described by a Laplace PDE can be used to solve thermal conduction 
as well as electrostatics problems. Symbolic code is very often used for model 
definition, which can be automatically compiled into a lower level C code. 
Symbolic code was in use in the 90s for finite difference in the Sinapse 
framework [31] and in the later 90s for finite elements [32]. 

The weak form equation, formalized in [33] as a language and extended in 
[34] as a unified framework for finite element assembly, complemented by a
finite element and user defined function, is enough information to symbolically
or numerically integrate each cell of a mesh and assemble a linear system of
equations that is interpretable by a linear algebra solver (LAS). Solving the
systems of equations at this stage only requires linear algebra methods, such as
Cholesky or Krylov subspace methods that many frameworks support, such as
Petsc [35] with parallel processing capabilities or libraries compatible to the
BLAS specification [36].

However, writing symbolic expressions for PDE weak forms is uncommon 
for FEA engineers. Even though PDEs are widely-understood and useful for 
model classification, using PDEs for model identification is problematic 
because boundary conditions refer to variables not in the PDEs. Without 
documentation detailing a PDE’s derivation from multiple equations, they 
provide only a partial view of the model, limiting post-processing of other 
model variables. Such post-processing requires expert knowledge of model 
relationships to derive finite elements of post-processed variables. In contrast, 
domain-specific software models hide finite element choices and variable 
relationships, but offer simpler post-processing capabilities. 

Ideally FEA model definition should be understandable by most engineers 
and generate solutions with any solver. Starting with weak forms, we can 
reverse-engineer the workflow used to find their expressions. Weak forms, can 
be derived from PDEs using integration by parts, enabling weak forms to be 
linked to their corresponding PDEs or automatically derived. Next PDEs are 
derived from model equations that correspond to physical laws. Transitioning 
from domain-independent descriptions, the mathematical model, to domain-
dependent description, the physics model, is done by substituting mathematical 
variables with physical quantities. The resulting physics model is 
understandable by engineers and can be used by numerical methods such as 
finite volumes (FV) or finite differences (FD). For FEA models, finite elements 
that describe unknown physical quantities and space-dependent parameters are 
needed, in combination with physics models formulated as PDE weak forms to 
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construct linear algebraic systems of equations that can be solved by LASs. 
To achieve formal description of FEA library models, we need a formal 

description of finite elements as well as an efficient mechanism to describe 
physics equations and the corresponding derivation of PDEs. The rest of the 
paper discusses these two aspects in more detail. 

4. New FEA solver integration Framework 
In this section, we present a new platform-independent approach to 

integrate FEA solvers. To provide an open model specification, subsection 4.a 
introduces building blocks of a graph-based language to capture physical 
equations, as a starting point for model definition. Linking these equation 
graphs together captures the mathematical structure of physics describing the 
system being analyzed. Subsection 4.b explains how math or physics problems 
are defined by selecting known and unknown variables in math and physics 
graphs.  This captures modeling decisions as functional programs, enabling 
extraction of all problems as math/physics evaluation subgraphs or 
math/physics solver subgraphs. Subsection 4.c details how boundary condition 
types can be automatically collected and associated to math/physics solver 
subgraphs. To facilitate reusability, subsection 4.d introduces the concept of 
common mathematical structure that can be reused for multiple domains, 
illustrated in subsection 4.h with the rapid extension of library elements. Once 
problems are defined, subsection 4.e explains how physical quantities are 
represented in FEA by finite elements, with examples on how to use our finite 
element specification. Subsection 4.f clarifies the association of finite elements 
to physics solver subgraphs by creating numerical solver graphs and generating 
input templates for solvers. In subsection 4.g, an example presents how a mesh 
standard with virtual topology capabilities would associate design and FEA 
metadata and, together with the library element specification of subsection 4.e, 
provide a platform-independent description of FEA solvers. 

a. Equation models 
Whereas time-only (a.k.a., lumped parameter, 1D, network) simulation 

handles simple topologies (e.g., electric circuits) of many different library 
elements (e.g., capacitor, resistor…), FEA simulates one or few library 
element(s) on space embedded topologies (meshes). FEA library elements are 
more complex than time-only library elements and space is multi-dimensional 
and multi-directional in contrast to time, which flows in one direction. 

Time-only solutions have open standards, such as Modelica or proprietary 
languages, such as XCOS [37] and Simscape/Simulink [38], to describe 
libraries or models, which are defined with physics equations. For signal-based 
simulations, mathematical expressions of Laplace transformations are either 
captured in custom or standard library blocks that can be connected together.  

In contrast, FEA solutions deliver libraries as complied code that are 
parametrized with input templates. This transparency problem can only be 
solved with an ecosystem shift that gives FEA engineers the same flexibility as 
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time-only simulations. To achieve this, we believe physics equations should 
also be inputs to define FEA libraries. This would help in modeling FEA 
libraries, which is currently done on paper or electronic documents.  

Mathematical structures of space-dependent physics models (physical 
equations describing a domain), are captured by Tonti diagrams [39] and used 
in [40] to illustrate FEA variational principles. Tonti diagrams are formalized 
with the cell method, a discretization method based on algebraic topology, first 
introduced by Branin [41], that defines topological dualities for both space and 
time as well as cell-specific mesh discretizations. 

FEA engineers are not familiar with the cell method, so we propose a more 
general approach, one that first captures equations as triples, two physical 
quantities linked by an operator. Triples are linked whenever they share the 
same elements; a graph is automatically created. These graphs define symbolic 
computation, as compared to Simulink graphs that define real number 
processing. With this approach, structures described by Tonti diagrams can be 
captured in a way more accessible to engineers. 

To explain how this works, let’s consider an engineer who aims to build an 
FEA library with this approach. His first step would be to find relevant 
physical equations in the literature. These could be captured using a GUI that 
helps select and connect necessary blocks, or by entering symbolic equations 
that are progressively displayed as graphs. Figure 1 shows the gradient law for 
relating potentials and gradients.  

 

 

Figure 1:  Description of the gradient law 
 

Math objects in physics are tensor fields or tensors. Tensor fields are 
functions, in physics, they map from space coordinates to a real number or 
arrays of real numbers. In the first case, tensor fields are scalar functions while 
in the second they are arrays of functions. Each math object is defined with 
respect to a Euclidian space of dimension 𝑁𝑁, the space on which library 
elements are defined, and symbols for each dimension. (e.g., 2D space with 
𝑆𝑆 = {𝑥𝑥,𝑦𝑦}). We can restrict the space of a map by choosing a subset of the 
coordinate symbols. Math objects that have no input coordinates are tensors, 
which is a real number or an array of real numbers that only depend on the 
coordinate system but not the coordinates. Figure 2 shows type declarations 
(symbol, input, output) of some math objects and their representation. It 

𝜵𝑈𝑈(𝑥𝑥, 𝑦𝑦) 𝛻𝑈𝑈(𝑥𝑥, 𝑦𝑦)

Symbol: 𝛻𝑈𝑈
Input: {x, y}
Output: Array[2]

Symbol: U
Input: {x, y}
Output: Real
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defines math objects for a two-dimensional space with {𝑥𝑥,𝑦𝑦} as symbols for 
real number coordinates. For example the math object with symbol 𝑈𝑈 is a 
scalar field that takes {𝑥𝑥,𝑦𝑦} as input, and outputs a real number. Another 
example is the math object 𝐾𝐾, a constant, which is coordinate-independent (no 
input) and outputs a real number. 
 

 

Figure 2:  Declaration of math objects 
 

Math objects are linked in a math graph (MG), e.g., one for the gradient 
law as shown in Figure 1.  MGs are bi-partite and directed, which by definition 
are composed of two sets, one for math objects and another for operations 
linking two math objects. Each edge indicates how math objects relate to the 
operators at its ends. An arrow coming into an operator comes from a math 
object input to the operator, while an arrow going out of an operator leads to a 
math object output from the operator. The operator transforms one math object 
into another. Having operator as nodes in MGs enables representation of binary 
operators such as addition and multiplication. To support unambiguous 
references, each node is unique (identified, e.g., by a unique resource identifier 
on the web) and to support specialization, each has multiple attributes. Math 
objects can be augmented (specialized) with units and symbols following ISO 
[42] to produce physics objects. In Figure 3, the engineer entered the physical 
law that defines temperature gradient. For model completeness, the inputs of 
each math object have been added, which are the space or time  coordinates or 
a combination of these.

𝑈𝑈

Symbol: U
Input: {x, y}
Output: Real

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 2
Symbol: {x, y}
x: Real
y: Real

F

Symbol: F
Input: {x}
Output: Real

𝐾𝐾

Symbol: K
Input: {∅}
Output: Real

𝐷

Symbol: D
Input: {x, y}
Output: Array[2] 

𝑀

Symbol: M
Input: {𝑥𝑥, 𝑦𝑦}
Output: Array[2][2]

𝑈𝑈 𝑥𝑥, 𝑦𝑦

𝐺

Symbol: G
Input: {∅}
Output: Array[2][2][2]

𝐹 𝑥𝑥

𝐾𝐾 𝑀11(𝑥𝑥, 𝑦𝑦) 𝑀12(𝑥𝑥, 𝑦𝑦)
𝑀21(𝑥𝑥, 𝑦𝑦) 𝑀22(𝑥𝑥, 𝑦𝑦)

𝐷1(𝑥𝑥, 𝑦𝑦)
𝐷2(𝑥𝑥, 𝑦𝑦)

 𝐺211 𝐺212
𝑀221 𝑀222𝐺111 𝐺112

𝐺121 𝐺122
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Figure 3:  Specializing a physics graph (PG) from a math graph (MG) 
 

As the number of relevant equations increases, they can be automatically 
combined when two equations, each a statement or triple linking two physical 
quantities by an operation, share the same physical quantity, as illustrated in 
Figure 4. Combination is possible only if each physical node is uniquely 
identified. For example, the Resource Description Framework [42], the web 
standard for linked data, could identify them with unique resource identifiers 
(URIs) and describe equations with two statements each, one linking a physical 
quantity to an operator, and another linking that operator to another physical 
quantity. 

𝜵𝑈𝑈(𝑥𝑥, 𝑦𝑦)

Symbol: U
Input: {x, y}
Output: Real

𝛻𝑈𝑈(𝑥𝑥, 𝑦𝑦)

Symbol: 𝛻𝑈𝑈
Input: {x, y}
Output: Array[2]

𝜵𝑇(𝑥𝑥, 𝑦𝑦)

Symbol: T
Name: 
temperature
Units: [T]

𝛻𝑇(𝑥𝑥, 𝑦𝑦)

Symbol:𝛻𝑇
Name: temperature 
gradient
Units: [T/m]

SpecializationGeneralization

Maths Graph 
(MG)

Physics Graph 
(MG)

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 2
Symbol: {x, y}
x: Real
y: Real

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 2
Var: {x, y}
x: Real
y: Real
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Figure 4:  Automatic linking of physical equations 
 

Combining equations, automatically or manually, produces a physical 
graph (PG), a combination of physical equations that capture the mathematical 
structure of a physics theory or model. We distinguish three layers of a PG as 
shown in Figure 5. The functional program specification layer defines the type 
of math or physics objects and operators, and the objects input/output for each 
operator (arrows). A path through a graph in the direction of arrows from one 
object to another is called a functional program path (FPP). Objects between 
the start and end of a path are intermediary results. The second layer is the 
expression layer that declares a mathematical expression (e.g., 𝑒𝑒5𝑥𝑥2) specifying 

@base <http://example.org/> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> . 
@prefix mg: <http://physics.org/schemas/mathgraph> .

<#621> 
mg:connectedTo <#64> ;

<#64> 
mg:connectedTo <#2m2> ;

<#2m2> 
mg:connectedTo <#233> ;

<#rt3> 
mg:connectedTo <#233> ;

<#233> 
mg:connectedTo <#fv6> ;
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outputs in terms of inputs. The types of math and physics objects can be 
checked for consistency with the expression (e.g., gradient of scalar field 
produces a vector field). This facilitates expression processing when 
mathematical expressions, e.g., LaTeX [44], MathML [45] or expressions 
trees, are assigned to math or physics objects. Symbolic computation can 
produce the expression for a math object from the expression of another and 
the operation linking them, in the direction of the link. The data layer specifies 
input values mapped to output values following the rule defined by the 
expression, creating a function graph or plot.  
 

 
 

Figure 5:  Layers of a math objects  

b. Physics problems 
After defining math and physics models, or choosing existing ones, the 

next step specifies problems to solve by declaring known and unknown pairs of 
math or physics objects in MGs and PGs. If a mathematical relation exists for a 
pair, then at least one FPP exists through the MG or PG with the two math or 
physics objects at the ends of the path. Absence of path means no solution is 
possible without modifying the graph. If a FPP has operations composed only 
of invertable functions, then an inverse FPP can be defined by replacing the 
operations by their inverses and reversing the arrows in the path. 
 

When known and unknown are assigned as the start and end of a FPP, 
respectively, we call the path a math evaluation graph (MEG) or physics 
evaluation graph (PEG). When known and unknown are assigned as the end 
and start of a FPP, respectively, and an inverse FPP exists, an MEG or PEG 
can be automatically generated for it as shown in the Figure 6. 
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Figure 6:  Solution finding in a physics graph 

 
In physics, most laws are expressed in mathematical equations using 

differential operators, which can be inverted by adding boundary conditions. 
For example, in one dimension (e.g., motion on a line, see Figure 7), the top 
PEG connects a position/force pair, while the middle one inverts it by adding 
integration constants as boundary conditions for the anti-derivative operations. 
For example, the time derivative of position is velocity, on the left in the top 
PEG, but its inverse, integration, in the middle PEG, produces distance, rather 
than position. A specific position value, a boundary condition, is needed to get 
position from distance. Similarly, on the right, the time derivative of 
momentum is force, but the integral of force is impulse. A specific boundary 
momentum is added to get momentum from impulse. 
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Figure 7:  Inverse path and its equivalent formulation for ODEs 
 
A more common representation of such problems is differential equations, 

which in one dimension, ordinary differential equations (ODEs), can be 
handled by symbolic solvers. When a PEG has integration operators and a 
known start object (e.g., force known, position unknown in the middle graph of 
Figure 7), its inverse PEG has differential operations and an unknown start 
object (e.g. position). Because the end object (e.g., force) is known and must be 
equal to the differential expression implied by the rest of the graph, the graph 
represents a differential equation. To be equivalent to the original integral 
PEG, we must add boundary conditions (e.g., the lower graph of Figure 7). 
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This is a math solver graph (MSG) or physics solver graph (PSG). Paths 
through these graphs go from unknown to known under boundary conditions, 
representing differential equations under boundary conditions. 

Most physical laws are expressed in differential form are represented as a 
differential operator linking two physical quantities. For multi-dimensional 
spaces, there is no analytic inverse to differential operators, therefore, analytic 
inverses of most FPPs with differential operators do not exist. The problem of 
finding the inverse can still be characterized by an MSG or PSG, see Figure 8. 
An approximate solution to the inverse FPP can be constructed either by using 
an equivalent formulation to the PDE (e.g. FEM) or directly discretizing the 
operators (e.g. FD or FV). 

In our context, most graphs will have differential operators. The 
methodology consists of defining known and unknown object pairs, then 
finding a path connecting these objects. Most of the time there will be only one 
possible path. We can generate a MEG or PEG when the start object is known, 
or a MSG or PSG if the start object is unknown. The two graphs are the same 
except for the known/unknown choice for the start and end objects, and 
additional boundary conditions attached to the MSG or PSG, which will be 
detailed in subsection 4.c. MEGs and PEGs are used for evaluation problems or 
post-processing, while MSGs and PSGs are used to specify solver problems 
that involve ODEs, PDEs or systems of PDEs. 
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Figure 8:  Inverse path and its equivalent formulation for PDEs 

 
Characterizing or finding PDEs is useful to identify a problem, because 

problems are classified by PDEs, but they are difficult to understand without 
their derivation from physical laws. Furthermore, their boundary conditions are 
expressed in relation to the unknown, the start node of FPP. PDEs only 
represent the mathematical relationship between start and end objects in a FPP. 
Physical quantities and operators along the path are not in the PDE. In contrast, 
MSGs or PSGs give the derivation of PDEs. The graphs are more than 
equations, they capture modelling decisions leading to equations.  
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c. Boundary conditions 
Finding a unique numerical PDE solution requires boundary conditions 

(BCs), along with other parameters (material, geometry). Specifying BCs is the 
task of mathematicians. Some BCs are well-known such as Dirichlet, 
Neumann, Robin, and Cauchy BCs. Mathematicians prove existence of 
solutions to PDEs under specified constraints. For solver input completeness, it 
would be very useful to automatically associate BCs during construction of 
PDEs or ODEs, but this would require solution existence proofs to be 
automated, which is not currently possible. 

However, characterizing the physical quantity associated to BCs is still 
useful to engineering. We call this quantity, the BC value type (e.g., electric 
potential). PSGs give the derivation of PDEs and ODEs helping determine 
which physical quantities can be post-processed but requires BCs. Only adding 
their BC value types is possible. BC value types are associated directly to 
differential operators. Following Stoke’s theorem,  

� 𝑤𝑤 = � 𝑑𝑑𝑑𝑑
Ω𝜕𝜕Ω

 

each differential operator applied to a math object and integrated over a region 
has a corresponding boundary value type for the result of the integral of the 
math object along the boundary of the region. If we consider the triple (input 
math object, operator, output math object), then the BC type is linked to the 
input by the boundary integral, as shown in the bottom row of Figure 9. For 
curl and divergence, this introduces a third physical quantity. For gradient or 
differential, no additional physical quantity is introduced, the BC type math 
object is the input to the operator (integral of a single point value is equal to itself). 
  

Figure 9:  Stoke’s law and corresponding BC types attached to differential operators 
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These BC types will be automatically added in the MG or PG whenever a 

differential operator is defined. They are important because they also 
correspond to physical quantities. For example, Figure 10 shows a thermal 
conduction PG, where heat flow is the BC type of the divergence operation 
applied to heat flow, and temperature is the BC type of the gradient operator. If 
we consider the PSG with temperature unknown and heat source as known, 
temperature and heat flow are the collected BC types which correspond to the 
Dirichlet BCs type and Neumann BCs type respectively. By automatically 
adding BC types, whenever a differential operator is used, we have a PG 
complete model. 

 

 
 

Figure 10:  2D steady state thermal conduction PG 

d. Common mathematical structure 
A common mathematical structure (CMS) is an MG that is shared by many 

PGs. Identifying CMSs is useful for reuse (e.g., assessing solver compatibility) 
and model understanding (e.g., from a mathematical perspective solving thermal 
conduction problems is the same as solving electrostatics problems). For 
example, FEA solves classical field theory problems. The CMS in Figure 11 is 
the basis of many domain-specific problems (e.g. 2D steady thermal conduction 
in Figure 10). Benefits of CMS will be illustrated in subsection 4.h. 

 

 
 

Figure 11:  An example of a CMS of classical physics 
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e. Finite element specifications 
As described in section 4.b, problems defined by an MSG don’t have an 

inverse but an equivalent description the weak form. The discretization process 
consists in defining the problem in the integral form in order to find an 
approximation of the inverse path of the FPP. Finite elements (FE) are 
functions or tensor fields representing physical quantities on discrete 
topological elements of space. Degrees of freedom (DOFs) of finite elements 
are free or fixed variables that represent evaluations of physical quantities done 
on topological elements (point, line, surface, volume) . Functions or tensor 
fields of FEs, usually represented by polynomial (or tensor) functions, are 
rearranged as shape functions or shape fields, each fully defined, and each one 
multiplied by one DOF coefficient. There are as many shape functions as 
DOFs. For example, in electrostatics, on the left in Figure 12, a potential can be 
interpolated by a FE with 3 DOFs, specifically 3 electric potentials at discrete 
points in space as free variables. Another example, from thermal conduction, 
would be heat flow density interpolation, on the right in Figure 12. This time, 
normal components of heat flow density are integrated along each edge, 
leading to 4 DOFs or 4 heat flow as free variables. 

 

 
 

Figure 12:  DOFs for electric potential and heat flow density interpolation using finite 
elements 

 
Finding a formal FE description is complicated by the same finite elements 

being referred to as many different names in the literature. For example, a 
linear line element is also called a Lagrange line element. Engineering names, 
such as beam or bar element, are also ambiguous. A beam, for example, can 
have 4 degrees of freedom or 2 degrees of freedom., A finite element periodic 
table in [46] classifies these, but requires advanced mathematical knowledge to 
understand. 

We developed a formal finite element specification (FES) [47] based on the 
generic finite element definition of Ciarlet [48] and the DOF type description 
as found in [49]. However, the triplet (geometry, DOF and basis space) is 
described with topology to provide compact description. A central aspect of 
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FES is associating DOFs to topological elements (point, line, surface, volume). 
A geometry Ω, like a triangle for example, can be partioned into a set of three 
lines 𝐂𝐂1(Ω) = { 𝐋𝐋1 𝐋𝐋2,𝐋𝐋3} corresponding to disjoint surface boundaries; a set 
of three points 𝐂𝐂0(Ω) = { 𝐏𝐏1 𝐏𝐏2,𝐏𝐏3}, the edge boundaries. Subtracting the 
{𝐂𝐂0(Ω),𝐂𝐂1(Ω)} union from Ω gives  𝐂𝐂2(Ω), the interior surface. Each member 
of 𝐂𝐂2(Ω), 𝐂𝐂1(Ω), 𝐂𝐂0(Ω) are sets of points; surface, edge, singleton (one 
member) point sets respectively. DOFs are defined by associating DOF types, 
e.g., point evaluation (PE), first derivative (FD), along with a natural number to 
𝐂𝐂0(Ω), 𝐂𝐂1(Ω) and 𝐂𝐂2(Ω). For example {𝑃𝑃𝑃𝑃: 1} associated to 𝐂𝐂0(Ω), written 
D𝐂𝐂0(Ω) = {𝑃𝑃𝑃𝑃: 1}, means point evaluation for each member of 𝐂𝐂0(Ω), therefore 
3 and 4 PEs (DOFs) for triangles and squares respectively. D𝐂𝐂1(Ω) = {𝑃𝑃𝑃𝑃: 1} 
means one PE at midpoint for each line point set of 𝐂𝐂1(Ω). In the triangle case, 
on the right in Figure 13, the evaluations are at 3 midpoints, one for each line. 
In general, for PE on lines, points divide lines into regular partitions, e.g., a 
midpoint divides a line into two equal parts. Multiple DOF types and number 
can be assigned to each D𝐂𝐂n(Ω). A FE is explicity specified by composing all 
necessary D𝐂𝐂n(Ω). 
 

 
 

Figure 13:  Example of FE definition using the FES 
 
With geometry and DOF type specification of an FE, it is possible to 

calculate the number of DOFs and find an appropriate function to represent all 
DOFs. The FES can also encode polynomial functions. The set of all possible 
monomials can be lexicographically ordered, so the set of monomials 
appearing in a given polynomial can be mapped to a bit sequence, where each 
bit corresponds to the presence of a particular monomial in the polynomial. 
The resulting sequence is encoded as a hexadecimal number. The decoding of 
the hexadecimal number only requires writing the monomials for the space 
dimension in a graded lexicographic order, then assigning to each monomial 
position a bit that clarifies whether the monomial is used or not. For example, 
Figure 14 shows the encoding of a two-dimensional scalar polynomial (e.g. 
2D-1C), more specifically a quadratic serenpedity functional space, functional 
space defined on a square, that uses all monomial terms except 𝑥𝑥3,𝑦𝑦3 for the 
set of monomial {1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥2, 𝑥𝑥𝑥𝑥,𝑦𝑦2, 𝑥𝑥3, 𝑥𝑥2𝑦𝑦, 𝑥𝑥𝑦𝑦2,𝑦𝑦3}. The main idea of the 
encoding is to provide an implementation description that is independent of 
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domain-specific ontologies (e.g., serenpedity). The current encoding method is 
on possibility as an example how domain-independent descriptions could work.  
 

 
 

Figure 14:  Example of functional space encoding 
 

f. Library element 
After creating PGs and PSGs, FEs are specified and associated to physics 

objects. FEs represent unknowns and space-dependent parameters (material or 
geometric parameters) if necessary. To illustrate the process, we consider the 
PG of a bar element shown in Figure 15, created using the kinematic equation 
that links strain to displacement; Hooke’s law, which links stress to strain; and 
the balance equation that links body load to stress. Force is added 
automatically as a result of the divergence operator used in the balance 
equation. Then a problem is specified with a PSG, e.g., body load-displacement 
as known-unknown pair and displacements and forces as BC types. This is one 
of 12 evaluation and solver problems that can be defined using the same PG of 
Figure 15.  

Next, the association of FEs to physics objects of the PSG, defines 
numerical graphs (NGs), by first declaring the math type of the physics object 
and then the FE. Many NGs can be defined from one PSG. For the body load/ 
displacement pair example, displacements could either be linear or quadratic 
FEs. Constant, linear, quadratic FEs to describe space-dependent sections are 
also possible, which in total, with displacement options, would produce 6 NGs. 
At this point, math objects consistency can be checked, verifying whether FEs 
choices (e.g., linear or quadratic) are consistent, helping understand numerical 
choices. In Figure 15, if distributed load is constant, choosing a linear 
displacement FE would be inconsistent, because balance equations would be 
broken and we would have only an approximation. 

The principle of virtual displacement, which only requires kinematic 
admissible displacements, allows such approximations. However, inconsistent 
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physical equations are frequent when mixed principles introduce additional 
unknows in a PSG. In Figure 15, choosing quadratic displacement with 
constant body load yields an exact solution. These examples show that many 
numerical models can be defined using the same PSG, which itself is one of 
many options derived from a PG. This is reflected in the large number of 
library elements in software packages. 
 

 
Figure 15:  Example of a Numerical Graph for a bar 
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Specification of library elements leads to at most four kinds of digital 

artefacts: mathematical models as MGs (math graphs), physics models as PGs 
(physics graphs), physics problems as PSGs (physics solver graphs), and a 
subset of PGs and numerical models as NGs (numerical graphs). 

NGs identify solvers (PDEs), collect all solver inputs (BC types, FEs, 
physical quantities with units and relations), information to construct the PDE 
weak forms, an integral formulation of the PDE, required for assembling FEA 
simulations. In addition, NGs, being specialization of PSGs, enable post-
processing once the solution is found. 

g. Simulation 
In simulation driven design, traceability between design and simulation is 

essential, yet often obscured conventional practice. As an example of 
description granularity and information traceability, rather than optimize 
simulation, consider a part that is attached to another plate with two screws, as 
illustrated in Figure 16. A force is applied at the unattached end. The part is 
created using CAD with plate length as parametric variables. If meshing would 
natively occur in CAD environments instead of exporting CAD files to pre-
processors or CAE tools,  if the resulting mesh could be exchanged using a 
mesh standard that is serialized with popular file formats (e.g., JSON) and 
defined with schemas capable of representing BREP (boundary representation) 
mesh topology that associate metadata to topological elements, as described 
earlier, then CAD meta information would be preserved and reusable by any 
solver capable of reading such mesh standard. The mesh would store 
topological elements (node, edge, faces, volumes), the topology (how elements 
connect) and regions of interest (virtual topologies). CAD uses BREP and can 
associate design metadata to bounded shapes (e.g. material, assembly 
information), which can be translated with a native mesh process to virtual 
mesh topologies that keep metadata associations. The mesh could be exported 
with two separate information sets, one that describes the mesh topology and 
region topologies with keys, the other that associates keys with meta-data (e.g., 
material). In our example, the mesh has 4 virtual topologies; the plate (with 
material information and basis geometry for the mesh), the two holes with 
assembly information (use of screws) and a section of the boundary region 
(force). A new mesh with consistent metadata can be created when length or 
other parameters are updated in CAD. 

The next step is selecting a library element, which requires FEA expertise 
and library knowledge. Sometimes a package for the required simulation is not 
available (e.g., license or absence of the library element, probably not the case 
for this problem). Searching for library package solutions requires reading 
documentation. Comparing these models is difficult because documentation 
standards vary and packages are not open enough. A standard based on the 
graph data structure previously presented would simplify the library search 
process. In the example above, search would be, e.g., for NGs with triangle 
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shapes containing physical objects such as force and displacement. In this 
example, starting with a PG of 2D elastostatics, the problem can be identified 
(here we know that force and displacement are the BC types), therefore a PSG 
connecting displacement to body load is required to have these two BC types. 
Then, a NG is created by associating a finite element to physical quantities or 
space-dependent parameters if necessary (e.g. space-dependent plate width).  

The next step is to create a simulation model. In the example above, the 
NGs are associated to the plate domain and NG BC types (e.g., displacement 
and force) are associated to mesh regions (e.g., displacement to boundary 
holes). Once the simulation model is complete, solvers that follow this standard 
could propose their services. Another option is a new ecosystem of software 
that could support library creation and automatic generation of library code or 
links to existing code. 

The final step is simulation. Each simulation run is defined by simulation 
parameters (material data, e.g., shear and bulk modulus, derived, e.g., from 
steel information, thickness value). 

As a result of this approach we have 5 artefacts, design metadata, mesh 
data, NG (library model), simulation model metadata (attaching BC type to 
mesh data), and simulation data (referencing simulation value to NG 
parameter). In addition, the neutral mesh links design metadata to simulation 
model meta. A change in the CAD geometry (e.g., side length) does not impact 
the simulation model data. Furthermore, if an FEA engineer changes the FE 
geometry specification, for example changing triangular to square mesh, the 
CAD software could read this information and update the mesh accordingly .  
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Figure 16:  Standardized integration of solvers with assumption of a mesh and FEA 
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h. Rapid extension of libraries 
Identifying CMSs helps with reuse because of the specialization process 

that produces PGs from MGs, PSGs from PGs and finally NGs from PSGs. For 
example, a single MG handles most one-dimensional space-dependent PGs 
used for FEA. Such core models are essential to rapidly extend libraries. From 
this one MG, 10 PGs can be derived using correspondence tables. MG node 
objects are specialized to PG node objects by adding symbols and units. 
Physics objects and math objects with same mathematical relations in a graph 
are linked by specialization. This enables existing libraries to be rapidly 
extended to other physical domains when models share the same MS. Figure 
17 shows three specialization examples (axial stress, themal conduction, 
electrostatics, see rows of table) from the 1D space-dependent core model.   

 

 
Figure 17:  Rapid creation of libraries by CMS specialization  
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to PGs describing more complex behaviors. For example, a thermal conduction 
PG and an axial loading PG, both sharing the same MG, can be connected by 
the thermal expansion equation. This coupling creates so-called thermo-
mechanical models. 

5. Conclusion 
Virtual product development and simulation driven design decreases 

development costs by reducing expensive physical prototype testing. Early 
virtual design testing using CAE simulation, such as FEA, helps verify whether 
designs satisfy stakeholder requirements. Tracing digital models to 
requirements and system architecture is efficiently managed with model-based 
engineering, a methodology that facilitates integration and exchange of digital 
models between engineering disciplines. Standards are enablers of such model 
exchange. 

Unfortunately, current trends show CAD and FEA packages are 
increasingly natively integrated in the same proprietary environment to 
leverage benefits of parametric CAD design [22]. This introduces two 
standardization challenges, one is related to translation errors between CAD 
formats (meta-data losses and geometric tolerance errors), the other due to 
informal FEA model description by standards. The first introduces substantial 
work when transitioning between CAD environments and between CAD and 
CAE, because of metadata losses. As an intermediate solution before CAx 
standards solve these issues, the development of a mesh standard that neutrally 
references topological regions could link PDM/CAD data to FEA data. The 
second is mainly due to the FEA software ecosystem, which delivers element 
libraries as compiled code packages. As a result, current standards only 
identify models with PLM data, such as software name, proprietary references 
to the compiled code and informal ontologies to characterize models, 
supporting only point to point integration. 

An ecosystem shift is needed to solve the second challenge above, one that 
gives the same flexibility as time-only simulations and more transparency. 
Instead of setting inputs of compiled code templates, the starting point to 
model or generate FEA libraries should be an abstraction level understandable 
by all engineers, i.e., physics equations. At the numerical abstraction level, 
FEA engineers detail their FE choices. If both abstraction levels are connected, 
then FEA engineers and other engineering disciplines share a common 
understanding of their models. We show how these two abstraction levels 
connect by progressively creating and storing information as graph 
datastructures (MGs, PGs, PSGs, NGs). With numerical graphs (NGs), input 
template for solvers can be generated (PDE, BC types, material and geometry, 
FE choices). Solvers could be integrated into platforms though standardized  
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interfaces by providing a formal library element specification, or in the 
future new kinds of software solutions that model library elements and 
generate code.  

Identifying common mathematical structure, core models, is essential for 
rapid extension and reuse of libraries between physical domains. In addition, 
physics graphs can be composed. We see two progressive usage scenarios, one 
that formalizes the description of FEA libraries (integration), the second that 
directly links physics models and numerical decisions to solvers with a 
standardized interface to run simulation with any solvers or even generate code 
(interoperability and transparency).  

6. Acknowledgements 
The authors thank Benjamin Urick, Stephen Langer, and Joseph Draper for 

their detailed comments and helpful discussion. 
This work was performed under grant awards 70NANB16H174 and 

70NANB18H192 from the U.S. National Institute of Standards and 
Technology. Identification of any commercial equipment and materials is only 
to adequately specify certain procedures. It is not intended to imply 
recommendation or endorsement by the U.S. National Institute of Standards 
and Technology, nor does it imply that the materials or equipment are 
necessarily the best available for the purpose. 

7. References 
[1] BKCASE Editorial Board. (2017). The Guide to the Systems Engineering 

Body of Knowledge (SEBoK), v. 1.9.1 R.J. Cloutier (Editor in Chief). 
Hoboken, NJ: The Trustees of the Stevens Institute of Technology. 
Accessed 2019. www.sebokwiki.org. 

[2] Object Management Group (September 2015). OMG Systems Modeling 
LanguageTM, version 1.4: http://www.omg.org/spec/SysML/1.4. 

[3] Object Management Group (March 2015). OMG Unified Modeling 
LanguageTM, version 2.5: http://www.omg.org/spec/UML/2.5. 

[4] Modelica Association (2017) Modelica Language Specification, version 3.4 
[5] Dadfarnia, M., Bock, C., Barbau, R. (2016). An Improved Method of 

Physical Interaction and Signal Flow Modeling for Systems Engineering: 
Conference on Systems Engineering Research. 

[6] Hardwick, M, Clay, R., Boggs, P., Walsh, E., Larzelere, A., Altshuler, A. 
(2005), “DART System Analysis,” Sandia National Laboratory Report 
SAND2005-4647, Aug. 

[7] International Organization for standardization (2016) ISO 10303-21:2016 
Industrial automation systems and integration -- Product data representation 
and exchange -- Part 1: Overview and fundamental principles 

http://www.omg.org/spec/SysML/1.4
http://www.omg.org/spec/UML/2.5


30 
 

Presented at the NAFEMS World Congress 2019                                                                                 Québec City, Canada | 17-20th June 2019 

[8] Ho-Le, K (1988). Finite element mesh generation methods: a review and 
classification, Butterworth & Co 

[9] Geuzaine, Christophe & Remacle Jean-Francois (1997-2019). Gmsh – A 
three dimensional finite element mesh generator with build-in pre- and 
post-processing facilities – open source www.gmsh.info 

[10] Beal, M. W. and Shephard, M. S. (1997), A general topology-based data 
structure. Int. J. Numer. Meth. Eng., 40: 1573-1596. 

[11] Bruaset, Are Magnus & Langtangen, Hans Petter (1998). Diffpack: A 
software Environment for Rapid Prototyping of PDE Solvers 

[12] Alnaes, M.S. & Blechta, J. & Hake, J. & Johansson, A. & Kehlet, B. & 
Logg, C., Richardson J.& Ring, J.& Rognes, M. E.& Well, G.N. (2015) 
The FEniCS Project  Version 1.5: Archive of Numerical  Software. vol. 3. 

[13] Hecht, F. (2012). New development in FreeFem++. Journal of numerical 
mathematics, 20(3-4), 251-266. 

[14] Van Rossum, G. (2007). Python programming language: 
http://www.python.org. 

[15] A. Henderson, ParaView Guide, A Parallel Visualization Application. 
Kitware Inc., 2007. 

[16] Schroeder, Will & Martin, Ken & Lorensen, Bill (2006), The 
Visualization Toolkit (4th ed.), Kitware, ISBN 978-1-930934-19-1 

[17] W3C (September 2006) Extensible Markup Language (XML) 1.1 (Second 
Edition) 

[18] Lee S.H., (2005). A CAD-CAE integration approach using feature-based 
multi-resolution and multi-abstraction modelling techniques: Computer-
aided design, Elsevier.  

[19] Beall, Mark & Walsh, Joe & Shephard, Mark. (2003). Accessing CAD 
Geometry for Mesh Generation: Proceedings of 12th International 
Meshing Roundtable. 33-42. 

[20] Wassermann, Benjamin & Kollmannsberger, Stefan & Yin, Shuohui & 
Kudela, László & Rank, Ernst. (2018). Integrating CAD and Numerical 
Analysis: 'Dirty Geometry' handling using the Finite Cell Method.  

[21] Junwahn, Kim & Pratt, Michael J. & Iyer, Raj & Sriram, Ram (2007). 
Data Exchange of Parametric CAD Models using ISO 10303-108, NISTIR 
7433, NIST 

[22] Hirz, Mario & Rossbacher, Patrick & Gulanova, Jana. (2017). Future 
trends in CAD – from the perspective of automotive industry. Computer-
Aided Design and Applications. 14. 1-8. 
10.1080/16864360.2017.1287675. 

http://www.gmsh.info/
http://www.python.org/


31 
 

Presented at the NAFEMS World Congress 2019                                                                                 Québec City, Canada | 17-20th June 2019 

[23] Tierney, C. M., Sun, L., Robinson, T. T., & Armstrong, C. G. (2015). 
Generating analysis topology using virtual topology operators. Procedia 
Engineering, 124, 226-238  

[24] Hirz, M. & Dietrch, W. & Gfrerrer, A. & Lang, J. (2013), Integrated 
Computer-Aided Design in Automotive development, Development 
processes, Geometric Fundamentals, Methods of CAD, Knowledge-Based 
Engineering Data Management. Springer 

[25] Beal, M. W. and Shephard, M. S. (1997), A general topology-based data 
structure. Int. J. Numer. Meth. Eng., 40: 1573-1596. 

[26] W3C (December 2017) The JSON Data Interchange Syntax: 
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf 

[27] International Organization for Standardization (2014) 10303-209:2014: 
Industrial automation systems and integration -- Product data 
representation and exchange -- Part 209: Application protocol: 
Multidisciplinary analysis and design.  

[28] Long Archiving and Retrieval Engineering Analysis and Simulation 
Workgroup (2019)  http://www.lotar-international.org/lotar-
workgroups/engineering-analysis-simulation/ 

[29] MOSSEC (2019) - Modelling and Simulation information in a 
collaborative Systems Engineering Context -  http://www.mossec.org 

[30] Lipman, Robert (2018) – STEP File Analyzer User’s Guide (Version 5) 
NIST Advanced Manufacturing Series 200-6. 
https://doi.org/10.6028/NIST.AMS.200-6  

[31] L. Akers, Robert & Baffes, Paul & Kant, Elaine & Randall, Curtis & 
Steinberg, Stanly & L. Young, Robert. (1998). Automatic synthesis of 
numerical codes for solving partial differential equations. Mathematics 
and Computers in Simulation. 45. 3-22. 10.1016/S0378-4754(97)00082-7. 

[32] Korelc, Joze. (1997). Automatic Generation of Finite-Element Code by 
Simultaneous Optimization of Expressions. Theoretical Computer 
Science. 187. 231-248. 

[33] Alnæs, Martin & Logg, Anders & Ølgaard, Kristian & Rognes, Marie E. 
& Wells, Garth N. (2014) Unified Form Language: A domain-specific 
language for weak formulation of partial differential equations. Volume 40 
issue 2, February 2014, Article No. .ACM Transactions on Mathematical 
Software (TOMS) 

[34] Alnæs, Martin & Logg, Anders & Mardal, K-. A. & Skavhaug, O. & 
Langtangen, H.P. (2012). Unified Framework for Finite Element 
Assembly 



32 
 

Presented at the NAFEMS World Congress 2019                                                                                 Québec City, Canada | 17-20th June 2019 

[35] Balay, Satish & Abhyankar, Shrirang, & F. Adams, Mark & Brown, Jed & 
Brune, Peter & Buschelman, Kris & Dalcin, Lisandro & Eijkhout, Victor 
& Gropp , William~D. & Kaushik, Dinesh & Knepley, Matthew~G.& 
McInnes, Lois Curfman and Rupp, Karl and Smith, Barry~F. & Zampini, 
Stefano and Zhang, Hong, (2015). PETS, Users Manual, Argonne 
National Laboratory 

[36] Van de Geijn, Robert & Goto Kazushige (2011). BLAS (Basic Linear 
Algebra Subprograms). Encyclopedia of Parallel Computing. 

[37] Scilab (2019) XCOS, open source, https://www.scilab.org/about/scilab-
open-source-software 

[38] The MathWorks (2019), Simulink/Simscape Documentation, 
https://www.mathworks.com/help/simulink/, 
https://www.mathworks.com/help/physmod/simscape/. 

[39] Tonti, Enzo (2013) The mathematical structure of classical and relatistic 
physics: Birkhauser 

[40] Felippa, Carlos. (1994). A survey of parametrized variational principles 
and applications to computational mechanics. Computer Methods in 
Applied Mechanics and Engineering. 

[41] Franklin H. Branin. The algebraic-topological basis for network analogies 
and the vector calculus. In Proceedings of the Symposium on Generalized 
Networks, volume 16, pages 453 – 491, Brooklyn, New York, 1966. 
Polytechnic Institute of Brooklyn   

[42] ISO 80000-1:2009 (2009), Quantities and units, ISO 
[43] W3C (2014) Resource Description Framework (RDF) 1.1 

https://www.w3.org/RDF/ 
[44] LaTex project (2019) LaTex – a document preparation system - 

https://www.latex-project.org/about/ 
[45] W3C (2014) Mathematical Markup Language (MathML) version 3.0 2nd 

edition https://www.w3.org/TR/MathML3/ 
[46] Logg, A. & Arnold, D. (2014). Periodic table of finite elements: Siam 

News. 
[47] Szarazi, Jerome & Bock, Conrad (2017) Integrating Finite Element 

Analysis with Systems Engineering Models, NAFEMS world conference, 
NAFEMS. 

[48] Ciarlet, P. (2002). The finite element method for elliptic problems: SIAM. 
[49] Logg A. & Al. (2012). Automated solution of differential equation by the 

finite element method. Springer. 

https://www.scilab.org/about/scilab-open-source-software
https://www.scilab.org/about/scilab-open-source-software
https://www.mathworks.com/help/simulink/
https://www.w3.org/RDF/
https://www.latex-project.org/about/
https://www.w3.org/TR/MathML3/

	FEA solver integration framework
	1. Introduction and motivation
	2. FEA data and standardization
	a. Meshing
	b. Solving
	c. Post-processing

	3. Current problems and proposals
	a. CAD/CAE integration
	b. Formal CAE model identification

	4. New FEA solver integration Framework
	a. Equation models
	b. Physics problems
	c. Boundary conditions
	d. Common mathematical structure
	e. Finite element specifications
	f. Library element
	g. Simulation
	h. Rapid extension of libraries

	5. Conclusion
	6. Acknowledgements
	7. References

