
NAFEMS 2019

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

FEA solver integration framework

Jerome Szarazi
(Koneksys, United Kingdom);

Conrad Bock
(US NIST, United States);

Abstract
Integrating finite element analysis (FEA) with systems engineering (SE)

would improve traceability, consistency, interoperability and collaboration
between SE and FEA activities in multiple engineering disciplines. The first
step in achieving this is a software-independent description of FEA models,
which are characterized by numerical approximations of partial differential
equations (PDEs) derived from physical laws, and finite elements representing
unknown physical quantities. In previous work, we presented a finite element
mathematics specification that is formal and understandable by most engineers.
It provides all information needed for generation of shape functions for
physical quantities. In this work, we propose a specification of physics in FEA
to complement our earlier mathematics specification.

We first compare existing FEA physics descriptions and their software

implementations to highlight the benefits of domain-independent model
descriptions used by PDE solvers. A significant drawback of PDE
representations is they do not show all physical quantities from which they are
derived. To tackle this, we represent the physical laws and derivations needed
for FEA PDEs in human- and machine-readable graphs. Instead of classifying
physics problems by the kind of PDE, as in PDE solver packages, we formalize
problems as paths through these graphs. This increases transparency by
capturing modelling decisions currently done on paper or in electronic
documents.

We combine the graph-based specification of FEA physics above with the

finite element mathematics specification developed earlier to generate linear
system of equations (algebraic FEA models) for solving the problem
numerically. This combination will enable FEA engineers to design their own
libraries (potentially automatically) if they choose, or associate existing
solvers. It also generalizes mappings from physics to FEA models, a task
currently repeated across specific disciplines. The framework could be
standardized and integrated with SE modeling languages, improving
interoperability and collaboration between systems and FEA engineers.

2

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

1. Introduction and motivation
Simulation-driven design has increased efficiency of product development

using computer aided design (CAD) and repeated evaluation of these models
with simulations. Software tools for simulation, such as finite element analysis
(FEA), computational fluid dynamics (CFD), multibody dynamics (MBD) fall
into the category computer aided engineering software (CAE).

Among these kinds of simulations, FEA is one of the most popular
numerical methods to test virtual models. For example, FEA helps find the
location of maximum stress on a body and therefore assess if and where a
product may fail. After identifying weak design locations in simulation results,
the design can be digitally corrected using CAD software. By alternating
between design and simulation, the virtual model can be refined to eventually
meet product requirements. This reduces the need for expensive physical
prototypes to test designs. This simulation-design loop helps improve decisions
at an early stage of engineering by choosing the best solution candidates in the
design space.

Deciding whether a solution meets all requirements also includes reaching
agreement between stakeholders. Cross-functional development teams, parallel
processes and integrated CAE are necessary to be competitive, but efficient
collaboration between FEA engineers, designers and other disciplines is
essential for a project success. Difficulties in sharing information and
miscommunication increase the time to reach agreement over design
alternatives. Such problems are further complicated by use of multiple
discipline specific models, often uncoupled and regenerated throughout the
design cycle.

Systems engineering (SE) is increasingly used to overcome these problems.
Traditional SE provides methodologies, processes and documentation to
support such cross-disciplinary development process. In recent years, model-
based SE (MBSE) significantly increased efficiency by exchanging models
instead of documents [1]. In an MBSE scenario, systems are described by
information models, in the same way software code is described by an
architecture model.

The Systems Modeling Language (SysML®) [2], an extension of the
Unified Modeling Language (UML®) [3], is the common language used to
describe and exchange models among system engineers. These system models
are digital artefacts, similar to 3D dimensional designs or simulation models,
enabling mappings between other simulation data and SysML. Such
transformation or integration is facilitated by standard data exchange for
simulation models in particular domains. This reduces integration to the
interfaces between the domain standards and SysML. For example, Modelica
[4], an open and standardized language for time-only simulations, has a
standard integration with SysML [5]. Data integration of simulation models
with SysML enables traceability to requirements. When information exchange
at the interface between a simulation model and SysML is bidirectional, it can
lead to simulation automation by synchronizing system requirements changes

3

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

with simulation parameters and testing validity of system modifications with
simulations. This is also true of simulation optimization, a process critically
dependent on bidirectional model mappings.

For FEA, there is, unfortunately no open language to create models or
exchange them. As a result, model-based integrations of FEA are platform
specific. The absence of standardization leads to point to point integration
between FE solvers, often a highly laborious manual or individually scripted
process that must be repeated between each pair of points, which is expensive
to maintain and sensitive to software updates.

To overcome these problems, we propose a new language for future
standardization that helps share reusable information about FEA library models
and generate finite element code, with inputs that are understandable by most
engineers. This language goes beyond the specific usage of FEA, because it
can be applied to physical system modeling in general. It enables FEA
engineers to understand relationships between physical quantities within a
physical theory and capture modelling decisions. It formalizes the otherwise
time consuming modelling process currently done on paper or electronic
documentation.

Section 2 describes FEA workflow, data generated at each stage, and
reviews standards or formats that support data exchange. Section 3 outlines
challenges currently hampering data exchange, one related to converting CAD
to mesh data in the context of simulation driven design, and another related to
the describing library elements independently of tools. Section 4 presents a
new FEA solver integration framework that uses graph structures to capture
physical laws, modelling decisions and all model parameters required for a
numerical solver. Associated with a mesh standard with virtual topology
capabilities, this framework could lead to a new FEA software ecosystem that
helps engineers to create and specify their library models. Section 5 concludes
the paper.

2. FEA data and standardization
FEA standardization is complex as it requires harmonizing geometric data

exchange between CAD and meshes, a unified description of FEA library
models and a common format to share simulation results. These three data
models are digital artefacts created during FEA simulation, which has three
steps: 1) meshing CAD geometry, 2) solving a simulation model, and 3)
processing results [6].

a. Meshing
The first step, meshing, requires access to CAD geometry. Such access is

facilitated by International Organization for Standardization (ISO) 10303
STandard for the Exchange of Product model data (STEP), a CAD file format
supported by all CAD tools [7]. There are many available automatic and semi-
automatic meshing algorithms, classification of such algorithms can be found
in [8], as well as open source code that generate meshes from STEP files. A

4

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

mesh or grid approximates a desired geometry with a collection of discrete
shapes in 2D or discrete volumes in 3D used as the computational elements for
FEA. Unfortunately, the STEP format for meshes is not widely adopted, the
only popular formats being associated with FEA software or meshing tools [9].
In general, mesh information can be stored using a finite element (shape or
volume) to node data structure, where each indexed finite element of the mesh
refers only to their nodes coordinates or by storing the complete mesh
topology, which adds connectivity between the elements that compose mesh
shapes or volumes. The first reduces storage space, while the second optimizes
data access to volumes, faces and edges for adaptive FEA algorithms such as h-
p refinement [10].

b. Solving
The second step of FEA simulation is selection, parametrization and

solving of FEA models. There are two groups of FEA solvers, one that
abstracts numerical information, and another that abstracts physical domains,
which consequently have different inputs. For both models, spatial regions of
the mesh, later associated to boundary conditions values, need to be selected
and stored.

The first group of FEA solvers provides domain-specific models to solve
mechanical (solid or fluid), electrical or thermal problems or a combination of
them (multi-physics problems). Each model, called a library element, is
associated with a template where material, additional geometric parameters,
and initial and boundary conditions values can be set. These models, often
identified by proprietary codes, do not provide source code and numerical
choices are unknown most of the time. Simulation documentation contextualize
the model and guide set-up of the input deck, most often represented as an
ASCII file storing mesh, library model reference codes, and boundary and
initial conditions. Graphical user interfaces (GUIs) of modern FEA software
help in model set-up.

The second group of FEA solvers are partial differential equations (PDE)
solvers that uses the finite element method (FEM). PDE solvers, such as
Diffpack [11], identify models by PDE type, while others like FENics [12] or
FreeFem++ [13] create models by entering the weak or variational form of the
PDE, a multilinear functional, constructed by integrating PDEs by parts. The
unknown variables of the weak form, usually physical quantity kinds, are
substituted by one or more interpolation functions, called finite elements.
Domain-independent models are defined with symbolic expressions using a
domain-specific language like FreeFem++ or multi-purpose language such as
Python [14] for FEnics.

c. Post-processing
The third and final step of FEA simulation is post-processing and

evaluation of results. After solving the linear equations, solutions are post-
processed if other model quantities are required. For example, in mechanics,

5

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

stress fields can be post-processed from displacement fields. Domain-specific
solvers store relations between model quantities in their closed source code.
Writing additional post-processing code is very often required for domain-
independent software.

Evaluating results is facilitated by visualizing physical field quantities by
projecting results onto the meshed geometry. Most commercial software
solutions provide visualization. The open source visualization platform,
Paraview [15], seems to be the most popular open source solution. Its VTK
format [16], serialized in a proprietary text format or XML [17], is a de facto
standard to exchange simulation results.

3. Current problems and proposals
There are two main problems related to FEA data exchange. First, design-

simulation loops are more frequent, but current geometry standards do not
facilitate integration between disparate CAD and CAE models, i.e., design
geometries and analysis meshes. The other is lack of formal identification of
numerical and physics models, which could be resolved using domain-
independent models.

a. CAD/CAE integration
The traditional FEA workflow (see subsection 3.b) has five types of digital

assets: detailed CAD models or master CAD models, digital mockups,1 CAD
STEP files, FEA mesh proprietary files with boundary conditions, and FEA
results files. These are regenerated and maintained whenever the master CAD
source is modified. Strategies for CAD/CAE integration framework are
detailed in [18].

An intermediary neutral CAD file format, e.g., ISO 10303, provides
platform independency between CAD and CAE software, but introduces
substantial work due to geometric errors and meta-data losses during the
conversion process from CAD proprietary formats to the STEP standard.
Geometric errors are due to proprietary modelling of tolerances by CAD
systems, requiring correction of the resulting “dirty geometry” [19][20]. In
addition, most STEP translators usually omit construction history, parameters
and constraints [21], and do not maintain storage of other meta-data, e.g., part
names or material data.

The benefit of parametric associative CAD software is that modifications of
some parameters, e.g., length, will update all related geometry downstream as
well as keep constraints and meta-data associations. Product functionality is
maintained by separate administration of geometry and constraints. Ideally,
CAE information, such as material and boundary conditions, should be

1 FEA is usually preceded by either defeaturization or idealization of the detailed CAD

design. The resulting simplified models, called digital mock-ups help evaluate system
assemblies or kinematics, perform MBD or FEA simulations and visualize FEA results on
assemblies or parts [23].

6

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

maintained at the CAD level in order to be reused between CAx applications,
e.g., MBD and FEA. Most CAD programs provide data interfaces, e.g., product
data management (PDM), to enrich CAD models with metadata.

To provide CAD/CAE integration, current trends in CAD technology lean
towards solutions that combine CAD and CAE in the same environment,
further reducing compatibility between platforms [22]. Before future geometry
standards arrive, an intermediary solution could be developing a standard that
enables CAD environments to exchange mesh data structures with virtual
topology capabilities, as described in [23], by keeping topological
correspondence between CAD and mesh. Metadata associated with regions of
the mesh could with a standard be exchanged between FEA application and
CAD. In comparison to curved geometries in CAD systems, tessellated
geometries with polygons faces do not suffer the same problems with
tolerances. By moving the CAD/CAE interface from CAD to mesh, workflow
efficiency of parametric CAD software is still maintained and platform
independence of CAE solvers could be guaranteed. A general topology mesh
data structure that captures the connectivity of all mesh elements, as detailed in
[25], could maintain topological correspondence between CAD and mesh,
enabling mesh regions of interest to be defined, such as material, interfaces or
boundary conditions, improving data access, e.g., generation of internal nodes
for higher degree finite elements. The mesh could be exchanged with the JSON
data format [26], a key-value pairs data structure, that would facilitate data
access to the mesh and the virtual topology. The keys, acting as pointers, could
link CAD metadata and simulation information to geometric information
required by the solver.

b. Formal CAE model identification
Another problem is lack of formal standards that provide enough

information to run a simulation with any solver interchangeably. STEP AP209,
the standard for FEA model exchange [27], targets mainly domain-specific
software, capturing software name, version, and software models identified
with proprietary reference codes. The standard provides taxonomies to classify
simulation models, but they are too informal to associate a specific solver.
Model reconciliation with STEP AP209, evaluating if two models are
equivalent, is not possible because source code and numerical assumptions are
closed for domain-specific software. This is problematic for solution migration
when companies decide to change FEA software; for supplier collaboration
when two companies use different software; and for long-term archiving if the
software is not supported in the future. Resolving these challenges associated
with STEP AP209 is undertaken as a common effort by various groups at
different levels. For example, LOTAR’s (Long Archiving and Retrieval)
Engineering Analysis and Simulation Workgroup (EAS) develops, publishes
and maintains standards for archiving and retrieval of key FEA input/output
characteristics at various stage of development in a robust and repeatable
fashion [28]. For collaboration, MOSSEC (Modeling and Simulation

7

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

information in a collaborative Systems Engineering Context), develops
methods for organizing and sharing Modeling and Simulation meta- data and
information in a collaborative system, and for capturing context to enable
traceability [29]. Tools to analyze and visualize STEP file are developed by
NIST [30].

In comparison, domain-independent software solutions require details
about numerical choices. Their models are reusable in multiple physical
domains that have the same mathematical structure. For example, a physics
problem described by a Laplace PDE can be used to solve thermal conduction
as well as electrostatics problems. Symbolic code is very often used for model
definition, which can be automatically compiled into a lower level C code.
Symbolic code was in use in the 90s for finite difference in the Sinapse
framework [31] and in the later 90s for finite elements [32].

The weak form equation, formalized in [33] as a language and extended in
[34] as a unified framework for finite element assembly, complemented by a
finite element and user defined function, is enough information to symbolically
or numerically integrate each cell of a mesh and assemble a linear system of
equations that is interpretable by a linear algebra solver (LAS). Solving the
systems of equations at this stage only requires linear algebra methods, such as
Cholesky or Krylov subspace methods that many frameworks support, such as
Petsc [35] with parallel processing capabilities or libraries compatible to the
BLAS specification [36].

However, writing symbolic expressions for PDE weak forms is uncommon
for FEA engineers. Even though PDEs are widely-understood and useful for
model classification, using PDEs for model identification is problematic
because boundary conditions refer to variables not in the PDEs. Without
documentation detailing a PDE’s derivation from multiple equations, they
provide only a partial view of the model, limiting post-processing of other
model variables. Such post-processing requires expert knowledge of model
relationships to derive finite elements of post-processed variables. In contrast,
domain-specific software models hide finite element choices and variable
relationships, but offer simpler post-processing capabilities.

Ideally FEA model definition should be understandable by most engineers
and generate solutions with any solver. Starting with weak forms, we can
reverse-engineer the workflow used to find their expressions. Weak forms, can
be derived from PDEs using integration by parts, enabling weak forms to be
linked to their corresponding PDEs or automatically derived. Next PDEs are
derived from model equations that correspond to physical laws. Transitioning
from domain-independent descriptions, the mathematical model, to domain-
dependent description, the physics model, is done by substituting mathematical
variables with physical quantities. The resulting physics model is
understandable by engineers and can be used by numerical methods such as
finite volumes (FV) or finite differences (FD). For FEA models, finite elements
that describe unknown physical quantities and space-dependent parameters are
needed, in combination with physics models formulated as PDE weak forms to

8

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

construct linear algebraic systems of equations that can be solved by LASs.
To achieve formal description of FEA library models, we need a formal

description of finite elements as well as an efficient mechanism to describe
physics equations and the corresponding derivation of PDEs. The rest of the
paper discusses these two aspects in more detail.

4. New FEA solver integration Framework
In this section, we present a new platform-independent approach to

integrate FEA solvers. To provide an open model specification, subsection 4.a
introduces building blocks of a graph-based language to capture physical
equations, as a starting point for model definition. Linking these equation
graphs together captures the mathematical structure of physics describing the
system being analyzed. Subsection 4.b explains how math or physics problems
are defined by selecting known and unknown variables in math and physics
graphs. This captures modeling decisions as functional programs, enabling
extraction of all problems as math/physics evaluation subgraphs or
math/physics solver subgraphs. Subsection 4.c details how boundary condition
types can be automatically collected and associated to math/physics solver
subgraphs. To facilitate reusability, subsection 4.d introduces the concept of
common mathematical structure that can be reused for multiple domains,
illustrated in subsection 4.h with the rapid extension of library elements. Once
problems are defined, subsection 4.e explains how physical quantities are
represented in FEA by finite elements, with examples on how to use our finite
element specification. Subsection 4.f clarifies the association of finite elements
to physics solver subgraphs by creating numerical solver graphs and generating
input templates for solvers. In subsection 4.g, an example presents how a mesh
standard with virtual topology capabilities would associate design and FEA
metadata and, together with the library element specification of subsection 4.e,
provide a platform-independent description of FEA solvers.

a. Equation models
Whereas time-only (a.k.a., lumped parameter, 1D, network) simulation

handles simple topologies (e.g., electric circuits) of many different library
elements (e.g., capacitor, resistor…), FEA simulates one or few library
element(s) on space embedded topologies (meshes). FEA library elements are
more complex than time-only library elements and space is multi-dimensional
and multi-directional in contrast to time, which flows in one direction.

Time-only solutions have open standards, such as Modelica or proprietary
languages, such as XCOS [37] and Simscape/Simulink [38], to describe
libraries or models, which are defined with physics equations. For signal-based
simulations, mathematical expressions of Laplace transformations are either
captured in custom or standard library blocks that can be connected together.

In contrast, FEA solutions deliver libraries as complied code that are
parametrized with input templates. This transparency problem can only be
solved with an ecosystem shift that gives FEA engineers the same flexibility as

9

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

time-only simulations. To achieve this, we believe physics equations should
also be inputs to define FEA libraries. This would help in modeling FEA
libraries, which is currently done on paper or electronic documents.

Mathematical structures of space-dependent physics models (physical
equations describing a domain), are captured by Tonti diagrams [39] and used
in [40] to illustrate FEA variational principles. Tonti diagrams are formalized
with the cell method, a discretization method based on algebraic topology, first
introduced by Branin [41], that defines topological dualities for both space and
time as well as cell-specific mesh discretizations.

FEA engineers are not familiar with the cell method, so we propose a more
general approach, one that first captures equations as triples, two physical
quantities linked by an operator. Triples are linked whenever they share the
same elements; a graph is automatically created. These graphs define symbolic
computation, as compared to Simulink graphs that define real number
processing. With this approach, structures described by Tonti diagrams can be
captured in a way more accessible to engineers.

To explain how this works, let’s consider an engineer who aims to build an
FEA library with this approach. His first step would be to find relevant
physical equations in the literature. These could be captured using a GUI that
helps select and connect necessary blocks, or by entering symbolic equations
that are progressively displayed as graphs. Figure 1 shows the gradient law for
relating potentials and gradients.

Figure 1: Description of the gradient law

Math objects in physics are tensor fields or tensors. Tensor fields are
functions, in physics, they map from space coordinates to a real number or
arrays of real numbers. In the first case, tensor fields are scalar functions while
in the second they are arrays of functions. Each math object is defined with
respect to a Euclidian space of dimension 𝑁𝑁, the space on which library
elements are defined, and symbols for each dimension. (e.g., 2D space with
𝑆𝑆 = {𝑥𝑥,𝑦𝑦}). We can restrict the space of a map by choosing a subset of the
coordinate symbols. Math objects that have no input coordinates are tensors,
which is a real number or an array of real numbers that only depend on the
coordinate system but not the coordinates. Figure 2 shows type declarations
(symbol, input, output) of some math objects and their representation. It

𝜵𝑈𝑈(𝑥𝑥, 𝑦𝑦) 𝛻𝑈𝑈(𝑥𝑥, 𝑦𝑦)

Symbol: 𝛻𝑈𝑈
Input: {x, y}
Output: Array[2]

Symbol: U
Input: {x, y}
Output: Real

10

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

defines math objects for a two-dimensional space with {𝑥𝑥,𝑦𝑦} as symbols for
real number coordinates. For example the math object with symbol 𝑈𝑈 is a
scalar field that takes {𝑥𝑥,𝑦𝑦} as input, and outputs a real number. Another
example is the math object 𝐾𝐾, a constant, which is coordinate-independent (no
input) and outputs a real number.

Figure 2: Declaration of math objects

Math objects are linked in a math graph (MG), e.g., one for the gradient
law as shown in Figure 1. MGs are bi-partite and directed, which by definition
are composed of two sets, one for math objects and another for operations
linking two math objects. Each edge indicates how math objects relate to the
operators at its ends. An arrow coming into an operator comes from a math
object input to the operator, while an arrow going out of an operator leads to a
math object output from the operator. The operator transforms one math object
into another. Having operator as nodes in MGs enables representation of binary
operators such as addition and multiplication. To support unambiguous
references, each node is unique (identified, e.g., by a unique resource identifier
on the web) and to support specialization, each has multiple attributes. Math
objects can be augmented (specialized) with units and symbols following ISO
[42] to produce physics objects. In Figure 3, the engineer entered the physical
law that defines temperature gradient. For model completeness, the inputs of
each math object have been added, which are the space or time coordinates or
a combination of these.

𝑈𝑈

Symbol: U
Input: {x, y}
Output: Real

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 2
Symbol: {x, y}
x: Real
y: Real

F

Symbol: F
Input: {x}
Output: Real

𝐾𝐾

Symbol: K
Input: {∅}
Output: Real

𝐷

Symbol: D
Input: {x, y}
Output: Array[2]

𝑀

Symbol: M
Input: {𝑥𝑥, 𝑦𝑦}
Output: Array[2][2]

𝑈𝑈 𝑥𝑥, 𝑦𝑦

𝐺

Symbol: G
Input: {∅}
Output: Array[2][2][2]

𝐹 𝑥𝑥

𝐾𝐾 𝑀11(𝑥𝑥, 𝑦𝑦) 𝑀12(𝑥𝑥, 𝑦𝑦)
𝑀21(𝑥𝑥, 𝑦𝑦) 𝑀22(𝑥𝑥, 𝑦𝑦)

𝐷1(𝑥𝑥, 𝑦𝑦)
𝐷2(𝑥𝑥, 𝑦𝑦)

 𝐺211 𝐺212
𝑀221 𝑀222𝐺111 𝐺112

𝐺121 𝐺122

11

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

Figure 3: Specializing a physics graph (PG) from a math graph (MG)

As the number of relevant equations increases, they can be automatically
combined when two equations, each a statement or triple linking two physical
quantities by an operation, share the same physical quantity, as illustrated in
Figure 4. Combination is possible only if each physical node is uniquely
identified. For example, the Resource Description Framework [42], the web
standard for linked data, could identify them with unique resource identifiers
(URIs) and describe equations with two statements each, one linking a physical
quantity to an operator, and another linking that operator to another physical
quantity.

𝜵𝑈𝑈(𝑥𝑥, 𝑦𝑦)

Symbol: U
Input: {x, y}
Output: Real

𝛻𝑈𝑈(𝑥𝑥, 𝑦𝑦)

Symbol: 𝛻𝑈𝑈
Input: {x, y}
Output: Array[2]

𝜵𝑇(𝑥𝑥, 𝑦𝑦)

Symbol: T
Name:
temperature
Units: [T]

𝛻𝑇(𝑥𝑥, 𝑦𝑦)

Symbol:𝛻𝑇
Name: temperature
gradient
Units: [T/m]

SpecializationGeneralization

Maths Graph
(MG)

Physics Graph
(MG)

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 2
Symbol: {x, y}
x: Real
y: Real

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 2
Var: {x, y}
x: Real
y: Real

12

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

Figure 4: Automatic linking of physical equations

Combining equations, automatically or manually, produces a physical
graph (PG), a combination of physical equations that capture the mathematical
structure of a physics theory or model. We distinguish three layers of a PG as
shown in Figure 5. The functional program specification layer defines the type
of math or physics objects and operators, and the objects input/output for each
operator (arrows). A path through a graph in the direction of arrows from one
object to another is called a functional program path (FPP). Objects between
the start and end of a path are intermediary results. The second layer is the
expression layer that declares a mathematical expression (e.g., 𝑒𝑒5𝑥𝑥2) specifying

@base <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-
schema#> .
@prefix mg: <http://physics.org/schemas/mathgraph> .

<#621>
mg:connectedTo <#64> ;

<#64>
mg:connectedTo <#2m2> ;

<#2m2>
mg:connectedTo <#233> ;

<#rt3>
mg:connectedTo <#233> ;

<#233>
mg:connectedTo <#fv6> ;

Implementation example in RDF

Automatic linking of physical law

𝜵 𝛻𝑇(𝑥𝑥)𝑇(𝑥𝑥)

URI:
#2m2

URI:
#621

URI:
#64

ℎ(𝑥𝑥)

URI:
#fv6

URI:
#rt3

×

𝜆

URI:
#233

𝜵 𝛻𝑇(𝑥𝑥)𝑇(𝑥𝑥)

URI:
#2m2

URI:
#621

URI:
#64

Physical laws

ℎ(𝑥𝑥)𝛻𝑇(𝑥𝑥)

URI:
#fv6

URI:
#2m2

URI:
#rt3

×

𝜆

URI:
#233

13

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

outputs in terms of inputs. The types of math and physics objects can be
checked for consistency with the expression (e.g., gradient of scalar field
produces a vector field). This facilitates expression processing when
mathematical expressions, e.g., LaTeX [44], MathML [45] or expressions
trees, are assigned to math or physics objects. Symbolic computation can
produce the expression for a math object from the expression of another and
the operation linking them, in the direction of the link. The data layer specifies
input values mapped to output values following the rule defined by the
expression, creating a function graph or plot.

Figure 5: Layers of a math objects

b. Physics problems
After defining math and physics models, or choosing existing ones, the

next step specifies problems to solve by declaring known and unknown pairs of
math or physics objects in MGs and PGs. If a mathematical relation exists for a
pair, then at least one FPP exists through the MG or PG with the two math or
physics objects at the ends of the path. Absence of path means no solution is
possible without modifying the graph. If a FPP has operations composed only
of invertable functions, then an inverse FPP can be defined by replacing the
operations by their inverses and reversing the arrows in the path.

When known and unknown are assigned as the start and end of a FPP,
respectively, we call the path a math evaluation graph (MEG) or physics
evaluation graph (PEG). When known and unknown are assigned as the end
and start of a FPP, respectively, and an inverse FPP exists, an MEG or PEG
can be automatically generated for it as shown in the Figure 6.

𝜵𝑈𝑈(𝑥𝑥)

Symbol: U
Input: {x}
Output: Real

𝛻𝑈𝑈(𝑥𝑥)

Symbol: 𝛻U
Input: {x}
Output: Real

exp

5 ×

𝑥𝑥 𝑥𝑥

𝑒𝑒5𝑥𝑥2

×
10 𝑥𝑥

10𝑥𝑥𝑒𝑒5𝑥𝑥
2

×

Expression
layer

exp

5 ×

𝑥𝑥 𝑥𝑥

×

OutputInput

Data layer

𝜵

𝜵

Function
Specification
layer

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 1
Input: {x}
x: Real

14

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

Figure 6: Solution finding in a physics graph

In physics, most laws are expressed in mathematical equations using

differential operators, which can be inverted by adding boundary conditions.
For example, in one dimension (e.g., motion on a line, see Figure 7), the top
PEG connects a position/force pair, while the middle one inverts it by adding
integration constants as boundary conditions for the anti-derivative operations.
For example, the time derivative of position is velocity, on the left in the top
PEG, but its inverse, integration, in the middle PEG, produces distance, rather
than position. A specific position value, a boundary condition, is needed to get
position from distance. Similarly, on the right, the time derivative of
momentum is force, but the integral of force is impulse. A specific boundary
momentum is added to get momentum from impulse.

− 𝑪−𝟏

𝑶𝑼𝑻: = 𝑪−𝟏(𝑰𝑵−. .)
Functional Program Path (FPP)

IN

OUT

Physics Evaluation Graph (PEG) – Example 2

×

𝑪

Physics Evaluation Graph (PEG)- Example 1

𝑶𝑼𝑻: = 𝑪(. . × 𝑰𝑵)
Functional Program path (FPP)

IN

OUT

𝑰𝑵: = (. . +𝑪(?))𝑪 +

Is FPP of example 2 invertible ?

OUT? IN
Functional Program Path (FPP)

×

𝑪

Problem definition – Example 2

+

× 𝑪

×

IN

OUT?

×

𝑪

Physics Graph (PG)

+

× 𝑪

×

×

𝑪

Problem definition – Example 1

+

× 𝑪

×

IN
OUT?

NO

No solution

YES

15

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

Figure 7: Inverse path and its equivalent formulation for ODEs

A more common representation of such problems is differential equations,

which in one dimension, ordinary differential equations (ODEs), can be
handled by symbolic solvers. When a PEG has integration operators and a
known start object (e.g., force known, position unknown in the middle graph of
Figure 7), its inverse PEG has differential operations and an unknown start
object (e.g. position). Because the end object (e.g., force) is known and must be
equal to the differential expression implied by the rest of the graph, the graph
represents a differential equation. To be equivalent to the original integral
PEG, we must add boundary conditions (e.g., the lower graph of Figure 7).

𝑑𝑑
𝑑𝑑𝑡

𝑣(𝑡) 𝑝(𝑡)𝑥𝑥(𝑡) ×

𝑚

𝑑𝑑
𝑑𝑑𝑡

𝐹(𝑡)

position velocity

mass

momentum force

𝒅
𝒅𝒕 𝑚×

𝒅
𝒅𝒕 𝑰𝑵 == 𝑭(𝒕)Differential equation

Physics Solver Graph (PSG)

+ Boundary conditions 𝒙 𝒕𝟎 = 𝒙𝟎
𝒑 𝒕𝟎 = 𝒑𝟎

Unknown Known

𝑥𝑥(𝑡)

Symbol:𝑥𝑥
Input: {t}
Output: Real

𝑡𝑖𝑚𝑒𝑒

Dimension: 1
Symbol: {t}
t: Real

IN OUT

Inverse path

Equivalent formulation

𝑑𝑑
𝑑𝑑𝑡

𝑣(𝑡) 𝑝(𝑡)𝑥𝑥(𝑡) ×

𝑚

𝑑𝑑
𝑑𝑑𝑡

𝐹(𝑡)

position velocity

mass
momentum force

𝑶𝑼𝑻 ≔
𝒅
𝒅𝒕 (𝑚×

𝒅
𝒅𝒕 𝑰𝑵)Path Functional Program

Physics Evaluation Graph (PEG)

IN OUT

16

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

This is a math solver graph (MSG) or physics solver graph (PSG). Paths
through these graphs go from unknown to known under boundary conditions,
representing differential equations under boundary conditions.

Most physical laws are expressed in differential form are represented as a
differential operator linking two physical quantities. For multi-dimensional
spaces, there is no analytic inverse to differential operators, therefore, analytic
inverses of most FPPs with differential operators do not exist. The problem of
finding the inverse can still be characterized by an MSG or PSG, see Figure 8.
An approximate solution to the inverse FPP can be constructed either by using
an equivalent formulation to the PDE (e.g. FEM) or directly discretizing the
operators (e.g. FD or FV).

In our context, most graphs will have differential operators. The
methodology consists of defining known and unknown object pairs, then
finding a path connecting these objects. Most of the time there will be only one
possible path. We can generate a MEG or PEG when the start object is known,
or a MSG or PSG if the start object is unknown. The two graphs are the same
except for the known/unknown choice for the start and end objects, and
additional boundary conditions attached to the MSG or PSG, which will be
detailed in subsection 4.c. MEGs and PEGs are used for evaluation problems or
post-processing, while MSGs and PSGs are used to specify solver problems
that involve ODEs, PDEs or systems of PDEs.

17

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

Figure 8: Inverse path and its equivalent formulation for PDEs

Characterizing or finding PDEs is useful to identify a problem, because

problems are classified by PDEs, but they are difficult to understand without
their derivation from physical laws. Furthermore, their boundary conditions are
expressed in relation to the unknown, the start node of FPP. PDEs only
represent the mathematical relationship between start and end objects in a FPP.
Physical quantities and operators along the path are not in the PDE. In contrast,
MSGs or PSGs give the derivation of PDEs. The graphs are more than
equations, they capture modelling decisions leading to equations.

Physics Evaluation Graph (PEG)

Path Functional Program

𝛻𝑇(𝑥𝑥, 𝑦𝑦) ⨂

𝜆
Thermal
conductivity

𝛻𝑇(𝑥𝑥, 𝑦𝑦)

Temperature
gradient

ℎ(𝑥𝑥, 𝑦𝑦)

Heat flow

𝑞(𝑥𝑥, 𝑦𝑦)
Heat flow
density

.𝛻

IN OUTTemperature

No analytic inverse path!

Equivalent formulation

PDE weak form

Find
approximation
of inverse path

 𝛻𝑇(𝑥𝑥, 𝑦𝑦) ⨂

𝜆
Thermal

conductivity

𝛻𝑇(𝑥𝑥, 𝑦𝑦)
Temperature

gradient

ℎ(𝑥𝑥, 𝑦𝑦)
Heat flow

density

𝑞(𝑥𝑥, 𝑦𝑦)
Heat source

.𝛻

Partial differential
equation (PDE)

Physics Solver Graph (PSG)

+ Boundary conditions

Unknown Known

IN OUTTemperature

𝑇(𝑥𝑥, 𝑦𝑦)

Symbol: T
Input: {x, y}
Output: Real

𝑆𝑆𝑝𝑎𝑐𝑒𝑒

Dimension: 2
Symbol: {x, y}
x: Real
y: Real

18

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

c. Boundary conditions
Finding a unique numerical PDE solution requires boundary conditions

(BCs), along with other parameters (material, geometry). Specifying BCs is the
task of mathematicians. Some BCs are well-known such as Dirichlet,
Neumann, Robin, and Cauchy BCs. Mathematicians prove existence of
solutions to PDEs under specified constraints. For solver input completeness, it
would be very useful to automatically associate BCs during construction of
PDEs or ODEs, but this would require solution existence proofs to be
automated, which is not currently possible.

However, characterizing the physical quantity associated to BCs is still
useful to engineering. We call this quantity, the BC value type (e.g., electric
potential). PSGs give the derivation of PDEs and ODEs helping determine
which physical quantities can be post-processed but requires BCs. Only adding
their BC value types is possible. BC value types are associated directly to
differential operators. Following Stoke’s theorem,

� 𝑤𝑤 = � 𝑑𝑑𝑑𝑑
Ω𝜕𝜕Ω

each differential operator applied to a math object and integrated over a region
has a corresponding boundary value type for the result of the integral of the
math object along the boundary of the region. If we consider the triple (input
math object, operator, output math object), then the BC type is linked to the
input by the boundary integral, as shown in the bottom row of Figure 9. For
curl and divergence, this introduces a third physical quantity. For gradient or
differential, no additional physical quantity is introduced, the BC type math
object is the input to the operator (integral of a single point value is equal to itself).

Figure 9: Stoke’s law and corresponding BC types attached to differential operators

𝐅 = 𝐠𝐫𝐚𝐝(𝐟) 𝐆 = 𝐜𝐮𝐫𝐥(𝐠) 𝐇 = 𝐝𝐢𝐯(𝐡)

f 𝜕Ω2 − f(𝜕Ω1) = � grad f 𝑑𝑑𝑠
Ω

� 𝑔.𝑡
𝜕𝜕Ω

𝑑𝑑𝑠 = � 𝑐𝑢𝑟𝑙 𝑔 𝑑𝑑𝐴
Ω

� ℎ.𝑛 𝑑𝑑𝐴 = � 𝑑𝑑𝑖𝑣 ℎ 𝑑𝑑𝑉
Ω𝜕𝜕Ω

Ω

𝝏𝜴𝟏

𝝏𝜴𝟐

𝜴

𝝏𝜴𝟏

𝝏𝜴𝟐

𝜴

𝝏𝜴𝟏

𝝏𝜴𝟐

BC type: f 𝜕Ω𝑛

𝜕Ω: Point 𝜕Ω: Line 𝜕Ω: Surface

BC type: ∮ 𝑔. 𝑡𝜕𝜕Ω𝑛
𝑑𝑑𝑠 BC type: ∫ ℎ.𝑛 𝑑𝑑𝐴𝜕𝜕Ω𝑛

𝜵𝑓 𝐹

×𝜵𝑔 𝐺

�
𝝏𝜴𝒏

𝑘

.𝜵ℎ 𝐻

𝑝� 𝒅𝑨
𝝏𝜴𝒏

BC type BC type BC type

19

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

These BC types will be automatically added in the MG or PG whenever a

differential operator is defined. They are important because they also
correspond to physical quantities. For example, Figure 10 shows a thermal
conduction PG, where heat flow is the BC type of the divergence operation
applied to heat flow, and temperature is the BC type of the gradient operator. If
we consider the PSG with temperature unknown and heat source as known,
temperature and heat flow are the collected BC types which correspond to the
Dirichlet BCs type and Neumann BCs type respectively. By automatically
adding BC types, whenever a differential operator is used, we have a PG
complete model.

Figure 10: 2D steady state thermal conduction PG

d. Common mathematical structure
A common mathematical structure (CMS) is an MG that is shared by many

PGs. Identifying CMSs is useful for reuse (e.g., assessing solver compatibility)
and model understanding (e.g., from a mathematical perspective solving thermal
conduction problems is the same as solving electrostatics problems). For
example, FEA solves classical field theory problems. The CMS in Figure 11 is
the basis of many domain-specific problems (e.g. 2D steady thermal conduction
in Figure 10). Benefits of CMS will be illustrated in subsection 4.h.

Figure 11: An example of a CMS of classical physics

 𝛻𝑇(𝑥𝑥, 𝑦𝑦) ⨂

𝜆

Temperature

Thermal
conductivity

𝛻𝑇(𝑥𝑥, 𝑦𝑦)

Temperature
gradient

ℎ(𝑥𝑥, 𝑦𝑦)

Heat flow
density

𝑞(𝑥𝑥, 𝑦𝑦)

Heat source

𝐻

BC type

Heat flowBC type

� 𝒅𝑳
𝝏𝜴𝒏

2D steady state thermal conduction

 .𝛻

𝛻 ⨂

� 𝒅𝑨
𝝏𝜴𝒏

 .𝛻

Gradient equation Behavioral equation Balance equation

20

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

e. Finite element specifications
As described in section 4.b, problems defined by an MSG don’t have an

inverse but an equivalent description the weak form. The discretization process
consists in defining the problem in the integral form in order to find an
approximation of the inverse path of the FPP. Finite elements (FE) are
functions or tensor fields representing physical quantities on discrete
topological elements of space. Degrees of freedom (DOFs) of finite elements
are free or fixed variables that represent evaluations of physical quantities done
on topological elements (point, line, surface, volume) . Functions or tensor
fields of FEs, usually represented by polynomial (or tensor) functions, are
rearranged as shape functions or shape fields, each fully defined, and each one
multiplied by one DOF coefficient. There are as many shape functions as
DOFs. For example, in electrostatics, on the left in Figure 12, a potential can be
interpolated by a FE with 3 DOFs, specifically 3 electric potentials at discrete
points in space as free variables. Another example, from thermal conduction,
would be heat flow density interpolation, on the right in Figure 12. This time,
normal components of heat flow density are integrated along each edge,
leading to 4 DOFs or 4 heat flow as free variables.

Figure 12: DOFs for electric potential and heat flow density interpolation using finite
elements

Finding a formal FE description is complicated by the same finite elements

being referred to as many different names in the literature. For example, a
linear line element is also called a Lagrange line element. Engineering names,
such as beam or bar element, are also ambiguous. A beam, for example, can
have 4 degrees of freedom or 2 degrees of freedom., A finite element periodic
table in [46] classifies these, but requires advanced mathematical knowledge to
understand.

We developed a formal finite element specification (FES) [47] based on the
generic finite element definition of Ciarlet [48] and the DOF type description
as found in [49]. However, the triplet (geometry, DOF and basis space) is
described with topology to provide compact description. A central aspect of

Electric
potential 𝑈𝑈1

Heat flow 𝐻1

Heat flow 𝐻2

Heat flow 𝐻3

Heat flow 𝐻4

Electric
potential 𝑈𝑈2

Electric
potential 𝑈𝑈3

21

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

FES is associating DOFs to topological elements (point, line, surface, volume).
A geometry Ω, like a triangle for example, can be partioned into a set of three
lines 𝐂𝐂1(Ω) = { 𝐋𝐋1 𝐋𝐋2,𝐋𝐋3} corresponding to disjoint surface boundaries; a set
of three points 𝐂𝐂0(Ω) = { 𝐏𝐏1 𝐏𝐏2,𝐏𝐏3}, the edge boundaries. Subtracting the
{𝐂𝐂0(Ω),𝐂𝐂1(Ω)} union from Ω gives 𝐂𝐂2(Ω), the interior surface. Each member
of 𝐂𝐂2(Ω), 𝐂𝐂1(Ω), 𝐂𝐂0(Ω) are sets of points; surface, edge, singleton (one
member) point sets respectively. DOFs are defined by associating DOF types,
e.g., point evaluation (PE), first derivative (FD), along with a natural number to
𝐂𝐂0(Ω), 𝐂𝐂1(Ω) and 𝐂𝐂2(Ω). For example {𝑃𝑃𝑃𝑃: 1} associated to 𝐂𝐂0(Ω), written
D𝐂𝐂0(Ω) = {𝑃𝑃𝑃𝑃: 1}, means point evaluation for each member of 𝐂𝐂0(Ω), therefore
3 and 4 PEs (DOFs) for triangles and squares respectively. D𝐂𝐂1(Ω) = {𝑃𝑃𝑃𝑃: 1}
means one PE at midpoint for each line point set of 𝐂𝐂1(Ω). In the triangle case,
on the right in Figure 13, the evaluations are at 3 midpoints, one for each line.
In general, for PE on lines, points divide lines into regular partitions, e.g., a
midpoint divides a line into two equal parts. Multiple DOF types and number
can be assigned to each D𝐂𝐂n(Ω). A FE is explicity specified by composing all
necessary D𝐂𝐂n(Ω).

Figure 13: Example of FE definition using the FES

With geometry and DOF type specification of an FE, it is possible to

calculate the number of DOFs and find an appropriate function to represent all
DOFs. The FES can also encode polynomial functions. The set of all possible
monomials can be lexicographically ordered, so the set of monomials
appearing in a given polynomial can be mapped to a bit sequence, where each
bit corresponds to the presence of a particular monomial in the polynomial.
The resulting sequence is encoded as a hexadecimal number. The decoding of
the hexadecimal number only requires writing the monomials for the space
dimension in a graded lexicographic order, then assigning to each monomial
position a bit that clarifies whether the monomial is used or not. For example,
Figure 14 shows the encoding of a two-dimensional scalar polynomial (e.g.
2D-1C), more specifically a quadratic serenpedity functional space, functional
space defined on a square, that uses all monomial terms except 𝑥𝑥3,𝑦𝑦3 for the
set of monomial {1, 𝑥𝑥, 𝑦𝑦, 𝑥𝑥2, 𝑥𝑥𝑥𝑥,𝑦𝑦2, 𝑥𝑥3, 𝑥𝑥2𝑦𝑦, 𝑥𝑥𝑦𝑦2,𝑦𝑦3}. The main idea of the
encoding is to provide an implementation description that is independent of

K = Triangle

D𝐶0(𝐾) = {𝑃𝑃𝑃𝑃}

𝑃𝑃𝐾 = 2D-1C0x7

K = Triangle

D𝐶1(𝐾) = {𝑃𝑃𝑃𝑃, 1}

D𝐶0(𝐾) = {𝑃𝑃𝑃𝑃}

𝑃𝑃𝐾 = 2D-1C0x3F

D𝐶1(𝐾) = ∅

22

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

domain-specific ontologies (e.g., serenpedity). The current encoding method is
on possibility as an example how domain-independent descriptions could work.

Figure 14: Example of functional space encoding

f. Library element
After creating PGs and PSGs, FEs are specified and associated to physics

objects. FEs represent unknowns and space-dependent parameters (material or
geometric parameters) if necessary. To illustrate the process, we consider the
PG of a bar element shown in Figure 15, created using the kinematic equation
that links strain to displacement; Hooke’s law, which links stress to strain; and
the balance equation that links body load to stress. Force is added
automatically as a result of the divergence operator used in the balance
equation. Then a problem is specified with a PSG, e.g., body load-displacement
as known-unknown pair and displacements and forces as BC types. This is one
of 12 evaluation and solver problems that can be defined using the same PG of
Figure 15.

Next, the association of FEs to physics objects of the PSG, defines
numerical graphs (NGs), by first declaring the math type of the physics object
and then the FE. Many NGs can be defined from one PSG. For the body load/
displacement pair example, displacements could either be linear or quadratic
FEs. Constant, linear, quadratic FEs to describe space-dependent sections are
also possible, which in total, with displacement options, would produce 6 NGs.
At this point, math objects consistency can be checked, verifying whether FEs
choices (e.g., linear or quadratic) are consistent, helping understand numerical
choices. In Figure 15, if distributed load is constant, choosing a linear
displacement FE would be inconsistent, because balance equations would be
broken and we would have only an approximation.

The principle of virtual displacement, which only requires kinematic
admissible displacements, allows such approximations. However, inconsistent

𝑃𝑃 𝑥𝑥, 𝑦𝑦 = 𝑎0 + 𝑎1𝑥𝑥 + 𝑎2𝑦𝑦 + 𝑎3𝑥𝑥2 + 𝑎4𝑥𝑥𝑦𝑦 + 𝑎5𝑦𝑦2 + 𝑎6𝑥𝑥2𝑦𝑦 + 𝑎6𝑥𝑥𝑦𝑦2
Polynomial example

Graded lexicographical ordering (grlex) for symbol {𝑥𝑥, 𝑦𝑦}

Encoding polynomial 𝑃𝑃 𝑥𝑥, 𝑦𝑦

1 𝑥𝑥 𝑦𝑦 𝑥𝑥2 𝑥𝑥𝑦𝑦 𝑦𝑦2 𝑥𝑥3 𝑥𝑥2𝑦𝑦 𝑥𝑥𝑦𝑦2 𝑦𝑦3

𝟏 𝟏 𝟏 𝟏 𝟏 𝟏 0 𝟏 𝟏 0

Hexadecimal number for 𝑃𝑃 𝑥𝑥, 𝑦𝑦

2D-1C0x1FB

23

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

physical equations are frequent when mixed principles introduce additional
unknows in a PSG. In Figure 15, choosing quadratic displacement with
constant body load yields an exact solution. These examples show that many
numerical models can be defined using the same PSG, which itself is one of
many options derived from a PG. This is reflected in the large number of
library elements in software packages.

Figure 15: Example of a Numerical Graph for a bar

u(𝑥𝑥)
Symbol: u
input: {x}
output: real

A(𝑥𝑥)
Symbol: A
input: {x}
output: real

E
Symbol: E
input: {∅}
output: real

q
Symbol: q
input: {∅}
output: real

𝑢(𝑥𝑥)

𝐹(𝑥𝑥)

𝒒𝑬

Known DOFs

𝐀𝟏 𝐀𝟐

Unknown DOFs

𝒖𝟏 𝒖𝟐 𝒖𝟑

𝑫𝑪𝟎(𝑲) = {𝑷𝑬}𝑫𝑪𝟎(𝑲) = {𝑷𝑬}

𝑫𝑪𝟏(𝑲) = {𝑷𝑬}

𝜵 𝜀(𝑥𝑥)𝑢(𝑥𝑥) ×

𝑃𝑃

𝜎(𝑥𝑥) .𝜵

𝐴(𝑥𝑥) 𝐹()

displacement E-modulusStrain

StressSurface Force

×

Unknown

BC type:
Force 𝐹(𝑥𝑥)
Displacement 𝑢(𝑥𝑥)

𝒅
𝒅𝒙

𝑃𝑃 ×
𝒅
𝒅𝒙

𝑰𝑵 == 𝒒(𝒙)

Type declaration

FE declaration

Solver template for library element

Numerical graph (NG)

BC typesLibrary element parameterLibrary element unknown

24

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

Specification of library elements leads to at most four kinds of digital

artefacts: mathematical models as MGs (math graphs), physics models as PGs
(physics graphs), physics problems as PSGs (physics solver graphs), and a
subset of PGs and numerical models as NGs (numerical graphs).

NGs identify solvers (PDEs), collect all solver inputs (BC types, FEs,
physical quantities with units and relations), information to construct the PDE
weak forms, an integral formulation of the PDE, required for assembling FEA
simulations. In addition, NGs, being specialization of PSGs, enable post-
processing once the solution is found.

g. Simulation
In simulation driven design, traceability between design and simulation is

essential, yet often obscured conventional practice. As an example of
description granularity and information traceability, rather than optimize
simulation, consider a part that is attached to another plate with two screws, as
illustrated in Figure 16. A force is applied at the unattached end. The part is
created using CAD with plate length as parametric variables. If meshing would
natively occur in CAD environments instead of exporting CAD files to pre-
processors or CAE tools, if the resulting mesh could be exchanged using a
mesh standard that is serialized with popular file formats (e.g., JSON) and
defined with schemas capable of representing BREP (boundary representation)
mesh topology that associate metadata to topological elements, as described
earlier, then CAD meta information would be preserved and reusable by any
solver capable of reading such mesh standard. The mesh would store
topological elements (node, edge, faces, volumes), the topology (how elements
connect) and regions of interest (virtual topologies). CAD uses BREP and can
associate design metadata to bounded shapes (e.g. material, assembly
information), which can be translated with a native mesh process to virtual
mesh topologies that keep metadata associations. The mesh could be exported
with two separate information sets, one that describes the mesh topology and
region topologies with keys, the other that associates keys with meta-data (e.g.,
material). In our example, the mesh has 4 virtual topologies; the plate (with
material information and basis geometry for the mesh), the two holes with
assembly information (use of screws) and a section of the boundary region
(force). A new mesh with consistent metadata can be created when length or
other parameters are updated in CAD.

The next step is selecting a library element, which requires FEA expertise
and library knowledge. Sometimes a package for the required simulation is not
available (e.g., license or absence of the library element, probably not the case
for this problem). Searching for library package solutions requires reading
documentation. Comparing these models is difficult because documentation
standards vary and packages are not open enough. A standard based on the
graph data structure previously presented would simplify the library search
process. In the example above, search would be, e.g., for NGs with triangle

25

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

shapes containing physical objects such as force and displacement. In this
example, starting with a PG of 2D elastostatics, the problem can be identified
(here we know that force and displacement are the BC types), therefore a PSG
connecting displacement to body load is required to have these two BC types.
Then, a NG is created by associating a finite element to physical quantities or
space-dependent parameters if necessary (e.g. space-dependent plate width).

The next step is to create a simulation model. In the example above, the
NGs are associated to the plate domain and NG BC types (e.g., displacement
and force) are associated to mesh regions (e.g., displacement to boundary
holes). Once the simulation model is complete, solvers that follow this standard
could propose their services. Another option is a new ecosystem of software
that could support library creation and automatic generation of library code or
links to existing code.

The final step is simulation. Each simulation run is defined by simulation
parameters (material data, e.g., shear and bulk modulus, derived, e.g., from
steel information, thickness value).

As a result of this approach we have 5 artefacts, design metadata, mesh
data, NG (library model), simulation model metadata (attaching BC type to
mesh data), and simulation data (referencing simulation value to NG
parameter). In addition, the neutral mesh links design metadata to simulation
model meta. A change in the CAD geometry (e.g., side length) does not impact
the simulation model data. Furthermore, if an FEA engineer changes the FE
geometry specification, for example changing triangular to square mesh, the
CAD software could read this information and update the mesh accordingly .

26

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

Figure 16: Standardized integration of solvers with assumption of a mesh and FEA

library standard

Simulation Library element
parameter BC Values

Simulation model

BC TypesVirtual topology

Solver template for library element

Library element
unknown

Library element
parameter

BC Types

Library element Design

Physics Graph
(PG)

Problem
definition

Physics solver
graph (PSG)

Numerical
graph (NG)

Standardized Application interface

SOLVER A SOLVER B SOLVER …

Topological information

Topology

Virtual topology

{
{”Mesh": { ”F1”:[”E1”:
[N1,N2,N3],
”E2”:[N2,N4,N5],…]
”F2”:[”E3”:[N6,N8,N9],
”E6”:[N8,N3,N9],…]
….}

B1

B2 B3

B4

B5

CAD
{
{”B1": {
”width"
{”B2": {
value": ”
{”B3": {
{”B4": {
{”B5": {
}

Native meshing Bi-directional interface

Library definition Bi-directional interface

Bi-directional interfaceSimulation definition

Simulation run

27

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

h. Rapid extension of libraries
Identifying CMSs helps with reuse because of the specialization process

that produces PGs from MGs, PSGs from PGs and finally NGs from PSGs. For
example, a single MG handles most one-dimensional space-dependent PGs
used for FEA. Such core models are essential to rapidly extend libraries. From
this one MG, 10 PGs can be derived using correspondence tables. MG node
objects are specialized to PG node objects by adding symbols and units.
Physics objects and math objects with same mathematical relations in a graph
are linked by specialization. This enables existing libraries to be rapidly
extended to other physical domains when models share the same MS. Figure
17 shows three specialization examples (axial stress, themal conduction,
electrostatics, see rows of table) from the 1D space-dependent core model.

Figure 17: Rapid creation of libraries by CMS specialization

Many strategies are possible for library extension. A domain-independent

strategy would be to create any possible NGs derived from MGs and MPGs,
then specialize them to the corresponding physics, generating many PGs.
Another would be to progressively create PGs, PSGs, NGs and identify PGs
that share the same MG, then create models that can be reused for other
domains.

In addition of being reusable, PGs can be composed with coupling
equations, which can either connect PGs of different physics domains, leading
in this case to multi-physics PGs; or connect PGs of the same domain, leading

𝜵 𝜀(𝑥𝑥)𝑢(𝑥𝑥) ×

𝑃𝑃

𝜎(𝑥𝑥) .𝜵 𝑞(𝑥𝑥)

×𝐴(𝑥𝑥) 𝐹(𝑥𝑥)

Potential

Material parameter

gradient Flow density

Surface Flow

Source

SpecializationGeneralization

Model name

name symbol unit name symbol unit name symbol unit name symbol unit name symbol unit name symbol unit

Axial Stress Displacement [m] Strain [-] Normal stress [N/m2] Body load [N/m3] Force [N] Elasticity
modulus

[N/m2]

Thermal
conduction

Temperature [K] Temperature
gradient

[K/m] Heat flow
density

[W/m2] Heat source [W/m3] Heat flow [W] Thermal
conductivity

[W/(m.K)]

Electrostatics Electric
potential

[V] Electric field [V/m] Electric
displacement

[C/m2] Charge
density

[C/m3] [-] [C] Permittivity [F/m]

Material parameterPotential Gradient Flow density Source Flow

𝝐𝒖 𝝈 𝒒 𝑭 𝑬

𝛁𝑻 𝒉𝑻 𝑯 𝝀

𝑼 𝑬 𝑫

𝝈𝒕

𝝆 𝝍 𝝐

28

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

to PGs describing more complex behaviors. For example, a thermal conduction
PG and an axial loading PG, both sharing the same MG, can be connected by
the thermal expansion equation. This coupling creates so-called thermo-
mechanical models.

5. Conclusion
Virtual product development and simulation driven design decreases

development costs by reducing expensive physical prototype testing. Early
virtual design testing using CAE simulation, such as FEA, helps verify whether
designs satisfy stakeholder requirements. Tracing digital models to
requirements and system architecture is efficiently managed with model-based
engineering, a methodology that facilitates integration and exchange of digital
models between engineering disciplines. Standards are enablers of such model
exchange.

Unfortunately, current trends show CAD and FEA packages are
increasingly natively integrated in the same proprietary environment to
leverage benefits of parametric CAD design [22]. This introduces two
standardization challenges, one is related to translation errors between CAD
formats (meta-data losses and geometric tolerance errors), the other due to
informal FEA model description by standards. The first introduces substantial
work when transitioning between CAD environments and between CAD and
CAE, because of metadata losses. As an intermediate solution before CAx
standards solve these issues, the development of a mesh standard that neutrally
references topological regions could link PDM/CAD data to FEA data. The
second is mainly due to the FEA software ecosystem, which delivers element
libraries as compiled code packages. As a result, current standards only
identify models with PLM data, such as software name, proprietary references
to the compiled code and informal ontologies to characterize models,
supporting only point to point integration.

An ecosystem shift is needed to solve the second challenge above, one that
gives the same flexibility as time-only simulations and more transparency.
Instead of setting inputs of compiled code templates, the starting point to
model or generate FEA libraries should be an abstraction level understandable
by all engineers, i.e., physics equations. At the numerical abstraction level,
FEA engineers detail their FE choices. If both abstraction levels are connected,
then FEA engineers and other engineering disciplines share a common
understanding of their models. We show how these two abstraction levels
connect by progressively creating and storing information as graph
datastructures (MGs, PGs, PSGs, NGs). With numerical graphs (NGs), input
template for solvers can be generated (PDE, BC types, material and geometry,
FE choices). Solvers could be integrated into platforms though standardized

29

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

interfaces by providing a formal library element specification, or in the
future new kinds of software solutions that model library elements and
generate code.

Identifying common mathematical structure, core models, is essential for
rapid extension and reuse of libraries between physical domains. In addition,
physics graphs can be composed. We see two progressive usage scenarios, one
that formalizes the description of FEA libraries (integration), the second that
directly links physics models and numerical decisions to solvers with a
standardized interface to run simulation with any solvers or even generate code
(interoperability and transparency).

6. Acknowledgements
The authors thank Benjamin Urick, Stephen Langer, and Joseph Draper for

their detailed comments and helpful discussion.
This work was performed under grant awards 70NANB16H174 and

70NANB18H192 from the U.S. National Institute of Standards and
Technology. Identification of any commercial equipment and materials is only
to adequately specify certain procedures. It is not intended to imply
recommendation or endorsement by the U.S. National Institute of Standards
and Technology, nor does it imply that the materials or equipment are
necessarily the best available for the purpose.

7. References
[1] BKCASE Editorial Board. (2017). The Guide to the Systems Engineering

Body of Knowledge (SEBoK), v. 1.9.1 R.J. Cloutier (Editor in Chief).
Hoboken, NJ: The Trustees of the Stevens Institute of Technology.
Accessed 2019. www.sebokwiki.org.

[2] Object Management Group (September 2015). OMG Systems Modeling
LanguageTM, version 1.4: http://www.omg.org/spec/SysML/1.4.

[3] Object Management Group (March 2015). OMG Unified Modeling
LanguageTM, version 2.5: http://www.omg.org/spec/UML/2.5.

[4] Modelica Association (2017) Modelica Language Specification, version 3.4
[5] Dadfarnia, M., Bock, C., Barbau, R. (2016). An Improved Method of

Physical Interaction and Signal Flow Modeling for Systems Engineering:
Conference on Systems Engineering Research.

[6] Hardwick, M, Clay, R., Boggs, P., Walsh, E., Larzelere, A., Altshuler, A.
(2005), “DART System Analysis,” Sandia National Laboratory Report
SAND2005-4647, Aug.

[7] International Organization for standardization (2016) ISO 10303-21:2016
Industrial automation systems and integration -- Product data representation
and exchange -- Part 1: Overview and fundamental principles

http://www.omg.org/spec/SysML/1.4
http://www.omg.org/spec/UML/2.5

30

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

[8] Ho-Le, K (1988). Finite element mesh generation methods: a review and
classification, Butterworth & Co

[9] Geuzaine, Christophe & Remacle Jean-Francois (1997-2019). Gmsh – A
three dimensional finite element mesh generator with build-in pre- and
post-processing facilities – open source www.gmsh.info

[10] Beal, M. W. and Shephard, M. S. (1997), A general topology-based data
structure. Int. J. Numer. Meth. Eng., 40: 1573-1596.

[11] Bruaset, Are Magnus & Langtangen, Hans Petter (1998). Diffpack: A
software Environment for Rapid Prototyping of PDE Solvers

[12] Alnaes, M.S. & Blechta, J. & Hake, J. & Johansson, A. & Kehlet, B. &
Logg, C., Richardson J.& Ring, J.& Rognes, M. E.& Well, G.N. (2015)
The FEniCS Project Version 1.5: Archive of Numerical Software. vol. 3.

[13] Hecht, F. (2012). New development in FreeFem++. Journal of numerical
mathematics, 20(3-4), 251-266.

[14] Van Rossum, G. (2007). Python programming language:
http://www.python.org.

[15] A. Henderson, ParaView Guide, A Parallel Visualization Application.
Kitware Inc., 2007.

[16] Schroeder, Will & Martin, Ken & Lorensen, Bill (2006), The
Visualization Toolkit (4th ed.), Kitware, ISBN 978-1-930934-19-1

[17] W3C (September 2006) Extensible Markup Language (XML) 1.1 (Second
Edition)

[18] Lee S.H., (2005). A CAD-CAE integration approach using feature-based
multi-resolution and multi-abstraction modelling techniques: Computer-
aided design, Elsevier.

[19] Beall, Mark & Walsh, Joe & Shephard, Mark. (2003). Accessing CAD
Geometry for Mesh Generation: Proceedings of 12th International
Meshing Roundtable. 33-42.

[20] Wassermann, Benjamin & Kollmannsberger, Stefan & Yin, Shuohui &
Kudela, László & Rank, Ernst. (2018). Integrating CAD and Numerical
Analysis: 'Dirty Geometry' handling using the Finite Cell Method.

[21] Junwahn, Kim & Pratt, Michael J. & Iyer, Raj & Sriram, Ram (2007).
Data Exchange of Parametric CAD Models using ISO 10303-108, NISTIR
7433, NIST

[22] Hirz, Mario & Rossbacher, Patrick & Gulanova, Jana. (2017). Future
trends in CAD – from the perspective of automotive industry. Computer-
Aided Design and Applications. 14. 1-8.
10.1080/16864360.2017.1287675.

http://www.gmsh.info/
http://www.python.org/

31

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

[23] Tierney, C. M., Sun, L., Robinson, T. T., & Armstrong, C. G. (2015).
Generating analysis topology using virtual topology operators. Procedia
Engineering, 124, 226-238

[24] Hirz, M. & Dietrch, W. & Gfrerrer, A. & Lang, J. (2013), Integrated
Computer-Aided Design in Automotive development, Development
processes, Geometric Fundamentals, Methods of CAD, Knowledge-Based
Engineering Data Management. Springer

[25] Beal, M. W. and Shephard, M. S. (1997), A general topology-based data
structure. Int. J. Numer. Meth. Eng., 40: 1573-1596.

[26] W3C (December 2017) The JSON Data Interchange Syntax:
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-
404.pdf

[27] International Organization for Standardization (2014) 10303-209:2014:
Industrial automation systems and integration -- Product data
representation and exchange -- Part 209: Application protocol:
Multidisciplinary analysis and design.

[28] Long Archiving and Retrieval Engineering Analysis and Simulation
Workgroup (2019) http://www.lotar-international.org/lotar-
workgroups/engineering-analysis-simulation/

[29] MOSSEC (2019) - Modelling and Simulation information in a
collaborative Systems Engineering Context - http://www.mossec.org

[30] Lipman, Robert (2018) – STEP File Analyzer User’s Guide (Version 5)
NIST Advanced Manufacturing Series 200-6.
https://doi.org/10.6028/NIST.AMS.200-6

[31] L. Akers, Robert & Baffes, Paul & Kant, Elaine & Randall, Curtis &
Steinberg, Stanly & L. Young, Robert. (1998). Automatic synthesis of
numerical codes for solving partial differential equations. Mathematics
and Computers in Simulation. 45. 3-22. 10.1016/S0378-4754(97)00082-7.

[32] Korelc, Joze. (1997). Automatic Generation of Finite-Element Code by
Simultaneous Optimization of Expressions. Theoretical Computer
Science. 187. 231-248.

[33] Alnæs, Martin & Logg, Anders & Ølgaard, Kristian & Rognes, Marie E.
& Wells, Garth N. (2014) Unified Form Language: A domain-specific
language for weak formulation of partial differential equations. Volume 40
issue 2, February 2014, Article No. .ACM Transactions on Mathematical
Software (TOMS)

[34] Alnæs, Martin & Logg, Anders & Mardal, K-. A. & Skavhaug, O. &
Langtangen, H.P. (2012). Unified Framework for Finite Element
Assembly

32

Presented at the NAFEMS World Congress 2019 Québec City, Canada | 17-20th June 2019

[35] Balay, Satish & Abhyankar, Shrirang, & F. Adams, Mark & Brown, Jed &
Brune, Peter & Buschelman, Kris & Dalcin, Lisandro & Eijkhout, Victor
& Gropp , William~D. & Kaushik, Dinesh & Knepley, Matthew~G.&
McInnes, Lois Curfman and Rupp, Karl and Smith, Barry~F. & Zampini,
Stefano and Zhang, Hong, (2015). PETS, Users Manual, Argonne
National Laboratory

[36] Van de Geijn, Robert & Goto Kazushige (2011). BLAS (Basic Linear
Algebra Subprograms). Encyclopedia of Parallel Computing.

[37] Scilab (2019) XCOS, open source, https://www.scilab.org/about/scilab-
open-source-software

[38] The MathWorks (2019), Simulink/Simscape Documentation,
https://www.mathworks.com/help/simulink/,
https://www.mathworks.com/help/physmod/simscape/.

[39] Tonti, Enzo (2013) The mathematical structure of classical and relatistic
physics: Birkhauser

[40] Felippa, Carlos. (1994). A survey of parametrized variational principles
and applications to computational mechanics. Computer Methods in
Applied Mechanics and Engineering.

[41] Franklin H. Branin. The algebraic-topological basis for network analogies
and the vector calculus. In Proceedings of the Symposium on Generalized
Networks, volume 16, pages 453 – 491, Brooklyn, New York, 1966.
Polytechnic Institute of Brooklyn  

[42] ISO 80000-1:2009 (2009), Quantities and units, ISO
[43] W3C (2014) Resource Description Framework (RDF) 1.1

https://www.w3.org/RDF/
[44] LaTex project (2019) LaTex – a document preparation system -

https://www.latex-project.org/about/
[45] W3C (2014) Mathematical Markup Language (MathML) version 3.0 2nd

edition https://www.w3.org/TR/MathML3/
[46] Logg, A. & Arnold, D. (2014). Periodic table of finite elements: Siam

News.
[47] Szarazi, Jerome & Bock, Conrad (2017) Integrating Finite Element

Analysis with Systems Engineering Models, NAFEMS world conference,
NAFEMS.

[48] Ciarlet, P. (2002). The finite element method for elliptic problems: SIAM.
[49] Logg A. & Al. (2012). Automated solution of differential equation by the

finite element method. Springer.

https://www.scilab.org/about/scilab-open-source-software
https://www.scilab.org/about/scilab-open-source-software
https://www.mathworks.com/help/simulink/
https://www.w3.org/RDF/
https://www.latex-project.org/about/
https://www.w3.org/TR/MathML3/

	FEA solver integration framework
	1. Introduction and motivation
	2. FEA data and standardization
	a. Meshing
	b. Solving
	c. Post-processing

	3. Current problems and proposals
	a. CAD/CAE integration
	b. Formal CAE model identification

	4. New FEA solver integration Framework
	a. Equation models
	b. Physics problems
	c. Boundary conditions
	d. Common mathematical structure
	e. Finite element specifications
	f. Library element
	g. Simulation
	h. Rapid extension of libraries

	5. Conclusion
	6. Acknowledgements
	7. References

