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Abstract—In many manufacturing applications, such as 

automated drilling or inspection of large parts, accurate 

knowledge of both position and orientation of the robot end-

effector is critical. In this paper, a method for reducing robot end-

effector position and orientation error is presented. Experimental 

results show that the method can reduce the median position error 

by 97% (to 0.3 mm) and the median orientation error by 57% (to 

0.27 deg). Limitations of the method caused by the hand-eye 

calibration are discussed.  
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I. INTRODUCTION  

Industrial robots are known for their good repeatability, 
often to within tens of microns. At the same time, their accuracy 
may frequently exceed millimeters [1, 2]. This lack of accuracy 
seriously limits the use of these robots in performing 
manufacturing tasks which require accurate localization of the 
end-effector. For example, a robot arm with large localization 
error tasked with part assembly will result in frequent jamming 
[3]. Automated drilling [4] or welding [5] require accurate 
knowledge of the Tool Center Point (TCP) frame. Inspections of 
large parts [6, 7] (e.g., wind turbine blades [8] or airplane 
components [9]) performed with line-of-sight sensors (e.g., laser 
scanners) mounted on a robot arm require the registration of 
scans acquired from different poses so that the differences 
between the as-built part and the original model design can be 
determined. This requires very accurate location of the sensor 
frame at the different poses. Thus, reducing robot localization 
error is an important research subject with immediate practical 
implications.  

The industrial robot spatial error can be traced back to two 
root causes: 1) incorrect values of the Denavit-Hartenberg (DH) 
parameters in the robot arm kinematic model, and 2) other, non-
kinematic errors such as thermal effects, backlash, friction, drift, 
joint compliance, or deformation under gravity load which 
especially affect light weight robots. The first source of error is 
caused mainly by incorrect or imprecise values of the joint-
offsets, and it is responsible for roughly 80% of the total robot 
localization error [10, 11]. This kind of error can be reduced by 
remastering the robot for which many different calibration 

techniques have been developed [12-14]. However, the residual 
error remains even after remastering, and it affects robot 
performance. The remaining part of the total robot localization 
error can be attributed to non-kinematic errors which are 
difficult to model and hard to reduce.  

To compensate for the robot localization error, different 
solutions have been proposed which depend on the specifics of 
a particular task. For example, video servoing [15, 16] can 
decrease robot error to a level comparable to the accuracy of a 
visual sensor, but it requires constant tracking of the robot end 
effector relative to a target point which may be difficult in some 
applications (e.g., medical surgery). For part assembly, a 
frequently used strategy relies on active compliance control 
based on feedback from force/torque (F/T) sensors. Many 
different control strategies have been developed and their 
performance evaluated in different versions of the peg-in-hole 
test [17-20]. For different manufacturing tasks, such as part 
inspection performed by non-contact sensors [21, 22], feedback 
from F/T sensors is not available and other solutions had to be 
developed. These rely on external visual sensors and analytical 
models of error to provide small corrections to the commanded 
robot pose. Such Volumetric Error Compensation (VEC) 
techniques [23-29] require knowledge of the rigid-body 
transformation (i.e., rotation matrix 𝛀 and translation vector 𝝉) 
between the robot frame and the external sensor frame.  

To register the sensor frame to the robot frame, the locations 
of a set of three or more points must be known in both frames. 
Once the points are measured in three-dimensional (3D) 
Cartesian space, the transformation {𝛀, 𝝉}  can be calculated 
[30]. Once the transformation is known, it can be used to 
transform any point from the sensor frame to the robot frame. 
However, due to robot localization error, the rigid-body 
condition is not preserved, and the transformed point in the 
sensor frame is not mapped exactly onto the corresponding point 
in the robot frame. In [31], a procedure called the Restoration of 
Rigid Body Condition (RRBC) was developed: its application 
allowed reduction of mean robot positional error by more than 
90% (up to 0.15 mm). The original RRBC used point-based 
registration and could lead to reduction in positional error only. 
However, in applications such as automated drilling [4] or part 
inspection [22], not only is point location important but the 



orientation of the TCP frame is also critical. Furthermore, the 
location of a point in the robot frame cannot always be 
determined from forward kinematics alone because of the 
unknown offset transformation between the robot wrist frame 
and the TCP frame. In these cases, point-based registration 
cannot be performed, and hand-eye (robot-sensor) calibration 
must be used instead [32]. This requires measurement of the full 
pose, i.e., six degrees of freedom (6DOF) data.  

In this paper, we extend the original RRBC procedure to 
handle this more general case. Experiments show that the 
median orientation error was reduced by 57% while the median 
positional error was reduced by 97%.  

II. RELATED WORK 

The use of the VEC type methods to reduce localization error 
requires prior knowledge of the transformation between two 
coordinate frames: the robot frame {𝑨}, and the sensor frame 
{𝑩}. When the tracking system can only measure 3D points, the 
transformation {𝛀, 𝝉}  can be obtained by minimizing the 
following error function 𝐹𝑅𝐸(𝛀, 𝝉) [30] for a set of 𝐽 points: 

𝐹𝑅𝐸(𝛀, 𝝉) =
1

𝐽
∑ 𝜺𝑗

2𝐽
𝑗=1 ,   (1) 

where 𝜺𝑗 is a small error vector calculated as  

𝜺𝑗 = 𝛀𝒃𝑗 + 𝝉 − 𝒂𝑗 ,   (2) 

and 𝒂𝑗 , 𝒃𝑗 are locations of the j-th 3D point in the corresponding 

frames. Points for registration are selected from a larger set of 
common points measured in both frames, which we call 
fiducials. A non-zero residual value of 𝐹𝑅𝐸  means that the 

rigid-body condition is not satisfied and ‖𝒂𝑖 − 𝒂𝑗‖ ≠ ‖𝒃𝑖 −

𝒃𝑗‖  for most 𝑖, 𝑗 ≤ 𝐽 , where ‖… ‖  is the Euclidean distance. 

Once {𝛀, 𝝉}  is determined, any point 𝜷  measured in sensor 
frame {𝑩} can be transformed to a point �̃� in the robot frame 
{𝑨}  

�̃� =  𝛀 𝜷 + 𝝉 .    (3) 

If a point 𝜶 (corresponding to point 𝜷) is not measured in the 
robot frame, the small correction error defined in (2) cannot be 
calculated. Rather, it can only by approximated from nearby 
fiducials as  

𝜺𝛼 = ∑ 𝑤𝑗(�̃�) 𝜺𝑗
𝐽
𝑗=1 ,    (4) 

where 𝑤𝑗  are normalized weights such that ∑ 𝑤𝑗 = 1𝐽
𝑗=1 . Point 

𝜷, measured only in the sensor frame {𝑩} but required in the 
robot frame {𝑨}, is called a target. The approximated error (4) 
can be used as a correction to the transformed target (3) so that 
the corrected target �̃� + 𝜺𝛼  is supposedly closer to the true, 
unknown target location 𝜶 in the robot frame {𝑨}. In this study, 
targets are also measured in the robot frame, and the target error 
𝛿(𝜶), calculated as  

𝛿(�̃�) = ‖𝛀 𝜷 + 𝝉 + 𝜺𝛼 − 𝜶‖,   (5) 

can be used to gauge the reduction in the robot position error. 

Different VEC algorithms calculate statistical weights 𝑤𝑗  in 

(4) differently. Recently, a kriging procedure, commonly used 
in geostatistics [33], was applied to decrease the positional error 

of an aviation drilling robot from 1.393 mm to 0.106 mm [34]. 
A similar approach was applied to a drilling and riveting system, 
and it resulted in a reduction of the localization error from 2.01 
mm to 0.32 mm [35]. Calculations of weights 𝑤𝑗  in (4) were 

based on an error similarity concept (similar configurations of 
robot joint angles should result in similar robot positioning 
error) and were derived from experimentally determined semi-
variograms [36]. In both studies [34, 35], a laser tracker and a 
spherically mounted reflector (SMR) were used to track the 
robot movement and calculate 𝜺𝑗  fiducial errors at 𝐽 = 200 

locations. Then, the weights 𝑤𝑗  in (4) were calculated for 

another set of target points, the estimated correction (4) was 
evaluated at each target, and the target positional error (5) was 
used to gauge the reduction of the robot error. Neither 
orientation errors for fiducials nor estimated orientation 
corrections for targets were calculated in either study.  

A different method based on fuzzy interpolation was 
developed and tested using simulation [37]. The kinematic 
model of the robot with known parameters was used to generate 
ground truth of a robot pose (thus, no registration between two 
coordinate frames was needed), and the position of the end-
effector was perturbed by noise to simulate experimental 
conditions. Fiducials were distributed on a regular grid, and the 
corrections to target positions were interpolated from the eight 
nearest surrounding fiducial errors. The weights 𝑤𝑗  in (4) were 

derived from fuzzy inference and provided better reduction in 
target error (5) when compared with the usual three-linear 
interpolation scheme. The fuzzy scheme was later extended to 
the three orientation angles which were formally treated in the 
calculations in the same way as the three Cartesian components 
of position vector [38]. Fuzzy interpolation from [37] was also 
used in [34] on experimental data, but yielded larger target 
positional error than the original method based on kriging.  

The approaches described above do not rely on robot 
calibration nor analytical error models. Instead, a robot is 
dynamically tracked by an external vision system and small 
corrections to the commanded positions are continuously 
provided to the robot controller. In this paper, we present an 
extension of the RRBC method (which also does not require the 
development of an error model) to compensate for the position 
as well as orientation errors. The results from experiments 
requiring full hand-eye calibration are presented. Comparison 
with simulation results reveals why the reduction of positional 
error is much better than reduction of orientation error.  

III. EXTENSION OF RRBC METHOD 

In the more general case when there is a constant offset 

transformation �̂�  between the TCP frame and the frame 
associated with the end of the robot arm, hand-eye calibration is 

needed to find the transformation �̂� from the sensor frame to the 
robot frame. This procedure requires 𝐽 ≥ 3  different 

measurements of corresponding poses �̂�𝑗  in the sensor frame 

and �̂�𝑗 in the robot frame. Both homogeneous transformations 

can be calculated by solving the set of equations 

�̂�𝑗  �̂� = �̂� �̂�𝑗     (6) 

for all 𝑗 = 1, … , 𝐽 . Equation (6) can be rewritten for the 
orientation and the position part separately as  



𝑨𝑗  𝑿 = 𝒀 𝑩𝑗 ,     (7a)  

𝑨𝑗  𝒙 + 𝒂𝑗 = 𝒀 𝒃𝑗 +  𝒚 ,   (7b) 

where 𝑿, 𝒀, 𝑨𝑗 , 𝑩𝑗  are 3 × 3  rotation matrices and 𝒙, 𝒚, 𝒂𝑗, 𝒃𝑗  

are column vectors. There are many different methods to solve 

(7) for �̂� and �̂�. In this study, we used a modified analytical 
solution based on the Kronecker product developed in [39]. The 
original method does not guarantee that matrices 𝑿 and 𝒀 are 
orthogonal, and therefore, we apply an orthogonalization 
procedure to the resulting matrices as described in [40]. After 

the homogeneous matrices �̂� and �̂�are determined, poses from 
the sensor frame {𝑩} can be transformed to the robot frame {𝑨}. 
As in the point-based, rigid-body registration, poses mapped 
from the sensor frame do not exactly match the corresponding 
measured poses in the robot frame. Analogous to the vector error 
𝜺𝑗 in (2), a small rotation matrix 𝚲𝑗 and a position vector 𝝀𝑗 are 

calculated from (7) as 

𝚲𝑗 =  𝒀 𝑩𝑗  𝑿𝑇  𝑨𝑗
𝑇 ,   (8a) 

𝝀𝑗 = 𝒀 𝒃𝑗 + 𝒚 − (𝑨𝑗 𝒙 + 𝒂𝑗) ,  (8b) 

where 𝑿𝑇  indicates a transposed matrix. Once matrices 𝚲𝑗 and 

vectors 𝝀𝑗  are calculated from fiducial poses �̂�𝑗  and  �̂�𝑗 , they 

can be used to estimate the orientation and position corrections 

of a target pose (�̃�, �̃�) transformed to the robot frame from the 

sensor frame  

𝚲𝑎(�̃�, �̃�) = 𝑜𝑟𝑡(∑ 𝑤𝑗  𝚲𝑗
𝐽
𝑗=1 ) ,   (9a) 

𝝀𝑎(�̃�, �̃�) =  ∑ 𝑤𝑗  𝝀𝑗
𝐽
𝑗=1  ,    (9b) 

where 𝑜𝑟𝑡(… )  denotes the orthogonalization procedure 

developed in [40], and (�̃�, �̃�)  is the target pose (𝚩, 𝜷) 

transformed from the sensor frame to the robot frame using  

�̃� = 𝒀 𝚩 𝑿𝑇  ,    (10a) 

�̃� = 𝒀 𝜷 + 𝒚 − �̃� 𝒙.    (10b)  

The corrected target rotation 𝚲𝑎�̃�  and the corrected target 
position �̃� +  𝝀𝑎  should be closer to the actual (and usually 
unknown) rotation 𝚨 and position 𝜶 in the robot frame. Again, 
as in (5), when the target pose (𝚨, 𝜶) is also measured in the 
robot frame, the corresponding target error can be calculated and 
used to gauge the performance of the error compensation 
procedure.  

For the orientation error, we rely on the angle-axis (𝜌, 𝒖) 
representation of the rotation 𝑹(𝜌, 𝒖), and the fact that angle 𝜌 
is invariant to the coordinate system (i.e., it is analogous to 
vector length). We ensure that 𝜌  is always non-negative by 
using the property of rotation that 𝑹(−𝜌, 𝒖) = 𝑹(𝜌, −𝒖). Thus, 
the target error has two components (𝜌, 𝛿) , and they were 
evaluated for the uncorrected poses in robot frame using 

𝑹(𝜌𝑢𝑛𝑐, 𝒖𝑢𝑛𝑐) = �̃� 𝚨𝑇  ,    (11a) 

𝛿𝑢𝑛𝑐 =  ‖�̃� − 𝜶‖ ,   (11b) 

as well as for the corrected poses using 

𝑹(𝜌𝑐𝑜𝑟 , 𝒖𝑐𝑜𝑟) = 𝚲𝑎�̃� 𝚨𝑇  ,   (12a) 

𝛿𝑐𝑜𝑟 =  ‖�̃� + 𝝀𝑎 − 𝜶‖ .   (12b) 

The weights, 𝑤𝑗 , were those used to calculate the orientation 

corrections in (9a) and position correction in (9b). We calculated 
the Euclidean distances 𝑑𝑗 between the joint angles of the robot 

arm {𝜃𝑡} corresponding to the target pose, and the joint angles 

of the j-th fiducial {𝜃𝑓,𝑗}  

𝑑𝑗 = √∑ [𝜃𝑡(𝑛) − 𝜃𝑓,𝑗(𝑛)]
2𝑁

𝑛=1  ,   (13) 

where 𝜃(𝑛)  is n-th joint angle (for target or fiducial 
configuration) and 𝑁 is the total number of robot joints. Then, 
the inverse distance 𝑑𝑗

′ = 1 𝑑𝑗⁄  was used to calculate the weight 

as  

𝑤𝑗 = 𝑑𝑗
′ ∑ 𝑑𝑗

′𝐽
𝑗=1⁄  .   (14) 

IV. VERIFICATION 

The performance of the extended RRBC procedure was 
investigated using both lab experiments with physical robots and 
computer simulations. The reduction in robot error was reported 
as a ratio 𝜌𝑐𝑜𝑟 𝜌𝑢𝑛𝑐⁄  for orientation and 𝛿𝑐𝑜𝑟 𝛿𝑢𝑛𝑐⁄  for position 
error. Details of the experiment and simulations are provided 
below. 

A. Case Study: Physical Experiments 

A collaborative, open chain manipulator robot KUKA LWR 
4+ was used in the experiments. According to the robot 
specification, the repeatability 𝜎𝑟𝑒𝑝 of this 7DOF robot arm was 

±0.05 mm (ISO 9283). To ensure high accuracy in Cartesian 
space, the stiffness of the robot was set to high. In the tests, the 
third joint angle was fixed and set to zero. Thus, the effective 
number of joints was reduced to 𝑁 = 6 , and an in-house 
analytical inverse kinematic (AIK) module was used to solve the 
inverse kinematic problem rather than relying on the robot’s 
built-in IK solver. Depending on the pose of the end-effector, 
the AIK module yielded up to eight unambiguous solutions.  

A fixed, three-camera motion-capture system, an OptiTrack 
TRIO, was used as an external tracking system. Each of the three 
cameras has a resolution of 640 × 480 pixels, and the sampling 
frequency of the tracking system was set to 120 Hz. Four 
spherical infrared reflector (SIR) markers were attached to an 
aluminum plate mounted at the robot’s tool flange, as shown in 
Fig. 1. These markers were used to get the 6DOF pose of the 
robot in the TRIO’s coordinate frame. The tracking system 
output the location as (𝑥, 𝑦, 𝑧)  and three orientation angles 

(𝜇𝑥 , 𝜇𝑦, 𝜇𝑧) parametrizing the Euclidean rotation matrix.  

The robot was commanded to 𝐾 = 66 different target poses. 

Around each target pose (𝚩𝑘 , 𝜷𝑘), fiducial poses (𝚽𝑗 , 𝝋𝑗) were 

defined so that the eight fiducial positions {𝝋1, … , 𝝋8} were at 
the corners of a 20-mm cube with 𝜷𝑘 at the center of the cube. 
At each of the eight cube corners, the same set of six orientations  
{𝚽1 , … , 𝚽6} was defined. If target orientation 𝚩𝑘  was 
parametrized by angle 𝜌𝑘  and axis 𝒖𝑘, then three unit vectors 
{𝒇1, 𝒇2, 𝒇3} were selected in a way such that 𝒖𝑘 was inside the 
spherical equilateral triangle formed by the three unit vectors, 
and the angular distance between 𝒖𝑘 and each 𝒇 was 7°. Two 
angles 𝜌𝑘 ± 5°  were selected as angles of rotation and 



associated with each of the three unit vectors to parametrize the 
six fiducial orientation matrices. In this way, a total of 𝐽 = 48 

fiducial poses (𝚽𝑗 , 𝝋𝑗)  were built around each target pose 

(𝚩𝑘 , 𝜷𝑘). This was repeated for all 𝐾 targets resulting in a total 
of 3,168 fiducial poses. At each pose (target or fiducial), 12 
repeated measurements were made with the TRIO system and 
stored in a file along with the joint angles corresponding to the 
commanded robot pose. In post-processing, the average pose, in 
the sensor frame, was calculated from the repeated 
measurements and used when analyzing the data.  

From the set of all fiducial poses in the TRIO system frame 
and the robot frame, eight pairs of poses were randomly selected 

and used to obtain the hand-eye calibration matrices (�̂�, �̂�) as in 

[39]. 

 

Fig. 1. Four spherical, reflective markers used to track the pose at the end of a 

robot arm.  

B. Case Study:  Computer Simulation 

In the computer simulation, the commanded robot poses 
were calculated using joint angles obtained from both the lab 
experimentation and the forward kinematic model with the same 
set of parameters as used by the robot controller. Then, using the 

inverse hand-eye transformation (�̂�−1, �̂�−1) obtained from the 

experimental data, corresponding poses in the sensor frame were 
generated. Finally, joint angle offsets were slightly deviated 
from their nominal values used in the experiment and new, 
“erroneous” commanded poses in robot frame were generated 
using the same set of joint angles as before. Once the two sets of 
corresponding poses in robot and sensor frame were created, the 
rest of the post-processing was the same as for the experimental 
data, i.e., quantities defined in equations (8) through (14) were 
calculated.  

V. RESULTS 

From the 12 repeated TRIO measurements of positions and 
orientation angles, sensor noise was calculated as the standard 
deviation at each measured pose, and then the average over all 
poses in the work volume was estimated yielding 𝜎𝑝𝑜𝑠 ≈ 0.057 

mm for the position component and 𝜎𝑎𝑛𝑔 ≈ 0.06°  for the 

angular component. Deviation from the rigid-body assumption 
was investigated by calculating the differences in relative 
rotations between the k-th target and its surrounding 48 fiducials 

when determined in both the robot and sensor frames. The 

histogram of such differences ∆𝑘,𝑗= 𝜌𝑘,𝑗
𝑠𝑒𝑛 − 𝜌𝑘,𝑗

𝑟𝑜𝑏  is shown in 

Fig. 2, where  

𝑹(𝜌𝑘,𝑗
𝑠𝑒𝑛 , 𝒖𝑘,𝑗

𝑠𝑒𝑛) = 𝚽𝑗  𝚩𝑘
𝑇  ,   (15) 

and 𝑹 is the relative rotation between the k-th target orientation 
𝚩𝑘 and the associated j-th fiducial orientation 𝚽𝑗  in the sensor 

frame. The corresponding relative rotation 𝑹(𝜌𝑘,𝑗
𝑟𝑜𝑏 , 𝒖𝑘,𝑗

𝑟𝑜𝑏) was 

also calculated in the robot frame so that the differences Δ𝑘,𝑗 

could be calculated for all 𝑗 and 𝑘. Note that the calculations of 
the differences do not require hand-eye registration, and the 
deviation from the rigid-body condition may be characterized by 
a single parameter (e.g., the standard deviation of differences 
𝜎Δ). For the experimental data shown in Fig. 2, 𝜎∆ = 0.405° and 
roughly 25% of this value may be attributed to sensor inaccuracy 
and the remaining part to the uncalibrated robot. 

 

Fig. 2. Histogram of angular differences which result from deviation 

from the rigid-body condition for the robot-sensor system.  

The uncorrected (𝜌𝑢𝑛𝑐 , 𝛿𝑢𝑛𝑐)  and corrected (𝜌𝑐𝑜𝑟 , 𝛿𝑐𝑜𝑟) 
target errors defined in (11) and (12) are shown in Fig. 3 and Fig. 
4 for the experimental data, and in Fig. 5 and Fig. 6, for the 
simulated data, respectively. The median (from 𝐾 = 66) values 

of the errors (�̂�, �̂�)  and corresponding reduction rates 

(𝛾𝑝𝑜𝑠, 𝛾𝑎𝑛𝑔) , where 𝛾𝑝𝑜𝑠 = (�̂�𝑢𝑛𝑐 − �̂�𝑐𝑜𝑟) �̂�𝑢𝑛𝑐⁄  and 𝛾𝑎𝑛𝑔 =
(�̂�𝑢𝑛𝑐 − �̂�𝑐𝑜𝑟) �̂�𝑢𝑛𝑐⁄ , are given in Table I.  

 

Fig. 3. Robot position error from experimental data: a) uncorrected 

error 𝛿𝑢𝑛𝑐; b) corrected error 𝛿𝑐𝑜𝑟. 



For the k-th target and its corresponding robot joint angles 
𝜽𝑡, all distances 𝑑𝑗 in (13) are calculated for 𝑗 = 1, … ,48. The 

largest 𝑑𝑗 is denoted by 𝜃𝑚𝑎𝑥(𝑘) and plotted for all 𝐾 targets in 

Fig. 7.  

 

Fig. 4. Robot orientation error from experimental data: a) uncorrected 

error 𝜌𝑢𝑛𝑐; b) corrected error 𝜌𝑐𝑜𝑟. 

 

 

Fig. 5. Robot position error from simulated data: a) uncorrected error 

𝛿𝑢𝑛𝑐; b) corrected error 𝛿𝑐𝑜𝑟. 

 

Table I. Median robot errors 

 

 

Fig. 6. Robot orientation error from simulated data: a) uncorrected 

error 𝜌𝑢𝑛𝑐; b) corrected error 𝜌𝑐𝑜𝑟. 

 

 

Fig. 7. Largest angle distance between joint angles at a target and the 

commanded poses for its neighboring fiducials. 

VI. DISUSSION 

The presented results show that pose accuracy of a robot’s 
end-effector can be greatly improved. Both position and 
orientation errors can be reduced by linear interpolation of small 
corrections (small rotations and small translations) obtained 
from neighboring fiducial poses for which the rigid-body 
condition has been restored. In the lab experiments, the observed 
improvement in the position is larger than in the orientation. 
Plots in Fig. 3 show that for all 𝐾 targets, the corrected position 
error 𝛿𝑐𝑜𝑟(𝑘) is smaller than the uncorrected error 𝛿𝑢𝑛𝑐(𝑘). For 
the orientation error (Fig. 4), the RRBC method failed for 11 out 
of 66 targets (i.e., when 𝜌𝑐𝑜𝑟(𝑘)  is larger than uncorrected 
𝜌𝑢𝑛𝑐(𝑘)). This outcome is not unexpected as the method relies 
on linear interpolation which may occasionally give inaccurate 
estimates, especially when the distance between target and 
fiducial is not small. However, the same procedure was also 
used to process the simulated data (which were generated using 
the recorded experimental joint angles), and it led to failure for 

Data 
source 

Median position error [mm] Median angle error [deg] 

�̂�𝑢𝑛𝑐 �̂�𝑐𝑜𝑟 𝛾𝑝𝑜𝑠  �̂�𝑢𝑛𝑐 �̂�𝑐𝑜𝑟 𝛾𝑎𝑛𝑔  

Exp. 10.233 0.301 97 % 0.626 0.267 57 % 

Sim. 9.128 0.228 97 % 0.952 0.010 99 % 



only three target orientations, as can be seen in Fig. 6. To explain 
the difference between the experimental and simulated results 
(as evidenced by numerical values of �̂�𝑐𝑜𝑟 and 𝛾𝑎𝑛𝑔 in Table I), 

a more detailed analysis of differences between experimental 
and simulated data is needed. For both experimental and 
simulated trials, the RRBC method resulted in a net increase in 
position accuracy. 

Each target pose was surrounded by 48 fiducial poses, 
methodically designed for linear interpolation: six orientations 
at each of the eight cube corners. At each of the eight corners, 
the same set of six different, commanded orientations was used. 
Therefore, for each orientation, there were eight repeats, and this 

enabled the evaluation of the variance of the angles (𝜇𝑥 , 𝜇𝑦, 𝜇𝑧) 

measured by the TRIO. The three variances were summed up, 
and the same calculations were repeated for all six orientations. 
The mean variance was then evaluated, and its square root was 
used as the mean variation for that target, 𝑔(𝑘) . These 
calculations were performed for each target, and the results are 
shown in Fig. 8. Since each of the 48 fiducial poses is a 
combination of one orientation and one position, each pose 
corresponds to a unique arm configuration. Because no 
calibration is perfect, the robot is expected to have some residual 
calibration error.  As such, each of the six orientations at all eight 
cube corners is expected to demonstrate some variability across 
measurements by the TRIO.  However, the variability seen in 
Fig. 8 cannot be attributed to a random noise; recall that all post-
processing was performed on the averaged TRIO data.  

 

Fig. 8. Variations of measured by sensor angles corresponding to fixed 

commanded orientations in robot frame.  

This variability also impacts the orientation correction 𝚲𝑗  in 

(8a). For a commanded orientation 𝑨𝑗  in the robot frame, the 

orientation 𝑩𝑗 measured by TRIO depends on the commanded 

position 𝒂𝑗  although in (8a) the positional component of the 

pose is not explicitly used. Thus, the orientation 𝑩𝑗  can be 

expressed as some constant orientation �̅�𝑗 perturbed by a small 

rotation matrix 𝒅𝑹𝑗  which depends on 𝒂𝑗 , i.e., 𝑩𝑗 =

𝒅𝑹𝑗(𝒂𝑗) �̅�𝑗. Although the root cause of the small perturbation 

𝒅𝑹𝑗 is purely deterministic (uncalibrated robot), its effect on the 

linear interpolation scheme is similar to random noise: it makes 
the correction 𝚲𝑗 ambiguous and less accurate. This affects the 

estimated target correction in (9a) and lessens the reduction of 
the orientation error 𝜌𝑐𝑜𝑟  in (12a). This phenomenon is not 
present in the simulated data because rotations in the sensor 
frame were created from the commanded robot rotations using 

the inverse hand-eye transformation (�̂�−1, �̂�−1). Note that the 

position correction 𝝀𝑗  in (8b) depends explicitly on the 

commanded pose (𝑨𝑗 , 𝒂𝑗) , and therefore, it can be uniquely 

determined. This explains why the reduction in the position error 
𝛾𝑝𝑜𝑠 for the experimental data is as good as for the simulated 

data (as shown in Table I). 

Closer inspection of the target poses for which the reduction 
procedure underperformed (i.e., the corrected robot errors are 
conspicuously larger) reveals a strong correlation with targets 
where 𝜃𝑚𝑎𝑥(𝑘)  spikes over 100° . This is observed for the 
position and orientation error and for both types of data: 
experimental and simulated, as can be seen by comparing Fig. 7 
with Fig. 3 through Fig. 6. Although the Euclidean and angular 
distances between the target and fiducial are small, large 
differences between two robot arm configurations will degrade 
the performance of the linear interpolation technique. No 
correlation between large 𝜃𝑚𝑎𝑥(𝑘) and the location of the k-th 
target in the work volume was observed. Note that the three 
target poses characterized by large variation 𝑔(𝑘), as shown in 
Fig. 8, also coincide with the locations where the reduction of 
the orientation error failed, i.e., 𝜌𝑐𝑜𝑟(𝑘) > 𝜌𝑢𝑛𝑐(𝑘) . Whether 
this large variation 𝑔(𝑘) is caused entirely by the sensitivity of 
the orientation correction 𝚲𝑗 (8a) to the position 𝒂𝑗 (i.e., large 

rotation perturbation 𝒅𝑹𝑗(𝒂𝑗)) or by a deficiency in the data 

acquired by the sensor needs to be investigated. When 11 poses 
with large 𝜃𝑚𝑎𝑥(𝑘)  or 𝑔(𝑘)  are discarded, the median errors 

from the remaining 55 target poses are reduced to �̂�𝑐𝑜𝑟 = 0.279 
mm for position and �̂�𝑐𝑜𝑟 = 0.249° for orientation. 

VII. CONCLUSIONS 

Unlike most other error compensation techniques which 
reduce only position error, the extended Restoration of Rigid 
Body Condition method also reduced the orientation error of a 
robot’s end-effector. That was demonstrated on experimental 
data requiring hand-eye calibration. Performance of the method 
can be improved by choosing fiducial arm configurations that 
are close to the target arm configuration. The relative reduction 
of the orientation error was smaller than for position error. This 
is a consequence of the mathematical property of the hand-eye 
calibration, and the fact that target corrections were estimated in 
Cartesian space. Estimating these corrections in joint angle 
space could overcome the limits of the existing method and is 
planned for future research.  

DISCLAIMER 

Certain commercial equipment are mentioned in this paper 
to specify the experimental procedure adequately. Such 
identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and 
Technology, nor does it imply that the equipment is necessarily 
the best available for the purpose. 
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